IRF IRF7105

PD - 91097E
IRF7105
HEXFET® Power MOSFET
Advanced Process Technology
Ultra Low On-Resistance
l Dual N and P Channel Mosfet
l Surface Mount
l Available in Tape & Reel
l Dynamic dv/dt Rating
l Fast Switching
Description
l
l
S1
G1
S2
G2
N-CHANNEL MOSFET
1
8
2
7
3
6
4
5
N-Ch
P-Ch
VDSS
25V
-25V
RDS(on)
0.10Ω
0.25Ω
ID
3.5A
-2.3A
D1
D1
D2
D2
P-CHANNEL MOSFET
Top View
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
the lowest possible on-resistance per silicon area.
This benefit, combined with the fast switching speed
and ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient device for use in a wide
variety of applications.
The SO-8 has been modified through a customized
leadframe for enhanced thermal characteristics and
multiple-die capability making it ideal in a variety of
power applications. With these improvements,
multiple devices can be used in an application with
dramatically reduced board space. The package is
designed for vapor phase, infra red, or wave soldering
techniques. Power dissipation of greater than 0.8W
is possible in a typical PCB mount application.
SO-8
Absolute Maximum Ratings
Parameter
ID @ TA = 25°C
I D @ TA = 70°C
IDM
P D @TC = 25°C
VGS
dv/dt
TJ, TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ‚
Junction and Storage Temperature Range
Max.
N-Channel
P-Channel
3.5
2.8
14
-2.3
-1.8
-10
A
2.0
0.016
± 20
3.0
Units
W
W/°C
V
V/nS
°C
-3.0
-55 to + 150
Thermal Resistance Ratings
Parameter
RθJA
www.irf.com
Maximum Junction-to-Ambient „
Min.
Typ.
Max.
Units
–––
–––
62.5
°C/W
1
07/18/03
IRF7105
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V (BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(ON)
Static Drain-to-Source On-Resistance
V GS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
I DSS
Drain-to-Source Leakage Current
I GSS
Gate-to-Source Forward Leakage
Qg
Total GateCharge
Qgs
Gate-to-Source Charge
Qgd
Gate-to-Drain ("Miller") Charge
td(on)
Turn-On Delay Time
tr
Rise Time
td(off)
Turn-Off Delay Time
tf
Fall Time
LD
LS
Internal Drain Inductace
Internal Source Inductance
C iss
Input Capacitance
C oss
Output Capacitance
Crss
Reverse Transfer Capacitance
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-P
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-P
N-P
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
Min.
25
-25
—
—
—
—
—
—
1.0
-1.0
—
—
—
—
—
—
––
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max.
—
—
—
—
0.030 —
-0.015 —
0.083 0.10
0.14 0.16
0.16 0.25
0.30 0.40
— 3.0
— -3.0
4.3 —
3.1 —
— 2.0
— -2.0
—
25
— -25
— ±100
9.4 27
10
25
1.7 —
1.9 —
3.1 —
2.8 —
7.0 20
12
40
9.0 20
13
40
45
90
45
90
25
50
37
50
4.0 —
6.0 —
330 —
290 —
250 —
210 —
61
—
67
—
Units
V
V/°C
Ω
V
S
µA
nC
ns
nH
pF
Conditions
VGS = 0V, I D = 250µA
VGS = 0V, ID = -250µA
Reference to 25°C, ID = 1mA
Reference to 25°C, ID = -1mA
VGS = 10V, I D = 1.0A ƒ
VGS = 4.5V, ID = 0.50A ƒ
VGS = -10V, ID = -1.0A ƒ
VGS = -4.5V, I D = -0.50A ƒ
VDS = VGS, I D = 250µA
VDS = VGS, I D = -250µA
VDS = 15V, I D = 3.5A ƒ
VDS = -15V, I D = -3.5A ƒ
VDS = 20V, VGS = 0V
VDS = -20V, VGS = 0V,
VDS = 20V, VGS = 0V, TJ = 55°C
VDS = -20V, V GS = 0V, TJ = 55°C
VGS = ± 20V
N-Channel
I D = 2.3A, VDS = 12.5V, VGS = 10V
ƒ
P-Channel
I D = -2.3A, VDS = -12.5V, VGS = -10V
N-Channel
VDD = 25V, I D = 1.0A, RG = 6.0Ω,
RD = 25Ω
P-Channel
VDD = -25V, ID = -1.0A, RG = 6.0Ω,
RD = 25Ω
ƒ
Between lead , 6mm (0.25in.)from
package and center of die contact
N-Channel
VGS = 0V, V DS = 15V, ƒ = 1.0MHz
P-Channel
VGS = 0V, VDS = -15V, ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
Parameter
IS
Continuous Source Current (Body Diode)
I SM
Pulsed Source Current (Body Diode) 
VSD
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
ton
Forward Turn-On Time
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-P
Min. Typ. Max. Units
Conditions
—
— 2.0
—
— -2.0
A
—
—
14
—
— -9.2
—
— 1.2
TJ = 25°C, IS = 1.3A, VGS = 0V ƒ
V
—
— -1.2
TJ = 25°C, IS = -1.3A, VGS = 0V ƒ
—
36
54
N-Channel
ns
—
69 100
TJ = 25°C, IF = 1.3A, di/dt = 100A/µs
—
41
75
P-Channel
ƒ
nC
TJ = 25°C, I F = -1.3A, di/dt = 100A/µs
—
90 180
Intrinsic turn-on time is neglegible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
ƒ Pulse width ≤ 300µs; duty cycle ≤ 2%.
‚ N-Channel ISD ≤ 3.5A, di/dt ≤ 90A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C
„ Surface mounted on FR-4 board, t ≤ 10sec.
max. junction temperature.
P-Channel I SD ≤ -2.3A, di/dt ≤ 90A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C
2
www.irf.com
IRF7105
ID , Drain-to-Source Current ( A )
ID , Drain-to-Source Current ( A )
N-Channel
VDS , Drain-to-Source Voltage ( V )
VDS , Drain-to-Source Voltage ( V )
ID , Drain-to-Source Current ( A )
( Normalized)
Fig 2. Typical Output Characteristics
RDS (on) , Drain-to-Source On Resistance
Fig 1. Typical Output Characteristics
VGS , Gate-to-Source Voltage ( V )
Fig 4. Normalized On-Resistance
Vs. Temperature
C , Capacitance ( pF )
VGS , Gate-to-Source Voltage ( V )
Fig 3. Typical Transfer Characteristics
TJ , Junction Temperature ( °C )
V DS , Drain-to-Source Voltage ( V )
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
www.irf.com
QG , Total Gate Charge ( nC )
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
3
IRF7105
I D , Drain Current ( A )
I SD , Reverse Drain Current ( A )
N-Channel
V DS , Drain-to-Source Voltage ( V )
VSD , Source-to-Drain Voltage ( V )
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
RD
VDS
I D , Drain Current ( A )
VGS
D.U.T.
RG
+
V
- DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
VDS
TA , Ambient Temperature ( °C )
90%
Fig 9. Maximum Drain Current Vs.
Ambient Temperature
Current Regulator
Same Type as D.U.T.
10%
VGS
td(on)
50KΩ
12V
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
.2µF
.3µF
D.U.T.
+
V
- DS
QG
10V
VGS
QGS
QGD
3mA
VG
IG
ID
Current Sampling Resistors
Fig 11a. Gate Charge Test Circuit
4
Charge
Fig 11b. Basic Gate Charge Waveform
www.irf.com
IRF7105
-ID , Drain-to-Source Current ( A )
-ID , Drain-to-Source Current ( A )
P-Channel
-V DS , Drain-to-Source Voltage ( V )
-VDS , Drain-to-Source Voltage ( V )
-ID , Drain-to-Source Current ( A )
( Normalized)
Fig 13. Typical Output Characteristics
RDS (on) , Drain-to-Source On Resistance
Fig 12. Typical Output Characteristics
-V GS , Gate-to-Source Voltage ( V )
Fig 15. Normalized On-Resistance
Vs. Temperature
C , Capacitance ( pF )
-V GS , Gate-to-Source Voltage ( V )
Fig 14. Typical Transfer Characteristics
TJ , Junction Temperature ( °C )
-VDS , Drain-to-Source Voltage ( V )
QG , Total Gate Charge ( nC )
Fig 16. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 17. Typical Gate Charge Vs.
Gate-to-Source Voltage
www.irf.com
5
IRF7105
-ID , Drain Current ( A )
-ISD , Reverse Drain Current ( A )
P-Channel
VDS , Drain-to-Source Voltage ( V )
VSD , Source-to-Drain Voltage ( V )
Fig 18. Typical Source-Drain Diode
Forward Voltage
Fig 19. Maximum Safe Operating Area
RD
VDS
-ID , Drain Current ( A )
VGS
D.U.T.
RG
-
+
VDD
-10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 21a. Switching Time Test Circuit
VDS
TA , Ambient Temperature ( °C )
90%
Fig 20. Maximum Drain Current Vs.
Ambient Temperature
Current Regulator
Same Type as D.U.T.
10%
VGS
td(on)
50KΩ
12V
tr
t d(off)
tf
Fig 21b. Switching Time Waveforms
.2µF
.3µF
D.U.T.
+VDS
QG
-10V
VGS
QGS
QGD
-3mA
VG
IG
ID
Current Sampling Resistors
Fig 22a. Gate Charge Test Circuit
6
Charge
Fig 22b. Basic Gate Charge Waveform
www.irf.com
IRF7105
N & P-Channel
Thermal Response (Z thJA )
100
D = 0.50
0.20
10
0.10
0.05
0.02
PDM
0.01
1
t1
SINGLE PULSE
(THERMAL RESPONSE)
0.1
0.0001
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJA + TA
0.001
0.01
0.1
1
10
100
t1, Rectangular Pulse Duration (sec)
Fig 23. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
7
IRF7105
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
ƒ
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
‚
-
-
„
+
**

RG
• dv/dt controlled by RG
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
VGS*
+
-
*
VDD
*
Reverse Polarity for P-Channel
** Use P-Channel Driver for P-Channel Measurements
Driver Gate Drive
P.W.
Period
D=
P.W.
Period
[VGS=10V ] ***
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
[VDD]
Forward Drop
Inductor Curent
Ripple ≤ 5%
[ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
Fig 24. For N and P Channel HEXFETS
8
www.irf.com
IRF7105
SO-8 Package Details
Dimensions are shown in millimeters (inches)
DIM
D
-B-
5
8
E
-A-
1
7
2
6
3
e
6X
5
H
0.25 (.010)
4
M
A M
θ
e1
K x 45°
θ
A
-C-
0.10 (.004)
B 8X
0.25 (.010)
A1
L
8X
6
C
8X
M C A S B S
INCHES
MILLIMETERS
MIN
MAX
MIN
MAX
A
.0532
.0688
1.35
1.75
A1
.0040
.0098
0.10
0.25
B
.014
.018
0.36
0.46
C
.0075
.0098
0.19
0.25
D
.189
.196
4.80
4.98
E
.150
.157
3.81
3.99
5
e
.050 BASIC
1.27 BASIC
e1
.025 BASIC
0.635 BASIC
H
.2284
.2440
K
.011
.019
0.28
5.80
0.48
6.20
L
0.16
.050
0.41
1.27
θ
0°
8°
0°
8°
RECOMMENDED FOOTPRINT
NOTES:
1.
2.
3.
4.
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1982.
CONTROLLING DIMENSION : INCH.
DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS
MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.006).
6 DIMENSIONS IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE..
0.72 (.028 )
8X
6.46 ( .255 )
1.78 (.070)
8X
1.27 ( .050 )
3X
SO-8 Part Marking
www.irf.com
9
IRF7105
SO-8 Tape and Reel
Dimensions are shown in millimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/03
10
www.irf.com