CY7C107 CY7C1007 1M x 1 Static RAM Features memory expansion is provided by an active LOW Chip Enable (CE) and three-state drivers. These devices have an automatic power-down feature that reduces power consumption by more than 65% when deselected. • High speed — tAA = 12 ns • CMOS for optimum speed/power • Low active power — 825 mW • Low standby power — 275 mW • 2.0V data retention (optional) — 100 µW • Automatic power-down when deselected • TTL-compatible inputs and outputs Writing to the devices is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the input pin (DIN) is written into the memory location specified on the address pins (A0 through A19). Reading from the devices is accomplished by taking Chip Enable (CE) LOW while Write Enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the data output (DOUT) pin. Functional Description The output pin (D OUT) is placed in a high-impedance state when the device is deselected (CE HIGH) or during a write operation (CE and WE LOW). The CY7C107 and CY7C1007 are high-performance CMOS static RAMs organized as 1,048,576 words by 1 bit. Easy The CY7C107 is available in a standard 400-mil-wide SOJ; the CY7C1007 is available in a standard 300-mil-wide SOJ. Logic Block Diagram Pin Configuration SOJ Top View DIN A10 A11 A12 A13 A14 A15 NC A16 A17 A18 A19 512x2048 ARRAY DOUT DOUT WE GND VCC A9 A8 A7 A6 A5 A4 NC A3 A2 A1 A0 DIN CE 107-2 POWER DOWN CE A9 A 10 A 11 A12 A 13 A14 A15 A16 A 17 A 18 A 19 COLUMN DECODER SENSE AMPS ROW DECODER INPUT BUFFER A0 A1 A2 A3 A4 A5 A6 A7 A8 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 WE 107-1 Selection Guide 7C107-12 7C1007-12 7C107-15 7C1007-15 7C107-20 7C1007-20 7C107-25 7C1007-25 7C107-35 12 150 15 135 20 125 25 120 35 110 50 40 30 30 25 Maximum Access Time (ns) Maximum Operating Current (mA) Maximum Standby Current (mA) Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600 December 1992 – Revised September 3, 1999 CY7C107 CY7C1007 Maximum Ratings Current into Outputs (LOW)......................................... 20 mA (Above which the useful life may be impaired. For user guidelines, not tested.) Static Discharge Voltage ........................................... >2001V (per MIL-STD-883, Method 3015) Storage Temperature ..................................... −65°C to +150°C Latch-Up Current ..................................................... >200 mA Ambient Temperature with Power Applied .................................................. −55°C to +125°C Operating Range Supply Voltage on VCC Relative to GND [1] .....−0.5V to +7.0V Ambient Temperature[2] 0°C to +70°C −40°C to +85°C Range Commercial Industrial DC Voltage Applied to Outputs in High Z State[1] ....................................... −0.5V to VCC + 0.5V DC Input Voltage[1] .................................... −0.5V to VCC + 0.5V VCC 5V ± 10% 5V ± 10% Electrical Characteristics Over the Operating Range 7C107-12 7C1007-12 Parameter Description Test Conditions Min. 2.4 Max. 7C107-15 7C1007-15 Min. Max. 7C107-20 7C1007-20 Min. Max. Unit VOH Output HIGH Voltage VCC = Min., IOH = −4.0 mA VOL Output LOW Voltage VCC = Min., IOL = 8.0 mA VIH Input HIGH Voltage 2.2 VCC+ 0.3 2.2 VCC+ 0.3 VIL Input LOW Voltage[1] −0.3 0.8 −0.3 0.8 IIX Input Load Current GND < VI < VCC −1 +1 −1 +1 −1 +1 µA IOZ Output Leakage Current GND < VI < VCC, Output Disabled –5 +5 –5 +5 –5 +5 µA IOS Output Short Circuit Current[3] VCC = Max., VOUT = GND −300 −300 −300 mA ICC VCC Operating Supply Current VCC = Max., IOUT = 0 mA, f = fMAX = 1/tRC 150 135 125 mA ISB1 Automatic CE Power-Down Current— TTL Inputs Max. VCC, CE > VIH, VIN >VIH or VIN < VIL, f = f MAX 50 40 30 mA ISB2 Automatic CE Power-Down Current— CMOS Inputs Max. VCC, CE > VCC – 0.3V, VIN > VCC – 0.3V or VIN < 0.3V, f = 0 2 2 2 mA 2.4 0.4 0.4 Notes: 1. VIL (min.) = –2.0V for pulse durations of less than 20 ns. 2. TA is the “instant on” case temperature. 3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds. 2 2.4 V 0.4 V 2.2 VCC+ 0.3 V −0.3 0.8 V CY7C107 CY7C1007 Electrical Characteristics Over the Operating Range (continued) 7C107-25 7C1007-25 Parameter Description Test Conditions Min. VOH Output HIGH Voltage VCC = Min., IOH = −4.0 mA VOL Output LOW Voltage VCC = Min., IOL = 8.0 mA VIH Input HIGH Voltage [1] Max. 2.4 7C107-35 Min. Max. Unit 2.4 0.4 V 0.4 V 2.2 VCC + 0.3 2.2 VCC + 0.3 V −0.3 0.8 −0.3 0.8 V VIL Input LOW Voltage IIX Input Load Current GND < VI < VCC −1 +1 −1 +1 µA IOZ Output Leakage Current GND < VI < VCC, Output Disabled −5 +5 −5 +5 µA IOS Output Short Circuit Current[3] VCC = Max., VOUT = GND −300 −300 mA ICC VCC Operating Supply Current VCC = Max., IOUT = 0 mA, f = fMAX = 1/tRC 120 110 mA ISB1 Automatic CE Power-Down Current—TTL Inputs Max. V CC, CE > VIH, VIN >VIH or VIN < VIL, f = f MAX 30 25 mA ISB2 Automatic CE Power-Down Current—CMOS Inputs Max. V CC, CE > VCC – 0.3V, VIN > VCC – 0.3V or VIN < 0.3V, f = 0 2 2 mA Capacitance[4] Parameter CIN: Addresses Description Input Capacitance CIN: Controls COUT Test Conditions TA = 25°C, f = 1 MHz, VCC = 5.0V Output Capacitance Note: 4. Tested initially and after any design or process changes that may affect these parameters. 3 Max. Unit 7 pF 10 pF 10 pF CY7C107 CY7C1007 AC Test Loads and Waveforms R1 480Ω 5V R1 480Ω 5V OUTPUT R2 255Ω 30 pF Equivalent to: INCLUDING JIG AND SCOPE (b) 90% 90% 10% GND R2 255Ω 5 pF INCLUDING JIG AND SCOPE (a) ALL INPUT PULSES 3.0V OUTPUT 10% ≤ 3 ns ≤ 3 ns 107-4 107-3 THÉVENIN EQUIVALENT 167Ω OUTPUT 1.73V Switching Characteristics[5] Over the Operating Range Parameter Description 7C107-12 7C1007-12 7C107-15 7C1007-15 7C107-20 7C1007-20 7C107-25 7C1007-25 Min. Min. Min. Min. Max. Max. Max. Max. 7C107-35 Min. Max. Unit READ CYCLE tRC Read Cycle Time 12 tAA Address to Data Valid tOHA Data Hold from Address Change tACE CE LOW to Data Valid tLZCE CE LOW to Low Z[6] tHZCE CE HIGH to High Z [6, 7] tPU CE LOW to Power-Up tPD CE HIGH to Power-Down 15 20 12 3 15 3 15 3 0 15 35 25 8 0 35 ns ns 10 0 25 ns ns 3 10 20 ns 3 3 0 12 25 20 7 35 3 3 6 0 20 3 12 3 25 ns ns 35 ns WRITE CYCLE[8] tWC Write Cycle Time 12 15 20 25 35 ns tSCE CE LOW to Write End 10 12 15 20 25 ns tAW Address Set-Up to Write End 10 12 15 20 25 ns tHA Address Hold from Write End 0 0 0 0 0 ns tSA Address Set-Up to Write Start 0 0 0 0 0 ns tPWE WE Pulse Width 10 12 15 20 25 ns tSD Data Set-Up to Write End 7 8 10 15 20 ns tHD Data Hold from Write End 0 0 0 0 0 ns [6] tLZWE WE HIGH to Low Z tHZWE WE LOW to High Z[6, 7] 3 3 3 6 7 3 8 3 10 ns 10 ns Notes: 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified IOL/IOH and 30-pF load capacitance. 6. At any given temperature and voltage condition, tHZCE is less than tLZCE and tHZWE is less than tLZWE for any given device. 7. tHZCE and tHZWE are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. 8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. 4 CY7C107 CY7C1007 Data Retention Characteristics Over the Operating Range (L Version Only) Parameter Conditions[9] Description VDR VCC for Data Retention ICCDR Data Retention Current tCDR[4] Chip Deselect to Data Retention Time tR[4] Operation Recovery Time Min. Max. Unit 50 µA 2.0 VCC = VDR = 2.0V, CE > VCC – 0.3V, VIN > VCC – 0.3 or VIN < 0.3V V 0 ns tRC ns Data Retention Waveform DATA RETENTION MODE VCC 4.5V VDR > 2V tCDR 4.5V tR CE 107-5 Switching Waveforms Read Cycle No. 1[10, 11] tRC ADDRESS tAA tOHA DATA OUT PREVIOUS DATA VALID DATA VALID 107-6 Read Cycle No. 2[11, 12] ADDRESS tRC CE tACE tHZCE tLZCE DATA OUT VCC SUPPLY CURRENT HIGH IMPEDANCE HIGH IMPEDANCE DATA VALID tPD tPU ICC 50% 50% ISB 107-7 Notes: 9. No input may exceed VCC + 0.5V. 10. Device is continuously selected, CE = VIL. 11. WE is HIGH for read cycle. 12. Address valid prior to or coincident with CE transition LOW. 5 CY7C107 CY7C1007 Switching Waveforms (continued) Write Cycle No. 1 (CE Controlled)[13] tWC ADDRESS tSA tSCE CE tHA tAW tPWE WE tHD tSD DATA IN DATA OUT DATA VALID HIGH IMPEDANCE 107-8 Write Cycle No. 2 (WE Controlled)[13] tWC ADDRESS tSCE CE tSA tAW tHA tPWE WE tSD DATA IN DATA VALID tHZWE DATA OUT tHD tLZWE HIGH IMPEDANCE DATA UNDEFINED 107-9 Note: 13. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state. 6 CY7C107 CY7C1007 Truth Table CE WE DOUT Mode Power H X High Z Power-Down Standby (ISB) L H Data Out Read Active (ICC) L L High Z Write Active (ICC) Ordering Information Speed (ns) 12 15 15 20 25 Ordering Code CY7C107-12VC CY7C1007-12VC CY7C107-15VC CY7C1007-15VC CY7C107-15VI CY7C1007-15VI CY7C107-20VC CY7C1007-20VC CY7C107-25VC CY7C1007-25VC Package Name V28 V21 V28 V21 V28 V21 V28 V21 V28 V21 Package Type 28-Lead (400-Mil) Molded SOJ 28-Lead (300-Mil) Molded SOJ 28-Lead (400-Mil) Molded SOJ 28-Lead (300-Mil) Molded SOJ 28-Lead (400-Mil) Molded SOJ 28-Lead (300-Mil) Molded SOJ 28-Lead (400-Mil) Molded SOJ 28-Lead (300-Mil) Molded SOJ 28-Lead (400-Mil) Molded SOJ 28-Lead (300-Mil) Molded SOJ Operating Range Commercial Commercial Industrial Commercial Commercial Contact factory for “L” version availability. Document #: 38-00232-C Package Diagrams 28-Lead (300-Mil) Molded SOJ V21 51-85031-B 7 CY7C107 CY7C1007 Package Diagrams (continued) 28-Lead (400-Mil) Molded SOJ V28 51-85032-A © Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.