TOSHIBA TC74VCX125FT

TC74VCX125FT/FK
TOSHIBA CMOS Digital Integrated Circuit
Silicon Monolithic
TC74VCX125FT,TC74VCX125FK
Low-Voltage Quad Bus Buffer with 3.6-V Tolerant Inputs and Outputs
The TC74VCX125FT/FK is a high-performance CMOS quad
bus buffer which is guaranteed to operate from 1.2-V to 3.6-V.
Designed for use in 1.5V, 1.8V, 2.5V or 3.3V systems, it achieves
high-speed operation while maintaining the CMOS low power
dissipation.
It is also designed with overvoltage tolerant inputs and outputs
up to 3.6 V.
This device requires the 3-state control input OE to be set
high to place the output into the high impedance state.
All inputs are equipped with protection circuits against static
discharge.
TC74VCX125FT
TC74VCX125FK
Features
•
Low-voltage operation: VCC = 1.2~3.6 V
•
High-speed operation : tpd = 2.8 ns (max) (VCC = 3.0~3.6 V)
: tpd = 3.4 ns (max) (VCC = 2.3~2.7 V)
: tpd = 6.8 ns (max) (VCC = 1.65~1.95 V)
: tpd = 13.6 ns (max) (VCC = 1.4~1.6 V)
: tpd = 34.0 ns (max) (VCC = 1.2 V)
•
Output current: IOH/IOL = ±24 mA (min) (VCC = 3.0 V)
: IOH/IOL = ±18 mA (min) (VCC = 2.3 V)
Weight
TSSOP14-P-0044-0.65A
VSSOP14-P-0030-0.50
: 0.06 g (typ.)
: 0.02 g (typ.)
: IOH/IOL = ±6 mA (min) (VCC = 1.65 V)
: IOH/IOL = ±2 mA (min) (VCC = 1.4 V)
•
Latch-up performance: −300 mA
•
ESD performance: Machine model ≥ ±200 V
Human body model ≥ ±2000 V
•
Package: TSSOP and VSSOP (US)
•
3.6-V tolerant function and power-down protection provided on all inputs and outputs.
1
2007-10-19
TC74VCX125FT/FK
Pin Assignment (top view)
IEC Logic Symbol
1OE
1
14
VCC
1A
2
13
4OE
1Y
3
12
4A
4
11
4Y
2A
5
10
3OE
2Y
6
9
3A
GND
7
8
3Y
2OE
1 OE
1A
2 OE
2A
3 OE
3A
4 OE
4A
1
2
4
5
10
9
13
12
EN
3
1Y
6
2Y
8
3Y
11
4Y
Truth Table
Inputs
Outputs
OE
A
Y
H
X
Z
L
L
L
L
H
H
X: Don’t care
Z: High impedance
Absolute Maximum Ratings (Note 1)
Characteristics
Symbol
Rating
Unit
Power supply voltage
VCC
−0.5~4.6
V
DC input voltage
VIN
−0.5~4.6
V
−0.5~4.6 (Note 2)
DC output voltage
VOUT
Input diode current
IIK
−50
Output diode current
IOK
±50
DC output current
IOUT
±50
mA
Power dissipation
PD
180
mW
ICC/IGND
±100
mA
Tstg
−65~150
°C
DC VCC/ground current
Storage temperature
−0.5~VCC + 0.5(Note 3)
V
mA
(Note 4)
mA
Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or
even destruction.
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly
even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute
maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test
report and estimated failure rate, etc).
Note 2: Off-state
Note 3: High or low state. IOUT absolute maximum rating must be observed.
Note 4: VOUT < GND, VOUT > VCC
2
2007-10-19
TC74VCX125FT/FK
Operating Ranges (Note 1)
Characteristics
Symbol
Rating
Unit
Power supply voltage
VCC
1.2~3.6
V
Input voltage
VIN
−0.3~3.6
V
Output voltage
Output current
VOUT
IOH/IOL
0~3.6
(Note 2)
0~VCC
(Note 3)
±24
(Note 4)
±18
(Note 5)
±6
(Note 6)
±2
(Note 7)
Operating temperature
Topr
−40~85
Input rise and fall time
dt/dv
0~10
V
mA
°C
(Note 8)
ns/V
Note 1: The operating ranges must be maintained to ensure the normal operation of the device.
Unused inputs must be tied to either VCC or GND.
Note 2: OFF state
Note 3: High or low state
Note 4: VCC = 3.0~3.6 V
Note 5: VCC = 2.3~2.7 V
Note 6: VCC = 1.65~1.95 V
Note 7: VCC = 1.4~1.6 V
Note 8: VIN = 0.8~2.0 V, VCC = 3.0 V
3
2007-10-19
TC74VCX125FT/FK
Electrical Characteristics
DC Characteristics (Ta = −40 to 85°C, 2.7 V < VCC =< 3.6 V)
Characteristics
Input voltage
Symbol
Test Condition
H-level
VIH
⎯
L-level
VIL
⎯
H-level
VOH
Min
Max
2.7~3.6
2.0
⎯
2.7~3.6
⎯
0.8
IOH = −100 μA
2.7~3.6
VCC
− 0.2
⎯
IOH = −12 mA
2.7
2.2
⎯
IOH = −18 mA
3.0
2.4
⎯
IOH = −24 mA
3.0
2.2
⎯
IOL = 100 μA
2.7~3.6
⎯
0.2
IOL = 12 mA
2.7
⎯
0.4
IOL = 18 mA
3.0
⎯
0.4
IOL = 24 mA
3.0
⎯
0.55
2.7~3.6
⎯
±5.0
μA
2.7~3.6
⎯
±10.0
μA
0
⎯
10.0
μA
VIN = VCC or GND
2.7~3.6
⎯
20.0
VCC <
= (VIN, VOUT) <
= 3.6 V
2.7~3.6
⎯
±20.0
VIH = VCC − 0.6 V
2.7~3.6
⎯
750
Min
Max
VIN = VIH or VIL
Output voltage
L-level
VOL
Input leakage current
IIN
3-state output OFF state current
IOZ
Power-off leakage current
IOFF
Quiescent supply current
ICC
Increase in ICC per input
ΔICC
VIN = VIH or VIL
VIN = 0 to 3.6 V
VIN = VIH or VIL
VOUT = 0 to 3.6 V
VIN, VOUT = 0 to 3.6 V
VCC (V)
Unit
V
V
μA
DC Characteristics (Ta = −40 to 85°C, 2.3 V =< VCC =< 2.7 V)
Characteristics
Input voltage
Symbol
Test Condition
H-level
VIH
⎯
2.3~2.7
1.6
⎯
L-level
VIL
⎯
2.3~2.7
⎯
0.7
2.3~2.7
VCC
− 0.2
⎯
IOH = −6 mA
2.3
2.0
⎯
IOH = −12 mA
2.3
1.8
⎯
IOH = −18 mA
2.3
1.7
⎯
IOL = 100 μA
2.3~2.7
⎯
0.2
IOL = 12 mA
2.3
⎯
0.4
IOL = 18 mA
2.3
⎯
0.6
2.3~2.7
⎯
±5.0
μA
2.3~2.7
⎯
±10.0
μA
0
⎯
10.0
μA
VIN = VCC or GND
2.3~2.7
⎯
20.0
VCC <
= (VIN, VOUT) <
= 3.6 V
2.3~2.7
⎯
±20.0
IOH = −100 μA
H-level
VOH
VIN = VIH or VIL
Output voltage
L-level
VOL
Input leakage current
IIN
3-state output off-state current
IOZ
Power-off leakage current
IOFF
Quiescent supply current
ICC
VIN = VIH or VIL
VIN = 0 to 3.6 V
VIN = VIH or VIL
VOUT = 0 to 3.6 V
VIN, VOUT = 0 to 3.6 V
4
VCC (V)
Unit
V
V
μA
2007-10-19
TC74VCX125FT/FK
DC Characteristics (Ta = −40 to 85°C, 1.65 V =< VCC < 2.3 V)
Characteristics
Symbol
Test Condition
H-level
VIH
⎯
L-level
VIL
⎯
H-level
VOH
Min
Max
1.65~2.3
0.65 ×
VCC
⎯
1.65~2.3
⎯
0.2 ×
VCC
1.65~2.3
VCC
− 0.2
⎯
IOH = −6 mA
1.65
1.25
⎯
IOL = 100 μA
1.65~2.3
⎯
0.2
1.65
⎯
0.3
1.65~2.3
⎯
±5.0
μA
1.65
⎯
±10.0
μA
0
⎯
10.0
μA
VIN = VCC or GND
1.65~2.3
⎯
20.0
VCC <
= (VIN, VOUT) <
= 3.6 V
1.65~2.3
⎯
±20.0
Min
Max
VCC (V)
Input voltage
IOH = −100 μA
VIN = VIH or VIL
Output voltage
VOL
VIN = VIH or VIL
Input leakage current
IIN
VIN = 0 to 3.6 V
3-state output OFF state current
IOZ
Power-off leakage current
IOFF
Quiescent supply current
ICC
L-level
IOL = 6 mA
VIN = VIH or VIL
VOUT = 0 to 3.6 V
VIN, VOUT = 0 to 3.6 V
Unit
V
V
μA
DC Characteristics (Ta = −40 to 85°C, 1.4 V =< VCC < 1.65 V)
Characteristics
Symbol
Test Condition
H-level
VIH
⎯
1.4~1.65
0.65 ×
VCC
⎯
L-level
VIL
⎯
1.4~1.65
⎯
0.05 ×
VCC
H-level
VOH
1.4~1.65
VCC
− 0.2
⎯
IOH = −2 mA
1.4
1.05
⎯
IOL = 100 μA
1.4~1.65
⎯
0.05
VCC (V)
Input voltage
IOH = −100 μA
VIN = VIH or VIL
Output voltage
VOL
VIN = VIH or VIL
Input leakage current
IIN
VIN = 0 to 3.6 V
3-state output OFF state current
IOZ
Power-off leakage current
IOFF
Quiescent supply current
ICC
L-level
IOL = 2 mA
Unit
V
V
1.4
⎯
0.35
1.4~1.65
⎯
±5.0
μA
1.4~1.65
⎯
±10.0
μA
0
⎯
10.0
μA
VIN = VCC or GND
1.4~1.65
⎯
20.0
VCC <
= (VIN, VOUT) <
= 3.6 V
1.4~1.65
⎯
±20.0
VIN = VIH or VIL
VOUT = 0 to 3.6 V
VIN, VOUT = 0 to 3.6 V
5
μA
2007-10-19
TC74VCX125FT/FK
DC Characteristics (Ta = −40 to 85°C, 1.2 V =< VCC < 1.4 V)
Characteristics
Symbol
Test Condition
H-level
VIH
⎯
L-level
VIL
⎯
H-level
VOH
VIN = VIH or VIL
L-level
VOL
VIN = VIH or VIL
Input leakage current
IIN
VIN = 0 to 3.6 V
3-state output OFF state current
IOZ
Power-off leakage current
IOFF
Quiescent supply current
ICC
Min
Max
1.2~1.4
0.8 ×
VCC
⎯
1.2~1.4
⎯
0.05 ×
VCC
IOH = −100 μA
1.2
VCC
− 0.1
⎯
IOL = 100 μA
1.2
⎯
0.05
1.2
⎯
±5.0
μA
1.2
⎯
±10.0
μA
0
⎯
10.0
μA
VIN = VCC or GND
1.2
⎯
20.0
VCC <
= (VIN, VOUT) <
= 3.6 V
1.2
⎯
±20.0
Min
Max
1.2
3.0
34.0
1.5 ± 0.1
2.0
13.6
1.8 ± 0.15
1.5
6.8
2.5 ± 0.2
0.8
3.4
3.3 ± 0.3
0.6
2.8
1.2
3.0
41.0
1.5 ± 0.1
2.0
16.4
1.8 ± 0.15
1.5
8.2
2.5 ± 0.2
0.8
4.1
3.3 ± 0.3
0.6
3.5
1.2
3.0
34.0
1.5 ± 0.1
2.0
13.6
1.8 ± 0.15
1.5
6.8
2.5 ± 0.2
0.8
3.8
3.3 ± 0.3
0.6
3.5
1.2
⎯
1.5
1.5 ± 0.1
⎯
1.5
1.8 ± 0.15
⎯
0.5
2.5 ± 0.2
⎯
0.5
3.3 ± 0.3
⎯
0.5
VCC (V)
Input voltage
Output voltage
VIN = VIH or VIL
VOUT = 0 to 3.6 V
VIN, VOUT = 0 to 3.6 V
Unit
V
V
μA
AC Characteristics (Ta = −40 to 85°C, input: tr = tf = 2.0 ns) (Note 1)
Characteristics
Symbol
Test Condition
CL = 15 pF, RL = 2 kΩ
Propagation delay time
tpLH
tpHL
Figure 1, Figure 2
CL = 30 pF, RL = 500 Ω
CL = 15 pF, RL = 2 kΩ
3-state output enable time
tpZL
tPZH
Figure 1, Figure 3
CL = 30 pF, RL = 500 Ω
CL = 15 pF, RL = 2 kΩ
3-state output disable time
tpLZ
tpHZ
Figure 1, Figure 3
CL = 30 pF, RL = 500 Ω
CL = 15 pF, RL = 2 kΩ
Output to output skew
tosLH
tosHL
(Note 2)
CL = 30 pF, RL = 500 Ω
VCC (V)
Unit
ns
ns
ns
ns
Note 1: For CL = 50 pF, add approximately 300 ps to the AC maximum specification.
Note 2: Parameter guaranteed by design.
(tosLH = |tpLHm − tpLHn|, tosHL = |tpHLm − tpHLn|)
6
2007-10-19
TC74VCX125FT/FK
Dynamic Switching Characteristics (Ta = 25°C, input: tr = tf = 2.0 ns, CL = 30 pF)
Characteristics
Quiet output minimum dynamic VOL
Quiet output minimum dynamic VOL
Quiet output minimum dynamic VOH
Note:
Symbol
VOLP
VOLV
VOHV
Test Condition
VCC (V)
Typ.
VIH = 1.8 V, VIL = 0 V
(Note)
1.8
0.25
VIH = 2.5 V, VIL = 0 V
(Note)
2.5
0.6
VIH = 3.3 V, VIL = 0 V
(Note)
3.3
0.8
VIH = 1.8 V, VIL = 0 V
(Note)
1.8
−0.25
VIH = 2.5 V, VIL = 0 V
(Note)
2.5
−0.6
VIH = 3.3 V, VIL = 0 V
(Note)
3.3
−0.8
VIH = 1.8 V, VIL = 0 V
(Note)
1.8
1.5
VIH = 2.5 V, VIL = 0 V
(Note)
2.5
1.9
VIH = 3.3 V, VIL = 0 V
(Note)
3.3
2.2
Unit
V
V
V
Parameter guaranteed by design.
Capacitive Characteristics (Ta = 25°C)
Characteristics
Symbol
Test Condition
Input capacitance
CIN
⎯
Output capacitance
CO
⎯
Power dissipation capacitance
CPD
Note:
fIN = 10 MHz
Typ.
Unit
1.8, 2.5, 3.3
6
pF
1.8, 2.5, 3.3
7
pF
1.8, 2.5, 3.3
20
pF
VCC (V)
(Note)
CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating
current consumption without load.
Average operating current can be obtained by the equation:
ICC (opr) = CPD・VCC・fIN + ICC/4 (per bit)
7
2007-10-19
TC74VCX125FT/FK
AC Test Circuit
6.0 V or VCC × 2
Open
GND
RL
Switch
Measure
Parameter
VCC
Switch
tpLH, tpHL
tpLZ, tpZL
RL
CL
Output
Open
6.0 V
VCC × 2
tpHZ, tpZH
Symbol
3.3 ± 0.3 V
2.5 ± 0.2 V
1.8 ± 0.15 V
1.5 ± 0.1 V
1.2 V
RL
500Ω
2kΩ
CL
30pF
15pF
@VCC = 3.3 ± 0.3 V
@VCC = 2.5 ± 0.2 V
@VCC = 1.8 ± 0.15 V
@VCC = 1.5 ± 0.1 V
@VCC = 1.2 V
GND
Figure 1
AC Waveform
tr 2.0 ns
tf 2.0 ns
90%
VM
Input
(A)
VIH
10%
GND
VOH
Output
(Y)
VM
tpLH
Symbol
VOL
tpHL
VCC
3.3 ± 0.3 V
2.5 ± 0.2 V
1.8 ± 0.15 V
1.5 ± 0.1 V
1.2 V
VIH
2.7 V
VCC
VCC
VCC
VCC
VM
1.5 V
VCC/2
VCC/2
VCC/2
VCC/2
Figure 2 tpLH, tpHL
8
2007-10-19
TC74VCX125FT/FK
tr 2.0 ns
tf 2.0 ns
VIH
90%
VM
Output Enable
Control ( OE )
10%
tpLZ
GND
tpZL
3.0 V or VCC
Output (Y)
Low to Off to Low
VM
tpHZ
VX
VOH
VY
Output (Y)
High to Off to High
VOL
tpZH
VM
GND
Outputs
enabled
Outputs
enabled
Outputs
disabled
Figure 3 tpLZ, tpHZ, tpZL, tpZH
Symbol
VCC
3.3 ± 0.3 V
2.5 ± 0.2 V
1.8 ± 0.15 V
1.5 ± 0.1 V
1.2 V
VIH
2.7 V
VCC
VCC
VCC
VCC
VM
1.5 V
VCC/2
VCC/2
VCC/2
VCC/2
VX
VOL + 0.3 V
VOL + 0.15 V
VOL + 0.15 V
VOL + 0.1 V
VOL + 0.1 V
VY
VOH − 0.3 V
VOH − 0.15 V
VOH − 0.15 V
VOH − 0.1 V
VOH − 0.1 V
9
2007-10-19
TC74VCX125FT/FK
Package Dimensions
Weight: 0.06 g (typ.)
10
2007-10-19
TC74VCX125FT/FK
Package Dimensions
Weight: 0.02 g (typ.)
11
2007-10-19
TC74VCX125FT/FK
RESTRICTIONS ON PRODUCT USE
20070701-EN GENERAL
• The information contained herein is subject to change without notice.
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc.
• The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his
document shall be made at the customer’s own risk.
• The products described in this document shall not be used or embedded to any downstream products of which
manufacture, use and/or sale are prohibited under any applicable laws and regulations.
• The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
may result from its use. No license is granted by implication or otherwise under any patents or other rights of
TOSHIBA or the third parties.
• Please contact your sales representative for product-by-product details in this document regarding RoHS
compatibility. Please use these products in this document in compliance with all applicable laws and regulations
that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
occurring as a result of noncompliance with applicable laws and regulations.
12
2007-10-19