March 2007 HYB18M 1G 320 B F– 7 . 5 HYE18M 1G 320 B F– 7 . 5 DRAMs for Mobile Applications 1-Gbit x32 DDR Mobile-RAM RoHS compliant Data S heet Rev.1.00 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM HYB18M1G320BF–7.5, HYE18M1G320BF–7.5, Revision History: 2007-03, Rev.1.00 Page Subjects (major changes since last revision) All Portfolio Change Previous Revision: Rev. 0.61, 2007-02 All Qimonda update Updates see Change List Rev.1.00, 2007-03 02022006-J7N7-GYFP 2 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 1 Overview 1.1 Features • • • • • • • • • • • • • • • • • Low power DDR 1Gbit x32 dual die implementation Each die is organized as 4 banks x 8 Mbit x16 Double-data-rate architecture: two data transfers per clock cycle Bidirectional data strobe (DQS) is transmitted / received with data; to be used in capturing data at the receiver DQS is edge-aligned with data for READs and center-aligned with data for WRITEs Differential clock input (CK / CK) Commands entered on positive CK edge; data and mask data are referenced to both edges of DQS Four internal banks for concurrent operation Programmable CAS latency: 2 and 3 Programmable burst length: 2, 4, 8 and 16 Programmable drive strength (full, half, quarter) Auto refresh and self refresh modes 8192 refresh cycles / 64ms Auto precharge Commercial (-0°C to +70°C) and Extended (-25°C to +85°C) operating temperature ranges 90-ball PG-VFBGA-90-5 package (11 × 12.5 × 1.0 mm) RoHS Compliant Product1) Power Saving Features • • • • • • Low supply voltages: VDD and VDDQ = 1.80 V nominal Optimized operating (IDD0, IDD4), self refresh (IDD6) and standby currents (IDD2, IDD3) DDR I/O scheme with no DLL Programmable Partial Array Self Refresh (PASR) Temperature Compensated Self-Refresh (TCSR), controlled by on-chip temperature sensor Clock Stop, Power-Down and Deep Power-Down modes TABLE 1 Performance Part Number Speed Code Clock Frequency (fCKmax) - 7.5 CL = 3 CL = 2 Access Time (tACmax) Unit 133 MHz 66 MHz 6.5 ns 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Rev.1.00, 2007-03 02022006-J7N7-GYFP 3 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM TABLE 2 Memory Addressing Scheme Item Addresses Banks BA0, BA1 Rows A0 - A12 Columns A0 - A9 TABLE 3 Ordering Information Type1) Description Commercial Temperature Range HYB18M1G320BF–7.5 133 MHz 4 Banks × 8 Mbit × 32 Low Power DDR Mobile-RAM Extended Temperature Range HYE18M1G320BF–7.5 133 MHz 4 Banks × 8 Mbit × 32 Low Power DDR Mobile-RAM 1) HYB / HYE: Designator for memory products (HYB: standard temp. range; HYE: extended temp. range) 18M: 1.8V DDR Mobile-RAM 1G: 1Gbit density 320: 32 bit interface width B: die revision F: green product -7.5: speed grades (min. clock cycle time) Rev.1.00, 2007-03 02022006-J7N7-GYFP 4 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 1.2 Ball Configuration FIGURE 1 Standard ballout 1-Gbit DDR Mobile-RAM (Top View) Rev.1.00, 2007-03 02022006-J7N7-GYFP $ 9''4 '4 9'' '4 % '4 '4 9664 '4 '4 & '4 '4 9''4 9''4 '4 '4 ' '4 '4 9664 9664 '46 '4 ( '4 '46 9''4 9'' '0 1& ) 1& '0 966 &.( &. &. * :( &$6 5$6 $ $ $ + &6 %$ %$ $ $ $ - $$3 $ $ $ '0 $ . $ '0 $ 9664 '46 '4 / '4 '46 9''4 9''4 '4 '4 0 '4 '4 9664 9664 '4 '4 1 '4 '4 9''4 9''4 '4 '4 3 '4 '4 9664 966 '4 9664 5 9''4 '4 9'' 966 '4 9664 9''4 '4 9664 5 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 1.3 Description The HY[B/E]18M1G320BF is a high-speed CMOS, dynamic random-access memory containing 1,073,741,824 bits. It is internally configured as a quad-bank DRAM. The HY[B/E]18M1G320BF uses a double-data-rate architecture to achieve high-speed operation. The double-data-rate architecture is essentially a 2n pre fetch architecture, with an interface designed to transfer two data words per clock cycle at the I/O balls. A single READ or WRITE access for the DDR Mobile-RAM consists of a single 2n-bit wide, one clock cycle data transfer at the internal DRAM core and two corresponding n-bit wide, one-half clock cycle data transfers at the I/O balls. The HY[B/E]18M1G320BF is especially designed for mobile applications. It operates from a 1.8V power supply. Power consumption in self refresh mode is drastically reduced by an On-Chip Temperature Sensor (OCTS); it can further be reduced by using the programmable Partial Array Self Refresh (PASR). A conventional data-retaining Power-Down (PD) mode is available as well as a non-data-retaining Deep Power-Down (DPD) mode. For further power-savings the clock may be stopped during idle periods. The HY[B/E]18M1G320BF is housed in a 90-ball PG-VFBGA-90-5 package. It is available in Commercial (-0°C to +70°C) and Extended (-25°C to +85°C) temperature range. FIGURE 2 Functional Block Diagram %DQN 0HPRU\$UUD\ &.&. [[ 'DWD %DQN&ROXPQ/RJLF &ROXPQ$GGUHVV &RXQWHU/DWFK ,2*DWLQJ '400DVN/RJLF '4 '4 '0 '0 '46 *HQHUDWRU ,QSXW5HJ :ULWH 0DVN ),)2 'ULYHUV FON RXW &ROXPQ 'HFRGHU 'ULYHUV 6HQVH$PSOLILHU &.&. FON 'DWD LQ 5HFLHYHUV %DQN 08; %DQN 5HIUHVK&RXQWHU $$ %$%$ $GGUHVV5HJLVWHU %DQN 5RZ$GGUHVV/DWFK 'HFRGHU 0RGH 5HJLVWHUV 5RZ$GGUHVV0X[ %DQN 5HDG/DWFK &RPPDQG 'HFRGH &6 5$6 &$6 :( &RQWURO/RJLF &.( &. &. &RO &RO 1RWH7KH)XQFWLRQDO%ORFN'LDJUDPLVLQWHQGHGWRIDFLOLWDWHXVHUXQGHUVWDQGLQJRIWKHRSHUDWLRQRIWKHGHYLFHLWGRHVQRWUHSUHVHQWWKHDFWXDO FLUFXLWLPSOHPHQWDWLRQ 1RWH'0'0DUHXQLGLUHFWLRQDOVLJQDOVLQSXWRQO\EXWLQWHUQDOO\ORDGHGWRPDWFKWKHORDGRIWKHELGLUHFWLRQDO'4DQG'46±'46 Rev.1.00, 2007-03 02022006-J7N7-GYFP 6 '46 '46 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 1.4 Ball Definition and Description TABLE 4 Ball Description Ball Type Detailed Function CK, CK Input Clock: CK and CK are differential clock inputs. All address and control inputs are sampled on crossing of the positive edge of CK and negative edge of CK. CKE Input Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals, and device input buffers and output drivers. Taking CKE LOW provides precharge power-down and self refresh operation (all banks idle), or active power-down (row active in any bank). CKE must be maintained HIGH throughout read and write accesses. Input buffers, excluding CK, CK and CKE are disabled during power-down. Input buffers, excluding CKE are disabled during self refresh. CS Input Chip Select: All commands are masked when CS is registered HIGH. CS provides for external bank selection on systems with multiple banks. CS is considered part of the command code RAS, CAS, WE Input Command Inputs: RAS, CAS and WE (along with CS) define the command being entered. DQ0 - DQ31 I/O Data Inputs/Output: Bi-directional data bus (32 bit) DQS0, DQS1, I/O DQS2, DQS3 Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered with write data. Used to capture write data. DQS0 corresponds to the data on DQ0 - DQ7, DQS1 to the data on DQ8 - DQ15, DQS2 to the data on DQ16 - DQ23, DQS3 to the data on DQ24 - DQ31 DM0, DM1, DM2, DM3 Input Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a WRITE access. DM is sampled on both edges of DQS. Although DM balls are input only, the DM loading matches the DQ and DQS loading. DM may be driven HIGH, LOW, or floating during READs. DM0 corresponds to the data on DQ0 DQ7, DM1 to the data on DQ8 - DQ15, DM2 to the data on DQ16 - DQ23, DM3 to the data on DQ24 - DQ31 BA0, BA1 Input Bank Address Inputs: BA0 and BA1 define to which bank an ACTIVATE, READ, WRITE or PRECHARGE command is being applied. BA0, BA1 also determine which mode register is to be loaded during a MODE REGISTER SET command (MRS or EMRS). A0 - A12 Input Address Inputs: Provide the row address for ACTIVE commands and the column address and Auto Precharge bit for READ/WRITE commands, to select one location out of the memory array in the respective bank. A10 (=AP) is sampled during a precharge command to determine whether the PRECHARGE applies to one bank (A10=LOW) or all banks (A10=HIGH). If only one bank is to be precharged, the bank is selected by BA0 and BA1. The address inputs also provide the op-code during a MODE REGISTER SET command. VDDQ VSSQ VDD VSS Supply I/O Power Supply: Isolated power for DQ output buffers for improved noise immunity Supply I/O Ground Supply Power Supply: Power for the core logic and input buffers. Supply Ground N.C. – No Connect Rev.1.00, 2007-03 02022006-J7N7-GYFP 7 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2 Functional Description The 1-Gbit x32 DDR Mobile-RAM is a high-speed CMOS, dynamic random-access memory containing 1,073,741,824 bits. It is internally configured as a quad-bank DRAM. READ and WRITE accesses to the DDR Mobile-RAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0, BA1 select the banks, A0 - A12 select the row). The address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst access. Prior to normal operation, the DDR Mobile-RAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command description and device operation. 2.1 Power On and Initialization The DDR Mobile-RAM must be powered up and initialized in a predefined manner (see Figure 3). Operational procedures other than those specified may result in undefined operation. FIGURE 3 Power-Up Sequence and Mode Register Sets 6$$ 6$$ 1 S T#+ T20 T2&# T2&# T-2$ T-2$ #+ #+ #+% #OM MA ND ./0 02% !2& !DDRE SS !LL "ANKS ! !2& -23 -23 !#4 #ODE #ODE 2! #ODE #ODE 2! "! , "! , "! , "! ( "! "!"! $- $1$1 3 (IGH: Rev.1.00, 2007-03 02022006-J7N7-GYFP 8 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 1. At first, device core power (VDD) and device IO power (VDDQ) must be brought up simultaneously. Typically VDD and VDDQ are driven from a single power converter output. Assert and hold CKE to a HIGH level. 2. After VDD and VDDQ are stable and CKE is HIGH, apply stable clocks. 3. Wait for 200µs while issuing NOP or DESELECT commands. 4. Issue a PRECHARGE ALL command, followed by NOP or DESELECT commands for at least tRP period. 5. Issue two AUTO REFRESH commands, each followed by NOP or DESELECT commands for at least tRFC period. 6. Issue two MODE REGISTER SET commands for programming the Mode Register and Extended Mode Register, each followed by NOP or DESELECT commands for at least tMRD period; the order in which both registers are programmed is not important. Following these steps, the DDR Mobile-RAM is ready for normal operation. Rev.1.00, 2007-03 02022006-J7N7-GYFP 9 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.2 Register Definition 2.2.1 Mode Register The Mode Register is used to define the specific mode of operation of the DDR Mobile-RAM. This definition includes the selection of a burst length (bits A0-A2), a burst type (bit A3) and a CAS latency (bits A4-A6). The Mode Register is programmed via the MODE REGISTER SET command (with BA0 = 0 and BA1 = 0) and will retain the stored information until it is programmed again or the device loses power. The Mode Register must be loaded when all banks are idle, and the controller must wait the specified time before initiating any subsequent operation. Violating either of these requirements results in unspecified operation. Reserved states should not be used, as unknown operation or incompatibility with future versions may result. Mode Register Definition (BA[1:0] = 00B) %$ %$ $ $ $ $ $ $ $ $ &/ $ $ %7 $ $ $ %/ 03%/ Field Bits Type Description CL [6:4] w CAS Latency 010B CL 2 011B CL 3 Note: All other bit combinations are RESERVED. BT 3 w Burst Type BT Sequential 0B 1B BT Interleaved BL [2:0] w Burst Length 001B BL 2 010B BL 4 011B BL 8 100B BL 16 Note: All other bit combinations are RESERVED. Rev.1.00, 2007-03 02022006-J7N7-GYFP 10 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.2.1.1 Burst Length READ and WRITE accesses to the DDR Mobile-RAM are burst oriented, with the burst length being programmable. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 2, 4, 8 or 16 locations are available. When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, meaning that the burst wraps within the block if a boundary is reached. The block is uniquely selected by A1 - A9 when the burst length is set to two, by A2 - A9 when the burst length is set to four, by A3 - A9 when the burst length is set to eight and by A4 - A9 when the burst length is set to sixteen. The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. The programmed burst length applies to both READ and WRITE bursts. 2.2.1.2 Burst Type Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit A3. The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in Table 5. 2.2.1.3 Read Latency The Read latency, or CAS latency, is the delay, in clock cycles, between the registration of a READ command and the availability of the first piece of output data. The latency can be programmed to 2 or 3 clocks. If a READ command is registered and the latency is 3 clocks, the first data element will be valid after (2 * tCK + tAC). If a READ command is registered and the latency is 2 clocks, the first data element will be valid after (tCK + tAC). For details please refer to the READ command description. Rev.1.00, 2007-03 02022006-J7N7-GYFP 11 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM TABLE 5 Burst Definition Burst Length Starting Column Address A3 A2 A1 2 4 8 16 Order of Accesses Within a Burst (Hexadecimal Notation) A0 Sequential Interleaved 0 0-1 0-1 1 1-0 1-0 0 0 0-1-2-3 0-1-2-3 0 1 1-2-3-0 1-0-3-2 1 0 2-3-0-1 2-3-0-1 1 1 3-0-1-2 3-2-1-0 0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7 0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6 0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5 0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4 1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3 1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2 1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1 1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0 0 0 0 0 0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F 0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F 0 0 0 1 1-2-3-4-5-6-7-8-9-A-B-C-D-E-F-0 1-0-3-2-5-4-7-6-9-8-B-A-D-C-F-E 0 0 1 0 2-3-4-5-6-7-8-9-A-B-C-D-E-F-0-1 2-3-0-1-6-7-4-5-A-B-8-9-E-F-C-D 0 0 1 1 3-4-5-6-7-8-9-A-B-C-D-E-F-0-1-2 3-2-1-0-7-6-5-4-B-A-9-8-F-E-D-C 0 1 0 0 4-5-6-7-8-9-A-B-C-D-E-F-0-1-2-3 4-5-6-7-0-1-2-3-C-D-E-F-8-9-A-B 0 1 0 1 5-6-7-8-9-A-B-C-D-E-F-0-1-2-3-4 5-4-7-6-1-0-3-2-D-C-F-E-9-8-B-A 0 1 1 0 6-7-8-9-A-B-C-D-E-F-0-1-2-3-4-5 6-7-4-5-2-3-0-1-E-F-C-D-A-B-8-9 0 1 1 1 7-8-9-A-B-C-D-E-F-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0-F-E-D-C-B-A-9-8 1 0 0 0 8-9-A-B-C-D-E-F-0-1-2-3-4-5-6-7 8-9-A-B-C-D-E-F-0-1-2-3-4-5-6-7 1 0 0 1 9-A-B-C-D-E-F-0-1-2-3-4-5-6-7-8 9-8-B-A-D-C-F-E-1-0-3-2-5-4-7-6 1 0 1 0 A-B-C-D-E-F-0-1-2-3-4-5-6-7-8-9 A-B-8-9-E-F-C-D-2-3-0-1-6-7-4-5 1 0 1 1 B-C-D-E-F-0-1-2-3-4-5-6-7-8-9-A B-A-9-8-F-E-D-C-3-2-1-0-7-6-5-4 1 1 0 0 C-D-E-F-0-1-2-3-4-5-6-7-8-9-A-B C-D-E-F-8-9-A-B-4-5-6-7-0-1-2-3 1 1 0 1 D-E-F-0-1-2-3-4-5-6-7-8-9-A-B-C D-C-F-E-9-8-B-A-5-4-7-6-1-0-3-2 1 1 1 0 E-F-0-1-2-3-4-5-6-7-8-9-A-B-C-D E-F-C-D-A-B-8-9-6-7-4-5-2-3-0-1 1 1 1 1 F-0-1-2-3-4-5-6-7-8-9-A-B-C-D-E F-E-D-C-B-A-9-8-7-6-5-4-3-2-1-0 Notes 1. 2. 3. 4. 5. For a burst length of 2, A1-Ai select the two-data-element block; A0 selects the first access within the block. For a burst length of 4, A2-Ai select the four-data-element block; A0-A1 select the first access within the block. For a burst length of 8, A3-Ai select the eight-data-element block; A0-A2 select the first access within the block. For a burst length of 16, A4-Ai select the sixteen-data-element block; A0-A3 select the first access within the block. Whenever a boundary of the block is reached within a given sequence, the following access wraps within the block. Rev.1.00, 2007-03 02022006-J7N7-GYFP 12 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.2.2 Extended Mode Register The Extended Mode Register controls additional low power features of the device. These include the Partial Array Self Refresh (PASR), the Temperature Compensated Self Refresh (TCSR) and the drive strength selection for the DQs. The Extended Mode Register is programmed via the MODE REGISTER SET command (with BA0 = 0 and BA1 = 1) and will retain the stored information until it is programmed again or the device loses power. The Extended Mode Register must be loaded when all banks are idle, and the controller must wait the specified time before initiating any subsequent operation. Violating either of these requirements result in unspecified operation. Address bits A0 A2 specify the Partial Array Self Refresh (PASR) and bits A5 - A6 the Drive Strength, while bits A7 - A12 shall be written to zero. Bits A3 and A4 are “don’t care” (see below). Reserved states should not be used, as unknown operation or incompatibility with future versions may result. Extended Mode Register Definition (BA[1:0] = 10B) %$ %$ $ $ $ $ $ $ $ $ '6 $ $ 7&65 $ $ $ 3$65 03%/ Field Bits Type Description DS [6:5] w Selectable Drive Strength 00B DS Full Drive Strength 01B DS Half Drive Strength 10B DS Quarter Drive Strength Note: All other bit combinations are RESERVED. TCSR [4:3] w Temperature Compensated Self Refresh XXB TCSR Superseded by on-chip temperature sensor (see text) PASR [2:0] w Partial Array Self Refresh 000B PASR all banks 001B PASR half array (BA1 = 0) 010B PASR quarter array (BA1 = BA0 = 0) 101B PASR 1/8 array (BA1 = BA0 = RA12 = 0) 110B PASR 1/16 array (BA1 = BA0 = RA12 = RA11 = 0) Note: All other bit combinations are RESERVED. Rev.1.00, 2007-03 02022006-J7N7-GYFP 13 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.2.2.1 Partial Array Self Refresh (PASR) Partial Array Self Refresh is a power-saving feature specific to DDR Mobile-RAMs. With PASR, self refresh may be restricted to variable portions of the total array. The selection comprises all four banks (default), two banks, one bank, half of one bank, and a quarter of one bank. Data written to the non activated memory sections will get lost after a period defined by tREF (cf. Table 14). 2.2.2.2 Temperature Compensated Self Refresh (TCSR) with OnChip Temperature Sensor DRAM devices store data as electrical charge in tiny capacitors that require a periodic refresh in order to retain the stored information. This refresh requirement heavily depends on the die temperature: high temperatures correspond to short refresh periods, and low temperatures correspond to long refresh periods. The DDR Mobile-RAM is equipped with an on-chip temperature sensor which continuously senses the actual die temperature and adjusts the refresh period in Self Refresh mode accordingly. This makes any programming of the TCSR bits in the Extended Mode Register obsolete. It also is the superior solution in terms of compatibility and power-saving, because • it is fully compatible to all processors that do not support the Extended Mode Register • it is fully compatible to all applications that only write a default (worst case) TCSR value, e.g. because of the lack of an external temperature sensor • it does not require any processor interaction for regular TCSR updates 2.2.2.3 Selectable Drive Strength The drive strength of the DQ output buffers is selectable via bits A5 and A6. The “full drive strength” (default) is suitable for heavier loaded systems. The “half drive strength” is intended for lightly loaded systems or systems with reduced performance requirements. For systems with point-to-point connection, a “quarter drive strength” is available. I-V curves for full and half drive strengths are included in this document. Rev.1.00, 2007-03 02022006-J7N7-GYFP 14 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.3 State Diagram FIGURE 4 State Diagram Power applied Power On Deep Power Down DPDSX Precharge All Banks Self Refresh DPDS REFSX REFS Idle MRS MRS EMRS Auto Refresh REFA All banks precharged CKEL CKEH Active Power Down Precharge Power Down ACT CKEH CKEL Row Active Burst Stop WRITE READ BST WRITE WRITEA WRITE READ WRITEA READA WRITE A PRE PRE READ READA PRE PRE READ READA READ A Precharge PREALL Automatic Sequence Command Sequence ACT = Active BST = Burst Terminate CKEL = Enter Power-Down CKEH = Exit Power-Down DPDS = Enter Deep Power-Down DPDSX = Exit Deep Power-Down EMRS = Ext. Mode Reg. Set MRS = Mode Register Set PRE = Precharge PREALL = Precharge All Banks REFA = Auto Refresh REFS = Enter Self Refresh REFSX = Exit Self Refresh READ = Read w/o Auto Precharge READA = Read with Auto Precharge WRITE = Write w/o Auto Precharge WRITEA = Write with Auto Precharge Note: Use caution with this diagram. It is indented to provide a floorplan of the possible state transitions and commands to control them, not all details. In particular situations involving more than one bank are not captured in full detail. Rev.1.00, 2007-03 02022006-J7N7-GYFP 15 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4 Commands TABLE 6 Command Overview Command CS RAS CAS WE Address Note DESELECT H X X X X 1)2) NO OPERATION L H H H X 1)2) ACT ACTIVE (Select bank and row) L L H H Bank / Row 1)3) RD READ (Select bank and column and start read burst) L H L H Bank / Col 1)4) WR WRITE (Select bank and column and start write burst) L H L L Bank / Col 1)4) BST BURST TERMINATE or DEEP POWER-DOWN L H H L X 1)5) PRE PRECHARGE (Deactivate row in bank or banks) L L H L Code 1)6) ARF AUTO REFRESH or SELF REFRESH entry L L L H X 1)7)8) MRS MODE REGISTER SET L L L L Op-Code 1)9) NOP 1) 2) 3) 4) 5) 6) 7) 8) 9) CKE is HIGH for all commands shown except SELF REFRESH and DEEP POWER DOWN. DESELECT and NOP are functionally interchangeable. BA0, BA1 provide the bank address, and A0 - A12 provide the row address. BA0, BA1 provide the bank address, A0 - A9 provide the column address; A10 HIGH enables the Auto Precharge feature (non persistent), A10 LOW disables the Auto Precharge feature. This command is BURST TERMINATE if CKE is HIGH, DEEP POWER-DOWN if CKE is LOW. The BURST TERMINATE command is defined for READ bursts with Auto Precharge disabled only; it is undefined (and should not be used) for read bursts with Auto Precharge enabled, and for write bursts. A10 LOW: BA0, BA1 determine which bank is precharged.A10 HIGH: all banks are precharged and BA0, BA1 are “Don’t Care”. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW. Internal refresh counter controls row and bank addressing; all inputs and I/Os are “Don’t Care” except for CKE. BA0, BA1 select either the Mode Register (BA0 = 0, BA1 = 0) or the Extended Mode Register (BA0 = 0, BA1 = 1); other combinations of BA0, BA1 are reserved; A0 - A12 provide the op-code to be written to the selected mode register. TABLE 7 DM Operation Name (Function) DM DQs Note Write Enable L Valid 1) Write Inhibit H X 1) 1) Used to mask write data provided coincident with the corresponding data Address (BA0, BA1, A0 - A12) and command inputs (CKE, CS, RAS, CAS, WE) are all registered on the crossing of the positive edge of CK and the negative edge of CK. Figure 5 shows the basic timing parameters, which apply to all commands and operations. Rev.1.00, 2007-03 02022006-J7N7-GYFP 16 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 5 Address / Command Inputs Timing Parameters tCK tCH tCL CK CK Input tIS tIH Valid Valid Valid = Don't Care TABLE 8 Inputs Timing Parameters Parameter Symbol - 7.5 min. Unit Note 1) max. Clock high-level width tCH 0.45 0.55 tCK Clock low-level width tCL 0.45 0.55 tCK 1) ns 1)2) ns 1)3)4)5) Clock cycle time CL = 3 tCK CL = 2 Address and control input setup time fast slew rate tIS slow slew rate Address and control input hold time fast slew rate tIH slow slew rate Address and control input pulse width 1) 2) 3) 4) 5) 6) 7) tIPW 7.5 – 15 – 1.3 – 1.5 – 1.3 – 1.5 – 3.0 – 1)3)6) ns 1)3)6) ns All AC timing characteristics assume an input slew rate of 1.0 V/ns. The only time that the clock frequency is allowed to change is during power-down, self-refresh or clock stop modes. The transition time for address and command inputs is measured between VIH and VIL. For command / address input slew rate ≥ 1V/ns. A CK/CK differential slew rate of 2.0 V/ns is assumed for this parameter. For command / address input slew rate ≥ 0.5 V/ns and < 1.0 V/ns. This parameter guarantees device timing. It is verified by device characterization but are not subject to production test. Rev.1.00, 2007-03 02022006-J7N7-GYFP 17 1)3)4) 1)7) Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4.1 NO OPERATION (NOP) The NO OPERATION (NOP) command is used to perform a NOP to a DDR Mobile-RAM which is selected (CS = LOW). This prevents unwanted commands from being registered during idle states. Operations already in progress are not affected. FIGURE 6 No Operation Command CK CK CKE (High) CS RAS CAS WE A0-A12 BA0,BA1 = Don't Care 2.4.2 DESELECT The DESELECT function (CS = HIGH) prevents new commands from being executed by the DDR Mobile-RAM. The DDR Mobile-RAM is effectively deselected. Operations already in progress are not affected. Rev.1.00, 2007-03 02022006-J7N7-GYFP 18 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4.3 MODE REGISTER SET The Mode Register and Extended Mode Register are loaded via inputs A0 - A12 (see mode register descriptions in Chapter 2.2). The MODE REGISTER SET command can only be issued when all banks are idle and no bursts are in progress. A subsequent executable command cannot be issued until tMRD is met. FIGURE 7 Mode Register Set Command CK CK CKE (High) CS RAS CAS WE A0-A12 Code BA0,BA1 Code = Don't Care FIGURE 8 Mode Register Definition CK CK Command MRS NOP Valid tMRD Address Code Valid = Don't Care Code = Mode Register / Extended Mode Register selection (BA0, BA1) and op-code (A0 - A12) TABLE 9 Timing Parameters for Mode Register Set Command Parameter Symbol - 7.5 min. MODE REGISTER SET command period Rev.1.00, 2007-03 02022006-J7N7-GYFP tMRD 19 2 Unit Note tCK – max. – Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4.4 ACTIVE Before any READ or WRITE commands can be issued to a bank within the DDR Mobile-RAM, a row in that bank must be “opened” (activated). This is accomplished via the ACTIVE command and addresses BA0, BA1, A0 - A12 (see Figure 9), which decode and select both the bank and the row to be activated. After opening a row (issuing an ACTIVE command), a READ or WRITE command may be issued to that row, subject to the tRCD specification. A subsequent ACTIVE command to a different row in the same bank can only be issued after the previous active row has been “closed” (precharged). The minimum time interval between successive ACTIVE commands to the same bank is defined by tRC. A subsequent ACTIVE command to another bank can be issued while the first bank is being accessed, which results in a reduction of total row-access overhead. The minimum time interval between successive ACTIVE commands to different banks is defined by tRRD. FIGURE 9 ACTIVE Command CK CK CKE (High) CS RAS CAS WE A0-A12 RA BA0,BA1 BA = Don't Care BA = Bank Address RA = Row Address FIGURE 10 Bank Activate Timings CK CK Command ACT NOP ACT NOP A0-A12 Row Row Col BA0, BA1 BA x BA y BA y tRRD Rev.1.00, 2007-03 02022006-J7N7-GYFP NOP tRCD 20 RD/WR NOP = Don't Care Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM TABLE 10 Timing Parameters for ACTIVE Command Parameter Symbol - 7.5 min. Unit Note 1) max. ACTIVE to ACTIVE command period tRC 65 – ns ACTIVE to READ or WRITE delay tRCD 22.5 – ns ACTIVE bank A to ACTIVE bank B delay tRRD 15 – ns 1) These parameters account for the number of clock cycles and depend on the operating frequency, as follows: no. of clock cycles = specified delay / clock period; round to the next higher integer. 2.4.5 READ READ bursts are initiated with a READ command, as shown in Figure 11. Basic timings for the DQs are shown in Figure 12; they apply to all read operations. The starting column and bank addresses are provided with the READ command and Auto Precharge is either enabled or disabled for that burst access. If Auto Precharge is enabled, the row that is accessed will start precharge at the completion of the burst, provided tRAS has been satisfied. For the generic READ commands used in the following illustrations, Auto Precharge is disabled. FIGURE 11 READ Command CK CK CKE (High) CS RAS CAS WE A0-A9 CA Enable AP A10 AP Disable AP BA0,BA1 BA = Don't Care BA = Bank Address CA = Column Address AP = Auto Precharge Rev.1.00, 2007-03 02022006-J7N7-GYFP 21 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 12 Basic READ Timing Parameters for DQs tCK CK tCK tCH tCL CK tDQSCK tACmax tDQSCK tDQSQmax tAC DQ DO n tLZ tHZ DO n+1 DO n+2 DO n+3 tQH tQH tDQSCK tACmin DQS tRPST tRPRE DQS tDQSCK tRPRE tDQSQmax tAC DQ tRPST DO n tLZ tHZ DO n+1 DO n+2 DO n+3 tQH tQH DO n = Data Out from column n = Don't Care Burst Length = 4 in the case shown CAS Latency = 3 in the case shown All DQ are valid tAC after the CK edge. All DQ are valid tDQSQ after the DQS edge, regardless of tAC TABLE 11 Timing Parameters for READ Command Parameter Symbol - 7.5 min. Unit Note max. DQ output access time from CK/CK tAC 2.0 6.5 ns 1)2) DQS output access time from CK/CK tDQSCK 2.0 6.5 ns 1)2) DQ & DQS low-impedance time from CK/CK tLZ 1.0 – ns 3) DQ & DQS high-impedance time from CK/CK tHZ – 6.5 ns 3) DQS - DQ skew tDQSQ – 0.6 ns 4) DQ / DQS output hold time from DQS tQH tHP-tQHS – ns 5) Data hold skew factor tQHS – 0.75 ns 5) tCK – Read preamble CL = 3 tRPRE CL = 2 0.9 1.1 0.7 1.1 Read postamble tRPST 0.4 0.6 tCK – ACTIVE to PRECHARGE command period tRAS 45 70,000 ns 6) ACTIVE to ACTIVE command period tRC 65 – ns 6) Rev.1.00, 2007-03 02022006-J7N7-GYFP 22 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM Parameter Symbol - 7.5 min. Unit Note max. ACTIVE to READ or WRITE delay tRCD 22.5 – ns 6) PRECHARGE command period tRP 22.5 – ns 6) 1) The output timing reference level is VDDQ/2. 2) Parameters tAC and tQH are specified for full drive strength and a reference load of 20pF. This reference load is not intended to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. For half drive strength with a nominal load of 10pF parameters tAC and tQH are expected to be in the same range. However, these parameters are not subject to production test but are estimated by device characterization. Use of IBIS or other simulation tools for system validation is suggested. 3) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ). 4) tDQSQ consists of data ball skew and output pattern effects, and p-channel to n-channel variation of the output drivers for any given cycle. 5) tQH = tHP - tQHS, where tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCL, tCH).tQHS accounts for 1) the pulse duration distortion of on-chip clock circuits; and 2) the worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately, due to data ball skew and output pattern effects, and p-channel to n-channel variation of the output drivers. 6) These parameters account for the number of clock cycles and depend on the operating frequency, as follows: no. of clock cycles = specified delay / clock period; round to the next higher integer. During READ bursts, the valid data-out element from the starting column address will be available following the CAS latency after the READ command. The diagrams in Figure 13 show general timing for each supported CAS latency setting. DQS is driven by the DDR MobileRAM along with output data. The initial low state on DQS is known as the read preamble; the low state coincident with the last data-out element is known as the read postamble. Upon completion of a burst, assuming no other READ commands have been initiated, the DQs will go High-Z. FIGURE 13 READ Burst CK CK Command Address READ NOP NOP NOP NOP NOP BA,Col n CL=2 DQS DQ DO n CL=3 DQS DQ DO n = Don't Care DO n = Data Out from column n BA, Col n = Bank A, Column n Burst Length = 4; 3 subsequent elements of Data Out appear in the programmed order following DO n Rev.1.00, 2007-03 02022006-J7N7-GYFP 23 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM Data from any READ burst may be concatenated with or truncated with data from a subsequent READ command. In either case, a continuous flow of data can be maintained. The first data element from the new burst follows either the last element of a completed burst or the last desired data element of a longer burst which is being truncated. The new READ command should be issued x cycles after the first READ command, where x equals the number of desired data element pairs (pairs are required by the 2n pre fetch architecture). This is shown in Figure 14. FIGURE 14 Consecutive READ Bursts CK CK Command Address READ NOP BA,Col n READ NOP NOP NOP BA,Col b CL=2 DQS DQ DO n DO b CL=3 DQS DQ DO n DO b = Don't Care DO n (or b) = Data Out from column n (or column b) Burst Length = 4, 8 or 16 (if 4, the bursts are concatenated; if 8 or 16, the second burst interrupts the first) 3 subsequent elements of Data Out appear in the programmed order following DO n 3 (or 7 or 15) subsequent elements of Data Out appear in the programmed order following DO b Read commands shown must be to the same device A READ command can be initiated on any clock cycle following a previous READ command. Nonconsecutive READ data is illustrated in Figure 15. Rev.1.00, 2007-03 02022006-J7N7-GYFP 24 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 15 Nonconsecutive READ Bursts CK CK Command Address READ NOP NOP READ BA,Col n NOP NOP BA,Col b CL=2 DQS DQ DO n DO b CL=3 DQS DQ DO n = Don't Care DO n (or b) = Data Out from column n (or column b) BA A Col n (b) = Bank A, Column n (b) Burst Length = 4; 3 subsequent elements of Data Out appear in the programmed order following DO n (b) Full-speed random READ accesses (Burst Length = 2, 4, 8 or 16) within a page (or pages) can be performed as shown in Figure 16. FIGURE 16 Random READ Accesses CK CK Command Address READ READ READ READ NOP BA,Col n BA,Col x BA,Col b BA,Col g NOP CL=2 DQS DQ DO n DO n' DO x DO x' DO b DO b' DO g DO g' DO n DO n' DO x DO x' DO b DO b' CL=3 DQS DQ DO n, etc. = Data Out from column n, etc. n', x', etc. = Data Out elements, according to the programmed burst order BA, Col n = Bank A, Column n Burst Length = 2, 4, 8 or 16 in cases shown (if burst of 4, 8 or 16, the burst is interrupted) Reads are to active rows in any banks Rev.1.00, 2007-03 02022006-J7N7-GYFP 25 = Don't Care Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4.5.1 READ Burst Termination Data from any READ burst may be truncated using the BURST TERMINATE command (see Figure 20), provided that Auto Precharge was not activated. The BURST TERMINATE latency is equal to the CAS latency, i.e. the BURST TERMINATE command should be issued x clock cycles after the READ command, where x equals the number of desired data element pairs. This is shown in Figure 17. FIGURE 17 Terminating a READ Burst CK CK Command Address READ NOP BST NOP NOP NOP BA,Col n CL=2 DQS DQ DO n CL=3 DQS DQ DO n DO n = Data Out from column n BA, Col n = Bank A, Column n Cases shown are bursts of 8 terminated after 4 data elements. 3 subsequent elements of Data Out appear in the programmed order following DO n Rev.1.00, 2007-03 02022006-J7N7-GYFP 26 = Don't Care Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4.5.2 READ to WRITE Data from any READ burst must be completed or truncated before a subsequent WRITE command can be issued. If truncation is necessary, the BURST TERMINATE command must be used, as shown in Figure 18. FIGURE 18 READ to WRITE CK CK Command Address READ BST NOP BA,Col n WRITE NOP NOP BA,Col b CL=2 tDQSS DQS DQ DO n Di b DM Command Address READ BST NOP NOP BA,Col n WRITE NOP BA,Col b CL=3 DQS DQ DO n Di b DM DO n = Data Out from column n; DI b = Data In to column b 1 subsequent element of Data Out appear in the programmed order following DO n. Data In elements are applied following DI b in the programmed order 2.4.5.3 = Don't Care READ to PRECHARGE A READ burst may be followed by, or truncated with a PRECHARGE command to the same bank (provided that Auto Precharge was not activated). The PRECHARGE command should be issued x clock cycles after the READ command, where x equals the number of desired data element pairs. This is shown in Figure 19. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until tRP is met. Please note that part of the row precharge time is hidden during the access of the last data elements. In the case of a READ being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same READ burst with Auto Precharge enabled. The disadvantage of the PRECHARGE command is that it requires that the command and address busses be available at the appropriate time to issue the command. The advantage of the PRECHARGE command is that it can be used to truncate bursts. Rev.1.00, 2007-03 02022006-J7N7-GYFP 27 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 19 READ to PRECHARGE CK CK Command Address READ NOP PRE NOP NOP Bank (a or all) BA,Col n ACT BA, Row tRP CL=2 DQS DQ DO n CL=3 DQS DQ DO n = Don't Care DO n = Data Out from column n Cases shown are either uninterrupted burst of 4, or interrupted bursts of 8 or 16 3 subsequent elements of Data Out appear in the programmed order following DO n Precharge may be applied at (BL / 2) tCK after the READ command. Note that Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks. The ACTIVE command may be applied if tRC has been met. 2.4.6 BURST TERMINATE The BURST TERMINATE command is used to truncate READ bursts (with Auto Precharge disabled). The most recently registered READ command prior to the BURST TERMINATE command will be truncated, as shown in Figure 17. FIGURE 20 BURST TERMINATE Command CK CK CKE (High) CS RAS CAS WE A0-A12 BA0,BA1 = Don't Care Rev.1.00, 2007-03 02022006-J7N7-GYFP 28 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4.7 WRITE WRITE bursts are initiated with a WRITE command, as shown in Figure 21. Basic timings for the DQs are shown in Figure 22; they apply to all write operations.The starting column and bank addresses are provided with the WRITE command, and Auto Precharge is either enabled or disabled for that access. If Auto Precharge is enabled, the row being accessed is precharged at the completion of the write burst. For the generic WRITE commands used in the following illustrations, Auto Precharge is disabled. FIGURE 21 WRITE Command CK CK CKE (High) CS RAS CAS WE A0-A9 CA Enable AP A10 AP Disable AP BA0,BA1 BA = Don't Care BA = Bank Address CA = Column Address AP = Auto Precharge Rev.1.00, 2007-03 02022006-J7N7-GYFP 29 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 22 Basic WRITE Timing Parameters for DQs tCK CK tCH tCL CK Case 1: tDQSS = min tDQSS tDSH tDQSH tDSH tWPST DQS tWPRES tDQSL tWPRE tDH tDS DQ, DM DI n Case 2: tDQSS = max tDQSS tDSS tDQSH tDSS tWPST DQS tWPRES tDQSL tWPRE tDH tDS DQ, DM DI n DI n = Data In for column n Burst Length = 4 in the case shown 3 subsequent elements of Data In are applied in the programmed order following DI n. Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the ± 25% window of the corresponding positive clock edge. = Don't Care TABLE 12 Timing Parameters for WRITE Command Parameter Symbol - 7.5 min. DQ and DM input setup time fast slew rate tDS slow slew rate DQ and DM input hold time fast slew rate tDH slow slew rate – 0.85 – 0.75 – 0.85 – – ns 1)2)3) 1)2)4) ns 1)2)3) 1)2)4) ns 5) 1.25 tCK – 0.6 tCK – 0.6 tCK – 0.2 – tCK – 0.2 – tCK – 0 – ns 6) tDIPW 1.7 Write command to 1st DQS latching transition tDQSS 0.75 DQS input high-level width tDQSH 0.4 DQS input low-level width tDQSL 0.4 DQS falling edge to CK setup time tDSS DQS falling edge hold time from CK tDSH Write preamble setup time tWPRES 30 Note max. 0.75 DQ and DM input pulse width Rev.1.00, 2007-03 02022006-J7N7-GYFP Unit Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM Parameter Symbol - 7.5 min. Unit Note max. Write postamble tWPST 0.4 0.6 tCK 7) Write preamble tWPRE 0.25 – tCK – ACTIVE to PRECHARGE command period tRAS 45 70,000 ns 8) ACTIVE to ACTIVE command period tRC 65 – ns 8) ACTIVE to READ or WRITE delay tRCD 22.5 – ns 8) WRITE recovery time tWR 15 – ns 8) Internal write to Read command delay tWTR 1 – tCK – ns 8) 22.5 – 1) DQ, DM and DQS input slew rate is measured between VILD(DC) and VIHD(AC) (rising) or VIHD(DC) and VILD(AC) (falling). PRECHARGE command period tRP 2) DQ, DM and DQS input slew rate is specified to prevent double clocking of data and preserve setup and hold times. Signal transitions through the DC region must be monotonic. 3) Input slew rate ≥ 1.0 V/ns. 4) Input slew rate ≥ 0.5V/ns and < 1.0 V/ns. 5) This parameter guarantees device timing. It is verified by device characterization but are not subject to production test. 6) The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge. A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS. 7) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly. 8) These parameters account for the number of clock cycles and depend on the operating frequency, as follows: no. of clock cycles = specified delay / clock period; round to the next higher integer. During WRITE bursts, the first valid data-in element is registered on the first rising edge of DQS following the WRITE command, and subsequent data elements are registered on successive edges of DQS. The LOW state on DQS between the WRITE command and the first rising edge is known as the write preamble; the LOW state on DQS following the last data-in element is known as the write postamble. The time between the WRITE command and the first corresponding rising edge of DQS (tDQSS) is specified with a relatively wide range (from 75% to 125% of a clock cycle). The diagrams in Figure 23 show the two extremes of tDQSS for a burst of 4. Upon completion of a burst, assuming no other commands have been initiated, the DQs will remain High-Z and any additional input data is ignored. Rev.1.00, 2007-03 02022006-J7N7-GYFP 31 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 23 WRITE Burst (min. and max. tDQSS) CK CK Command Address WRITE NOP NOP NOP NOP NOP BA,Col b tDQSSmin DQS DQ Di b DM tDQSSmax DQS DQ Di b DM DI b = Data In to column b. 3 subsequent elements of Data In are applied in the programmed order following DI b. A non-interrupted burst of 4 is shown. A10 is LOW with the WRITE command (Auto Precharge is disabled) = Don't Care Data for any WRITE burst may be concatenated with or truncated with a subsequent WRITE command. In either case, a continuous flow of input data can be maintained. The new WRITE command can be issued on any clock cycle following the previous WRITE command. The first data element from the new burst is applied after either the last element of a completed burst or the last desired data element of a longer burst which is being truncated. The new WRITE command should be issued x clock cycles after the first WRITE command, where x equals the number of desired data element pairs (pairs are required by the 2n pre fetch architecture). Figure 24 shows concatenated WRITE bursts of 4. Rev.1.00, 2007-03 02022006-J7N7-GYFP 32 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 24 WRITE to WRITE (min. and max. tDQSS) CK CK Command Address WRITE NOP WRITE BA,Col b NOP NOP NOP BA,Col n tDQSSmin DQS DQ Di b Di n DM tDQSSmax DQS DQ Di b Di n DM DI b (n) = Data In to column b (column n) 3 subsequent elements of Data In are applied in the programmed order following DI b. 3 subsequent elements of Data In are applied in the programmed order following DI n. Non-interrupted bursts of 4 are shown. Each WRITE command may be to any active bank An example of non-consecutive WRITEs is shown in Figure 25. Rev.1.00, 2007-03 02022006-J7N7-GYFP 33 = Don't Care Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 25 Non-Consecutive WRITE to WRITE (max. tDQSS) CK CK Command Address WRITE NOP NOP WRITE BA,Col b NOP NOP BA,Col n tDQSSmax DQS DQ Di b Di n DM DI b (n) = Data In to column b (or column n). 3 subsequent elements of Data In are applied in the programmed order following DI b. 3 subsequent elements of Data In are applied in the programmed order following DI n. Non-interrupted bursts of 4 are shown. Each WRITE command may be to any active bank and may be to the same or different devices. = Don't Care Full-speed random WRITE accesses within a page or pages can be performed as shown in Figure 26. FIGURE 26 Random WRITE Cycles (max. tDQSS) CK CK Command Address WRITE WRITE WRITE WRITE WRITE BA,Col b BA,Col x BA,Col n BA,Col a BA,Col g NOP tDQSSmax DQS DQ Di b Di b' Di x Di x' Di n Di n' Di a Di a' DM DI b etc. = Data In to column b, etc. . = Don't Care b', etc. = the next Data In following DI b, etc. according to the programmed burst order Programmed burst length = 2, 4, 8 or 16 in cases shown. If burst of 4, 8 or 16, burst would be truncated. Each WRITE command may be to any active bank and may be to the same or different devices. Rev.1.00, 2007-03 02022006-J7N7-GYFP 34 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4.7.1 WRITE to READ Data for any WRITE burst may be followed by a subsequent READ command. To follow a WRITE without truncating the WRITE burst, tWTR (WRITE to READ) should be met as shown in Figure 27. FIGURE 27 Non-Interrupting WRITE to READ (max. tDQSS) CK CK Command Address WRITE NOP NOP NOP READ BA,Col b NOP NOP BA,Col n tDQSSm ax tW TR CL=3 DQS DQ Di b DM DI b = Data In to column b . 3 subsequent elements of Data In are applied in the programmed order following DI b. A non-interrupted burst of 4 is shown. t W TR is referenced from the positive clock edge after the last Data In pair. A10 is LOW with the W RITE command (Auto Precharge is disabled) The READ and W RITE commands are to the same device but not necessarily to the same bank. = Don't Care Data for any WRITE burst may be truncated by a subsequent READ command, as shown in Figure 28. Note that only the datain pairs that are registered prior to the tWTR period are written to the internal array, and any subsequent data-in must be masked with DM, as shown in Figure 28. FIGURE 28 Interrupting WRITE to READ (max. tDQSS) CK CK Com m and Address WRITE NOP NOP R EAD BA,Col b NOP NO P NO P BA,Col n t DQSSm ax t W TR C L=3 DQS DQ Di b DO n DM D I b = D ata In to colum n b. D O n = D ata O ut from colum n n. An interrupted burst of 4 is show n, 2 data elem ents are w ritten. 3 subsequent elem ents of D ata In are applied in the program m ed order follow ing D I b. t W TR is referenced from the positive clock edge after the last D ata In pair. A10 is LO W w ith the W RITE com m and (Auto Precharge is disabled) The R EAD and W R ITE com m ands are to the sam e device but not necessarily to the sam e bank. Rev.1.00, 2007-03 02022006-J7N7-GYFP 35 = Don't C are Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4.7.2 WRITE to PRECHARGE Data for any WRITE burst may be followed by a subsequent PRECHARGE command. To follow a WRITE without truncating the WRITE burst, tWR should be met as shown in Figure 29. FIGURE 29 Non-Interrupting WRITE to PRECHARGE (max. tDQSS) CK CK Command Address WRITE NOP NOP NOP NOP PRE BA a (or all) BA,Col b tDQSSmax tWR DQS DQ Di b DM DI b = Data In to column b . 3 subsequent elements of Data In are applied in the programmed order following DI b. A non-interrupted burst of 4 is shown. tWR is referenced from the positive clock edge after the last Data In pair. A10 is LOW with the WRITE command (Auto Precharge is disabled) = Don't Care Data for any WRITE burst may be truncated by a subsequent PRECHARGE command, as shown in Figure 30. Note that only the data-in pairs that are registered prior to the tWR period are written to the internal array, and any subsequent data in should be masked with DM. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until tRP is met. In the case of a WRITE burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same burst with Auto Precharge. The disadvantage of the PRECHARGE command is that it requires that the command and address busses be available at the appropriate time to issue the command. The advantage of the PRECHARGE command is that it can be used to truncate bursts. Rev.1.00, 2007-03 02022006-J7N7-GYFP 36 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 30 Interrupting WRITE to PRECHARGE (max. tDQSS) CK CK Command Address WRITE NOP NOP NOP PRE BA a (or all) BA,Col b tDQSSmax tWR *2 DQS DQ Di b DM *1 DI b = Data In to column b . An interrupted burst of 4, 8 or 16 is shown, 2 data elements are written. tWR is referenced from the positive clock edge after the last desired Data In pair. A10 is LOW with the WRITE command (Auto Precharge is disabled) *1 = can be Don't Care for programmed burst length of 4 *2 = for programmed burst length of 4, DQS becomes Don't Care at this point Rev.1.00, 2007-03 02022006-J7N7-GYFP NOP 37 *1 *1 *1 = Don't Care Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4.8 PRECHARGE The PRECHARGE command is used to deactivate (close) the open row in a particular bank or the open rows in all banks. The bank(s) will be available for a subsequent row access a specified time (tRP) after the PRECHARGE command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be precharged, inputs BA0, BA1 select the bank. Otherwise BA0, BA1 are treated as “Don’t Care.” Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank. A PRECHARGE command will be treated as a NOP if there is no open row in that bank, or if the previously open row is already in the process of precharging. FIGURE 31 PRECHARGE Command CK CK CKE (High) CS RAS CAS WE A0-A9 A11,A12 All Banks A10 One Bank BA0,BA1 BA = Don't Care BA = Bank Address (if A10 = L, otherwise Don't Care) TABLE 13 Timing Parameters for PRECHARGE Command Parameter Symbol - 7.5 min. Unit Note max. ACTIVE to PRECHARGE command period tRAS 45 70,000 ns 1) PRECHARGE command period tRP 22.5 – ns 1) WRITE recovery time tWR 15 – ns 1) 1) These parameters account for the number of clock cycles and depend on the operating frequency, as follows: no. of clock cycles = specified delay / clock period; round to the next higher integer. Rev.1.00, 2007-03 02022006-J7N7-GYFP 38 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4.8.1 AUTO PRECHARGE Auto Precharge is a feature which performs the same individual-bank precharge functions described above, but without requiring an explicit command. This is accomplished by using A10 to enable Auto Precharge in conjunction with a specific READ or WRITE command. A precharge of the bank/row that is addressed with the READ or WRITE command is automatically performed upon completion of the READ or WRITE burst. Auto Precharge is non persistent in that it is either enabled or disabled for each individual READ or WRITE command. Auto Precharge ensures that the precharge is initiated at the earliest valid stage within a burst. The user must not issue another command to the same bank until the precharge (tRP) is completed. This is determined as if an explicit PRECHARGE command was issued at the earliest possible time, as described for each burst type. 2.4.9 AUTO REFRESH and SELF REFRESH The DDR Mobile-RAM requires a refresh of all rows in an rolling 64ms interval. Each refresh is generated in one of two ways: by an explicit AUTO REFRESH command, or by an internally timed event in SELF REFRESH mode. Dividing the number of rows into the rolling 64ms interval defines the average refresh interval, tREFI, which is a guideline to controllers for distributed refresh timing. 2.4.9.1 AUTO REFRESH Auto Refresh is used during normal operation of the DDR Mobile-RAM. The command is non persistent, so it must be issued each time a refresh is required. A minimum time tRFC is required between two AUTO REFRESH commands. The same rule applies to any access command after the Auto Refresh operation. All banks must be precharged prior to the AUTO REFRESH command.The refresh addressing is generated by the internal refresh controller. This makes the address bits “Don’t Care” during an AUTO REFRESH command. The DDR Mobile-RAM requires Auto Refresh cycles at an average periodic interval of tREFI (max.).Partial array mode has no influence on Auto Refresh mode. To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided. A maximum of eight AUTO REFRESH commands can be posted to the DDR Mobile-RAM, and the maximum absolute interval between any AUTO REFRESH command and the next AUTO REFRESH command is 8 * tREFI. Rev.1.00, 2007-03 02022006-J7N7-GYFP FIGURE 32 AUTO REFRESH Command CK CK CKE (High) CS RAS CAS WE A0-A12 BA0,BA1 = Don't Care 39 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 33 Auto Refresh CK CK Command tRP PRE NOP tRFC ARF NOP NOP NOP NOP ACT Row n Pre All High-Z DQ = Don't Care Ba A, Row n = Bank A, Row n 2.4.9.2 ARF Ba A, Row n Address A10 (AP) tRFC SELF REFRESH The SELF REFRESH command can be used to retain data in the DDR Mobile-RAM, even if the rest of the system is powered down. When in the Self Refresh mode, the DDR Mobile-RAM retains data without external clocking. The DDR Mobile-RAM device has a built-in timer to accommodate Self Refresh operation. The SELF REFRESH command is initiated like an AUTO REFRESH command except CKE is LOW. Input signals except CKE are “Don’t Care” during Self Refresh. The user may halt the external clock one clock after Self Refresh entry is registered. Once the command is registered, CKE must be held low to keep the device in Self Refresh mode. The device executes a minimum of one AUTO REFRESH command internally once it enters Self Refresh mode. The clock is internally disabled during Self Refresh operation to save power. The minimum time that the device must remain in Self Refresh mode is tRFC. The procedure for exiting Self Refresh requires a sequence of commands. First, the clock must be stable prior to CKE going back HIGH. Once Self Refresh Exit is registered, a delay of at least tXSR must be satisfied before a valid command can be issued to the device to allow for completion of any internal refresh in progress.The use of Self Refresh mode introduces the possibility that an internally timed refresh event can be missed when CKE is raised for exit from Self Refresh mode. Upon exit from Self Refresh an extra AUTO REFRESH command is recommended. FIGURE 34 SELF REFRESH Entry Command CK CK CKE CS RAS CAS WE A0-A12 BA0,BA1 = Don't Care Rev.1.00, 2007-03 02022006-J7N7-GYFP 40 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 35 Self Refresh Entry and Exit CK CK tRP > tRFC tXSR tRFC CKE Command PRE NOP ARF NOP NOP NOP ARF NOP Ba A, Row n Address A10 (AP) DQ ACT Row n Pre All High-Z Enter Self Refresh Mode Any Command (Auto Refresh Recommended) Exit from Self Refresh Mode = Don't Care TABLE 14 Timing Parameters for AUTO REFRESH and SELF REFRESH Commands Parameter Symbol - 7.5 min. Unit Note max. AUTO REFRESH to ACTIVE/AUTO REFRESH command period tRFC 75 – ns 1) PRECHARGE command period tRP 22.5 – ns 1) Self refresh exit to next valid command delay tXSR 120 – ns 1) Refresh period tREF – 64 ms – Average periodic refresh interval (8192 rows) tREFI – 7.8 µs 2) 1) These parameters account for the number of clock cycles and depend on the operating frequency, as follows: no. of clock cycles = specified delay / clock period; round to the next higher integer. 2) A maximum of eight AUTOREFRESH commands can be posted to the DDR Mobile-RAM device, meaning that the maximum absolute interval between any Refresh command and the next Refresh command is 8 * tREFI. Rev.1.00, 2007-03 02022006-J7N7-GYFP 41 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.4.10 POWER-DOWN Power-down is entered when CKE is registered LOW (no accesses can be in progress). If power-down occurs when all banks are idle, this mode is referred to as precharge powerdown; if power-down occurs when there is a row active in any bank, this mode is referred to as active power-down. Entering power-down deactivates the input and output buffers, excluding CK, CK and CKE. In power-down mode, CKE LOW must be maintained, and all other input signals are “Don’t Care”. The minimum power-down duration is specified by tCKE. However, power-down duration is limited by the refresh requirements of the device. The power-down state is synchronously exited when CKE is registered HIGH (along with a NOP or DESELECT command). A valid command may be applied tXP after exit from power-down. FIGURE 36 Power-Down Entry Command CK CK CKE CS RAS CAS WE A0-A12 BA0,BA1 = Don't Care FIGURE 37 Power-Down Entry and Exit #+ #+ T20 T#+% T80 #+% #OMM AND 02% ./0 ./0 ./0 !DD RESS !!0 $1 6ALID 6ALID 0RE !LL (IGH: 0OW ER $O WN %NTR Y %XITFRO M 0OWE R$O WN 0RECH A RGE0OWE R$O W N MOD ESHOW N ALLBAN KS AREID LE AND T20 MET WHE N0OW E R$O WN % NTRY#O MMA NDISISS UED Rev.1.00, 2007-03 02022006-J7N7-GYFP 6ALID 42 !NY #OMMAN D $O NgT#A RE Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM TABLE 15 Timing Parameters for POWER-DOWN Parameter Symbol - 7.5 min. Unit max. Exit power down delay tXP tCK + tIS – ns CKE minimum low time tCKE 2 – tCK 2.4.10.1 Note – DEEP POWER-DOWN Deep Power-Down mode is a unique feature of DDR Mobile-RAMs for extremely low power consumption. Deep Power-Down mode is entered using the BURST TERMINATE command (cf Table 6) except that CKE is LOW. All internal voltage generators are stopped and all memory data is lost in this mode. To enter the Deep Power-Down mode all banks must be precharged. The Deep Power-Down mode is asynchronously exited by asserting CKE HIGH. After the exit, the same command sequence as for power-up initialization, including the 200µs initial pause, has to be applied before any other command may be issued (cf. Figure 4). 2.4.11 CLOCK STOP Stopping the clock during idle periods is a very effective method to reduce power consumption. The DDR Mobile-RAM supports clock stop in case: • the last access command (ACTIVE, READ, WRITE, PRECHARGE, AUTO REFRESH or MODE REGISTER SET) has executed to completion, including any data-out during read bursts; the number of clock pulses per access command depends on the device’s AC timing parameters and the clock frequency (see Table 16); • the related timing condition (tRCD, tWR, tRP, tRFC, tMRD) has been met; • CKE is held HIGH. When all conditions have been met, the device is either in “idle” or “row active” state (cf. Figure 4), and clock stop mode may be entered with CK held LOW and CK held HIGH. Clock stop mode is exited by restarting the clock. At least one NOP command has to be issued before the next access command may be applied. Additional clock pulses might be required depending on the system characteristics. Figure 38 illustrates the clock stop mode: • initially the device is in clock stop mode; • the clock is restarted with the rising edge of T0 and a NOP on the command inputs; • with T1 a valid access command is latched; this command is followed by NOP commands in order to allow for clock stop as soon as this access command has completed; • Tn is the last clock pulse required by the access command latched with T1 • the timing condition of this access command is met with the completion of Tn; therefore Tn is the last clock pulse required by this command and the clock is then stopped. Rev.1.00, 2007-03 02022006-J7N7-GYFP 43 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 38 Clock Stop T0 CK T1 T2 Tn CK CKE Timing Condition Command Clock Stopped NOP CMD NOP Exit Clock Stop Valid Command NOP NOP = Don't Care Enter Clock Stop TABLE 16 Minimum Number of Required Clock Pulses per Access Command Command Timing Condition - 7.5 Unit Note ACTIVE tRCD 3 tCK 1) READ (Auto-Precharge Disabled) (BL / 2) + CL 5 tCK 1)2) READ (Auto-Precharge Enabled) [(BL / 2) + tRP]; [(BL / 2) + CL] 5 tCK 1)2)3) WRITE (Auto-Precharge Disabled) 1 + (BL / 2) + tWR 5 tCK 1)2) WRITE (Auto-Precharge Enabled) 1 + (BL / 2) + tDAL 8 tCK 1)2) PRECHARGE tRP 3 tCK 1) AUTO REFRESH tRFC 10 tCK 1) MODE REGISTER SET tMRD 2 tCK 1) These parameters depend on the operating frequency; the number of clock cycles shown are calculated for a clock frequency of 133 MHz for -7.5. 2) The values apply for a burst length of 4 and a CAS latency of 3. 3) Both timing conditions need to be satisfied; if not equal, the larger value applies 2.4.12 Clock Frequency Change Depending on system considerations, it might be desired to change the DDR Mobile-RAM’s clock frequency while the device is powered up. The DDR Mobile-RAM supports a clock frequency change when the device is in: • self refresh mode (see Figure 35); • power-down mode (see Figure 37); • clock stop mode (see Figure 38). Once the clock runs stable at the new clock frequency, the timing conditions for exiting these states have to be met before applying the next access command. It should be pointed out that a continuous frequency drift is not considered a stable clock and therefore is not supported. Rev.1.00, 2007-03 02022006-J7N7-GYFP 44 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 2.5 Function Truth Tables TABLE 17 Truth Table - CKE CKEn-1 L Current State L L H H L H 1) 2) 3) 4) 5) 6) CKEn H Command Action Note Power-Down X Maintain Power-Down 1)2)3)4) Self Refresh X Maintain Self Refresh 1)2)3)4) Deep Power-Down X Maintain Deep Power-Down 1)2)3)4) Power-Down DESELECT or NOP Exit Power-Down 1)2)3)4)5) Self Refresh DESELECT or NOP Exit Self Refresh 1)2)3)4) Deep Power-Down X Exit Deep Power-Down 1)2)3)4)6) All Banks Idle DESELECT or NOP Enter Precharge Power-Down 1)2)3)4) Bank(s) Active DESELECT or NOP Enter Active Power-Down 1)2)3)4) All Banks Idle AUTO REFRESH Enter Self Refresh 1)2)3)4) All Banks Idle BURST TERMINATE Enter Deep Power-Down 1)2)3)4) 1)2)3)4) see Table 18 and Table 19 CKEn is the logic state of CKE at clock edge n; CKEn-1 was the state of CKE at the previous clock edge. Current state is the state immediately prior to clock edge n. COMMAND n is the command registered at clock edge n; ACTION n is a result of COMMAND n. All states and sequences not shown are illegal or reserved. DESELECT or NOP commands should be issued on any clock edges occurring during tXP or tXSR period. Exit from DEEP POWER DOWN requires the same command sequence as for power-up initialization. TABLE 18 Current State Bank n - Command to Bank n Current State Any Idle Row Active Read (AutoPrecharge Disabled) CS RAS CAS H X X L H L Command / Action Note X DESELECT (NOP / continue previous operation) 1)2)3)4)5)6) H H NO OPERATION (NOP / continue previous operation) 1)2)3)4)5)6) L H H ACTIVE (select and activate row) 1)2)3)4)5)6) L L L H AUTO REFRESH 1)2)3)4)5)6)7) L L L L MODE REGISTER SET 1)2)3)4)5)6)7) L H L H READ (select column and start Read burst) 1)2)3)4)5)6)8) L H L L WRITE (select column and start Write burst) 1)2)3)4)5)6)8) L L H L PRECHARGE (Deactivate row in bank or banks) 1)2)3)4)5)6)9) L H L H READ (truncate Read and start new Read burst) 1)2)3)4)5)6)8) L H L L WRITE (truncate Read and start new Write burst) 1)2)3)4)5)6)8)10) L L H L PRECHARGE (truncate Read and start Precharge) 1)2)3)4)5)6)9) BURST TERMINATE 1)2)3)4)5)6)11) L Rev.1.00, 2007-03 02022006-J7N7-GYFP H H WE L 45 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM Current State Write (AutoPrecharge Disabled) CS RAS CAS WE Command / Action Note L H L H READ (truncate Write and start Read burst) 1)2)3)4)5)6)8)12) L H L L WRITE (truncate Write and start Write burst) 1)2)3)4)5)6)8) 1)2)3)4)5)6)9)12) PRECHARGE (truncate Write burst, start Precharge) 1) This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Table 17) and after tXP or tXSR has been met (if the previous state was L L H L power-down or self refresh). 2) This table is bank-specific, except where noted, i.e., the current state is for a specific bank and the commands shown are those allowed to be issued to that bank when in that state. Exceptions are covered in the notes below. 3) Current state definitions: Idle: The bank has been precharged, and tRP has been met. Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts / accesses and no register accesses are in progress. Read: A READ burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Write: A WRITE burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. 4) The following states must not be interrupted by a command issued to the same bank. DESELECT or NOP commands, or allowable commands to the other bank should be issued on any clock edge occurring during these states. Allowable commands to the other bank are determined by its current state and according to Table 19. Precharging: Starts with registration of a PRECHARGE command and ends when tRP is met. Once tRP is met, the bank is in the “idle” state. Row Activating: Starts with registration of an ACTIVE command and ends when tRCD is met. Once tRCD is met, the bank is in the “row active” state. Read with AP Enabled: Starts with registration of a READ command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. Write with AP Enabled: Starts with registration of a WRITE command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. 5) The following states must not be interrupted by any executable command; DESELECT or NOP commands must be applied on each positive clock edge during these states. Refreshing: Starts with registration of an AUTO REFRESH command and ends when tRC is met. Once tRC is met, the DDR Mobile-RAM is in the “all banks idle” state. Accessing Mode Register: Starts with registration of a MODE REGISTER SET command and ends when tMRD has been met. Once tMRD is met, the DDR Mobile-RAM is in the “all banks idle” state. Precharging All: Starts with registration of a PRECHARGE ALL command and ends when tRP is met. Once tRP is met, all banks are in the idle state. 6) All states and sequences not shown are illegal or reserved. 7) Not bank-specific; requires that all banks are idle and no bursts are in progress. 8) Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads or Writes with Auto Precharge disabled. 9) May or may not be bank-specific; if multiple banks are to be precharged, each must be in a valid state for precharging. 10) A WRITE command may be applied after the completion of the Read burst; otherwise, a BURST TERMINATE command must be used to end the Read burst prior to issuing a WRITE command. 11) Not bank-specific; BURST TERMINATE affects the most recent Read burst, regardless of bank. 12) Requires appropriate DM masking. Rev.1.00, 2007-03 02022006-J7N7-GYFP 46 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM TABLE 19 Current State Bank n - Command to Bank m (different bank) Current State RAS CAS Command / Action Note H X X X DESELECT (NOP / continue previous operation) 1)2)3)4)5)6) L H H H NO OPERATION (NOP / continue previous operation) 1)2)3)4)5)6) Idle X X X X Any command otherwise allowed to bank m 1)2)3)4)5)6) Row Activating, Active, or Precharging L L H H ACTIVE (select and activate row) 1)2)3)4)5)6) L H L H READ (select column and start Read burst) 1)2)3)4)5)6)7) L H L L WRITE (select column and start Write burst) 1)2)3)4)5)6)7) L L H L PRECHARGE (Deactivate row in bank or banks) 1)2)3)4)5)6) L L H H ACTIVE (select and activate row) 1)2)3)4)5)6) L H L H READ (truncate Read and start new Read burst) 1)2)3)4)5)6)7) L H L L WRITE (truncate Read and start Write burst) 1)2)3)4)5)6)7)8) L L H L PRECHARGE (Deactivate row in bank or banks) 1)2)3)4)5)6) L L H H ACTIVE (select and activate row) 1)2)3)4)5)6) L H L H READ (truncate Write and start Read burst) 1)2)3)4)5)6)7)9) L H L L WRITE (truncate Write and start new Write burst) 1)2)3)4)5)6)7) L L H L PRECHARGE (Deactivate row in bank or banks) 1)2)3)4)5)6) Read (with Auto- L Precharge) L L H H ACTIVE (select and activate row) 1)2)3)4)5)6) H L H READ (truncate Read and start new Read burst) 1)2)3)4)5)6)7) L H L L WRITE (truncate Read and start Write burst) 1)2)3)4)5)6)7)8) L L H L PRECHARGE (deactivate row in bank or banks) 1)2)3)4)5)6) Write (with Auto- L Precharge) L L H H ACTIVE (select and activate row) 1)2)3)4)5)6) H L H READ (truncate Write and start Read burst) 1)2)3)4)5)6)7) L H L L WRITE (truncate Write and start new Write burst) 1)2)3)4)5)6)7) Any Read (AutoPrecharge Disabled) Write (AutoPrecharge Disabled) CS WE 1)2)3)4)5)6) PRECHARGE (Deactivate row in bank or banks) 1) This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Table 17) and after tXP or tXSR has been met (if the previous state was L L H L power-down or self refresh). 2) This table describes alternate bank operation, except where noted, i.e., the current state is for bank n and the commands shown are those allowed to be issued to bank m (assuming that bank m is in such a state that the given command is allowable). Exceptions are covered in the notes below. 3) Current state definitions: Idle: The bank has been precharged, and tRP has been met. Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts / accesses and no register accesses are in progress. Read: A READ burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Write: A WRITE burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated.Read with AP Enabled: Starts with registration of a READ command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. Write with AP Enabled: Starts with registration of a WRITE command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state). Rev.1.00, 2007-03 02022006-J7N7-GYFP 47 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 4) 5) 6) 7) AUTO REFRESH, SELF REFRESH and MODE REGISTER SET commands may only be issued when all banks are idle. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state only. All states and sequences not shown are illegal or reserved. Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads or Writes with Auto Precharge disabled. 8) A WRITE command may be applied after the completion of the Read burst; otherwise, a BURST TERMINATE command must be used to end the Read burst prior to issuing a WRITE command. 9) Requires appropriate DM masking. Rev.1.00, 2007-03 02022006-J7N7-GYFP 48 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 3 Electrical Characteristics 3.1 Operating Conditions TABLE 20 Absolute Maximum Ratings Parameter Symbol VDD VDDQ VIN VOUT TC TC TSTG PD IOUT Power Supply Voltage Power Supply Voltage for Output Buffer Input Voltage Output Voltage Operating Case Temperature Commercial Extended Storage Temperature Power Dissipation Short Circuit Output Current Values min. max. -0.3 2.7 Unit V -0.3 2.7 V -0.3 V -0.3 VDDQ + 0.3 VDDQ + 0.3 0 +70 °C -25 +85 °C -55 +150 °C – 0.7 W – 50 mA V Attention: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Rev.1.00, 2007-03 02022006-J7N7-GYFP 49 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM TABLE 21 Pin Capacitances Parameter Symbol Values min. Input capacitance: CK, CK Delta input capacitance: CK, CK Input capacitance: all other input-only balls Delta input capacitance: all other input-only balls Input/output capacitance: DQ, DQS, DM Delta input/output capacitance: DQ, DQS, DM CI1 CDI1 CI2 CDI2 CIO CDIO Unit Note 1)2)3) max. 4.0 6.5 pF – 0.5 pF 4.0 6.5 pF – 1.0 pF 3.0 6.0 pF – 1.0 pF 1) These values are not subject to production test but verified by device characterization. 2) Input capacitance is measured according to JEP147 procedure for measuring capacitance using a vector network analyzer. VDD, VDDQ are applied and all other balls (except the ball under test) are floating. DQ’s should be in high impedance state. This may be achieved by pulling CKE to low level. 3) Although DM is an input-only ball, it’s input capacitance models the input capacitance of the DQ and DQS balls. Rev.1.00, 2007-03 02022006-J7N7-GYFP 50 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM TABLE 22 Electrical Characteristics Parameter Symbol Values min. Power Supply Voltage Power Supply Voltage for DQ Output Buffer Input leakage current Output leakage current VDD VDDQ IIL IOL Unit Note max. 1.70 1.90 V 1)2) 1.70 1.90 V 1)2) -1.0 1.0 µΑ 1) -1.5 1.5 µA 1) V 1) V 1) Address and Command Inputs (BA, BA1, CKE, CS, RAS, CAS, WE) Input high voltage Input low voltage VIH VIL 0.8 × VDDQ -0.3 VDDQ + 0.3 0.2 × VDDQ VIN VID(DC) VID(AC) VIX -0.3 VDDQ + 0.3 V 1) 0.4 × VDDQ V 1)3) V 1)3) 0.4 × VDDQ VDDQ + 0.6 VDDQ + 0.6 0.6 × VDDQ V 1)4) VIHD(DC) VILD(DC) VIHD(AC) VILD(AC) 0.7 × VDDQ VDDQ + 0.3 V 1) -0.3 0.3 x VDDQ V 1) 0.8 × VDDQ V 1) -0.3 VDDQ + 0.3 0.2 × VDDQ V 1) VOH VOL 0.9 × VDDQ – V 1) – 0.1 × VDDQ V 1) Clock Inputs (CK, CK) DC input voltage DC input differential voltage AC input differential voltage AC differential cross point voltage 0.6 × VDDQ Data Inputs (DQ, DM, DQS) DC input high voltage DC input low voltage AC input high voltage AC input low voltage Data Outputs (DQ, DQS) Output high voltage (IOH = -0.1 mA) Output low voltage (IOL = 0.1 mA) 1) 2) 3) 4) See Table 25 and Figure 40 for overshoot and undershoot definition. VDDmax = VDDQmax = 1.95V permitted for Clock Frequency (fCKmax) 133MHz (CL = 3) and commercial temperature range -0 °C ≤ TJ ≤ 70 °C. VID is the magnitude of the difference between the input level on CK and the input level on CK. The value of VIX is expected to be equal to 0.5 x VDDQ and must track variations in the DC level. Rev.1.00, 2007-03 02022006-J7N7-GYFP 51 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 3.2 AC Characteristics TABLE 23 AC Characteristics Parameter Symbol - 7.5 min. tAC tDQSCK tCH tCL tHP tCK DQ output access time from CK/CK DQS output access time from CK/CK Clock high-level width Clock low-level width Clock half period Clock cycle time CL = 3 CL = 2 DQ and DM input setup time tDS fast slew rate slow slew rate DQ and DM input hold time tDH fast slew rate slow slew rate tDIPW tIS DQ and DM input pulse width Address and control input setup time fast slew rate slow slew rate Address and control input hold time tIH fast slew rate slow slew rate tIPW tLZ tHZ tDQSQ tQH tQHS tDQSS tDQSH tDQSL tDSS tDSH tMRD tWPRES tWPST tWPRE tRPRE Address and control input pulse width DQ & DQS low-impedance time from CK/CK DQ & DQS high-impedance time from CK/CK DQS - DQ skew DQ / DQS output hold time from DQS Data hold skew factor Write command to 1st DQS latching transition DQS input high-level width DQS input low-level width DQS falling edge to CK setup time DQS falling edge hold time from CK MODE REGISTER SET command period Write preamble setup time Write postamble Write preamble Read preamble CL = 3 CL = 2 tRPST Read postamble Rev.1.00, 2007-03 02022006-J7N7-GYFP 52 Unit Note max. 2.0 6.5 ns 1)2)3)4)5) 2.0 6.5 ns 1)2)3)4)5) 0.45 0.55 1)2)3) 0.45 0.55 tCK tCK min (tCL,tCH) ns 1)2)3)6)7) 7.5 – ns 1)2)3)8) 15 – 0.75 – ns 1)2)3)9)10)11) 0.85 – 0.75 – 0.85 – 1.7 – ns 1)2)3)13) 1.3 – ns 1)2)3)6)14)15) 1.5 – 1.3 – 1.5 – 3.0 – ns 1)2)3)13) 1.0 – ns 1)2)3)16) – 6.5 ns 1)2)3)16) – 0.6 ns 1)2)3)17) tHP-tQHS – ns 1)2)3)7) – 0.75 ns 1)2)3)7) 0.75 1.25 1)2)3) 0.4 0.6 0.4 0.6 0.2 – 0.2 – 2 – tCK tCK tCK tCK tCK tCK 0 – ns 1)2)3)18) 0.4 0.6 1)2)3)19) 0.25 – 0.9 1.1 0.7 1.1 0.4 0.6 tCK tCK tCK tCK tCK 1)2)3) 1)2)3)9)10)12) ns 1)2)3)9)10)11) 1)2)3)9)10)12) 1)2)3)12)15) ns 1)2)3)11)14)15) 1)2)3)12)14)15) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3) 1)2)3)20) 1)2)3) Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM Parameter Symbol - 7.5 min. tRAS ACTIVE to ACTIVE command period tRC AUTO REFRESH to ACTIVE/AUTO REFRESH command period tRFC ACTIVE to READ or WRITE delay tRCD PRECHARGE command period tRP ACTIVE bank A to ACTIVE bank B delay tRRD WRITE recovery time tWR Auto precharge write recovery + precharge time tDAL Internal write to Read command delay tWTR Self refresh exit to next valid command delay tXSR Exit power down delay tXP CKE minimum high or low time tCKE Refresh period tREF Average periodic refresh interval (8192 rows) tREFI ACTIVE to PRECHARGE command period Unit Note max. 45 70,000 ns 1)2)3)21) 65 – ns 1)2)3)21) 75 – ns 1)2)3)21) 22.5 – ns 1)2)3)21) 22.5 – ns 1)2)3)21) 15 – ns 1)2)3)21) 15 – ns 1)2)3)21) 1)2)3)22) 1 – tCK tCK 120 – ns 1)2)3)21) tCK+ tIS – ns 1)2)3) 2 – tCK 1)2)3) – 64 ms 1)2)3) – 7.8 µs 1)2)3)23) 1)2)3) 1) All parameters assume proper device initialization. 2) The CK/CK input reference level (for timing referenced to CK/CK) is the point at which CK and CK cross; the input reference level for signals other than CK/CK is VDDQ/2. 3) All AC timing characteristics assume an input slew rate of 1.0 V/ns. 4) The output timing reference level is VDDQ/2. 5) Parameters tAC and tDQSCK are specified for full drive strength and a reference load (see Figure 39). This circuit is not intended to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. For half drive strength with a nominal load of 10pF parameters tAC and tDQSCK are expected to be in the same range. However, these parameters are not subject to production test but are estimated by device characterization. Use of IBIS or other simulation tools for system validation is suggested. 6) Min (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). 7) tQH = tHP - tQHS, where tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCL, tCH). tQHS accounts for 1) the pulse duration distortion of on-chip clock circuits; and 2) the worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately, due to data ball skew and output pattern effects, and p-channel to n-channel variation of the output drivers. 8) The only time that the clock frequency is allowed to change is during power-down, self-refresh or clock stop modes. 9) DQ, DM and DQS input slew rate is measured between VILD(DC) and VIHD(AC) (rising) or VIHD(DC) and VILD(AC) (falling). 10) DQ, DM and DQS input slew rate is specified to prevent double clocking of data and preserve setup and hold times. Signal transitions through the DC region must be monotonic. 11) Input slew rate ≥ 1.0 V/ns. 12) Input slew rate ≥ 0.5V/ns and < 1.0 V/ns. 13) These parameters guarantee device timing. They are verified by device characterization but are not subject to production test. 14) The transition time for address and command inputs is measured between VIH and VIL. 15) A CK/CK differential slew rate of 2.0 V/ns is assumed for this parameter. 16) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ). 17) tDQSQ consists of data ball skew and output pattern effects, and p-channel to n-channel variation of the output drivers for any given cycle. 18) The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge. A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS. 19) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly. Rev.1.00, 2007-03 02022006-J7N7-GYFP 53 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 20) A low level on DQS may be maintained during High-Z states (DQS drivers disabled) by adding a weak pull-down element in the system. It is recommended to turn off the weak pull-down element during read and write bursts (DQS drivers enabled). 21) These parameters account for the number of clock cycles and depend on the operating frequency, as follows: no. of clock cycles = specified delay / clock period; round to the next higher integer. 22) tDAL = (tWR / tCK) + (tRP / tCK): for each of the terms above, if not already an integer, round to the next higher integer. 23) A maximum of eight AUTOREFRESH commands can be posted to the DDR Mobile-RAM device, meaning that the maximum absolute interval between any Refresh command and the next Refresh command is 8 * tREFI. FIGURE 39 Measurement with Reference Load )/ : /HM S P & TABLE 24 Output Slew Rate Characteristics Parameter Typical Range Minimum Maximum Unit Note Pull-up and Pull-down Slew Rate (Full Drive Buffer) TBD 0.7 2.5 V/ns 1)2) Pull-up and Pull-down Slew Rate (Half Drive Buffer) TBD 0.3 1.0 V/ns 1)2) Output Slew Rate Matching Ratio (Pull-up to Pull-down) - 0.7 1.4 - 1)3) 1) Output slew rate is measured between VILD(DC) and VIHD(AC) (rising) or VIHD(DC) and VILD(AC) (falling). 2) The parameter is measured using a 20pF capacitive load connected to VSSQ. 3) The ratio of the pull-up slew rate to the pull-down slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation. TABLE 25 AC Overshoot / Undershoot Specification Parameter Maximum Unit Note Maximum peak amplitude allowed for overshoot 0.9 V – Maximum peak amplitude allowed for undershoot 0.9 V – Maximum overshoot area above VDD 3.0 V-ns – Maximum undershoot area below VSS 3.0 V-ns – Rev.1.00, 2007-03 02022006-J7N7-GYFP 54 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM FIGURE 40 AC Overshoot and Undershoot Definition 3.0 Overshoot 2.5 2.0 VDD Voltage (V) 1.5 1.0 Max. Amplitude = 0.9V Max. Area = 3V-ns 0.5 0 VSS -0.5 Undershoot -1.0 -1.5 0 1 2 3 4 5 6 7 time (ns) 3.3 Operating Currents TABLE 26 Maximum Operating Currents Parameter & Test Conditions Symbol Values Unit Note1)2)3) 4) - 7.5 Operating one bank active-precharge current: tRC = tRCmin; tCK = tCKmin; CKE is HIGH; CS is HIGH between valid commands; IDD0 100 mA 1.40 mA 1.20 mA 30 mA 3.0 mA 4 mA address inputs are SWITCHING; data bus inputs are STABLE IDD2P Precharge power-down standby current: all banks idle, CKE is LOW; CS is HIGH, tCK = tCKmin; address and control inputs are SWITCHING; data bus inputs are STABLE Precharge power-down standby current with clock stop: all banks idle, CKE is LOW; CS is HIGH, CK = LOW, CK = HIGH; address and control inputs are SWITCHING; data bus inputs are STABLE IDD2PS Precharge non power-down standby current: IDD2N all banks idle, CKE is HIGH; CS is HIGH, tCK = tCKmin; address and control inputs are SWITCHING; data bus inputs are STABLE Precharge non power-down standby current with clock stop: all banks idle, CKE is HIGH, CS is HIGH, CK = LOW, CK = HIGH; address and control inputs are SWITCHING; data bus inputs are STABLE IDD2NS Active power-down standby current: IDD3P one bank active, CKE is LOW; CS is HIGH, tCK = tCKmin; address and control inputs are SWITCHING; data bus inputs are STABLE Rev.1.00, 2007-03 02022006-J7N7-GYFP 55 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM Parameter & Test Conditions Symbol Values Unit Note1)2)3) 4) - 7.5 Active power-down standby current with clock stop: IDD3PS one bank active, CKE is LOW; CS is HIGH, CK = LOW, CK = HIGH; address and control inputs are SWITCHING; data bus inputs are STABLE Active non power-down standby current: one bank active, CKE is HIGH; CS is HIGH, tCK = tCKmin; address and control inputs are SWITCHING; data bus inputs are STABLE IDD3N Active non power-down standby current with clock stop: IDD3NS one bank active, CKE is HIGH, CS is HIGH, CK = LOW, CK = HIGH; address and control inputs are SWITCHING; data bus inputs are STABLE 3.0 mA 44 mA 5.0 mA Operating burst read current: one bank active; BL = 4; CL = 3; tCK = tCKmin; continuous read bursts; IOUT = 0 mA; address input are SWITCHING; 50% data change each burst transfer IDD4R 150 mA Operating burst write current: one bank active; BL = 4; tCK = tCKmin; continuous write bursts; address inputs are SWITCHING; 50% data change each burst transfer IDD4W 150 mA Auto-Refresh current: IDD5 270 mA Self refresh current: CKE is LOW; CK = LOW, CK = HIGH; address and control inputs are STABLE; data bus inputs are STABLE IDD6 see Table 27 µA Deep Power Down current IDD8 505) µA tRC = tRFCmin; tCK = tCKmin; burst refresh; CKE is HIGH; address and control inputs are SWITCHING; data bus inputs are STABLE 1) IDD specifications are tested after the device is properly initialized and measured at 133 MHz for -7.5 speed grade. 2) Input slew rate is 1.0 V/ns. 3) Definitions for IDD: LOW is defined as VIN ≤ 0.1 * VDDQ; HIGH is defined as VIN ≥ 0.9 * VDDQ; STABLE is defined as inputs stable at a HIGH or LOW level; SWITCHING is defined as: - address and command: inputs changing between HIGH and LOW once per two clock cycles; - data bus inputs: DQ changing between HIGH and LOW once per clock cycle; DM and DQS are STABLE 4) All parameters are measured with no output loads. 5) IDD8 value shown as typical Rev.1.00, 2007-03 02022006-J7N7-GYFP 56 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM TABLE 27 Self Refresh Currents Parameter & Test Conditions Max. Symbol Temperature Values HYE18M1G320BF Typ. Self Refresh Current: Self refresh mode, full array activation (PASR = 000) 85 °C Self Refresh Current: Self refresh mode, half array activation (PASR = 001) Self Refresh Current: Self refresh mode, quarter array activation (PASR = 010) IDD6 Units Note HYB18M1G320BF Max. Typ. Max. 1520 1800 — — 70 °C 1020 — 1020 1800 45 °C 640 — 640 — 25 °C 560 — 560 — 85 °C 1080 1560 — 70 °C 740 — 740 1560 45 °C 480 — 480 — 25 °C 420 — 420 — 85 °C 840 1340 — — 70 °C 580 — 580 1340 45 °C 420 — 420 — 25 °C 340 — 340 — µA 1) 1) The On-Chip Temperature Sensor (OCTS) adjusts the refresh rate in self refresh mode to the component’s actual temperature with a much finer resolution than supported by the 4 distinct temperature levels as defined by JEDEC for TCSR. At production test the sensor is calibrated, and IDD6 max. current is measured at 85°C. Typ. values are obtained from device characterization. 3.4 Pull-up and Pull-down Characteristics Figure 41 shows the characteristics of full and half drive strength. It is specified under best and worst process variation /condition. Temperature (Tcase): Minimum = 0 °C / -25°C, Maximum = 70°C. FIGURE 41 Full Drive Strength and Half Drive Strength Half Drive Strength IV Curves Full Drive Strength IV Curves 30.0 75.0 20.0 50.0 10.0 25.0 PD Min -25.0 0.0 PD Max 0.0 0.0 0.5 1.0 1.5 PU Min -10.0 PU Max -20.0 -50.0 -30.0 -75.0 Rev.1.00, 2007-03 02022006-J7N7-GYFP PD Min 57 0.0 0.5 1.0 1.5 PD Max PU Min PU Max Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM 4 Package Outline FIGURE 42 90-ball PG-VFBGA-90-5 Rev.1.00, 2007-03 02022006-J7N7-GYFP 58 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Memory Addressing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ball Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Burst Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Command Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 DM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Inputs Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Timing Parameters for Mode Register Set Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Timing Parameters for ACTIVE Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Timing Parameters for READ Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Timing Parameters for WRITE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Timing Parameters for PRECHARGE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Timing Parameters for AUTO REFRESH and SELF REFRESH Commands. . . . . . . . . . . . . . . . . . . . . . . . . . 41 Timing Parameters for POWER-DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Minimum Number of Required Clock Pulses per Access Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Truth Table - CKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Current State Bank n - Command to Bank n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Current State Bank n - Command to Bank m (different bank) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Pin Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Output Slew Rate Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 AC Overshoot / Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Maximum Operating Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Self Refresh Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Rev.1.00, 2007-03 02022006-J7N7-GYFP 59 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM List of Illustrations Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Standard ballout 1-Gbit DDR Mobile-RAM (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Power-Up Sequence and Mode Register Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Address / Command Inputs Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 No Operation Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Mode Register Set Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Mode Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ACTIVE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Bank Activate Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 READ Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Basic READ Timing Parameters for DQs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 READ Burst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Consecutive READ Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Nonconsecutive READ Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Random READ Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Terminating a READ Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 READ to WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 READ to PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 BURST TERMINATE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 WRITE Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Basic WRITE Timing Parameters for DQs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 WRITE Burst (min. and max. tDQSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 WRITE to WRITE (min. and max. tDQSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Non-Consecutive WRITE to WRITE (max. tDQSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Random WRITE Cycles (max. tDQSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Non-Interrupting WRITE to READ (max. tDQSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Interrupting WRITE to READ (max. tDQSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Non-Interrupting WRITE to PRECHARGE (max. tDQSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Interrupting WRITE to PRECHARGE (max. tDQSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 PRECHARGE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 AUTO REFRESH Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Auto Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 SELF REFRESH Entry Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Self Refresh Entry and Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Power-Down Entry Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Power-Down Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Clock Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Measurement with Reference Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 AC Overshoot and Undershoot Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Full Drive Strength and Half Drive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 90-ball PG-VFBGA-90-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Rev.1.00, 2007-03 02022006-J7N7-GYFP 60 Data Sheet HY[B/E]18M1G320BF 1-Gbit DDR Mobile-RAM Contents 1 1.1 1.2 1.3 1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ball Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ball Definition and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 2.2 2.2.1 2.2.1.1 2.2.1.2 2.2.1.3 2.2.2 2.2.2.1 2.2.2.2 2.2.2.3 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.5.1 2.4.5.2 2.4.5.3 2.4.6 2.4.7 2.4.7.1 2.4.7.2 2.4.8 2.4.8.1 2.4.9 2.4.9.1 2.4.9.2 2.4.10 2.4.10.1 2.4.11 2.4.12 2.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power On and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Extended Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Partial Array Self Refresh (PASR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Temperature Compensated Self Refresh (TCSR) with On-Chip Temperature Sensor . . . . . . . . . . . . . . . . . 14 Selectable Drive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 NO OPERATION (NOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 DESELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 MODE REGISTER SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ACTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 READ Burst Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 READ to WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 READ to PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 BURST TERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 WRITE to READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 WRITE to PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 AUTO PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 AUTO REFRESH and SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 AUTO REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 POWER-DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 DEEP POWER-DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 CLOCK STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Clock Frequency Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Function Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 3.1 3.2 3.3 3.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pull-up and Pull-down Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Rev.1.00, 2007-03 02022006-J7N7-GYFP 61 3 3 5 6 7 49 49 52 55 57 Data Sheet Edition 2007-03 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Under no circumstances may the Qimonda product as referred to in this Data Sheet be used in 1. Any applications that are intended for military usage (including but not limited to weaponry), or 2. Any applications, devices or systems which are safety critical or serve the purpose of supporting, maintaining, sustaining or protecting human life (such applications, devices and systems collectively referred to as "Critical Systems"), if a) A failure of the Qimonda product can reasonable be expected to - directly or indirectly (i) Have a detrimental effect on such Critical Systems in terms of reliability, effectiveness or safety; or (ii) Cause the failure of such Critical Systems; or b) A failure or malfunction of such Critical Systems can reasonably be expected to - directly or indirectly (i) Endanger the health or the life of the user of such Critical Systems or any other person; or (ii) Otherwise cause material damages (including but not limited to death, bodily injury or significant damages to property, whether tangible or intangible). www.qimonda.com