MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 D D D D D D D D D D D Low Supply Voltage Range, 1.8 V to 3.6 V Ultra-Low Power Consumption: - Active Mode: 365 µA at 1 MHz, 2.2 V - Standby Mode (VLO): 0.5 µA - Off Mode (RAM Retention): 0.1 µA Wake-Up From Standby Mode in Less Than 1 µs 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time Three-Channel Internal DMA 12-Bit Analog-to-Digital (A/D) Converter With Internal Reference, Sample-and-Hold, and Autoscan Feature Dual 12-Bit Digital-to-Analog (D/A) Converters With Synchronization 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_B With Seven Capture/Compare-With-Shadow Registers On-Chip Comparator Four Universal Serial Communication Interfaces (USCIs) - USCI_A0 and USCI_A1 - Enhanced UART Supporting Auto-Baudrate Detection - IrDA Encoder and Decoder - Synchronous SPI - USCI_B0 and USCI_B1 - I2Ct - Synchronous SPI D D D D D D D † Supply Voltage Supervisor/Monitor With Programmable Level Detection Brownout Detector Bootstrap Loader Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse Family Members† Include: - MSP430F2416 92KB+256B Flash Memory, 4KB RAM - MSP430F2417 92KB+256B Flash Memory, 8KB RAM - MSP430F2418 116KB+256B Flash Memory, 8KB RAM - MSP430F2419 120KB+256B Flash Memory, 4KB RAM - MSP430F2616 92KB+256B Flash Memory, 4KB RAM - MSP430F2617 92KB+256B Flash Memory, 8KB RAM - MSP430F2618 116KB+256B Flash Memory, 8KB RAM - MSP430F2619 120KB+256B Flash Memory, 4KB RAM Available in 80-Pin Quad Flat Pack (QFP), 64-Pin QFP, and 113-Pin Ball Grid Array (BGA) (See Available Options) For Complete Module Descriptions, See the MSP430x2xx Family User’s Guide, Literature Number SLAU144 The MSP430F241x devices are identical to the MSP430F261x devices, with the exception that the DAC12 modules and the DMA controller are not implemented. description The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The calibrated digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. I2C is a registered trademark of Philips Incorporated. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Copyright 2009, Texas Instruments Incorporated 1 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 description (continued) The MSP430F261x/241x series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit A/D converter, a comparator, dual 12-bit D/A converters, four universal serial communication interface (USCI) modules, DMA, and up to 64 I/O pins. The MSP430F241x devices are identical to the MSP430F261x devices, with the exception that the DAC12 and the DMA modules are not implemented. Typical applications include sensor systems, industrial control applications, hand-held meters, etc. TA --40°C to 105°C AVAILABLE OPTIONS PACKAGED DEVICES PLASTIC 113-PIN BGA (ZQW) PLASTIC 80-PIN LQFP (PN) PLASTIC 64-PIN LQFP (PM) MSP430F2416TZQW MSP430F2416TPN MSP430F2416TPM MSP430F2417TZQW MSP430F2417TPN MSP430F2417TPM MSP430F2418TZQW MSP430F2418TPN MSP430F2418TPM MSP430F2419TZQW MSP430F2419TPN MSP430F2419TPM MSP430F2616TZQW MSP430F2616TPN MSP430F2616TPM MSP430F2617TZQW MSP430F2617TPN MSP430F2617TPM MSP430F2618TZQW MSP430F2618TPN MSP430F2618TPM MSP430F2619TZQW MSP430F2619TPN MSP430F2619TPM DEVELOPMENT TOOL SUPPORT All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy-to-use development tools. Recommended hardware options include: D Debugging and Programming Interface -- MSP-FET430UIF (USB) -- MSP-FET430PIF (Parallel Port) D Debugging and Programming Interface with Target Board -- MSP-FET430U64 -- MSP-FET430U80 D Standalone Target Board -- MSP-TS430PM64 D Production Programmer -- MSP-GANG430 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 P8.5 P8.4 P8.3 P8.2 P8.1 P8.0 P7.7 AVCC DVSS1 AVSS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI P8.7/XT2IN P8.6/XT2OUT pin designation, MSP430F241x, 80-pin PN package 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 DVCC1 1 60 P7.6 P6.3/A3 P6.4/A4 2 3 59 58 P7.5 P7.4 P6.5/A5 4 57 P7.3 P6.6/A6 P6.7/A7/SVSIN 5 6 56 55 P7.2 P7.1 VREF+ XIN 7 8 54 53 P7.0 DVSS2 XOUT 9 52 DVCC2 51 50 P5.7/TBOUTH/SVSOUT P5.6/ACLK 80-pin PN PACKAGE (TOP VIEW) VeREF+ VREF-/VeREF- 10 11 P1.0/TACLK/CAOUT P1.1/TA0 12 13 49 48 P5.5/SMCLK P5.4/MCLK P1.2/TA1 14 47 P5.3/UCB1CLK/UCA1STE P1.3/TA2 P1.4/SMCLK 15 16 46 45 P5.2/UCB1SOMI/UCB1SCL P5.1/UCB1SIMO/UCB1SDA P1.5/TA0 17 44 P5.0/UCB1STE/UCA1CLK P1.6/TA1 P1.7/TA2 18 19 43 42 P4.7/TBCLK P4.6/TB6 P2.0/ACLK/CA2 20 41 P4.5/TB5 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/ROSC/CA5 P2.6/ADC12CLK/CA6 P2.7/TA0/CA7 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/UCA1TXD/UCA1SIMO P3.7/UCA1RXD/UCA1SOMI P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB3 P4.4/TB4 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 P5.7/TBOUTH/SVSOUT P5.6/ACLK P5.5/SMCLK AVCC DVSS1 AVSS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT pin designation, MSP430F241x, 64-pin PM package 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 DVCC1 1 48 P5.4/MCLK P6.3/A3 P6.4/A4 2 3 47 46 P5.3/UCB1CLK/UCA1STE P5.2/UCB1SOMI/UCB1SCL P6.5/A5 P6.6/A6 4 5 45 44 P5.1/UCB1SIMO/UCB1SDA P5.0/UCB1STE/UCA1CLK P6.7/A7/SVSIN 6 43 P4.7/TBCLK VREF+ XIN 7 8 42 41 P4.6/TB6 P4.5/TB5 XOUT VeREF+ 9 10 40 39 P4.4/TB4 P4.3/TB3 VREF-/VeREFP1.0/TACLK/CAOUT 11 12 38 37 P4.2/TB2 P4.1/TB1 P1.1/TA0 P1.2/TA1 13 14 36 35 P4.0/TB0 P3.7/UCA1RXD/UCA1SOMI P1.3/TA2 P1.4/SMCLK 15 16 34 33 P3.6/UCA1TXD/UCA1SIMO P3.5/UCA0RXD/UCA0SOMI 64-pin PM PACKAGE (TOP VIEW) 4 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P1.5/TA0 P1.6/TA1 P1.7/TA2 P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/ROSC/CA5 P2.6/ADC12CLK/CA6 P2.7/TA0/CA7 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 P8.5 P8.4 P8.3 P8.2 P8.1 P8.0 P7.7 AVCC DVSS1 AVSS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI P8.7/XT2IN P8.6/XT2OUT pin designation, MSP430F261x, 80-pin PN package 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 DVCC1 1 60 P7.6 P6.3/A3 2 59 P7.5 P6.4/A4 P6.5/A5/DAC1 3 4 58 57 P7.4 P7.3 P6.6/A6/DAC0 5 56 P7.2 P6.7/A7/DAC1/SVSIN VREF+ 6 7 55 54 P7.1 P7.0 XIN 8 53 DVSS2 XOUT VeREF+/DAC0 9 10 52 51 DVCC2 P5.7/TBOUTH/SVSOUT 80-pin PN PACKAGE (TOP VIEW) VREF-/VeREF- 11 50 P5.6/ACLK P1.0/TACLK/CAOUT P1.1/TA0 12 13 49 48 P5.5/SMCLK P5.4/MCLK P1.2/TA1 14 47 P5.3/UCB1CLK/UCA1STE P1.3/TA2 P1.4/SMCLK 15 16 46 45 P5.2/UCB1SOMI/UCB1SCL P5.1/UCB1SIMO/UCB1SDA P1.5/TA0 17 44 P5.0/UCB1STE/UCA1CLK P1.6/TA1 P1.7/TA2 18 19 43 42 P4.7/TBCLK P4.6/TB6 P2.0/ACLK/CA2 20 41 P4.5/TB5 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/ROSC/CA5 P2.6/ADC12CLK/DMAE0/CA6 P2.7/TA0/CA7 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/UCA1TXD/UCA1SIMO P3.7/UCA1RXD/UCA1SOMI P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB3 P4.4/TB4 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 P5.5/SMCLK P5.6/ACLK XT2OUT P5.7/TBOUTH/SVSOUT TDO/TDI XT2IN TDI/TCLK TMS RST/NMI TCK P6.0/A0 P6.1/A1 P6.2/A2 AVSS DVSS1 AVCC pin designation, MSP430F261x, 64-pin PM package 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 DVCC1 P6.3/A3 P6.4/A4 1 2 3 48 47 46 P5.4/MCLK P5.3/UCB1CLK/UCA1STE P5.2/UCB1SOMI/UCB1SCL P6.5/A5/DAC1 P6.6/A6/DAC0 4 5 45 44 P5.1/UCB1SIMO/UCB1SDA P5.0/UCB1STE/UCA1CLK P6.7/A7/DAC1/SVSIN VREF+ XIN 6 7 8 43 42 41 P4.7/TBCLK P4.6/TB6 P4.5/TB5 40 39 P4.4/TB4 P4.3/TB3 64-pin PM PACKAGE (TOP VIEW) XOUT VeREF+/DAC0 9 10 VREF-/VeREFP1.0/TACLK/CAOUT P1.1/TA0 11 12 13 38 37 36 P4.2/TB2 P4.1/TB1 P4.0/TB0 P1.2/TA1 P1.3/TA2 14 15 35 34 P3.7/UCA1RXD/UCA1SOMI P3.6/UCA1TXD/UCA1SIMO P1.4/SMCLK 16 33 P3.5/UCA0RXD/UCA0SOMI 6 P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.2/UCB0SOMI/UCB0SCL P3.1/UCB0SIMO/UCB0SDA P3.0/UCB0STE/UCA0CLK P2.7/TA0/CA7 P2.5/ROSC/CA5 P2.6/ADC12CLK/DMAE0/CA6 P2.4/CA1/TA2 P2.3/CA0/TA1 P2.2/CAOUT/TA0/CA4 P2.1/TAINCLK/CA3 P2.0/ACLK/CA2 P1.7/TA2 P1.6/TA1 P1.5/TA0 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 pin designation, 113-pin ZQW package A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 C1 C2 C3 C11 C12 D1 D2 D4 D5 D6 D7 D8 D9 D11 D12 E1 E2 E4 E5 E6 E7 E8 E9 E11 E12 F1 F2 F4 F5 F8 F9 F11 F12 G1 G2 G4 G5 G8 G9 G11 G12 H1 H2 H4 H5 H6 H7 H8 H9 H11 H12 J1 J2 J4 J5 J6 J7 J8 J9 J11 J12 K1 K2 K11 K12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Note: For terminal assignments, see the MSP430F261x Terminal Functions table. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 functional block diagram, MSP430F241x, 80-pin PN package XIN/ XT2IN XOUT/ XT2OUT 2 2 DVCC1/2 ACLK Oscillators Basic Clock SMCLK System+ MCLK 16MHz CPU 1MB incl. 16 Registers DVSS1/2 Flash RAM 120kB 116kB 92kB 92kB 4kB 8kB 8kB 4kB AVCC AVSS P3.x/P4.x P5.x/P6.x 2x8 4x8 P1.x/P2.x Ports P1/P2 ADC12 12-Bit Ports P3/P4 P5/P6 2x8 I/O Interrupt capability 8 Channels P7.x/P8.x 2x8/ 1x16 Ports P7/P8 2x8/1x16 I/O 4x8 I/O USCI A0 UART/ LIN, IrDA, SPI USCI B0 SPI, I2C MAB MDB Emulation Brownout Protection JTAG Interface SVS, SVM Hardware Multiplier Timer_B7 Watchdog WDT+ MPY, MPYS, MAC, MACS 15-Bit Timer_A3 3 CC Registers Comp_A+ 7 CC Registers, Shadow Reg 8 Channels USCI A1 UART/ LIN, IrDA, SPI USCI B1 SPI, I2C RST/NMI functional block diagram, MSP430F241x, 64-pin PM package XIN/ XOUT/ XT2IN XT2OUT 2 2 DVCC ACLK Oscillators Basic Clock SMCLK System+ MCLK 16MHz CPU 1MB incl. 16 Registers DVSS Flash RAM 120kB 116kB 92kB 92kB 4kB 8kB 8kB 4kB AVCC AVSS Ports P1/P2 ADC12 12-Bit 2x8 I/O Interrupt capability 8 Channels Ports P3/P4 P5/P6 USCI A0 UART/ LIN, IrDA, SPI 4x8 I/O USCI B0 SPI, I2C MAB MDB Emulation Brownout Protection JTAG Interface SVS, SVM Hardware Multiplier MPY, MPYS, MAC, MACS Timer_B7 Watchdog WDT+ 15-Bit RST/NMI 8 P3.x/P4.x P5.x/P6.x 2x8 4x8 P1.x/P2.x POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Timer_A3 3 CC Registers Comp_A+ 7 CC Registers, Shadow Reg 8 Channels USCI A1 UART/ LIN, IrDA, SPI USCI B1 SPI, I2C MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 functional block diagram, XIN/ XT2IN XOUT/ XT2OUT 2 2 DVCC1/2 ACLK Oscillators Basic Clock SMCLK System+ Flash 120kB 116kB 92kB 92kB 56kB MCLK 16MHz CPU 1MB incl. 16 Registers MSP430F261x, 80-pin PN package DVSS1/2 AVCC RAM 4kB 8kB 8kB 4kB 4kB ADC12 12-Bit 8 Channels AVSS DAC12 12-Bit 2 Channels Voltage Out P3.x/P4.x P5.x/P6.x 2x8 4x8 P1.x/P2.x Ports P1/P2 Ports P3/P4 P5/P6 2x8 I/O Interrupt capability 4x8 I/O P7.x/P8.x 2x8/ 1x16 Ports P7/P8 2x8/1x16 I/O USCI A0 UART/ LIN, IrDA, SPI USCI B0 SPI, I2C MAB MDB Brownout Protection Emulation JTAG Interface SVS, SVM Hardware Multiplier MPY, MPYS, MAC, MACS DMA Controller 3 Channels Timer_B7 Watchdog WDT+ 15-Bit Timer_A3 3 CC Registers Comp_A+ 7 CC Registers, Shadow Reg 8 Channels USCI A1 UART/ LIN, IrDA, SPI USCI B1 SPI, I2C RST/NMI functional block diagram, XIN/ XT2IN MSP430F261x, 64-pin PM package XOUT/ XT2OUT 2 2 DVCC ACLK Oscillators Basic Clock SMCLK System+ MCLK 16MHz CPU 1MB incl. 16 Registers Flash 120kB 116kB 92kB 92kB 56kB DVSS AVCC RAM 4kB 8kB 8kB 4kB 4kB ADC12 12-Bit 8 Channels AVSS DAC12 12-Bit 2 Channels Voltage Out P3.x/P4.x P5.x/P6.x 2x8 4x8 P1.x/P2.x Ports P1/P2 2x8 I/O Interrupt capability Ports P3/P4 P5/P6 USCI A0 UART/ LIN, IrDA, SPI 4x8 I/O USCI B0 SPI, I2C MAB MDB Emulation Brownout Protection JTAG Interface SVS, SVM Hardware Multiplier MPY, MPYS, MAC, MACS DMA Controller 3 Channels Timer_B7 Watchdog WDT+ 15-Bit Timer_A3 3 CC Registers Comp_A+ 7 CC Registers, Shadow Reg 8 Channels USCI A1 UART/ LIN, IrDA, SPI USCI B1 SPI, I2C RST/NMI POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Terminal Functions TERMINAL 64 PIN NO. 80 PIN 113 PIN AVCC 64 80 A2 AVSS 62 78 DVCC1 DVSS1 DVCC2 DVSS2 P1.0/TACLK/ CAOUT 1 63 1 79 52 53 B2, B3 A1 A3 F12 E12 12 12 G2 I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input/Comparator_A output P1.1/TA0 13 13 H1 I/O P1.2/TA1 P1.3/TA2 P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 P2.0/ACLK/CA2 P2.1/TAINCLK/ CA3 P2.2/CAOUT/ TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 14 15 16 17 18 19 20 14 15 16 17 18 19 20 H2 J1 J2 K1 K2 L1 M1 I/O I/O I/O I/O I/O I/O I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output General-purpose digital I/O pin/SMCLK signal output General-purpose digital I/O pin/Timer_A, compare: Out0 output General-purpose digital I/O pin/Timer_A, compare: Out1 output General-purpose digital I/O pin/Timer_A, compare: Out2 output General-purpose digital I/O pin/ACLK output/Comparator_A input 21 21 M2 I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK 22 22 M3 I/O 23 24 23 24 L3 L4 I/O I/O P2.5/Rosc/CA5 25 25 M4 I/O P2.6/ADC12CLK/ 26 26 DMAE0†/CA6 P2.7/TA0/CA7 27 27 P3.0/UCB0STE/ 28 28 UCA0CLK P3.1/UCB0SIMO/ 29 29 UCB0SDA P3.2/UCB0SOMI/ 30 30 UCB0SCL P3.3/UCB0CLK/ 31 31 UCA0STE P3.4/UCA0TXD/ 32 32 UCA0SIMO P3.5/UCA0RXD/ 33 33 UCA0SOMI † MSP430F261x devices only J4 I/O L5 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL receive/Comparator_A input General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency/Comparator_A input General-purpose digital I/O pin/conversion clock – 12-bit ADC/DMA channel 0 external trigger/Comparator_A input General-purpose digital I/O pin/Timer_A, compare: Out0 output/Comparator_A input M5 I/O General-purpose digital I/O pin/USCI B0 slave transmit enable/USCI A0 clock input/output L6 I/O M6 I/O General-purpose digital I/O pin/USCI B0 slave in/master out in SPI mode, SDA I 2C data in I2C mode General-purpose digital I/O pin/USCI B0 slave out/master in in SPI mode, SCL I 2C clock in I2C mode L7 I/O General-purpose digital I/O/USCI B0 clock input/output, USCI A0 slave transmit enable M7 I/O L8 I/O General-purpose digital I/O pin/USCIA transmit data output in UART mode, slave data in/master out in SPI mode General-purpose digital I/O pin/USCI A0 receive data input in UART mode, slave data out/master in in SPI mode NAME 10 I/O DESCRIPTION Analog supply voltage, positive terminal. Supplies only the analog portion of ADC12 and DAC12. Analog supply voltage, negative terminal. Supplies only the analog portion of ADC12 and DAC12. Digital supply voltage, positive terminal. Supplies all digital parts. Digital supply voltage, negative terminal. Supplies all digital parts. Digital supply voltage, positive terminal. Supplies all digital parts. Digital supply voltage, negative terminal. Supplies all digital parts. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Terminal Functions (Continued) TERMINAL NAME P3.6/UCA1TXD/ UCA1SIMO P3.7/UCA1RXD/ UCA1SOMI P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB3 P4.4/TB4 P4.5/TB5 P4.6/TB6 P4.7/TBCLK P5.0/UCB1STE/ UCA1CLK P5.1/UCB1SIMO/ UCB1SDA P5.2/UCB1SOMI/ UCB1SCL P5.3/UCB1CLK/ UCA1STE P5.4/MCLK P5.5/SMCLK P5.6/ACLK P5.7/TBOUTH/ SVSOUT P6.0/A0 P6.1/A1 P6.2/A2 P6.3/A3 P6.4/A4 P6.5/A5/DAC1† 64 PIN NO. 80 PIN 113 PIN 34 34 35 I/O DESCRIPTION M8 I/O 35 L9 I/O 36 37 38 39 40 41 42 43 36 37 38 39 40 41 42 43 M9 J9 M10 L10 M11 M12 L12 K11 I/O I/O I/O I/O I/O I/O I/O I/O General-purpose digital I/O pin/USCI A1 transmit data output in UART mode, slave data in/master out in SPI mode General-purpose digital I/O pin/USCIA1 receive data input in UART mode, slave data out/master in in SPI mode General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out1 output General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out2 output General-purpose digital I/O pin/Timer_B, capture: CCI3A/B input, compare: Out3 output General-purpose digital I/O pin/Timer_B, capture: CCI4A/B input, compare: Out4 output General-purpose digital I/O pin/Timer_B, capture: CCI5A/B input, compare: Out5 output General-purpose digital I/O pin/Timer_B, capture: CCI6A input, compare: Out6 output General-purpose digital I/O pin/Timer_B, clock signal TBCLK input 44 44 K12 I/O General-purpose digital I/O pin/USCI B1 slave transmit enable/USCI A1 clock input/output 45 45 J11 I/O 46 46 J12 I/O General-purpose digital I/O pin/USCI B1slave in/master out in SPI mode, SDA I 2C data in I2C mode General-purpose digital I/O pin/USCI B1slave out/master in in SPI mode, SCL I 2C clock in I2C mode 47 47 H11 I/O General-purpose digital I/O/USCI B1 clock input/output, USCI A1 slave transmit enable 48 49 50 48 49 50 H12 G11 G12 I/O I/O I/O 51 51 F11 I/O 59 60 61 2 3 75 76 77 2 3 I/O I/O I/O I/O I/O 4 4 D4 A4 B4 B1 C1 C2 C3 D1 General-purpose digital I/O pin/main system clock MCLK output General-purpose digital I/O pin/submain system clock SMCLK output General-purpose digital I/O pin/auxiliary clock ACLK output General-purpose digital I/O pin/switch all PWM digital output ports to high impedance Timer_B TB0 to TB6/SVS comparator output General-purpose digital I/O pin/analog input A0 – 12-bit ADC General-purpose digital I/O pin/analog input A1 – 12-bit ADC General-purpose digital I/O pin/analog input A2 – 12-bit ADC General-purpose digital I/O pin/analog input A3 – 12-bit ADC General-purpose digital I/O pin/analog input A4 – 12-bit ADC I/O General-purpose digital I/O pin/analog input A5 – 12-bit ADC/DAC12.1 output I/O General-purpose digital I/O pin/analog input A6 – 12-bit ADC/DAC12.0 output D2 I/O General-purpose digital I/O pin/analog input a7 – 12-bit ADC/DAC12.1 output/SVS input E11 D12 D11 C12 C11 B12 A12 A11 I/O I/O I/O I/O I/O I/O I/O I/O General-purpose digital I/O pin General-purpose digital I/O pin General-purpose digital I/O pin General-purpose digital I/O pin General-purpose digital I/O pin General-purpose digital I/O pin General-purpose digital I/O pin General-purpose digital I/O pin P6.6/A6/DAC0† 5 5 P6.7/A7/DAC1†/ 6 6 SVSIN P7.0 54 P7.1 55 P7.2 56 P7.3 57 P7.4 58 P7.5 59 P7.6 60 P7.7 61 † MSP430F261x devices only POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Terminal Functions (Continued) TERMINAL NAME P8.0 P8.1 P8.2 P8.3 P8.4 P8.5 P8.6/XT2OUT 64 PIN NO. 80 PIN 62 63 64 65 66 67 68 113 PIN B10 A10 D9 A9 B9 B8 A8 69 A7 I/O DESCRIPTION I/O I/O I/O I/O I/O I/O O XT2OUT XT2IN 52 53 RST/NMI 58 74 B5 I TCK 57 73 A5 I TDI/TCLK TDO/TDI TMS VeREF+/DAC0† VREF+ 55 54 56 10 7 71 70 72 10 7 A6 B7 B6 F2 E2 I I/O I I O VREF--/VeREF-- 11 11 G1 I XIN XOUT 8 9 8 9 I O Reserved - - E1 F1 L2, E4 F4, G4 H4, D5 E5, F5 G5, H5 J5, D6 E6, H6 J6, D7 E7, H7 J7, D8 E8, F8 G8, H8 J8, E9 F9, G9 H9, B11 L11 General-purpose digital I/O pin General-purpose digital I/O pin General-purpose digital I/O pin General-purpose digital I/O pin General-purpose digital I/O pin General-purpose digital I/O pin General-purpose digital I/O pin/Output terminal of crystal oscillator XT2 General-purpose digital I/O pin/Input port for crystal oscillator XT2. Only standard crystals can be connected. Output terminal of crystal oscillator XT2 Input port for crystal oscillator XT2 Reset input, nonmaskable interrupt input port, or bootstrap loader start (in flash devices). Test clock (JTAG). TCKis theclock inputport fordevice programmingtest andbootstrap loader start. Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. Test data output port. TDO/TDI data output or programming data input terminal. Test mode select. TMS is used as an input port for device programming and test. Input for an external reference voltage/DAC12.0 output Output of positive terminal of the reference voltage in the ADC12 Negative terminal for the reference voltage for both sources, the internal reference voltage, or an external applied reference voltage Input port for crystal oscillator XT1. Standard or watch crystals can be connected. Output port for crystal oscillator XT1. Standard or watch crystals can be connected. NA Reserved pins. Connection to D/AVSS recommended. P8.7/XT2IN † MSP430F261x devices only 12 I O I POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination Single operands, destination only Relative jump, un/conditional e.g., ADD R4,R5 e.g., CALL R8 e.g., JNE R4 + R5 - - - > R5 PC - - >(TOS), R8-- - > PC Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D SYNTAX Register D D MOV Rs,Rd Indexed D D MOV X(Rn),Y(Rm) Symbolic (PC relative) D D MOV EDE,TONI Absolute D D MOV &MEM,&TCDAT Indirect D MOV @Rn,Y(Rm) Indirect D MOV @Rn+,Rm autoincrement Immediate D MOV #X,TONI NOTE: S = source D = destination EXAMPLE MOV R10,R11 MOV 2(R5),6(R6) MOV @R10,Tab(R6) MOV @R10+,R11 MOV #45,TONI POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 OPERATION R10 - - > R11 M(2+R5)-- - > M(6+R6) M(EDE) - - > M(TONI) M(MEM) - - > M(TCDAT) M(R10) - - > M(Tab+R6) M(R10) - - > R11 R10 + 2-- - > R10 #45 - - > M(TONI) 13 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 operating modes The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode (AM) -- All clocks are active. D Low-power mode 0 (LPM0) -- CPU is disabled. -- ACLK and SMCLK remain active. MCLK is disabled. D Low-power mode 1 (LPM1) -- CPU is disabled. -- ACLK and SMCLK remain active. MCLK is disabled. -- DCO’s dc generator is disabled if DCO not used in active mode. D Low-power mode 2 (LPM2) -- CPU is disabled. -- MCLK and SMCLK are disabled. -- DCO’s dc generator remains enabled. -- ACLK remains active. D Low-power mode 3 (LPM3) -- CPU is disabled. -- MCLK and SMCLK are disabled. -- DCO’s dc generator is disabled. -- ACLK remains active. D Low-power mode 4 (LPM4) -- CPU is disabled. -- ACLK is disabled. -- MCLK and SMCLK are disabled. -- DCO’s dc generator is disabled. -- Crystal oscillator is stopped. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0x0FFFF to 0x0FFC0. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. If the reset vector (0x0FFFE) contains 0xFFFF (e.g., flash is not programmed), the CPU enters LPM4 after power-up. INTERRUPT SOURCE Power-up External Reset Watchdog Violation PC out of range (see Note 1) NMI Oscillator Fault Flash memory access violation Flash Key Timer_B7 Timer_B7 Comparator_A+ Watchdog timer+ Timer_A3 Timer_A3 USCI_A0/USCI_B0 receive USCI_B0 I2C status USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit ADC12 I/O port P2 (eight flags) I/O port P1 (eight flags) USCI_A0/USCI_B1 receive USCI_B1 I2C status USCI_A1/USCI_B1 transmit USCI_B1 I2C receive/transmit DMA DAC12 INTERRUPT FLAG PORIFG WDTIFG RSTIFG KEYV (see Note 2) SYSTEM INTERRUPT WORD ADDRESS PRIORITY Reset 0x0FFFE 31, highest NMIIFG OFIFG ACCVIFG (see Notes 2 and 6) TBCCR0 CCIFG (see Note 3) TBCCR1 to TBCCR6 CCIFGs, TBIFG (see Notes 2 and 3) CAIFG WDTIFG TACCR0 CCIFG (see Note 3) TACCR1 CCIFG TACCR2 CCIFG TAIFG (see Notes 2 and 3) UCA0RXIFG, UCB0RXIFG (see Notes 2 and 4) UCA0TXIFG, UCB0TXIFG (see Note 2 and 5) ADC12IFG (see Notes 2 and 3) (Non)maskable (Non)maskable (Non)maskable 0x0FFFC 30 Maskable 0x0FFFA 29 Maskable 0x0FFF8 28 Maskable Maskable Maskable 0x0FFF6 0x0FFF4 0x0FFF2 27 26 25 Maskable 0x0FFF0 24 Maskable 0x0FFEE 23 Maskable 0x0FFEC 22 Maskable P2IFG.0 to P2IFG.7 (see Notes 2 and 3) P1IFG.0 to P1IFG.7 (see Notes 2 and 3) UCA1RXIFG, UCB1RXIFG (see Notes 2 and 4) UCA1TXIFG, UCB1TXIFG (see Notes 2 and 5) DMA0IFG, DMA1IFG, DMA2IFG (see Notes 2 and 3) DAC12_0IFG, DAC12_1IFG (see Notes 2 and 3) Maskable Maskable 0x0FFEA 0x0FFE8 0x0FFE6 0x0FFE4 21 20 19 18 Maskable 0x0FFE2 17 Maskable 0x0FFE0 16 Maskable 0x0FFDE 15 Maskable 0x0FFDC 14 0x0FFDA to 13 to 0, 0 Reserved (see Notes 7 and 8) Reserved 0 0FFC0 0x0FFC0 l lowest t NOTES: 1. A reset isexecuted ifthe CPUtries tofetch instructionsfrom withinthe moduleregister memoryaddress range(0x00000 to0x001FF) or from within unused address ranges. 2. Multiple source flags. 3. Interrupt flags are located in the module. 4. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG. 5. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG. 6. (Non)maskable: The individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot. 7. The address 0x0FFBE is used as bootstrap loader security key (BSLSKEY). A 0x0AA55 at this location disables the BSL completely. A zero disables the erasure of the flash if an invalid password is supplied. 8. The interrupt vectors at addresses 0x0FFDA to 0x0FFC0 are not used in this device and can be used for regular program code if necessary. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 special function registers Most interrupt enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 Address 00h WDTIE OFIE NMIIE ACCVIE Address 01h UCA0RXIE UCA0TXIE UCB0RXIE UCB0TXIE 16 7 6 5 ACCVIE rw-- 0 4 NMIIE rw-- 0 3 2 1 OFIE rw-- 0 0 WDTIE rw-- 0 Interrupt Enable Register 1 Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured as general-purpose timer. Oscillator fault interrupt enable Nonmaskable interrupt enable Flash memory access violation interrupt enable 7 6 5 4 3 2 1 0 UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw-- 0 rw-- 0 rw-- 0 rw-- 0 Interrupt Enable Register 2 USCI_A0 receive interrupt enable USCI_A0 transmit interrupt enable USCI_B0 receive interrupt enable USCI_B0 transmit interrupt enable POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 interrupt flag register 1 and 2 Address 02h 7 WDTIFG 6 5 4 NMIIFG rw-- 0 3 RSTIFG rw-- (0) 2 PORIFG rw-- (1) 1 OFIFG rw-- 1 0 WDTIFG rw-- (0) Interrupt Flag Register 1 NMIIFG Set on watchdog timer overflow or security key violation Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode. Flag set on oscillator fault7 Power-on interrupt flag. Set on VCC power up. External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up. Set via RST/NMI pin Address 7 OFIFG PORIFG RSTIFG 6 5 4 03h UCA0RXIFG UCA0TXIFG UCB0RXIFG UCB0TXIFG L eg e n d rw : rw -0 ,1 : rw -(0 ,1 ) 3 UCB0TX IFG rw-- 1 2 UCB0RX IFG rw-- 0 1 UCA0TX IFG rw-- 1 0 UCA0RX IFG rw-- 0 Interrupt Flag Register 2 USCI_A0 receive interrupt flag USCI_A0 transmit interrupt flag USCI_B0 receive interrupt flag USCI_B0 transmit interrupt flag B it ca n b e rea d a n d w ritten . B it ca n b e rea d a n d w ritten . It is R e s et o r S e t b y P U C . B it ca n b e rea d a n d w ritten . It is R e s et o r S e t b y P O R . S F R b it is n o t p re s en t in d e vice . POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 memory organization Memory Main: interrupt vector Main: code memory RAM (total) Size Flash Flash Size Extended Size Mirrored Size Information memory Boot memory RAM (mirrored at 0x18FF to 0x01100) Peripherals Memory Main: interrupt vector Main: code memory RAM (total) Size Flash Size ROM Size 16-bit 8-bit 8-bit SFR Size Flash Flash Size Extended Size Mirrored Size Information memory Boot memory RAM (mirrored at 0x18FF to 0x01100) Peripherals MSP430F2416 MSP430F2616 MSP430F2417 MSP430F2617 92KB 0x0FFFF - 0x0FFC0 0x18FFF - 0x02100 4kB 0x020FF - 0x01100 2kB 0x020FF - 0x01900 2kB 0x018FF - 0x01100 256 Byte 0x010FF - 0x01000 1KB 0x00FFF - 0x00C00 2KB 0x009FF - 0x00200 0x001FF - 0x00100 0x000FF - 0x00010 0x0000F - 0x00000 92KB 0x0FFFF - 0x0FFC0 0x19FFF - 0x03100 8kB 0x030FF - 0x01100 6kB 0x030FF - 0x01900 2kB 0x018FF - 0x01100 256 Byte 0x010FF - 0x01000 1KB 0x00FFF - 0x00C00 2KB 0x009FF - 0x00200 0x001FF - 0x00100 0x000FF - 0x00010 0x0000F - 0x00000 MSP430F2618 MSP430F2418 MSP430F2619 MSP430F2419 116KB 0x0FFFF - 0x0FFC0 0x1FFFF - 0x03100 8kB 0x030FF - 0x01100 6kB 0x030FF - 0x01900 2kB 0x018FF - 0x01100 256 Byte 0x010FF - 0x01000 1KB 0x00FFF - 0x00C00 2KB 0x009FF - 0x00200 0x001FF - 0x00100 0x000FF - 0x00010 0x0000F - 0x00000 Size Flash Size ROM Size 16-bit 8-bit 8-bit SFR 120KB 0x0FFFF - 0x0FFC0 0x1FFFF - 0x02100 4kB 0x020FF - 0x01100 2kB 0x020FF - 0x01900 2kB 0x018FF - 0x01100 256 Byte 0x010FF - 0x01000 1KB 0x00FFF - 0x00C00 2KB 0x009FF - 0x00200 0x001FF - 0x00100 0x000FF - 0x00010 0x0000F - 0x00000 bootstrap loader (BSL) The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by a user-defined password. For complete description of the features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature number SLAA089. BSL FUNCTION Data Transmit Data Receive 18 PM, PN PACKAGE PINS 13 - P1.1 22 - P2.2 ZQW PACKAGE PINS H1 - P1.1 M3 - P2.2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. D Segment A contains calibration data. After reset, segment A is protected against programming or erasing. It can be unlocked, but care should be taken not to erase this segment if the calibration data is required. D Flash content integrity check with marginal read modes peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User’s Guide, literature number SLAU144. DMA controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral. oscillator and system clock The clock system in the MSP430x241x and MSP43x261x family of devices is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low-power low-frequency oscillator, an internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the following clock signals: D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or a very low-power LF oscillator D Main clock (MCLK), the system clock used by the CPU D Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 calibration data stored in information memory segment A Calibration data is stored for the DCO and for the ADC12. It is organized in a tag-length-value (TLV) structure. NAME TAG_DCO_30 TAG_ADC12_1 TAG_EMPTY ADDRESS 0x10F6 0x10DA - LABEL CAL_ADC_25T85 CAL_ADC_25T30 CAL_ADC_25VREF_FACTOR CAL_ADC_15T85 CAL_ADC_15T30 CAL_ADC_15VREF_FACTOR CAL_ADC_OFFSET CAL_ADC_GAIN_FACTOR CAL_BC1_1MHZ CAL_DCO_1MHZ CAL_BC1_8MHZ CAL_DCO_8MHZ CAL_BC1_12MHZ CAL_DCO_12MHZ CAL_BC1_16MHZ CAL_DCO_16MHZ TAGS USED BY THE TLV STRUCTURE VALUE DESCRIPTION 0x01 DCO frequency calibration at VCC = 3 V and TA = 25°C at calibration 0x08 ADC12_1 calibration tag 0xFE Identifier for empty memory areas LABELS USED BY THE ADC CALIBRATION STRUCTURE CONDITION AT CALIBRATION / DESCRIPTION INCHx = 0x1010; REF2_5 = 1, TA = 85°C INCHx = 0x1010; REF2_5 = 1, TA = 30°C REF2_5 = 1, TA = 30°C INCHx = 0x1010; REF2_5 = 0, TA = 85°C INCHx = 0x1010; REF2_5 = 0, TA = 30°C REF2_5 = 0, TA = 30°C External VREF = 1.5 V, fADC12CLK = 5 MHz External VREF = 1.5 V, fADC12CLK = 5 MHz - SIZE word word word word word word word word byte byte byte byte byte byte byte byte ADDRESS OFFSET 0x000E 0x000C 0x000A 0x0008 0x0006 0x0004 0x0002 0x0000 0x0007 0x0006 0x0005 0x0004 0x0003 0x0002 0x0001 0x0000 brownout, supply voltage supervisor (SVS) The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM) (the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must ensure that the default DCO settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). digital I/O There are up to eight 8-bit I/O ports implemented—ports P1 through P8: D All individual I/O bits are independently programmable. D Any combination of input, output, and interrupt conditions is possible. D Edge-selectable interrupt input capability for all eight bits of ports P1 and P2. D Read/write access to port-control registers is supported by all instructions. D Each I/O has an individually programmable pullup/pulldown resistor. D Ports P7/P8 can be accessed word-wise. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 watchdog timer+ (WDT+) The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. hardware multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs 16×16, 16×8, 8×16, and 8×8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. universal serial communication interface (USCI) The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 pin or 4 pin) or I2C, and asynchronous combination protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. The USCI A module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, and IrDA. The USCI B module provides support for SPI (3 pin or 4 pin) and I2C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. INPUT PIN NUMBER (ZQW) G2 - P1.0 M2 - P2.1 H1 - P1.1 M3 - P2.2 H2 - P1.2 J1 - P1.3 22 INPUT PIN NUMBER (PM, PN) 12 - P1.0 21 - P2.1 13 - P1.1 22 - P2.2 14 - P1.2 15 - P1.3 DEVICE INPUT SIGNAL TACLK ACLK SMCLK TAINCLK TA0 TA0 DVSS DVCC TA1 CAOUT (internal) DVSS DVCC TA2 ACLK (internal) DVSS DVCC TIMER_A3 SIGNAL CONNECTIONS MODULE INPUT NAME TACLK ACLK SMCLK INCLK CCI0A CCI0B GND VCC CCI1A CCI1B GND VCC MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 CCR1 TA0 TA1 CCI2A CCI2B GND VCC CCR2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TA2 OUTPUT PIN OUTPUT PIN NUMBER NUMBER (PM, PN) (ZQW) 13 - P1.1 17 - P1.5 27 - P2.7 H1 - P1.1 K1 - P1.5 L5 - P2.7 14 - P1.2 H2 - P1.2 18 - P1.6 K2 - P1.6 23 - P2.3 L3 - P2.3 ADC12 (internal) DAC12_0 (internal) DAC12_1 (internal) 15 - P1.3 J1 - P1.3 19 - P1.7 L1 - P1.7 24 - P2.4 L4 - P2.4 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Timer_B7 Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. INPUT PIN NUMBER (ZQW) K11 - P4.7 INPUT PIN NUMBER (PM, PN) 43 - P4.7 K11 - P4.7 M9 - P4.0 M9-- P4.0 43 - P4.7 36 - P4.0 36 - P4.0 J9 - P4.1 J9 - P4.1 37 - P4.1 37 - P4.1 M10 - P4.2 M10 - P4.2 38 - P4.2 38 - P4.2 L10 - P4.3 L10 - P4.3 39 - P4.3 39 - P4.3 M11 - P4.4 M11 - P4.4 40 - P4.4 40 - P4.4 M12 - P4.5 M12 - P4.5 41 - P4.5 41 - P4.5 L12 - P4.6 42 - P4.6 TIMER_B3/B7 SIGNAL CONNECTIONS† DEVICE MODULE MODULE MODULE INPUT OUTPUT INPUT NAME BLOCK SIGNAL SIGNAL TBCLK ACLK SMCLK TBCLK TB0 TB0 DVSS DVCC TB1 TB1 DVSS DVCC TB2 TB2 DVSS DVCC TB3 TB3 DVSS DVCC TB4 TB4 DVSS DVCC TB5 TB5 DVSS DVCC TB6 ACLK (internal) DVSS DVCC TBCLK ACLK SMCLK INCLK CCI0A CCI0B GND VCC CCI1A CCI1B GND VCC CCI2A CCI2B GND VCC CCI3A CCI3B GND VCC CCI4A CCI4B GND VCC CCI5A CCI5B GND VCC CCI6A CCI6B GND VCC Timer CCR0 CCR1 CCR2 CCR3 CCR4 CCR5 CCR6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 OUTPUT PIN OUTPUT PIN NUMBER NUMBER (PM, PN) (ZQW) NA TB0 TB1 TB2 36 - P4.0 M9 - P4.0 ADC12 (internal) 37 - P4.1 J9 - P4.1 ADC12 (internal) 38 - P4.2 M10 - P4.2 DAC_0(internal) DAC_1(internal) 39 - P4.3 L10 - P4.3 40 - P4.4 M11 - P4.4 41 - P4.5 M12 - P4.5 42 - P4.6 L12 - P4.6 TB3 TB4 TB5 TB6 23 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Comparator_A+ The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. ADC12 The ADC12 module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. DAC12 The DAC12 module is a 12-bit, R-ladder, voltage-output digital-to-analog converter (DAC). The DAC12 may be used in 8-bit or 12-bit mode and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 peripheral file map PERIPHERAL FILE MAP DMA channel 2 transfer size DMA channel 2 destination address DMA channel 2 source address DMA channel 2 control DMA channel 1 transfer size DMA channel 1 destination address DMA channel 1 source address DMA channel 1 control DMA channel 0 transfer size DMA channel 0 destination address DMA channel 0 source address DMA channel 0 control DMA module interrupt vector word DMA module control 1 DMA module control 0 DAC12† DAC12_1 data DAC12_1 control DAC12_0 data DAC12_0 control ADC12 Interrupt-vector-word register Inerrupt-enable register Inerrupt-flag register Control register 1 Control register 0 Conversion memory 15 Conversion memory 14 Conversion memory 13 Conversion memory 12 Conversion memory 11 Conversion memory 10 Conversion memory 9 Conversion memory 8 Conversion memory 7 Conversion memory 6 Conversion memory 5 Conversion memory 4 Conversion memory 3 Conversion memory 2 Conversion memory 1 Conversion memory 0 † MSP430F261x devices only DMA† POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 DMA2SZ DMA2DA DMA2SA DMA2CTL DMA1SZ DMA1DA DMA1SA DMA1CTL DMA0SZ DMA0DA DMA0SA DMA0CTL DMAIV DMACTL1 DMACTL0 DAC12_1DAT DAC12_1CTL DAC12_0DAT DAC12_0CTL ADC12IV ADC12IE ADC12IFG ADC12CTL1 ADC12CTL0 ADC12MEM15 ADC12MEM14 ADC12MEM13 ADC12MEM12 ADC12MEM11 ADC12MEM10 ADC12MEM9 ADC12MEM8 ADC12MEM7 ADC12MEM6 ADC12MEM5 ADC12MEM4 ADC12MEM3 ADC12MEM2 ADC12MEM1 ADC12MEM0 0x01F2 0x01EE 0x01EA 0x01E8 0x01E6 0x01E2 0x01DE 0x01DC 0x01DA 0x01D6 0x01D2 0x01D0 0x0126 0x0124 0x0122 0x01CA 0x01C2 0x01C8 0x01C0 0x01A8 0x01A6 0x01A4 0x01A2 0x01A0 0x015E 0x015C 0x015A 0x0158 0x0156 0x0154 0x0152 0x0150 0x014E 0x014C 0x014A 0x0148 0x0146 0x0144 0x0142 0x0140 25 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 ADC12 (continued) Timer_B7 _ Timer_A3 _ 26 PERIPHERAL FILE MAP (CONTINUED) ADC memory-control register15 ADC memory-control register14 ADC memory-control register13 ADC memory-control register12 ADC memory-control register11 ADC memory-control register10 ADC memory-control register9 ADC memory-control register8 ADC memory-control register7 ADC memory-control register6 ADC memory-control register5 ADC memory-control register4 ADC memory-control register3 ADC memory-control register2 ADC memory-control register1 ADC memory-control register0 Capture/compare register 6 Capture/compare register 5 Capture/compare register 4 Capture/compare register 3 Capture/compare register 2 Capture/compare register 1 Capture/compare register 0 Timer_B register Capture/compare control 6 Capture/compare control 5 Capture/compare control 4 Capture/compare control 3 Capture/compare control 2 Capture/compare control 1 Capture/compare control 0 Timer_B control Timer_B interrupt vector Capture/compare register 2 Capture/compare register 1 Capture/compare register 0 Timer_A register Reserved Reserved Reserved Reserved Capture/compare control 2 Capture/compare control 1 Capture/compare control 0 Timer_A control Timer_A interrupt vector POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ADC12MCTL15 ADC12MCTL14 ADC12MCTL13 ADC12MCTL12 ADC12MCTL11 ADC12MCTL10 ADC12MCTL9 ADC12MCTL8 ADC12MCTL7 ADC12MCTL6 ADC12MCTL5 ADC12MCTL4 ADC12MCTL3 ADC12MCTL2 ADC12MCTL1 ADC12MCTL0 TBCCR6 TBCCR5 TBCCR4 TBCCR3 TBCCR2 TBCCR1 TBCCR0 TBR TBCCTL6 TBCCTL5 TBCCTL4 TBCCTL3 TBCCTL2 TBCCTL1 TBCCTL0 TBCTL TBIV TACCR2 TACCR1 TACCR0 TAR TACCTL2 TACCTL1 TACCTL0 TACTL TAIV 0x008F 0x008E 0x008D 0x008C 0x008B 0x008A 0x0089 0x0088 0x0087 0x0086 0x0085 0x0084 0x0083 0x0082 0x0081 0x0080 0x019E 0x019C 0x019A 0x0198 0x0196 0x0194 0x0192 0x0190 0x018E 0x018C 0x018A 0x0188 0x0186 0x0184 0x0182 0x0180 0x011E 0x0176 0x0174 0x0172 0x0170 0x016E 0x016C 0x016A 0x0168 0x0166 0x0164 0x0162 0x0160 0x012E MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Hardware Multiplier Flash Watchdog USCI A0/B0 / USCI A1/B1 / PERIPHERAL FILE MAP (CONTINUED) Sum extend Result high word Result low word Second operand Multiply signed +accumulate/operand1 Multiply+accumulate/operand1 Multiply signed/operand1 Multiply unsigned/operand1 Flash control 4 Flash control 3 Flash control 2 Flash control 1 Watchdog Timer control USCI A0 auto baud rate control USCI A0 transmit buffer USCI A0 receive buffer USCI A0 status USCI A0 modulation control USCI A0 baud rate control 1 USCI A0 baud rate control 0 USCI A0 control 1 USCI A0 control 0 USCI A0 IrDA receive control USCI A0 IrDA transmit control USCI B0 transmit buffer USCI B0 receive buffer USCI B0 status USCI B0 I2C Interrupt enable USCI B0 baud rate control 1 USCI B0 baud rate control 0 USCI B0 control 1 USCI B0 control 0 USCI B0 I2C slave address USCI B0 I2C own address USCI A1 auto baud rate control USCI A1 transmit buffer USCI A1 receive buffer USCI A1 status USCI A1 modulation control USCI A1 baud rate control 1 USCI A1 baud rate control 0 USCI A1 control 1 USCI A1 control 0 USCI A1 IrDA receive control USCI A1 IrDA transmit control POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SUMEXT RESHI RESLO OP2 MACS MAC MPYS MPY FCTL4 FCTL3 FCTL2 FCTL1 WDTCTL UCA0ABCTL UCA0TXBUF UCA0RXBUF UCA0STAT UCA0MCTL UCA0BR1 UCA0BR0 UCA0CTL1 UCA0CTL0 UCA0IRRCTL UCA0IRTCLT UCB0TXBUF UCB0RXBUF UCB0STAT UCB0CIE UCB0BR1 UCB0BR0 UCB0CTL1 UCB0CTL0 UCB0SA UCB0OA UCA1ABCTL UCA1TXBUF UCA1RXBUF UCA1STAT UCA1MCTL UCA1BR1 UCA1BR0 UCA1CTL1 UCA1CTL0 UCA1IRRCTL UCA1IRTCLT 0x013E 0x013C 0x013A 0x0138 0x0136 0x0134 0x0132 0x0130 0x01BE 0x012C 0x012A 0x0128 0x0120 0x005D 0x0067 0x0066 0x0065 0x0064 0x0063 0x0062 0x0061 0x0060 0x005F 0x005E 0x006F 0x006E 0x006D 0x006C 0x006B 0x006A 0x0069 0x0068 0x011A 0x0118 0x00CD 0x00D7 0x00D6 0x00D5 0x00D4 0x00D3 0x00D2 0x00D1 0x00D0 0x00CF 0x00CE 27 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 USCI A1/B1 / (continued) PERIPHERAL FILE MAP (CONTINUED) USCI B1 transmit buffer USCI B1 receive buffer USCI B1 status USCI B1 I2C Interrupt enable USCI B1 baud rate control 1 USCI B1 baud rate control 0 USCI B1 control 1 USCI B1 control 0 USCI B1 I2C slave address USCI B1 I2C own address USCI A1/B1 interrupt enable USCI A1/B1 interrupt flag Comparator_A+ p _ Comparator_A port disable Comparator_A control2 Comparator_A control1 Basic Clock Basic clock system control3 Basic clock system control2 Basic clock system control1 DCO clock frequency control Brownout, SVS SVS control register (reset by brownout signal) Port PA† Port PA resistor enable Port PA selection Port PA direction Port PA output Port PA input Port P8† Port P8 resistor enable Port P8 selection Port P8 direction Port P8 output Port P8 input Port P7† Port P7 resistor enable Port P7 selection Port P7 direction Port P7 output Port P7 input Port P6 Port P6 resistor enable Port P6 selection Port P6 direction Port P6 output Port P6 input Port P5 Port P5 resistor enable Port P5 selection Port P5 direction Port P5 output Port P5 input † 80-pin PN and 113-pin ZQW devices only 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UCB1TXBUF UCB1RXBUF UCB1STAT UCB1CIE UCB1BR1 UCB1BR0 UCB1CTL1 UCB1CTL0 UCB1SA UCB1OA UC1IE UC1IFG CAPD CACTL2 CACTL1 BCSCTL3 BCSCTL2 BCSCTL1 DCOCTL SVSCTL PAREN PASEL PADIR PAOUT PAIN P8REN P8SEL P8DIR P8OUT P8IN P7REN P7SEL P7DIR P7OUT P7IN P6REN P6SEL P6DIR P6OUT P6IN P5REN P5SEL P5DIR P5OUT P5IN 0x00DF 0x00DE 0x00DD 0x00DC 0x00DB 0x00DA 0x00D9 0x00D8 0x017E 0x017C 0x0006 0x0007 0x005B 0x005A 0x0059 0x0053 0x0058 0x0057 0x0056 0x0055 0x0014 0x003E 0x003C 0x003A 0x0038 0x0015 0x003F 0x003D 0x003B 0x0039 0x0014 0x003E 0x003C 0x003A 0x0038 0x0013 0x0037 0x0036 0x0035 0x0034 0x0012 0x0033 0x0032 0x0031 0x0030 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P4 Port P3 Port P2 Port P1 Special p Functions PERIPHERAL FILE MAP (CONTINUED) Port P4 selection Port P4 resistor enable Port P4 direction Port P4 output Port P4 input Port P3 resistor enable Port P3 selection Port P3 direction Port P3 output Port P3 input Port P2 resistor enable Port P2 selection Port P2 interrupt enable Port P2 interrupt-edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input Port P1 resistor enable Port P1 selection Port P1 interrupt enable Port P1 interrupt-edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input SFR interrupt flag2 SFR interrupt flag1 SFR interrupt enable2 SFR interrupt enable1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P4SEL P4REN P4DIR P4OUT P4IN P3REN P3SEL P3DIR P3OUT P3IN P2REN P2SEL P2IE P2IES P2IFG P2DIR P2OUT P2IN P1REN P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN IFG2 IFG1 IE2 IE1 0x001F 0x0011 0x001E 0x001D 0x001C 0x0010 0x001B 0x001A 0x0019 0x0018 0x002F 0x002E 0x002D 0x002C 0x002B 0x002A 0x0029 0x0028 0x0027 0x0026 0x0025 0x0024 0x0023 0x0022 0x0021 0x0020 0x0003 0x0002 0x0001 0x0000 29 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 absolute maximum ratings (see Note 1) Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to 4.1 V Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature: Unprogrammed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . --55°C to 150°C Programmed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --40°C to 105°C NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. 3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification, with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. recommended operating conditions PARAMETER Supply voltage during program execution, VCC Supply voltage during flash memory programming, V CC Supply voltage, VSS MIN MAX UNIT AVCC = DVCC = VCC (see Note 1) 1.8 3.6 V AVCC = DVCC = VCC (see Note 1) 2.2 3.6 V AVSS = DVSS = VSS 0.0 0.0 V I version - 40 85 Operating free-air free air temperature, temperature TA °C T version - 40 105 VCC = 1.8 V, dc 4.15 Duty cycle = 50% ± 10% VCC = 2.7 V, Processor frequency fSYSYTEM (maximum MCLK frequency) dc 12 MHz Duty cycle = 50% ± 10% (see Notes 2 and 3 and Figure g 1) VCC ≥ 3.3 V, dc 16 Duty cycle = 50% ± 10% NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AV CC and DVCC can be tolerated during power-up. 2. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. 3. Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet. Legend: 16 MHz z H M - 12 MHz yc ne uq er F 7.5 MHz m tes yS 4.15 MHz Supply voltage range during flash memory programming Supply voltage range during program execution 1.8 V 2.2 V 2.7 V 3.3 V 3.6 V Supply Voltage - V NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V CC of 2.2 V. Figure 1. Operating Area 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) active mode supply current into VCC excluding external current (see Notes 1 and 2) PARAMETER TEST CONDITIONS TA VCC MIN TYP MAX UNIT fDCO = fMCLK = fSMCLK = 1 MHz, - 40_C to 85_C 365 395 fACLK = 32768 Hz, Hz 22V 2.2 executes from flash, 105_C 375 420 mode (AM) Program IAM, 1MHz Active µA BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ current (1 MHz) - 40_C to 85_C 515 560 DCOCTL = CALDCO_1MHZ, _ 3V CPUOFF = 0, 0 SCG0 = 0, 0 SCG1 = 0, 0 105_C 525 595 OSCOFF = 0 fDCO = fMCLK = fSMCLK = 1 MHz, - 40_C to 85_C 330 370 fACLK = 32768 Hz, Hz 22V 2.2 executes in RAM, 105_C 340 390 mode (AM) Program IAM, 1MHz Active µA BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ current (1 MHz) - 40_C to 85_C 460 495 DCOCTL = CALDCO_1MHZ, _ 3V CPUOFF = 0, 0 SCG0 = 0, 0 SCG1 = 0, 0 105_C 470 520 OSCOFF = 0 fMCLK = fSMCLK = - 40_C to 85_C 2.1 9 fACLK = 32768 Hz/8 = 4096 Hz, 22V 2.2 fDCO = 0 Hz, 105_C 15 31 Active mode (AM) Program executes in flash, IAM, 4kHz µA current (4 kHz) SELMx = 11, SELS = 1, 40 _C to 85_C 3 11 DIVMx = DIVSx = DIVAx = 11, 3V CPUOFF = 0, SCG0 = 1, SCG1 = 0, 105_C 19 32 OSCOFF = 0 fMCLK = fSMCLK = fDCO(0, 0) ≈ 100 kHz, - 40_C to 85_C 67 86 22V 2.2 fACLK = 0 Hz, Hz 105_C 80 99 mode (AM) Program executes in flash, IAM,100kHz Active µA current (100 kHz) RSELx = 0, DCOx = 0, - 40_C to 85_C 84 107 CPUOFF = 0, 0 SCG0 = 0, 0 SCG1 = 0, 0 3V 105_C 99 128 OSCOFF = 1 NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a micro crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) typical characteristics - active mode supply current (into DV + AV ) CC CC 7.0 10.0 fDCO = 16 MHz 9.0 A m -t ne rr uC ed o M ev it cA 8.0 6.0 A m 5.0 -t ne rr uC 4.0 ed o 3.0 M ev it cA 2.0 fDCO = 12 MHz 7.0 6.0 5.0 fDCO = 8 MHz 4.0 3.0 2.0 1.0 fDCO = 1 MHz 1.0 0.0 1.5 2.0 2.5 3.0 3.5 CC - Supply Voltage - V 4.0 0.0 0.0 V Figure 2. Active Mode Current vs VCC, TA = 25°C 32 TA = 85 °C TA = 25 °C VCC = 3 V TA = 85 °C TA = 25 °C VCC = 2.2 V 4.0 8.0 12.0 fDCO - DCO Frequency - MHz 16.0 Figure 3. Active Mode Current vs DCO Frequency POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) low-power mode supply current into VCC excluding external current (see Notes 1 and 2) PARAMETER ILPM0, 1MHz ILPM0, 100kHz ILPM2 ILPM3,LFXT1 ILPM3,VLO NOTES: 1. 2. 3. 4. TEST CONDITIONS fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz, MHz Low-power mode 0 fACLK = 32768 Hz, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ (LPM0) current, current DCOCTL = CALDCO_1MHZ, _ see Note 3 CPUOFF = 1, 1 SCG0 = 0, 0 SCG1 = 0, 0 OSCOFF = 0 fMCLK = 0MHz, kHz DCO(0, 0) ≈ 100 kHz, Low-power mode 0 ffSMCLK= =0 fHz, ACLK (LPM0) current, current RSELx = 0, DCOx = 0, see Note 3 CPUOFF = 1, 1 SCG0 = 0, 0 SCG1 = 0, 0 OSCOFF = 1 fMCLK = fSMCLK = 0 MHz, fDCO = 1 MHz, fACLK = 32768 Hz, Hz Low-power mode 2 BCSCTL1 = CALBC1_1MHZ, (LPM2) current, current DCOCTL = CALDCO_1MHZ, see Note 4 CPUOFF = 1, 1 SCG0 = 0, 0 SCG1 = 1, 1 OSCOFF = 0 TA - 40_C to 85_C 105_C - 40_C to 85_C VCC 22V 2.2 MIN TYP 68 MAX UNIT 83 83 98 87 105 µA 3V 105_C 100 125 - 40_C to 85_C 37 49 22V 2.2 105_C 50 62 µA - 40_C to 85_C 40 55 3V 105_C 57 73 - 40_C to 85_C 23 33 22V 2.2 105_C 35 46 µA - 40_C to 85_C 25 36 3V 105_C 40 55 - 40°C 0.8 1.2 25°C 1 1.3 22V 2.2 85°C 4.6 7 = fSMCLK = 0 MHz, MHz Low-power mode 3 ffDCO ==fMCLK 105 ° C 14 24 ACLK 32768 Hz, µA (LPM3) current, current CPUOFF = 1, SCG0 = 1, SCG1 = 1, - 40°C 0.9 1.3 see Note 4 OSCOFF = 0 25°C 1.1 1.5 3V 85°C 5.5 8 105°C 17 30 - 40°C 0.4 1.0 25°C 0.5 1.0 22V 2.2 85°C 4.3 6.5 fDCO = fMCLK = fSMCLK = 0 MHz, MHz 105°C 14 24 Low-power mode 3 fACLK from internal LF oscillator (VLO), µA CPUOFF = 1, SCG0 = 1, SCG1 = 1, ((LPM3)) current, - 40°C 0.6 1.2 see Note Nt 4 OSCOFF = 0 25°C 0.6 1.2 3V 85°C 5 7.5 105°C 16.5 29.5 All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. The currents are characterized with a micro crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. Current for Brownout and WDT+ is included. The WDT+ is clocked by SMCLK. Current for Brownout and WDT+ is included. The WDT+ is clocked by ACLK. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) low-power mode supply current into VCC excluding external current (see Notes 1 and 2) (continued) TA VCC MIN TYP MAX UNIT - 40°C 0.1 0.5 Low-power mode 4 fDCO = fMCLK = fSMCLK = 0 MHz, MHz 25 ° C 0.1 0.5 (LPM4) current, fACLK = 0 Hz, ILPM4 2 2.2 2 V see Note 3 CPUOFF = 1, SCG0 = 1, SCG1 = 1, 85°C 4 6 µA OSCOFF = 1 105°C 13 23 - 40°C 0.2 0.5 Low-power mode 4 fDCO = fMCLK = fSMCLK = 0 MHz, MHz 25 ° C 0.2 0.5 (LPM4) current, fACLK = 0 Hz, ILPM4 3 V see Note 3 CPUOFF = 1, SCG0 = 1, SCG1 = 1, 85°C 4.7 7 µA OSCOFF = 1 105°C 14 24 NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a micro crystal CC4V-- T1A SMD crystalwith aload capacitanceof 9pF. Theinternal andexternal load capacitance is chosen to closely match the required 9 pF. 3. Current for Brownout included. PARAMETER TEST CONDITIONS typical characteristics - LPM4 current Au -t ne rr uc ed o m re w op w oL 4 M PL I 16.0 15.0 14.0 13.0 12.0 11.0 10.0 9.0 8.0 Vcc = 3.6 V 7.0 Vcc = 3.0 V 6.0 5.0 Vcc = 2.2 V 4.0 3.0 2.0 1.0 Vcc = 1.8 V 0.0 - 40.0 - 20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0 TA - Temperature - °C Figure 4. ILPM4 - LPM4 Current vs Temperature 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Schmitt-trigger inputs - ports P1 through P8, RST/NMI, JTAG, XIN, and XT2IN (see Note 1) PARAMETER TEST CONDITIONS VCC V Positive-going Positive going input threshold voltage 2.2 V 3V V Negative-going Negative going input threshold voltage V Input voltage hysteresis (V 2.2 V 3V 2.2 V 3V IT+ IT-- hys R Pull IT+ -V ) IT-- Pullup: V = V , Pulldown: V = V V = V or V Pullup/pulldown resistor IN SS IN C Input capacitance NOTE 1: XIN and XT2IN in bypass mode only. I IN SS CC MIN TYP 0.45 VCC CC V CC 35 5 CC UNIT CC 1.0 1.35 0.25 V 0.55 0.75 0.2 0.3 20 MAX 0.75 V 1.65 2.25 0.55 V 1.2 1.65 1.0 1.0 50 V V kΩ pF inputs -- ports P1 and P2 PARAMETER TEST CONDITIONS VCC MIN MAX UNIT Port P1, P2: P1.x to P2.x, external trigger pulse width to t External interrupt timing 2.2 V/3 V 20 ns set the interrupt flag (see Note 1) NOTE 1: The external signal sets the interrupt flag every time the minimum t parameters are met. It may be set with trigger signals shorter than t . int (int) (int) leakage current -- ports P1 through P8 (see Note 1 and 2) PARAMETER TEST CONDITIONS VCC MIN MAX UNIT I High-impedance leakage current see Notes 1 and 2 2.2 V/3 V ±50 nA NOTES: 1. The leakage current is measured with V or V applied to the corresponding pin(s), unless otherwise noted. 2. The leakage of digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor isdisabled. lkg (Px.x) SS CC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) standard inputs -- RST/NMI VIL VIH PARAMETER Low-level input voltage High-level input voltage TEST CONDITIONS VCC 2.2 V/3 V 2.2 V/3 V MIN VSS 0.8×VCC MAX VSS+0.6 VCC UNIT V V outputs -- ports P1 through P8 PARAMETER TEST CONDITIONS VCC MIN MAX UNIT IOH(max) = - 1.5 mA (see Note 1) VCC - 0.25 VCC 22V 2.2 IOH(max) = - 6 mA (see Note 2) VCC - 0.6 VCC VOH High level output voltage High-level V IOH(max) = - 1.5 mA (see Note 1) VCC - 0.25 VCC 3V IOH(max) = - 6 mA (see Note 2) VCC - 0.6 VCC IOL(max) = 1.5 mA (see Note 1) VSS VSS+0.25 22V 2.2 IOL(max) = 6 mA (see Note 2) VSS VSS+0.6 VOL Low level output voltage Low-level V VSS VSS+0.25 IOL(max) = 1.5 mA (see Note 1) 3V IOL(max) = 6 mA (see Note 2) VSS VSS+0.6 NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum voltage drop specified. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to satisfy the maximum voltage drop specified. output frequency -- ports P1 through P8 PARAMETER Port output frequency with load TEST CONDITIONS VCC MIN TYP MAX UNIT 2.2 V DC 10 P1.4/SMCLK, CL = 20 pF, RL = 1 kΩ fPx.y MHz (see Notes 1 and 2) 3.0 V DC 12 2.2 V DC 12 P2.0/ACLK/CA2, P1.4/SMCLK, CL = 20 pF fPort_CLK Clock output frequency (see Note 2) MHz 3.3 V DC 16 P5.6/ACLK, CL = 20 pF, LF mode 30 50 70 P5.6/ACLK, CL = 20 pF, XT1 mode 40 50 60 % P5.4/MCLK, CL = 20 pF, XT1 mode 40 60 Duty cycle of output t(Xdc) frequency q y P5.4/MCLK, CL = 20 pF, DCO 50% - 15 ns 50 50% + 15 ns P1.4/SMCLK, CL = 20 pF, XT2 mode 40 60 % P1.4/SMCLK, CL = 20 pF, DCO 50% - 15 ns 50% + 15 ns NOTES: 1. A resistive divider with 2 times 0.5 k Ω between VCC and VSS is used as load. The output is connected to the center tap of the divider. 2. The output voltage reaches at least 10% and 90% V CC at the specified toggle frequency. 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- outputs TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE of one pin TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE of one pin 25.0 A m -t ne20.0 rr uC tu tpu15.0 O le ve L- 10.0 w oL la ci py 5.0 -T L IO CC = 2.2 V V A m -t ne rr uC tu pt u O le ve Lw oL la ci py T L IO A = 25°C T P4.5 A = 85°C T 0.0 50.0 CC = 3 V V A = 25°C P4.5 T 40.0 A = 85°C T 30.0 20.0 10.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 OL VOL -- Low-Level Output Voltage -- V V 1.0 0.0 A m -t ne --5.0 rr uC tu tpu --10.0 O le ve Lhg --15.0 iH la ci py --20.0 T H IO 3.0 3.5 0.0 P4.5 A = 85°C T A = 25°C T --25.0 0.5 2.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE of one pin A m -t ne --10.0 rr uC tu pt u --20.0 O le ve Lhg --30.0 iH la ci py --40.0 T H IO CC = 2.2 V V 0.0 2.0 Figure 6 Figure 5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE of one pin 1.5 -- Low-Level Output Voltage -- V 1.0 1.5 2.0 OH -- High-Level Output Voltage -- V 2.5 CC = 3 V V P4.5 A = 85°C T A = 25°C T --50.0 0.0 0.5 V Figure 7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1.0 1.5 2.0 2.5 3.0 3.5 OH -- High-Level Output Voltage -- V V Figure 8 37 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) POR/brownout reset (BOR) (see Notes 1 and 2) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VCC(start) Operating voltage dVCC/dt ± 3 V/s 0.7 ¢ V(B_IT--) V V(B_IT--) Negative going VCC reset threshold voltage dVCC/dt ± 3 V/s 1.71 V Vhys(B_IT--) VCC reset threshold hysteresis dVCC/dt ± 3 V/s 70 130 210 mV td(BOR) BOR reset release delay time 2000 µs treset Pulse length at RST/NMI pin to accept a reset 2.2 V / 3 V 2 µs NOTES: 1. The current consumption of the brownout module is included in the I CC current consumption data. The voltage level V(B_IT--) + Vhys(B_IT--) is ≤ 1.8 V. 2. During power up, the CPU begins code execution following a period of t d(BOR) after VCC = V(B_IT--) + Vhys(B_IT--). The default DCO settings must not be changed until VCC ≥ VCC(MIN), where VCC(min) is the minimum supply voltage for the desired operating frequency. VCC Vhys(B_IT-) V(B_IT-) VCC(Start) 1 0 td(BOR) Figure 9. POR/Brownout Reset (BOR) vs Supply Voltage 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- POR/brownout reset (BOR) V CC 2 CC V t pw 3 V = 3 V Typical Conditions V ) p o r d ( C C V 1.5 1 V CC(drop) 0.5 0 0.001 1 1000 1 ns pw -- Pulse Width -- µs t 1 ns pw -- Pulse Width -- µs t Figure 10. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal V CC 2 t pw 3 V CC = 3 V V V ) p o r d ( C C V 1.5 Typical Conditions 1 V CC(drop) 0.5 f t = t 0 0.001 1 1000 pw -- Pulse Width -- µs t r tr f tpw -- Pulse Width -- µs t Figure 11. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) SVS (supply voltage supervisor/monitor) PARAMETER t TEST CONDITIONS dV /dt > 30 V/ms (see Figure 12) dV /dt ≤ 30 V/ms SVSON, switch from VLD = 0 to VLD ≠ 0, V = 3 V VLD ≠ 0 VLD ≠ 0, V /dt ≤ 3 V/s (see Figure 12) MIN 5 CC (SVSR) S S t t V d(SVSon) settle (SVSstart) V hys(SVS IT--) hys(SVS_IT- CC 20 CC ‡ CC V /dt ≤ 3 V/s (see Figure 12) CC V /dt ≤ 3 V/s (see Figure 12), External voltage applied on A7 CC V TYP V /dt ≤ 3 V/s (see Figure 12 and Figure 13) CC (SVS IT -)) (SVS_IT- V /dt ≤ 3 V/s (see Figure 12 and Figure 13), External voltage applied on A7 CC VLD = 1 VLD = 2 to 14 V 70 (SVS_IT--) 1.55 120 × V MAX UNIT 150 µs 2000 150 µs 12 µs 1.7 V 210 mV 0.016 × V 20 mV (SVS_IT--) 0.004 VLD = 15 4.4 VLD = 1 VLD = 2 VLD = 3 VLD = 4 VLD = 5 VLD = 6 VLD = 7 VLD = 8 VLD = 9 VLD = 10 VLD = 11 VLD = 12 VLD = 13 VLD = 14 1.8 1.94 2.05 2.14 2.24 2.33 2.46 2.58 2.69 2.83 2.94 3.11 3.24 3.43 1.9 2.1 2.2 2.3 2.4 2.5 2.65 2.8 2.9 3.05 3.2 3.35 3.5 3.7 2.05 2.25 2.37 2.48 2.6 2.71 2.86 3 3.13 3.29 3.42 3.61 3.76 3.99 VLD = 15 1.1 1.2 1.3 † V † † † I VLD ≠ 0, V = 2.2 V/3 V 10 15 µA (see Note 1) The recommended operating voltage range is limited to 3.6 V. t is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value between 2 and 15. The overdrive is assumed to be > 50 mV. NOTE 1: The current consumption of the SVS module is not included in the I current consumption data. CC(SVS) CC † ‡ settle CC 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 typical characteristics Software sets VLD >0: SVS is active AVCC V(SVS_IT-- ) V(SVSstart) V(B_IT-- ) VCC(start) Vhys(SVS_IT-- ) V hys(B_IT-- ) Brownout Region Brownout Region Brownout 1 0 SVS out 1 t d(BOR) 0 Set POR 1 SVS Circuit is Active From VLD > to V CC td(SVSon) < V( td(BOR) B_IT--) td(SVSR) undefined 0 Figure 12. SVS Reset (SVSR) vs Supply Voltage VCC 3V 2 V)n i m (C VC Rectangular Drop 1.5 VCC(min) Triangular Drop 1 VCC 3V 0.5 0 t pw 1 10 100 t - Pulse Width - µs pw 1 ns 1 ns t pw 1000 VCC(min) t =t f r t t t - Pulse Width - µs f r CC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1) Figure 13. V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) main DCO characteristics D All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15. D DCO control bits DCOx have a step size as defined by parameter SDCO. D Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK cycles. The frequency f to: DCO(RSEL,DCO) f average is used for the remaining cycles. The frequency is an average equal ×f = MOD × 32 f ×f +(32−MOD) × f DCO(RSEL,DCO) DCO(RSEL,DCO) DCO frequency PARAMETER V CC f f f f f f f f f f f f f f f f f f S DCO(0,0) DCO(0,3) DCO(1,3) DCO(2,3) DCO(3,3) DCO(4,3) DCO(5,3) DCO(6,3) DCO(7,3) DCO(8,3) DCO(9,3) DCO(10,3) DCO(11,3) DCO(12,3) DCO(13,3) DCO(14,3) DCO(15,3) DCO(15,7) RSEL S Duty cycle DCO 42 TEST CONDITIONS RSELx < 14 RSELx = 14 Supply voltage RSELx = 15 DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 Frequency step between S = f /f range RSEL and RSEL+1 Frequency step between S = f /f tap DCO and DCO+1 Measured at P1.4/SMCLK RSEL DCO DCO(RSEL+1,DCO) DCO(RSEL,DCO+1) + DCO(RSEL,DCO DCO(RSEL,DCO) DCO(RSEL,DCO) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1) + DCO(RSEL,DCO VCC 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 3V 3V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 1) MIN 1.8 2.2 3.0 0.06 0.07 0.10 0.14 0.20 0.28 0.39 0.54 0.80 1.10 1.60 2.50 3.00 4.30 6.00 8.60 12.0 16.0 TYP MAX UNIT 3.6 3.6 3.6 0.14 0.17 0.20 0.28 0.40 0.54 0.77 1.06 1.50 2.10 3.00 4.30 5.50 7.30 9.60 13.9 18.5 26.0 1.55 V MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz ratio 1.05 1.08 1.12 ratio 40 50 60 % MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) calibrated DCO frequencies -- tolerance at calibration PARAMETER Frequency tolerance at calibration fCAL(1MHz) 1-MHz calibration value fCAL(8MHz) 8-MHz calibration value fCAL(12MHz) 12-MHz calibration value fCAL(16MHz) 16-MHz calibration value TEST CONDITIONS BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms TA 25°C VCC 3V MIN -1 25°C 3V 0.990 1 1.010 MHz 25°C 3V 7.920 8 8.080 MHz 25°C 3V 11.88 12 12.12 MHz 25°C 3V 15.84 16 16.16 MHz VCC 3V 3V 3V 3V 2.2 V 3V 3.6 V 2.2 V 3V 3.6 V 2.2 V 3V 3.6 V 3V 3.6 V MIN - 2.5 - 2.5 - 2.5 - 3.0 0.970 0.975 0.970 7.760 7.800 7.600 11.64 11.64 11.64 15.52 calibrated DCO frequencies - tolerance over temperature 0°C to 85°C PARAMETER 1-MHz tolerance over temperature 8-MHz tolerance over temperature 12-MHz tolerance over temperature 16-MHz tolerance over temperature TEST CONDITIONS TA 0°C to 85°C 0°C to 85°C 0°C to 85°C 0°C to 85°C fCAL(1MHz) 11-MHz MHz calibration value BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms 0°C to 85°C fCAL(8MHz) 88-MHz MHz calibration value BCSCTL1 = CALBC1_8MHZ, CALBC1 8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 0°C to 85°C fCAL(12MHz) 12 12-MHz MHz calibration value BCSCTL1 = CALBC1_12MHZ, CALBC1 12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 0°C to 85°C fCAL(16MHz) 16-MHz 16 MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, CALDCO 16MHZ Gating time: 2 ms 0°C to 85°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15.00 TYP ±0.2 TYP ±0.5 ±1.0 ±1.0 ±2.0 1 1 1 8 8 8 12 12 12 16 16 MAX UNIT +1 % MAX +2.5 +2.5 +2.5 +3.0 1.030 1.025 1.030 8.400 8.200 8.240 12.36 12.36 12.36 16.48 16.48 UNIT % % % % MHz MHz MHz MHz 43 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) CC TA 25°C 25°C 25°C 25°C VCC 1.8 V to 3.6 V 1.8 V to 3.6 V 2.2 V to 3.6 V 3.0 V to 3.6 V MIN -3 -3 -3 -6 25°C 1.8 V to 3.6 V 0.970 1 1.030 MHz 25°C 1.8 V to 3.6 V 7.760 8 8.240 MHz 25°C 2.2 V to 3.6 V 11.64 12 12.36 MHz 25°C 3.0 V to 3.6 V 15.00 16 16.48 MHz TA VCC - 40°C to 105°C 1.8 V to 3.6 V - 40°C to 105°C 1.8 V to 3.6 V - 40°C to 105°C 2.2 V to 3.6 V - 40°C to 105°C 3 V to 3.6 V MIN -5 -5 -5 -6 - 40°C to 105°C 1.8 V to 3.6 V 0.950 1 1.050 MHz - 40°C to 105°C 1.8 V to 3.6 V 7.600 8 8.400 MHz - 40°C to 105°C 2.2 V to 3.6 V 11.40 12 12.60 MHz - 40°C to 105°C 15.00 16 17.00 MHz calibrated DCO frequencies -- tolerance over supply voltage V PARAMETER 1-MHz tolerance over VCC 8-MHz tolerance over VCC 12-MHz tolerance over VCC 16-MHz tolerance over VCC fCAL(1MHz) 1-MHz calibration value fCAL(8MHz) 8-MHz calibration value fCAL(12MHz) 12-MHz calibration value fCAL(16MHz) 16-MHz calibration value TEST CONDITIONS BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms TYP ±2 ±2 ±2 ±2 MAX UNIT +3 % +3 % +3 % +3 % calibrated DCO frequencies -- overall tolerance PARAMETER 1-MHz tolerance overall 8-MHz tolerance overall 12-MHz tolerance overall 16-MHz tolerance overall fCAL(1MHz) fCAL(8MHz) fCAL(12MHz) fCAL(16MHz) 44 TEST CONDITIONS BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms BCSCTL1 = CALBC1_8MHZ, 8-MHz calibration value DCOCTL = CALDCO_8MHZ, Gating time: 5 ms BCSCTL1 = 12-MHz calibration value CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms BCSCTL1 = 16-MHz calibration value CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 1-MHz calibration value POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 V to 3.6 V TYP ±2 ±2 ±2 ±3 MAX UNIT +5 % +5 % +5 % +6 % MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- calibrated 1-MHz DCO frequency 1.02 1.01 z H M y c n e u q e r F A = 105 °C T A = 85 °C 1.00 T A = 25 °C T 0.99 A = --40 °C T 0.98 1.5 2.0 2.5 3.0 3.5 4.0 VCC -- Supply Voltage -- V Figure 14. Calibrated 1-MHz Frequency vs VCC typical characteristics -- calibrated 8-MHz DCO frequency 8.20 A = 105 °C T 8.15 8.10 z H M y c n e u q e r F 8.05 A = 85 °C T A = 25 °C T 8.00 7.95 A = --40 °C T 7.90 7.85 7.80 1.5 2.0 2.5 CC V 3.0 3.5 4.0 -- Supply Voltage -- V Figure 15. Calibrated 8-MHz Frequency vs VCC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- calibrated 12-MHz DCO frequency 12.2 12.1 A = --40 °C T z H M y c n e u q e r A = 25 °C T 12.0 A = 85 °C T 11.9 F A = 105 °C T 11.8 11.7 1.5 2.0 2.5 3.0 3.5 4.0 VCC -- Supply Voltage -- V Figure 16. Calibrated 12-MHz Frequency vs VCC typical characteristics -- calibrated 16-MHz DCO frequency 16.1 16.0 A = --40 °C T z H M y c n e u q e r F 15.9 A = 25 °C T A = 85 °C T 15.8 A = 105 °C T 15.7 15.6 1.5 2.0 2.5 CC V 3.0 3.5 4.0 -- Supply Voltage -- V Figure 17. Calibrated 16-MHz Frequency vs VCC 46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) wake-up from low-power modes (LPM3/LPM4) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT BCSCTL1= CALBC1_1MHZ, 2.2 V/3 V 2 DCOCTL = CALDCO_1MHZ BCSCTL1= CALBC1_8MHZ, 2.2 V/3 V 1.5 DCO clock wake wake-up up time from LPM3/4 DCOCTL = CALDCO_8MHZ t µs (see Note 1) BCSCTL1= CALBC1_12MHZ, 2.2 V/3 V 1 DCOCTL = CALDCO_12MHZ BCSCTL1= CALBC1_16MHZ, 3V 1 DCOCTL = CALDCO_16MHZ CPU wake-up time from LPM3/4 1/f + t (see Note 2) t NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK). 2. Parameter applicable only if DCOCLK is used for MCLK. DCO,LPM3/4 MCLK CPU,LPM3/4 Clock,LPM3/4 typical characteristics - DCO clock wake-up time from LPM3/4 10.00 su e im T ek a W 1.00 O CD 0.10 0.10 RSELx = 0 to 11 RSELx = 12 to 15 1.00 10.00 DCO Frequency - MHz Figure 18. Clock Wake-Up Time From LPM3 vs DCO Frequency POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) OSC (see Note 1) DCO with external resistor R PARAMETER fDCO,ROSC TEST CONDITIONS DCO output frequency with ROSC DCOR = 1, 1 RSELx = 4, 4 DCOx = 3, 3 MODx = 0, 0 TA = 25°C Dt Temperature drift DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 DV Drift with VCC DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 NOTE 1: ROSC = 100 kΩ. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and T K = ±50ppm/°C. OSC VCC 2.2 V 3V 2.2 V/3 V 2.2 V/3 V TYP UNIT 1.8 MHz 1.95 ±0.1 %/°C 10 %/V typical characteristics -- DCO with external resistor R 10.00 z H M y c n e u q e r F O C D 10.00 z H M - 1.00 y c n e u q e r F 0.10 RSELx = 4 O C D y c n e u q e r F O C D RSELx = 4 0.01 10.00 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 - 50.0 - 25.0 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 1.5 ROSC = 100k ROSC = 270k ROSC = 1M 0.0 25.0 50.0 75.0 100.0 TA - Temperature - °C Figure 21. DCO Frequency vs Temperature, VCC = 3.0 V 48 0.10 0.01 10.00 100.00 1000.00 10000.00 ROSC - External Resistor - kOhm Figure 19. DCO Frequency vs ROSC, VCC = 2.2 V, TA = 25°C z H M - 1.00 100.00 1000.00 10000.00 ROSC - External Resistor - kOhm Figure 20. DCO Frequency vs ROSC, VCC = 3.0 V, TA = 25°C z H M y c n e u q e r F O C D ROSC = 100k ROSC = 270k ROSC = 1M 2.5 3.0 3.5 VCC - Supply Voltage - V Figure 22. DCO Frequency vs VCC, TA = 25°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2.0 4.0 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, low frequency modes (see Note 4) PARAMETER TEST CONDITIONS LFXT1 oscillator crystal XTS = 0, LFXT1Sx = 0 or 1 f frequency, LF mode 0/1 LFXT1 oscillator logic level square wave input XTS = 0, LFXT1Sx = 3, XCAPx = 0 f frequency, LF mode XTS = 0, LFXT1Sx = 0, f = 32768 kHz, Oscillation allowance for C = 6 pF OA LF crystals XTS = 0, LFXT1Sx = 0; f = 32768 kHz, C = 12 pF XTS = 0, XCAPx = 0 Integrated effective load XTS = 0, XCAPx = 1 capacitance LF mode capacitance, C XTS = 0, XCAPx = 2 (see Note 1) XTS = 0, XCAPx = 3 XTS = 0, Measured at P1.4/ACLK, Duty cycle LF mode f = 32768 Hz Oscillator fault XTS = 0, LFXT1Sx = 3, XCAPx = 0 frequency, LF mode f (see Note 2) (see Note 3) VCC LFXT1,LF 1.8 V to 3.6 V LFXT1,LF,logic 1.8 V to 3.6 V MIN 10000 32768 Hz 50000 500 200 L,eff 1 5.5 8.5 11 L,eff LFXT1,LF Hz kΩ L,eff LFXT1,LF Fault,LF MAX UNIT 32768 LFXT1,LF LF TYP 2.2 V/3 V 30 2.2 V/3 V 10 50 pF 70 % 10000 Hz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. 2. Measured with logic level input frequency but also applies to operation with crystals. 3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. 4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces under or adjacent to the XIN and XOUT pins. -- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. -- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. -- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. 5. Applies only if using an external logic-level clock source. Not applicable when using a crystal or resonator. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) internal very low power, low frequency oscillator (VLO) PARAMETER fVLO VLO frequency TEST CONDITIONS TA - 40°C to 85°C 105°C VCC 2 2 V/3 V 2.2 MIN 4 TYP 12 VLO frequency See Note 1 2.2 V/3 V 0.5 temperature drift frequency supply See Note 2 dfVLO/dVCC VLO 25°C 1.8V - 3.6V 4 voltage drift NOTES: 1. Calculated using the box method: I version: (MAX(-- 40_C to 85_C) - MIN(-- 40_C to 85_C))/MIN(-- 40_C to 85_C)/(85_C - (-- 40_C)) T version: (MAX(-- 40_C to 105_C) - MIN(-- 40_C to 105_C))/MIN(-- 40_C to 105_C)/(105_C - (-- 40_C)) 2. Calculated using the box method: (MAX(1.8 V to 3.6V) - MIN(1.8V to 3.6V))/MIN(1.8 V to 3.6V)/(3.6 V - 1.8 V) dfVLO/dT 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT 20 kHz 22 %/°C %/V MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, high frequency modes (see Note 5) f LFXT1,HF0 f LFXT1,HF1 f LFXT1,HF2 f PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT LFXT1 oscillator crystal frequency, XTS = 1, LFXT1Sx = 0, XCAPx = 0 1.8 V to 3.6 V 0.4 1 MHz HF mode 0 LFXT1 oscillator crystal frequency, XTS = 1, LFXT1Sx = 1, XCAPx = 0 1.8 V to 3.6 V 1 4 MHz HF mode 1 1.8 V to 3.6 V 2 10 LFXT1 oscillator ill t crystal t l frequency, f 2.2 V to 3.6 V 2 12 MHz XTS = 1, LFXT1Sx = 2, XCAPx = 0 HF mode 2 3 V to 3.6 V 2 16 1.8 V to 3.6 V 0.4 10 LFXT1 oscillator logic level 0.4 12 MHz square-wave square wave input frequency, XTS = 1, LFXT1Sx = 3, XCAPx = 0 2.2 V to 3.6 V HF mode 3 V to 3.6 V 0.4 16 XTS = 1, XCAPx = 0, LFXT1Sx = 0, f = 1 MHz, 2700 C = 15 pF XTS = 1, XCAPx = 0, Oscillation allowance for HF LFXT1Sx = 1, f = 4 MHz, 800 Ω crystals C = 15 pF (see Figure 23 and Figure 24) XTS = 1, XCAPx = 0, LFXT1Sx = 2, f = 16 MHz, 300 C = 15 pF Integrated effective load capacitance, HF mode XTS = 1, XCAPx = 0 (see Note 2) 1 pF (see Note 1) XTS = 1, XCAPx = 0, Measured at P1.4/ACLK, 2.2 V/3 V 40 50 60 f = 10 MHz HF mode % XTS = 1, XCAPx = 0, Measured at P1.4/ACLK, 2.2 V/3 V 40 50 60 f = 16 MHz Oscillator fault frequency, HF mode XTS = 1, LFXT1Sx = 3, XCAPx = 0 2.2 V/3 V 30 300 kHz (see Note 4) (see Note 3) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Measured with logic level input frequency but also applies to operation with crystals. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces under or adjacent to the XIN and XOUT pins. -- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. -- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. -- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. LFXT1,HF,logic LFXT1,HF ,logic LFXT1,HF L,eff OA LFXT1,HF HF L,eff LFXT1,HF L,eff C L,eff Duty cycle LFXT1,HF LFXT1,HF f Fault,HF NOTES: 1. 2. 3. 4. 5. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics - LFXT1 oscillator in HF mode (XTS = 1) 100000.00 s m h 10000.00 O ec na w ol 1000.00 A no it lai cs 100.00 O LFXT1Sx = 2 LFXT1Sx =0 LFXT1Sx = 1 10.00 0.10 1.00 10.00 100.00 Crystal Frequency -- MHz Figure 23. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C Au tn er ru C lyp pu Sr ot al ic s O TX 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 LFXT1Sx = 2 LFXT1Sx = 1 LFXT1Sx = 0 0 4 8 12 16 Crystal Frequency - MHz 20 Figure 24. XT Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, XT2 (see Note 5) f PARAMETER XT2 oscillator crystal frequency, mode 0 XT2 oscillator crystal frequency, mode 1 f XT2 oscillator ill t crystal t l frequency, f mode 2 XT2Sx = 2 f XT2 oscillator ill t logic l i level l l square-wave input frequency XT2Sx = 3 Oscillation allowance (see Figure 23 and Figure 24) XT2Sx = 0, f = 1 MHz, C = 15 pF XT2Sx = 1, f = 4 MHz, C = 15 pF XT2Sx = 2, f = 16 MHz, C = 15 pF f XT2 XT2 XT2 XT2 TEST CONDITIONS VCC MIN XT2Sx = 0 1.8 V to 3.6 V 0.4 1 MHz XT2Sx = 1 1.8 V to 3.6 V 1 4 MHz 1.8 V to 3.6 V 2.2 V to 3.6 V 3 V to 3.6 V 1.8 V to 3.6 V 2.2 V to 3.6 V 3 V to 3.6 V 2 2 2 0.4 0.4 0.4 10 12 MHz 16 10 12 MHz 16 XT2 2700 XT2 800 XT1,HF 300 L,eff OA L,eff L,eff Integrated effective load capacitance, HF mode (see Note 1) C L,eff Duty cycle See Note 2 Measured at P1.4/SMCLK, f = 10 MHz Measured at P1.4/SMCLK, f = 16 MHz XT2 XT2 f Fault NOTES: 1. 2. 3. 4. 5. TYP MAX UNIT Ω 1 2 2 V/3 V 2.2 pF 40 50 60 40 50 60 % Oscillator fault frequency, HF mode XT2Sx = 3, (see Note 3) 2.2 V/3 V 30 300 kHz (see Note 4) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Measured with logic level input frequency but also applies to operation with crystals. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces under or adjacent to the XIN and XOUT pins. -- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. -- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. -- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- XT2 oscillator 100000.00 s m h 10000.00 O ec na w ol 1000.00 A no it lai cs 100.00 O XT2Sx = 2 XT2Sx = 1 XT2Sx = 0 10.00 0.10 1.00 10.00 100.00 Crystal Frequency -- MHz Figure 25. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C Au tn er ru C lyp pu Sr ot al ic s O TX 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 XT2Sx = 2 XT2Sx = 1 XT2Sx = 0 0 4 8 12 16 Crystal Frequency - MHz 20 Figure 26. XT2 Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Timer_A PARAMETER ffTA Timer A clock frequency Timer_A tTA,cap Timer_A, capture timing Timer_B PARAMETER fTB Timer B clock frequency Timer_B tTB,cap Timer_B, capture timing TEST CONDITIONS Internal: SMCLK, ACLK, External: TACLK, TACLK INCLK, INCLK Duty cycle = 50% ±10% TA0, TA1, TA2 VCC 2.2 V 3.3 V 2.2 V/3 V MIN TEST CONDITIONS Internal: SMCLK, ACLK, External: TBCLK, TBCLK Duty cycle = 50% ±10% TB0, TB1, TB2 VCC 2.2 V MIN POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3.3 V 2.2 V/3 V 20 20 MAX UNIT 10 MHz 16 ns MAX UNIT 10 MHz 16 ns 55 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (UART mode) PARAMETER fUSCI TEST CONDITIONS Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% USCI input clock frequency VCC MIN TYP MAX UNIT fSYSTEM MHz BITCLK clock frequency 2.2 V /3 V 1 MHz (equals baud rate in MBaud) 2.2 V 50 150 600 ns UART receive deglitch time tτ (see Note 1) 3V 50 100 600 ns NOTE 1: Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. fBITCLK USCI (SPI master mode) (see Figure 27 and Figure 28) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time TEST CONDITIONS SMCLK, ACLK Duty cycle = 50% ± 10% VCC MIN fSYSTEM MHz 2.2 V 3V 2.2 V 3V 2.2 V 3V UCLK edge to SIMO valid; CL = 20 pF 110 75 0 0 NOTE 1: fUCxCLK = 2t 1 with tLOፒHI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)). LOፒHI For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. USCI (SPI slave mode) (see Figure 29 and Figure 30) tSTE,DIS PARAMETER STE lead time, STE low to clock STE lag time, Last clock to STE high STE access time, STE low to SOMI data out STE disable time, STE high to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time tSTE,LEAD tSTE,LAG tSTE,ACC TEST CONDITIONS VCC MIN TYP 2.2 V/3 V 2.2 V/3 V UCLK edge to SOMI valid; CL = 20 pF POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ns ns 30 20 ns MAX UNIT 50 ns 10 ns 2.2 V/3 V 50 ns 2.2 V/3 V 50 ns 2.2 V 3V 2.2 V 3V 2.2 V 3V 20 15 10 10 NOTE 1: fUCxCLK = 2t 1 with tLOፒHI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)) LOፒHI For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master. 56 MAX UNIT ns ns 75 50 110 75 ns MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 1/fUCxCLK UCLK CKPL=0 CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 27. SPI Master Mode, CKPH = 0 1/fUCxCLK UCLK CKPL=0 CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 28. SPI Master Mode, CKPH = 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 57 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 29. SPI Slave Mode, CKPH = 0 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO SOMI Figure 30. SPI Slave Mode, CKPH = 1 58 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 tSTE,DIS MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (I2C mode) (see Figure 31) PARAMETER TEST CONDITIONS Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% fUSCI USCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) Start tSU,STA Setup time for a repeated Start tHD,DAT tSU,DAT tSU,STO Data hold time Data setup time Setup time for Stop tSP Pulse width of spikes suppressed by input filter fSCL ≤ 100 kHz fSCL > 100 kHz fSCL ≤ 100 kHz fSCL > 100 kHz tHD,STA VCC MIN TYP MAX UNIT fSYSTEM MHz 2.2 V/3 V 2 2 V/3 V 2.2 2 2 V/3 V 2.2 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V 3V 0 4.0 0.6 4.7 0.6 0 250 4.0 50 50 400 kHz µs µs 150 100 600 600 ns ns µs ns tSU,STA tHD,STA SDA 1/fSCL tSP SCL tHD,DAT tSU,DAT tSU,STO Figure 31. I2C Mode Timing POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 59 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Comparator_A+ (see Note 1) PARAMETER I(DD) TEST CONDITIONS CAON = 1, 1 CARSEL = 0, 0 CAREF = 0 VCC 2.2 V 3V 2.2 V 3V 2.2 V/3 V MIN TYP 25 45 30 45 MAX UNIT 40 µA 60 50 µA 71 VCC - 1 V CAON = 1, CARSEL = 0, CAREF = 1/2/3, 1/2/3 no load at P2.3/CA0/TA1 P2 3/CA0/TA1 and P2.4/CA1/TA2 V(IC) Common-mode input voltage CAON =1 0 PCA0 = 1, CARSEL = 1, CAREF = 1, Voltage at 0.25 V CC node no load at P2.3/CA0/TA1 and V(Ref025) 2.2 V/3 V 0.23 0.24 0.25 P2.4/CA1/TA2 VCC Voltage at 0.5V CC node PCA0 = 1, CARSEL = 1, CAREF = 2, no load at P2.3/CA0/TA1 and V(Ref050) 2.2 V/3 V 0.47 0.48 0.5 VCC P2.4/CA1/TA2 PCA0 = 1, CARSEL = 1, CAREF = 3, 2.2 V 390 480 540 V(RefVT) See Figure 35 and Figure 36 mV no load at P2.3/CA0/TA1 P2 3/CA0/TA1 and 3V 400 490 550 P2.4/CA1/TA2, TA = 85°C V(offset) Offset voltage See Note 2 2.2 V/3 V - 30 30 mV Vhys Input hysteresis CAON=1 2.2 V/3 V 0 0.7 1.4 mV 2.2 V 80 165 300 TA = 25°C, Overdrive 10 mV, ns Without filter: CAF = 0 3V 70 120 240 time, low-to-high low to high and t(response) Response high-to-low g (see Note 3) 2.2 V 1.4 1.9 2.8 TA = 25°C, Overdrive 10 mV, µs With filter: CAF = 1 3V 0.9 1.5 2.2 NOTES: 1. The leakage current for the Comparator_A+ terminals is identical to I lkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together. 3. The response time is measured at P2.2/CAOUT/TA0/CA4 with an input voltage step, with Comparator_A+ already enabled (CAON = 1). If CAON is set at the same time, a settling time of up to 300 ns is added to the response time. I(Refladder/Refdiode) 60 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 0 V VCC 0 1 CAF CAON To Internal Modules Low Pass Filter + _ V+ V-- 0 0 1 1 CAOUT Set CAIFG Flag τ≈ 2.0 µs Figure 32. Block Diagram of Comparator_A Module VCAOUT Overdrive V-- 400 mV t(response) V+ Figure 33. Overdrive Definition CA0 CASHORT CA1 1 VIN + - Comparator_A+ CASHORT = 1 IOUT = 10µA Figure 34. Comparator_A+ Short Resistance Test Condition POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 61 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics - Comparator A+ 650 650 V 600 m tsl oV ec 550 ne re fe R 500 -) TV FE R V( 450 400 - 45 VCC = 2.2 V VCC = 3 V V 600 m slt oV ec 550 ne re fe R- 500 )T VF ER V( 450 Typical - 25 -5 15 35 55 75 TA - Free-Air Temperature - °C 95 Figure 35. V(RefVT) vs Temperature, VCC = 3 V 400 - 45 Typical - 25 -5 15 35 55 75 TA - Free-Air Temperature - °C Figure 36. V(RefVT) vs Temperature, VCC = 2.2 V 100.00 Ω k ec na ts 10.00 is eR tr oh S VCC = 2.2V VCC = 3.0V VCC = 1.8V VCC = 3.6V 1.00 0.0 0.2 0.4 0.6 0.8 1.0 VIN/VCC - Normalized Input Voltage - V/V Figure 37. Short Resistance vs VIN/VCC 62 95 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC power supply and input range conditions (see Note 1) PARAMETER AVCC Analog supply voltage V(P6.x/Ax) Analog input voltage (see Note 2) IADC12 Operating supply current into AVCC terminal (see Note 3) TEST CONDITIONS AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V All P6.0/A0 to P6.7/A7 terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x = 1, 0 ≤ x ≤ 7, V(AVSS) ≤ VP6.x/Ax ≤ V(AVCC) fADC12CLK = 5 MHz, ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0 VCC MIN TYP MAX UNIT 2.2 3.6 V 0 VAVCC V 2.2 V 0.65 0.8 3V 0.8 1.0 mA fADC12CLK = 5 MHz, ADC12ON = 0, 3V 0.5 0.7 REFON = 1, REF2_5V = 1 IREF+ 2.2 V 0.5 0.7 mAA fADC12CLK = 5 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 0 3V 0.5 0.7 Only one terminal can be selected at one time, CI † Input capacitance 2.2 V 40 pF P6.x/Ax RI† Input MUX ON resistance 0 V ≤ VAx ≤ VAVCC 3V 2000 Ω † Limits verified by design NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter. 2. The analog input voltage range must be within the selected reference voltage range V R+ to VR-- for valid conversion results. 3. The internal reference supply current is not included in current consumption parameter I ADC12. 4. The internal reference current is supplied via terminal AV CC. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. Operating p g supply pp y current i t AVCC terminal into t i l (see Note 4) 12-bit ADC external reference (see Note 1) PARAMETER TEST CONDITIONS VCC MIN MAX UNIT Positive external VeREF+ 1.4 VAVCC V reference voltage input VeREF+ > VREF--/VeREF-- (see Note 2) Negative external VREF-- /VeREF-0 1.2 V reference voltage input VeREF+ > VREF--/VeREF-- (see Note 3) external (VeREF+ - VREF--/VeREF--) Differential 1.4 VAVCC V reference voltage input VeREF+ > VREF--/VeREF-- (see Note 4) IVeREF+ Static input current 0V ≤VeREF+ ≤ VAVCC 2.2 V/3 V ±1 µA IVREF--/VeREF-Static input current 0V ≤ VeREF-- ≤ VAVCC 2.2 V/3 V ±1 µA NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C i, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. 4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 63 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC built-in reference PARAMETER VREF+ Positive built-in reference voltage output AVCC(min) AVCC minimum voltage, positive built-in built in reference active IVREF+ IL(VREF)+ † IDL(VREF) +‡ CVREF+ TREF+† TEST CONDITIONS REF2_5V = 1 (2.5 V) IVREF+max ≤ IVREF+≤ IVREF+min REF2_5V = 0 (1.5 V) IVREF+max ≤ IVREF+≤ IVREF+min REF2_5V = 0, IVREF+max ≤ IVREF+≤ IVREF+min REF2_5V = 1, - 0.5mA ≤ IVREF+≤ IVREF+min REF2_5V = 1, - 1mA ≤ IVREF+≤ IVREF+min Load current out of VREF+ terminal IVREF+ = 500 µA +/-- 100 µA Analog input voltage ~0.75 0 75 V, V Load-current REF2_5V = 0 regulation VREF+ regulation, IVREF+ = 500 µA ± 100 µA terminal Analog input voltage ~1.25 V, REF2_5V = 1 Load current IVREF+ = 100 µA → 900 µA, regulation VREF+ CVREF+= 5 µFF, at ~0.5 0 5 VREF+, Error of conversion result ≤ 1 LSB terminal Capacitance at pin REFON =1, VREF+ (see Note 1) 0 mA ≤ IVREF+ ≤ IVREF+max Temperature IVREF+ is a constant in the range coefficient of of 0 mA ≤ IVREF+ ≤ 1 mA built-in reference VCC 3V 2.2 V/3 V 2.2 V/3 V TA - 40°C to 85°C 105°C - 40°C to 85°C 105°C MIN 2.4 2.37 1.44 1.42 TYP 2.5 2.5 1.5 1.5 MAX 2.6 2.64 1.56 1.57 UNIT V 2.2 2.8 V 2.9 2.2 V 3V 2.2 V 0.01 0.01 - 0.5 -1 ±2 3V ±2 3V ±2 3V 20 2.2 V/3 V 2.2 V/3 V 5 10 mA LSB ns µF ±100 ppm/°C Settle time of internal reference I VREF+ = 0.5 mA, CVREF+ = 10 µF, voltage (see 17 ms tREFON† V Figure 38 and Note REF+ = 1.5 V, VAVCC = 2.2 V 2) † Limits characterized ‡ Limits verified by design NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests use two capacitors between pins VREF+ and AVSS and VREF--/VeREF-- and AVSS: 10 µF tantalum and 100 nF ceramic. 2. The condition is that the error in a conversion started after t REFON is less than ±0.5 LSB. The settling time depends on the external capacitive load. 64 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics - ADC12 CVREF+ 100 µF tREFON ≈ .66 x CVREF+ [ms] with CVREF+ in µF 10 µF 1 µF 0 1 ms 10 ms 100 ms tREFON Figure 38. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 65 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) From Power Supply + 10 µ F 100 nF + 10 µ F 100 nF Apply External Reference [VeREF+] or Use Internal Reference [VREF+] + - Apply External Reference 10 µ F 100 nF + 10 µ F 100 nF DVCC DVSS AVCC MSP430F261x AVSS MSP430F241x VREF+ or VeREF+ VREF - /VeREF-- Figure 39. Supply Voltage and Reference Voltage Design VREF-- /VeREF-- External Supply From Power Supply + 10 µ F 100 nF + - Apply External Reference [VeREF+] or Use Internal Reference [VREF+] Reference Is Internally Switched to AVSS 10 µ F 100 nF + - 10 µ F 100 nF DVCC DVSS AVCC MSP430F261x AVSS MSP430F241x VREF+ or VeREF+ VREF-- /VeREF-- Figure 40. Supply Voltage and Reference Voltage Design VREF-- /VeREF-- = AVSS, Internally Connected 66 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC timing parameters PARAMETER fADC12CLK fADC12OSC Internal ADC12 oscillator tCONVERT Conversion time tADC12ON‡ Turn-on settling time of the ADC tSample‡ Sampling time † Limits characterized ‡ Limits verified by design TEST CONDITIONS VCC For specified performance of ADC12 2.2V/3 V linearity parameters ADC12DIV = 0, 2.2 V/ 3 V fADC12CLK = fADC12OSC CVREF+ ≥ 5 µF, Internal oscillator, 2.2 V/ 3 V fADC12OSC = 3.7 MHz to 6.3 MHz External fADC12CLK from ACLK, MCLK or SMCLK, ADC12SSEL ≠ 0 MIN TYP MAX UNIT 0.45 5 6.3 MHz 3.7 5 6.3 MHz 2.06 3.51 13 × ADC12DIV × 1/fADC12CLK See Note 1 RS = 400 Ω, RI = 1000 Ω, CI = 30 pF, τ = [RS + RI] x CI;(see Note 2) 100 3V 2.2 V 1220 1400 µs ns ns NOTES: 1. The condition is that the error in a conversion started after t ADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. 2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) x (RS + RI) x CI+ 800 ns where n = ADC resolution = 12, RS = external source resistance. 12-bit ADC linearity parameters PARAMETER EI ED EO EG ET TEST CONDITIONS 1.4 V ≤ (VeREF+ - VREF--/VeREF--) min ≤ 1.6 V Integral linearity error 1.6 V < (VeREF+ - VREF--/VeREF--) min ≤ VAVCC (V VREF--/VeREF--)min ≤ (VeREF+ - VREF--/VeREF--), Differential linearity error C eREF+ =- 10 µF (tantalum) and 100 nF (ceramic) VREF+ (VeREF+ - VREF--/VeREF--)min ≤ (VeREF+ - VREF--/VeREF--), Internal impedance of source RS < 100 Ω, Offset error CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) (VeREF+ - VREF--/VeREF--)min ≤ (VeREF+ - VREF--/VeREF--), Gain error CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) (VeREF+ - VREF--/VeREF--)min ≤ (VeREF+ - VREF--/VeREF--), Total unadjusted error CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VCC MIN TYP 2 2 V/3 V 2.2 2.2 V/3 V MAX ±2 ±1.7 UNIT ±1 LSB LSB 2.2 V/3 V ±2 ±4 LSB 2.2 V/3 V ±1.1 ±2 LSB 2.2 V/3 V ±2 ±5 LSB 67 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC temperature sensor and built-in VMID ISENSOR PARAMETER Operating supply current into AVCC terminal (see Note 1) VSENSOR† See Note 2 TCSENSOR† TEST CONDITIONS REFON = 0, INCH = 0Ah, ADC12ON = 1, TA = 25_C ADC12ON = 1, INCH = 0Ah, TA = 0°C ADC12ON = 1, 1 INCH = 0Ah tSENSOR(sample)† Sample time required if channel 10 is selected (see Note 3) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB IVMID Current into divider at channel 11 ADC12ON = 1, 1 INCH = 0Bh (see Note 4) VMID AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is ~0.5 x VAVCC VCC 2.2 V 3V 2.2 V 3V 2.2 V 3V 2.2 V 3V 2.2 V 3V 2.2 V 3V 2.2 V 3V MIN 30 30 TYP 40 60 986 986 3.55 3.55 MAX UNIT 120 µA 160 mV mV/°C µs NA NA 1.1 1.1±0.04 1.5 1.50±0.04 µA V 1400 Sample time required if channel ADC12ON = 1, INCH = 0Bh, ns Error of conversion result ≤ 1 LSB 11 is selected (see Note 5) 1220 † Limits characterized NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON = 1) or if (ADC12ON = 1, INCH = 0Ah and sample signal is high). When REFON = 1, ISENSOR is already included in IREF+. 2. The temperature sensor offset can be as much as ±20_C. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor. 3. The typical equivalent impedance of the sensor is 51 k Ω. The sample time required includes the sensor-on time t SENSOR(on). 4. No additional current is needed. The VMID is used during sampling. 5. The on time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. tVMID(sample) 68 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC supply specifications PARAMETER TEST CONDITIONS VCC TA MIN TYP MAX UNIT AVCC = DVCC, AVCC Analog supply voltage 2.20 3.60 V AVSS = DVSS = 0 V - 40°C to 85°C 50 110 DAC12AMPx = 2, DAC12IR = 0, 2 2V/3V 2.2V/3V DAC12_xDAT = 0x0800 105°C 69 150 DAC12AMPx = 2, DAC12IR = 1, 2.2V/3V 50 130 DAC12_xDAT = x00800 , VeREF+ = VREF+ = AVCC Supply current, IDD µA single DAC channel DAC12AMPx = 5, DAC12IR = 1, (see Notes 1 and 2) 2.2V/3V 200 440 DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC DAC12AMPx = 7, DAC12IR = 1, 2.2V/3V 700 1500 DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC DAC12_xDAT = 800h, VREF = 1.5 V, 2.2V Power-supply ∆AVCC = 100mV PSRR rejection ratio 70 dB DAC12_xDAT = 800h, VREF = 1.5 V or 2.5 V, (see Notes 3 and 4) 3V ∆AVCC = 100mV NOTES: 1. No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly. 2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications. 3. PSRR = 20 × log{∆AVCC/∆VDAC12_xOUT} 4. VREF is applied externally. The internal reference is not used. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 69 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC linearity specifications (see Figure 41) PARAMETER Resolution INL Integral nonlinearity (see Note 1) DNL Differential nonlinearity (see Note 1) Offset voltage without calibration (see Notes 1 and 2) EO Offset voltage with calibration (see Notes 1 and 2) dE(O)/dT Offset error temperature coefficient (see Note 1) EG Gain error (see Note 1) dE(G)/dT Gain temperature coefficient (see Note 1) TEST CONDITIONS 12-bit monotonic VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 VCC MIN 12 TYP MAX UNIT bits ±22.00 ±88.00 LSB ±00.44 ±11.00 LSB 2.2 V 3V 2.2 V 3V 2.2 V ±21 3V mV 2.2 V ±22.55 3V 2.2 V/3 V VREF = 1.5 V VREF = 2.5 V 30 2.2 V 3V V/C µ 33.50 50 % FSR ± 2.2 V/3 V 10 ppm of FSR/°C DAC12AMPx = 2 100 DAC12AMPx = 3, 5 32 ms 2.2 V/3 V DAC12AMPx = 4, 6, 7 6 NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and “b” of the first-order equation: y = a + b × x. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1. 2. The offset calibration works on the output operational amplifier. Offset calibration is triggered setting bit DAC12CALON. 3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx={0,1}.TheDAC12moduleshouldbeconfiguredpriortoinitiatingcalibration.Portactivityduringcalibrationmayaffect accuracy and is not recommended. tOffset_Cal Offset Cal Time for Ti f offset ff t calibration lib ti (see Note 3) DAC Output DAC VOUT VR+ RLoad = AV CC 2 CLoad = 100pF Offset Error Positive Negative Ideal transfer function Gain Error DAC Code Figure 41. Linearity Test Load Conditions and Gain/Offset Definition 70 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) typical characteristics - 12-bit DAC, linearity specifications TYPICAL INL ERROR vs DIGITAL INPUT DATA 4 B S L r o r r E y t i r a e n il n o N l a r g e t In L N I VCC = 2.2 V, VREF = 1.5V DAC12AMPx = 7 DAC12IR = 1 3 2 1 0 -1 -2 -3 -4 0 L N D 1024 1536 2048 2560 DAC12_xDAT - Digital Code 3072 3584 4095 TYPICAL DNL ERROR vs DIGITAL INPUT DATA 2.0 B S L r o r r E y t i r a e n il n o N l a it n e r e f f i D - 512 VCC = 2.2 V, VREF = 1.5V DAC12AMPx = 7 DAC12IR = 1 1.5 1.0 0.5 0.0 - 0.5 - 1.0 - 1.5 - 2.0 0 512 1024 1536 2048 2560 DAC12_xDAT - Digital Code POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3072 3584 4095 71 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC output specifications PARAMETER VO Output voltage range (see Note 1 and Figure 44) CL(DAC12) Max DAC12 load capacitance IL(DAC12) Max DAC12 load current TEST CONDITIONS No Load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 No Load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 RLoad= 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 RLoad= 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 VCC MIN MAX UNIT 0 0.005 AVCC - 0.05 AVCC 2 2 V/3 V 2.2 V 0 0.1 AVCC - 0.13 AVCC 2.2 V/3 V 2.2V 3V - 0.5 - 1.0 RLoad= 3 kΩ, VO/P(DAC12) = 0 V, DAC12AMPx = 7, DAC12_xDAT = 0h RLoad= 3 kΩ, VO/P(DAC12) = AVCC, DAC12AMPx = 7, Output resistance RO/P(DAC12) (see Figure 44) 2.2 V/3 V DAC12_xDAT = 0FFFh RLoad= 3 kΩ, 0.3 V < VO/P(DAC12) < AVCC - 0.3 V, DAC12AMPx = 7 NOTE 1: Data is valid after the offset calibration of the output amplifier. RO/P(DAC12_x) Max RLoad ILoad AV CC DAC12 2 O/P(DAC12_x) CLoad= 100pF Min 0.3 Figure 44. DAC12_x Output Resistance Tests 72 TYP POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 pF +0.5 +1.0 mA 150 250 150 250 1 4 Ω AV CC - 0.3V VOUT AV CC MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC reference input specifications PARAMETER Reference input voltage range Ve REF+ Ri Ri , (VREF+) (VeREF+) NOTES: 1. 2. 3. 4. 5. TEST CONDITIONS VCC MIN TYP MAX UNIT DAC12IR = 0, (see Notes 1 and 2) AV /3 AV +0.2 2 2 V/3 V 2.2 V AVcc AVcc+0.2 DAC12IR = 1, (see Notes 3 and 4) DAC12_0 IR = DAC12_1 IR = 0 20 MΩ DAC12_0 IR = 1, DAC12_1 IR = 0 40 48 56 Reference input p DAC12_0 IR = 0, DAC12_1 IR = 1 2.2 V/3 V resistance it kΩ DAC12_0 IR = DAC12_1 IR = 1 DAC12_0 SREFx = DAC12_1 SREFx 20 24 28 (see Note 5) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AV ). The maximum voltage applied at reference input voltage terminal Ve = [AV - V ] / [3*(1 + E )]. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AV ). The maximum voltage applied at reference input voltage terminal Ve = [AV - V ] / (1 + E ). When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance. CC CC CC REF+ CC E(O) REF+ CC E(O) G CC G 12-bit DAC dynamic specifications, Vref = VCC, DAC12IR = 1 (see Figure 45 and Figure 46) PARAMETER TEST CONDITIONS DAC12_xDAT _ = 800h,, DAC12AMPx = 0 → {2, 3, 4} Error < ±0.5 LSB DAC12AMPx = 0 → {5, 6} t DAC12 on-time (see Note 1 and DAC12AMPx = 0 → 7 Figure 45) DAC12AMPx = 2 S ttli time, Settling ti DAC12 DAT = DAC12_xDAT DAC12AMPx = 3, 5 t full scale 80h→ F7Fh→ 80h DAC12AMPx = 4, 6, 7 DAC12AMPx = 2 DAC12 xDAT = DAC12_xDAT S ttli time, Settling ti 3F8h→ 408h→ 3F8h DAC12AMPx = 3, 5 t code to code BF8h→ C08h→ BF8h DAC12AMPx = 4, 6, 7 DAC12AMPx = 2 DAC12 DAT = DAC12_xDAT DAC12AMPx = 3, 5 SR Slew rate 80h→ F7Fh→ 80h DAC12AMPx = 4, 6, 7 DAC12AMPx = 2 Glit h energy, Glitch DAC12 DAT = DAC12_xDAT DAC12AMPx = 3, 5 full scale 80h→ F7Fh→ 80h DAC12AMPx = 4, 6, 7 NOTES: 1. R and C are connected to AV (not AV /2) in Figure 45. 2. Slew rate applies to output voltage steps ≥ 200 mV. V(O) ON VCC 2.2 V/3 / V S(FS) 2.2 V/3 V S(C-C) 2.2 V/3 V Load Load SS DAC Output ILoad RO/P(DAC12.x) MIN 2.2 V/3 V 0.05 0.35 1.5 2.2 V/3 V TYP 60 15 6 100 40 15 5 2 1 0.12 0.7 2.7 600 150 30 MAX 120 30 12 200 80 30 UNIT µs µs µs V/µs nV-ss nV CC VOUT RLoad = 3 kΩ Conversion 1 Glitch Energy Conversion 2 +/-- 1/2 LSB AV CC 2 +/-- 1/2 LSB CLoad = 100pF tsettleLH Figure 45. Settling Time and Glitch Energy Testing POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Conversion 3 tsettleHL 73 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) VOUT Conversion 1 Conversion 2 90% Conversion 3 90% 10% 10% tSRLH tSRHL Figure 46. Slew Rate Testing 12-bit DAC, dynamic specifications (continued) (TA = 25°C, unless otherwise noted) PARAMETER BW--3dB TEST CONDITIONS 3-dB bandwidth, VDC = 1.5 V, VAC = 0.1 VPP (see Figure 47) Channel to channel crosstalk Channel-to-channel (see Note 1 and Figure 48) NOTE 1: RLOAD = 3 kΩ, CLOAD = 100 pF DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h<-- >F7Fh, RLoad = 3 kΩ, fDAC12_1OUT = 10 kHz, Duty cycle = 50% DAC12_0DAT = 80h<-- >F7Fh, RLoad = 3 kΩ, DAC12_1DAT = 800h, No load, fDAC12_0OUT = 10 kHz, Duty cycle = 50% Ve REF+ DAC12_x AC DC ILoad DACx VCC MIN TYP MAX UNIT 40 180 2.2 V/3 V kHz 550 - 80 2 2 V/3 V 2.2 dB - 80 RLoad = 3 kΩ AV CC 2 CLoad = 100pF Figure 47. Test Conditions for 3-dB Bandwidth Specification DAC12_0 RLoad AV CC 2 DAC0 CLoad= 100pF VREF+ e ILoad DAC12_1 ILoad DAC1 DAC12_xDAT 080h V OUT 4 080h V DAC12_yOUT RLoad AV CC 2 V DAC12_xOUT CLoad= 100pF Figure 48. Crosstalk Test Conditions 7 7F7h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 fToggle 7F7h 080h MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) flash memory PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT Program and erase supply voltage 2.2 3.6 V Flash Timing Generator frequency 257 476 kHz Supply current from DVCC during program 2.2 V/ 3.6 V 3 5 mA Supply current from DVCC during erase 2.2 V/ 3.6 V 3 7 mA Cumulative program time See Note 1 2.2 V/ 3.6 V 10 ms Cumulative mass erase time 2.2 V/ 3.6 V 20 ms Program/Erase endurance 104 105 cycles tRetention Data retention duration TJ = 25°C 100 years tWord Word or byte program time See Note 2 35 tFTG tBlock, 0 Block program time for first byte or word See Note 2 30 tFTG tBlock, 1-63 Block program time for each additional byte or word See Note 2 21 tFTG tBlock, End Block program end-sequence wait time See Note 2 6 tFTG tMass Erase Mass erase time See Note 2 10593 tFTG tSeg Erase Segment erase time See Note 2 4819 tFTG NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. These values are hardwired into the Flash Controller’s state machine (t FTG = 1/fFTG). VCC(PGM/ERASE) fFTG IPGM IERASE tCPT tCMErase RAM PARAMETER TEST CONDITIONS MIN MAX UNIT VRAMh See Note 1 CPU halted 1.6 V NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 75 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) JTAG interface PARAMETER fTCK TCK input frequency TEST CONDITIONS See Note 1 RInternal Internal pullup resistance on TMS, TCK, TDI/TCLK See Note 2 NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions. JTAG fuse (see Note 1) VCC MIN 2.2 V 3V 2.2 V/ 3 V 0 0 25 TYP MAX 60 5 10 90 UNIT MHz kΩ PARAMETER TEST CONDITIONS MIN MAX UNIT VCC(FB) Supply voltage during fuse-blow condition TA = 25°C 2.5 V VFB Voltage level on TDI/TCLK for fuse blow (F versions) 6 7 V IFB Supply current into TDI/TCLK during fuse blow 100 mA tFB Time to blow fuse 1 ms NOTE 1: Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. 76 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 APPLICATION INFORMATION Port P1 pin schematic: P1.0 to P1.7, input/output with Schmitt trigger Pad Logic P1REN.x P1DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS P1.0/TACLK/CAOUT P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 P1SEL.x P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q Set P1IFG.x P1SEL.x P1IES.x Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 77 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P1 (P1.0 to P1.7) pin functions PIN NAME (P1.X) (P1 X) P1.0/TACLK/CAOUT / / P1.1/TA0 / P1.2/TA1 / P1.3/TA2 / P1.4/SMCLK / P1.5/TA0 / P1.6/TA1 / P1.7/TA2 / 78 X FUNCTION 0 P1.0 (I/O) Timer_A3.TACLK CAOUT 1 P1.1 (I/O) Timer_A3.CCI0A Timer_A3.TA0 2 P1.2 (I/O) Timer_A3.CCI1A Timer_A3.TA1 3 P1.3 (I/O) Timer_A3.CCI2A Timer_A3.TA2 4 P1.4 (I/O) SMCLK 5 P1.5 (I/O) Timer_A3.TA0 6 P1.6 (I/O) Timer_A3.TA1 7 P1.7 (I/O) Timer_A3.TA2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P1DIR.x P1SEL.x I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P2 pin schematic: P2.0 to P2.4, P2.6, and P2.7, input/output with Schmitt trigger Pad Logic To Comparator_A From Comparator_A CAPD.x P2REN.x P2DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.x DVSS Bus Keeper EN P2SEL.x P2IN.x EN P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.6/ADC12CLK/ DMAE0/CA6 P2.7/TA0/CA7 D Module X IN P2IE.x P2IRQ.x EN Q Set P2IFG.x P2SEL.x P2IES.x Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 79 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P2.0, P2.3, P2.4, P2.6 and P2.7 pin functions PIN NAME (P2.X) (P2 X) P2.0/ACLK/CA2 / / P2.1/TAINCLK/CA3 / / P2.2/CAOUT/TA0/ / / / CA4 P2.3/CA0/TA1 / / P2.4/CA1/TA2 / / P2.6/ADC12CLK/ / / DMAE0/CA6 P2.7/TA0/CA7 / / NOTE: X: Don’t care 80 X FUNCTION 0 P2.0 (I/O) ACLK CA2 1 P2.1 (I/O) Timer_A3.INCLK DVSS CA3 2 P2.2 (I/O) CAOUT Timer_A3.CCI0B CA4 3 P2.3 (I/O) Timer_A3.TA1 CA0 4 P2.4 (I/O) Timer_A3.TA2 CA1 6 P2.6 (I/O) ADC12CLK DMAE0 CA6 7 P2.7 (I/O) Timer_A3.TA0 CA7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS CAPD.x P2DIR.x P2SEL.x 0 I: 0; O: 1 0 0 1 1 1 X X 0 I: 0; O: 1 0 0 0 1 0 1 1 1 X X 0 I: 0; O: 1 0 0 1 1 0 0 1 1 X X 0 I: 0; O: 1 0 0 1 1 1 X X 0 I: 0; O: 1 0 0 1 X 1 X 1 0 I: 0; O: 1 0 0 1 1 0 0 1 1 X X 0 I: 0; O: 1 0 0 1 1 1 X X MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P2 pin schematic: P2.5, input/output with Schmitt trigger Pad Logic To Comparator From Comparator CAPD.5 To DCO in DCO DCOR P2REN.5 P2DIR.5 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.5 DVSS P2.5/ROSC/CA5 Bus Keeper EN P2SEL.x P2IN.5 EN Module X IN D P2IE.5 P2IRQ.5 EN Q Set P2IFG.5 P2SEL.5 P2IES.5 Interrupt Edge Select Port P2.5 pin functions PIN NAME (P2.X) (P2 X) P2.5/R / OSC//CA5 X FUNCTION 5 P2.5 (I/O) ROSC (see Note 2) DVSS CA5 NOTES: 1. X: Don’t care 2. If Rosc is used it is connected to an external resistor. CAPD 0 0 0 1 or selected POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS DCOR P2DIR.5 0 1 0 0 I: 0; O: 1 X 1 X P2SEL.5 0 X 1 X 81 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P3 pin schematic: P3.0 to P3.7, input/output with Schmitt trigger Pad Logic P3REN.x P3DIR.x Module direction P3OUT.x Module X OUT 0 DVSS 0 DVCC 1 Direction 0: Input 1: Output 1 0 1 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/UCA1TXD/UCA1SIMO P3.7/UCA1RXD/UCA1SOMI P3SEL.x P3IN.x EN Module X IN D Port P3.0 to P3.7 pin functions PIN NAME (P3.X) (P3 X) 1 X FUNCTION P3.0/UCB0STE/ / / UCA0CLK CONTROL BITS / SIGNALS P3DIR.x P3SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 0 P3.0 (I/O) UCB0STE/UCA0CLK (see Note 2 and 4) P3.1/UCB0SIMO/ / / 1 P3.1 (I/O) UCB0SDA UCB0SIMO/UCB0SDA (see Note 2 and 3) P3.2/UCB0SOMI/ / / 2 P3.2 (I/O) UCB0SCL UCB0SOMI/UCB0SCL (see Note 2 and 3) P3.3/UCB0CLK/ / / 3 P3.3 (I/O) UCA0STE UCB0CLK/UCA0STE (see Note 2) P3.4/UCA0TXD/ / / 4 P3.4 (I/O) UCA0SIMO UCA0TXD/UCA0SIMO (see Note 2) P3.5/UCA0RXD/ / / 5 P3.5 (I/O) UCA0SOMI UCA0RXD/UCA0SOMI (see Note 2) P3.6/UCA1TXD/ / / 6 P3.6 (I/O) UCA1SIMO UCA1TXD/UCA1SIMO (see Note 2) P3.7/UCA1RXD/ / / 7 P3.7 (I/O) UCA1SOMI UCA1RXD/UCA1SOMI (see Note 2) NOTES: 1. X: Don’t care 2. The pin direction is controlled by the USCI module. 3. In case the I2C functionality is selected the output drives only the logical 0 to V SS level. 4. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI A0/B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected. 82 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P4 pin schematic: P4.0 to P4.7, input/output with Schmitt trigger Pad Logic P4REN.x P4DIR.x 0 0 Module X OUT 1 0 DVCC 1 P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB3 P4.4/TB4 P4.5/TB5 P4.6/TB6 P4.7/TBCLK P4SEL.x P4IN.x EN Module X IN D Port P4.0 to P4.7 pin functions PIN NAME (P4.X) (P4 X) P4.0/TB0 / P4.1/TB1 / P4.2/TB2 / P4.3/TB3 / P4.4/TB4 / P4.5/TB5 / P4.6/TB6 / P4.7/TBCLK / 1 Direction 0: Input 1: Output 1 P4OUT.x DVSS X FUNCTION 0 P4.0 (I/O) Timer_B7.CCI0A and Timer_B7.CCI0B Timer_B7.TB0 1 P4.1 (I/O) Timer_B7.CCI1A and Timer_B7.CCI1B Timer_B7.TB1 2 P4.2 (I/O) Timer_B7.CCI2A and Timer_B7.CCI2B Timer_B7.TB2 3 P4.3 (I/O) Timer_B7.CCI3A and Timer_B7.CCI3B Timer_B7.TB3 4 P4.4 (I/O) Timer_B7.CCI4A and Timer_B7.CCI4B Timer_B7.TB4 5 P4.5 (I/O) Timer_B7.CCI5A and Timer_B7.CCI5B Timer_B7.TB5 6 P4.6 (I/O) Timer_B7.CCI6A and Timer_B7.CCI6B Timer_B7.TB6 7 P4.7 (I/O) Timer_B7.TBCLK POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P4DIR.x P4SEL.x I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 1 1 83 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P5 pin schematic: P5.0 to P5.7, input/output with Schmitt trigger Pad Logic P5REN.x P5DIR.x 0 Module Direction 1 P5OUT.x 0 Module X OUT DVSS 0 DVCC 1 Direction 0: Input 1: Output 1 P5.0/UCB1STE/UCA1CLK P5.1/UCB1SIMO/UCB1SDA P5.2/UCB1SOMI/UCB1SCL P5.3/UCB1CLK/UCA1STE P5.4/MCLK P5.5/SMCLK P5.6/ACLK P5.7/TBOUTH/SVSOUT P5SEL.x P5IN.x EN Module X IN D Port P5.0 to P5.7 pin functions PIN NAME (P5.X) (P5 X) 1 X FUNCTION P5.0/UCB1STE/ / / UCA1CLK CONTROL BITS / SIGNALS P5DIR.x P5SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 0 1 1 1 0 P5.0 (I/O) UCB1STE/UCA1CLK (see Note 2 and 4) P5.1/UCB1SIMO/ / / 1 P5.1 (I/O) UCB1SDA UCB1SIMO/UCB1SDA (see Note 2 and 3) P5.2/UCB1SOMI/ / / 2 P5.2 (I/O) UCB1SCL UCB1SOMI/UCB1SCL (see Note 2 and 3) P5.3/UCB1CLK/ / / 3 P5.3 (I/O) UCA1STE UCB1CLK/UCA1STE (see Note 2) P5.4/MCLK / 4 P5.0 (I/O) MCLK P5.5/SMCLK / 5 P5.1 (I/O) SMCLK P5.6/ACLK / 6 P5.2 (I/O) ACLK P5.7/TBOUTH/ / / 7 P5.7 (I/O) SVSOUT TBOUTH SVSOUT NOTES: 1. X: Don’t care 2. The pin direction is controlled by the USCI module. 3. In case the I2C functionality is selected the output drives only the logical 0 to V SS level. 4. UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output USCI A1/B1 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected. 84 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P6 pin schematic: P6.0 to P6.4, input/output with Schmitt trigger Pad Logic ADC12 Ax P6REN.x P6DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P6OUT.x DVSS P6.0/A0 P6.1/A1 P6.2/A2 P6.3/A3 P6.4/A4 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Port P6.0 to P6.4 pin functions PIN NAME (P6.X) (P6 X) X FUNCTION P6.0/A0 / 0 P6.0 (I/O) A0 (see Note 2) P6.1/A1 / 1 P6.1 (I/O) A1 (see Note 2) P6.2/A2 / 2 P6.2 (I/O) A2 (see Note 2) P6.3/A3 / 3 P6.3 (I/O) A3 (see Note 2) P6.4/A4 / 4 P6.4 (I/O) A4 (see Note 2) NOTES: 1. X: Don’t care 2. The ADC12 channel Ax is connected to AVss internally if not selected. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P6DIR.x P6SEL.x I: 0; O: 1 X I: 0; O: 1 X I: 0; O: 1 X I: 0; O: 1 X I: 0; O: 1 X 0 X 0 X 0 X 0 X 0 X 85 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P6 pin schematic: P6.5 and P6.6, input/output with Schmitt trigger Pad Logic DAC12_0OUT DAC12AMP > 0 ADC12 Ax ADC12 Ax P6REN.x P6DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P6OUT.x DVSS P6.5/A5/DAC1 P6.6/A6/DAC0 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Port P6.5 to P6.6 pin functions PIN NAME (P6.X) X FUNCTION P6.5/A5/DAC1† / / † 5 P6.5 (I/O) DVSS A5 (see Note 2) DAC1 (DA12OPS= 1, see Note 3) P6.6/A6/DAC0† / / † 6 P6.6 (I/O) DVSS A6 (see Note 2) DAC0 (DA12OPS= 0, see Note 3) † MSP430F261x devices only NOTES: 1. X: Don’t care 2. The ADC12 channel Ax is connected to AVss internally if not selected. 3. The DAC outputs are floating if not selected. 86 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS CAPD.x or P6DIR.x P6SEL.x DAC12AMP > 0 I: 0; O: 1 1 X X I: 0; O: 1 1 X X 0 1 X X 0 1 X X 0 0 1 1 0 0 1 1 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P6 pin schematic: P6.7, input/output with Schmitt trigger Pad Logic to SVS Mux VLD = 15 DAC12_0OUT DAC12AMP > 0 ADC12 A7 from ADC12 P6REN.7 P6DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P6OUT.7 DVSS P6.7/A7/DAC1/SVSIN Bus Keeper EN P6SEL.7 P6IN.7 EN Module X IN D Port P6.7 pin functions PIN NAME (P6.X) (P6 X) X FUNCTION P6.7/A7/DAC1†/ / / †/ SVSIN† 7 P6.7 (I/O) DVSS A7 (see Note 2) DAC1 (DA12OPS= 0, see Note 3) SVSIN (VLD = 15) NOTES: 1. X: Don’t care 2. The ADC12 channel Ax is connected to AVss internally if not selected. 3. The DAC outputs are floating if not selected. † MSP430F261x devices only POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P6DIR.x P6SEL.x I: 0; O: 1 1 X X X 0 1 X X X 87 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P7 pin schematic: P7.0 to P7.7, input/output with Schmitt trigger† Pad Logic P7REN.x P7DIR.x 0 0 1 P7OUT.x 0 VSS 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P7.x P7SEL.x P7IN.x EN Module X IN D Port P7.0 to P7.7 pin functions† PIN NAME (P7.X) (P7 X) P7.0 X 0 FUNCTION P7.0 (I/O) Input P7.1 1 P7.2 2 P7.1 (I/O) Input P7.2 (I/O) Input P7.3 3 P7.3 (I/O) Input P7.4 4 P7.5 5 P7.6 6 P7.4 (I/O) Input P7.5 (I/O) Input P7.6 (I/O) Input P7.7 7 P7.7 (I/O) Input † 80-pin devices only 88 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P7DIR.x P7SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P8 pin schematic: P8.0 to P8.5, input/output with Schmitt trigger† Pad Logic P8REN.x P8DIR.x 0 0 1 P8OUT.x 0 VSS 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P8.0 P8.1 P8.2 P8.3 P8.4 P8.5 P8SEL.x P8IN.x EN Module X IN D Port P8.0 to P8.5 pin functions† PIN NAME (P8.X) (P8 X) P8.0 X 0 FUNCTION P8.0 (I/O) Input P8.1 1 P8.2 2 P8.1 (I/O) Input P8.2 (I/O) Input P8.3 3 P8.3 (I/O) Input P8.4 4 P8.5 5 P8.4 (I/O) Input P8.5 (I/O) Input † CONTROL BITS / SIGNALS P8DIR.x P8SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 80-pin devices only POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 89 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P8 pin schematic: P8.6, input/output with Schmitt trigger† BCSCTL3.XT2Sx = 11 0 XT2CLK From P8.7/XIN 1 P8.7/XIN XT2 off Pad Logic P8SEL.7 P8REN.6 P8DIR.6 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.6 DVSS P8.6/XOUT Bus Keeper EN P8SEL.6 P8IN.6 EN Module X IN D Port P8.6 pin functions † PIN NAME (P8.X) (P8 X) P8.6/XOUT / X 6 FUNCTION P8.6 (I/O) XOUT (default) † DV SS 80-pin devices only 90 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P8DIR.x P8SEL.x I: 0; O: 1 0 0 1 1 1 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 Port P8 pin schematic: P8.7, input/output with Schmitt trigger† BCSCTL3.XT2Sx = 11 P8.6/XOUT XT2 off 0 XT2CLK 1 P8SEL.6 Pad Logic P8REN.7 0 P8DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.7 DVSS P8.7/XIN Bus Keeper EN P8SEL.7 P8IN.7 EN Module X IN D Port P8.7 pin functions† PIN NAME (P8.X) (P8 X) P8.7/XIN / X 7 FUNCTION P8.7 (I/O) XIN (default) † SS V CONTROL BITS / SIGNALS P8DIR.x P8SEL.x I: 0; O: 1 0 0 1 1 1 80-pin devices only POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 91 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 APPLICATION INFORMATION JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger TDO Controlled by JTAG Controlled by JTAG JTAG Controlled by JTAG TDI TDO/TDI DVCC DVCC Fuse Burn and Test Fuse Test and Emulation Module TDI/TCLK DVCC TMS TMS DVCC TCK TCK 92 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 APPLICATION INFORMATION JTAG fuse check mode MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF, of 1 mA at 3 V or 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see Figure 49). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS I I TF TDI/TCLK Figure 49. Fuse Check Mode Current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 93 MSP430F241x, MSP430F261x MIXED SIGNAL MICROCONTROLLER SLAS541F -- JUNE 2007 -- REVISED DECEMBER 2009 LITERATURE NUMBER SLAS541 SLAS541A SLAS541B SLAS541C SLAS541D SLAS541E SLAS541F 94 Data Sheet Revision History SUMMARY Product Preview release Production Data release Corrected the format and the content shown on the first page. Corrected pin number of P3.6 and P3.7 in 64-pin package in the terminal function list. Corrected the port schematics. Corrected “calibration data” section (page 20). Typos and formatting corrected. Added the figure “typical characteristics - LPM4 current” (Page 33). Added preview of MSP430F261x BGA devices. Release to market of MSP430F261x BGA devices Added the ESD disclaimer (page 1). Added reserved BGA pins to the terminal function list (pages 10 and following). Corrected the references in the output port parameters (page 36). Corrected the cumulative program time of the flash (page 75). Corrected LFXT1Sx values in Figures 23 and 24 (page 52). Corrected XT2Sx values in Figures 25 and 26 (page 54). Corrected tCMErase MIN value from 200 ms to 20 ms and removed two notes in the flash memory table (page 75). Renamed Tags Used by the ADC Calibration Tags table to Tags used by the TLV Structure (page 20). Changed value of TAG_ADC12_1 from 0x10 to 0x08 in Tags used by the TLV Structure (page 20). Added CAOUT to P1.0/TACLK, Changed Timer_A3.CCI0A to Timer_A3.CCI1A and Timer_A3.TA0 to Timer_A3.TA1 in P1.2/TA1 row, Changed Timer_A3.CCI0A to Timer_A3.CCI2A and Timer_A3.TA0 to Timer_A3.TA2 in P1.3/TA2 row in Port P1 (P1.0 to P1.7) pin functions table (page 78). Changed TA0 to Timer_A3.CCI0B in P2.2/CAOUT/TA0/CA4 row of Port P2.0, P2.3, P2.4, P2.6 and P2.7 pin functions table (page 80). POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 4-Dec-2009 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty MSP430F2416TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2416TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2416TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2416TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2416TZQW ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2416TZQWR ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2417TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2417TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2417TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2417TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2417TZQW ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2417TZQWR ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2418TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2418TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2418TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2418TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2418TZQW ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2418TZQWR ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2419TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2419TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Addendum-Page 1 Lead/Ball Finish MSL Peak Temp (3) PACKAGE OPTION ADDENDUM www.ti.com 4-Dec-2009 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty MSP430F2419TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2419TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2419TZQW ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2419TZQWR ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2616TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2616TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2616TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2616TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2616TZQW ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2616TZQWR ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2617TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2617TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2617TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2617TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2617TZQW ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2617TZQWR ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2618TPM ACTIVE LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2618TPMR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2618TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2618TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2618TZQW ACTIVE BGA MI ZQW 113 250 SNAGCU Level-3-260C-168 HR Addendum-Page 2 Green (RoHS & Lead/Ball Finish MSL Peak Temp (3) PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 4-Dec-2009 Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty CROSTA R JUNI OR MSP430F2618TZQWR ACTIVE MSP430F2619TPM ACTIVE MSP430F2619TPMR BGA MI CROSTA R JUNI OR Lead/Ball Finish MSL Peak Temp (3) no Sb/Br) ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR LQFP PM 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2619TPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2619TPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2619TZQW ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F2619TZQWR ACTIVE BGA MI CROSTA R JUNI OR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 3 PACKAGE OPTION ADDENDUM www.ti.com 4-Dec-2009 OTHER QUALIFIED VERSIONS OF MSP430F2618 : • Enhanced Product: MSP430F2618-EP NOTE: Qualified Version Definitions: • Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 4 MECHANICAL DATA MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996 PM (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 33 48 49 32 64 17 0,13 NOM 1 16 7,50 TYP Gage Plane 10,20 SQ 9,80 12,20 SQ 11,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040152 / C 11/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Falls within JEDEC MS-026 May also be thermally enhanced plastic with leads connected to the die pads. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996 PN (S-PQFP-G80) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 41 60 61 40 80 21 0,13 NOM 1 20 Gage Plane 9,50 TYP 12,20 SQ 11,80 14,20 SQ 13,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040135 / B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Communications and Telecom www.ti.com/communications DSP dsp.ti.com Computers and Peripherals www.ti.com/computers Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Logic logic.ti.com Industrial www.ti.com/industrial Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Space, Avionics & Defense www.ti.com/space-avionics-defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated