MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 D Low Supply-Voltage Range, 1.8 V to 3.6 V D Ultra-Low Power Consumption: -- Active Mode: 200 µA at 1 MHz, 2.2 V -- Standby Mode: 0.7 µA -- Off Mode (RAM Retention): 0.1 µA D Ultra-Fast Wake-Up From Standby Mode in Less Than 1 µs D 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time D Basic Clock Module Configurations: -- Internal Frequencies up to 16 MHz With Four Calibrated Frequencies to ±1% -- Internal Very Low-Power Low-Frequency Oscillator -- 32-kHz Crystal -- High-Frequency Crystal up to 16 MHz -- Resonator -- External Digital Clock Source -- External Resistor D 16-Bit Timer0_A3 With Three D D D Capture/Compare Registers 16-Bit Timer1_A2 With Two Capture/Compare Registers On-Chip Comparator for Analog Signal Compare Function or Slope Analog-to-Digital (A/D) Conversion 10-Bit, 200-ksps A/D Converter With Internal Reference, Sample-and-Hold, Autoscan, and Data Transfer Controller D Universal Serial Communication Interface -- Enhanced UART Supporting Auto Baudrate Detection (LIN) -- IrDA Encoder and Decoder -- Synchronous SPI -- I2Ct D Brownout Detector D Serial Onboard Programming, No External Programming Voltage Needed, Programmable Code Protection by Security Fuse Bootstrap Loader in Flash Devices On-Chip Emulation Module D D D Family Members Include: MSP430F2132 -- 8KB + 256B Flash Memory -- 512B RAM MSP430F2122 -- 4KB + 256B Flash Memory -- 512B RAM MSP430F2112 -- 2kB + 256B Flash Memory -- 256B RAM D Available in 28-Pin TSSOP and 32-Pin QFN (See Available Options) D For Complete Module Descriptions, See the MSP430x2xx Family User’s Guide, Literature Number SLAU144 description The Texas Instruments MSP430 family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs. The MSP430F21x2 series is an ultra-low-power microcontroller with two built-in 16-bit timers, a fast 10-bit A/D converter with integrated reference and a data transfer controller (DTC), a comparator, built-in communication capability using the universal serial communication interface, and up to 24 I/O pins. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. Copyright 2008, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 AVAILABLE OPTIONS TA --40°C 40 C to 85°C 85 C --40°C 40 C to 105°C 105 C 2 PACKAGED DEVICES PLASTIC 28-PIN TSSOP (PW) PLASTIC 32-PIN QFN (RHB) MSP430F2112IPW MSP430F2112IRHB MSP430F2122IPW MSP430F2122IRHB MSP430F2132IPW MSP430F2132IRHB MSP430F2112TPW MSP430F2112TRHB MSP430F2122TPW MSP430F2122TRHB MSP430F2132TPW MSP430F2132TRHB POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 pin designation, PW package TEST/SBWTCK DVCC 1 2 28 27 P1.7/TA2_0/TDO/TDI P1.6/TA1_0/TDI/TCLK P2.5/ROSC/CA5 DVSS 3 4 26 25 P1.5/TA0_0/TMS P1.4/SMCLK/TCK XOUT/P2.7/CA7 XIN/P2.6/CA6 RST/NMI/SBWTDIO 5 6 7 24 23 22 P1.3/TA2_0 P1.2/TA1_0 P1.1/TA0_0/TA0_1 P2.0/ACLK/A0/CA2 P2.1/TAINCLK/SMCLK/A1/CA3 8 9 21 20 P1.0/TACLK/ADC10CLK/CAOUT P2.4/TA2_0/A4/VREF+/VeREF+/CA1 P2.2/TA0_0/A2/CA4/CAOUT P3.0/UCB0STE/UCA0CLK/A5 10 11 19 18 P2.3/TA1_0/A3/VREF-/VeREF-/CA0 P3.7/TA1_1/A7 P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE 12 13 14 17 16 15 P3.6/TA0_1/A6 P3.5/UCA0RXD/UCA0SOMI P3.4/UCA0TXD/UCA0SIMO P2.5/ROSC/CA5 NC DVCC TEST/SBWTCK P1.7/TA2_0/TDO/TDI P1.6/TA1_0/TDI/TCLK P1.5/TA0_0/TMS P1.4/SMCLK/TCK pin designation, RHB package 32 31 30 29 28 27 26 25 1 24 2 23 P1.3/TA2_0 P1.2/TA1_0 XIN/P2.6/CA6 3 22 P1.1/TA0_0/TA0_1 NC 4 21 P1.0/TACLK/ADC10CLK/CAOUT RST/NMI/SBWTDIO P2.0/ACLK/A0/CA2 5 6 20 19 NC P2.4/TA2_0/A4/VREF+/VeREF+/CA1 P2.1/TAINCLK/SMCLK/A1/CA3 7 18 P2.3/TA1_0/A3/VREF-/VeREF-/CA0 P2.2/TA0_0/A2/CA4/CAOUT 8 17 9 10 11 12 13 14 15 16 NC P3.0/UCB0STE/UCA0CLK/A5 P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/TA0_1/A6 P3.7/TA1_1/A7 DVSS XOUT/P2.7/CA7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 functional block diagram XIN XOUT DVCC D/AVSS AVCC P1.x P3.x P2.x 8 8 8 ADC10 Port P1 Port P2 Port P3 10-bit 8 Channels Autoscan DTC 8 I/O Interrupt capability pull-up/down resistors 8 I/O Interrupt capability pull-up/down resistors 8 I/O Watchdog WDT+ Timer0_A3 Timer1_A2 3 CC Registers 2 CC Registers ACLK Basic Clock System+ SMCLK Flash RAM 8kB 4kB 2kB 512B 512B 256B MCLK 16MHz CPU incl. 16 Registers MAB MDB Emulation 2BP JTAG Interface Brownout Protection Comp_A+ 15-Bit Spy-Bi Wire RST/NMI 4 pull-up pull-down resistors POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 USCI A0 UART/ LIN, IrDA, SPI USCI B0 SPI, I2C MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Terminal Functions TERMINAL 28-Pin PW 32-Pin RHB I/O P1.0/TACLK/ ADC10CLK/CAOUT 21 21 I/O General-purpose digital I/O pin Timer0_A3, clock signal TACLK input Timer1_A2, clock signal TACLK input ADC10, conversion clock Comparator_A+ output P1.1/TA0_0/TA0_1 22 22 I/O General-purpose digital I/O pin Timer0_A3, capture: CCI0A input, compare: Out0_0 Output Timer1_A2, capture: CCI0A input P1.2/TA1_0 23 23 I/O General-purpose digital I/O pin Timer0_A3, capture: CCI1A input, compare: Out1_0 Output P1.3/TA2_0 24 24 I/O General-purpose digital I/O pin Timer0_A3, capture: CCI2A input, compare: Out2_0 Output P1.4/SMCLK/TCK 25 25 I/O General-purpose digital I/O pin SMCLK signal output Test Clock input for device programming and test P1.5/TA0_0/TMS 26 26 I/O General-purpose digital I/O pin Timer0_A3, compare: Out0_0 Output JTAG test mode select, input terminal for device programming and test P1.6/TA1_0/TDI/TCLK 27 27 I/O General-purpose digital I/O pin Timer0_A3, compare: Out1_0 Output JTAG test data input or test clock input in programming an test P1.7/TA2_0/TDO/TDI 28 28 I/O General-purpose digital I/O pin Timer0_A3, compare: Out2_0 Output JTAG test data output terminal or test data input in programming an test P2.0/ACLK/A0/CA2 8 6 I/O General-purpose digital I/O pin ACLK signal output ADC10 analog input A0 Comparator_A+ input P2.1/TAINCLK/ SMCLK/A1/CA3 9 7 I/O General-purpose digital I/O pin SMCLK signal output Timer0_A3, clock signal TACLK input Timer1_A2, clock signal TACLK input ADC10 analog input A1 Comparator_A+ input P2.2/TA0_0/A2/CA4/ CAOUT 10 8 I/O General-purpose digital I/O pin Timer0_A3, capture: CCI0B input, compare: Out0_0 Output ADC10 analog input A2 Comparator_A+ input Comparator_A+ output P2.3/TA1_0/A3/ VREF-- /VeREF-- /CA0 19 18 I/O General-purpose digital I/O pin Timer0_A3, compare: Out1_0 Output ADC10 analog input A3 / negative reference Comparator_A+ input P2.4/TA2_0/A4/ VREF+/VeREF+/CA1 20 19 I/O General-purpose digital I/O pin Timer0_A3, compare: Out2_0 Output ADC10 analog input A4 / positive reference Comparator_A+ input NAME DESCRIPTION POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Terminal Functions TERMINAL 28-Pin PW 32-Pin RHB I/O XIN/P2.6/CA6 6 3 I/O Input terminal of crystal oscillator General-purpose digital I/O pin Comparator_A+ input XOUT/P2.7/CA7 5 2 I/O Output terminal of crystal oscillator General-purpose digital I/O pin Comparator_A+ input P3.0/UCB0STE/ UCA0CLK/A5 11 9 I/O General-purpose digital I/O pin USCI_B0 slave transmit enable/USCI_A0 clock input/output ADC10 analog input A5 P3.1/UCB0SIMO/ UCB0SDA 12 10 I/O General-purpose digital I/O pin USCI_B0 slave in/master out in SPI mode, SDA I2C data in I2C mode P3.2/UCB0SOMI/ UCB0SCL 13 11 I/O General-purpose digital I/O pin USCI_B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode P3.3/UCB0CLK/ UCA0STE 14 12 I/O General-purpose digital I/O USCI_B0 clock input/output, USCI_A0 slave transmit enable P3.4/UCA0TXD/ UCA0SIMO 15 13 I/O General-purpose digital I/O pin USCI_A0 transmit data output in UART mode, slave data in/master out in SPI mode P3.5/UCA0RXD/ UCA0SOMI 16 14 I/O General-purpose digital I/O pin USCI_A0 receive data input in UART mode, slave data out/master in in SPI mode P3.6/TA0_1/A6 17 15 I/O General-purpose digital I/O pin Timer1_A2, capture: CCI0B input, compare: Out0_1 Output ADC10 analog input A6 P3.7/TA1_1/A7 18 16 I/O General-purpose digital I/O pin Timer1_A2, capture: CCI1A input, compare: Out1_1 Output ADC10 analog input A7 RST/NMI/SBWTDIO 7 5 I Reset or nonmaskable interrupt input Spy--bi--Wire test data input/output during programming and test TEST/SBWTCK 1 29 I Selects test mode for JTAG pins on Port1. The device protection fuse is connected to TEST. P2.5/ROSC/CA5 3 32 I/O DVCC 2 30 Digital supply voltage 4 1 Digital supply voltage NA 4, 17, 20, 31 NAME DVSS NC 6 DESCRIPTION General-purpose digital I/O pin Input for external resistor defining the DCO nominal frequency Comparator_A+ input Not connected internally. Recommended connection to VSS. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g., ADD R4,R5 R4 + R5 ------> R5 Single operands, destination only e.g., CALL PC ---->(TOS), R8----> PC Relative jump, un/conditional e.g., JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D Register F F MOV Rs,Rd MOV R10,R11 Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) Symbolic (PC relative) F F MOV EDE,TONI Absolute F F MOV &MEM,&TCDAT Indirect F MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) ----> M(Tab+R6) Indirect autoincrement F MOV @Rn+,Rm MOV @R10+,R11 M(R10) ----> R11 R10 + 2----> R10 F MOV #X,TONI MOV #45,TONI Immediate NOTE: S = source SYNTAX EXAMPLE OPERATION R10 ----> R11 M(2+R5)----> M(6+R6) M(EDE) ----> M(TONI) M(MEM) ----> M(TCDAT) #45 ----> M(TONI) D = destination POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 operating modes The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode (AM) -- All clocks are active. D Low-power mode 0 (LPM0) -- CPU is disabled. -- ACLK and SMCLK remain active, MCLK is disabled. D Low-power mode 1 (LPM1) -- CPU is disabled. -- ACLK and SMCLK remain active, MCLK is disabled. -- DCO’s dc generator is disabled if DCO not used in active mode. D Low-power mode 2 (LPM2) -- CPU is disabled. -- MCLK and SMCLK are disabled. -- DCO’s dc generator remains enabled. -- ACLK remains active. D Low-power mode 3 (LPM3) -- CPU is disabled. -- MCLK and SMCLK are disabled. -- DCO’s dc-generator is disabled. -- ACLK remains active. D Low-power mode 4 (LPM4) 8 -- CPU is disabled. -- ACLK is disabled. -- MCLK and SMCLK are disabled. -- DCO’s dc generator is disabled. -- Crystal oscillator is stopped. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0xFFFF to 0xFFC0. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. If the reset vector (0xFFFE) contains 0xFFFF (e.g., flash is not programmed) the CPU enters LPM4 after power-up. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External reset Watchdog Flash key violation PC out of range (see Note 1) PORIFG RSTIFG WDTIFG KEYV (see Note 2) Reset 0xFFFE 31, highest NMI Oscillator fault Flash memory access violation NMIIFG OFIFG ACCVIFG (see Notes 2 and 6) (Non)maskable (Non)maskable (Non)maskable 0xFFFC 30 Maskable 0xFFFA 29 TA1CCR1 CCIFG, TA1CTL TAIFG (see Notes 2 and 3) Maskable 0xFFF8 28 Comparator_A+ CAIFG Maskable 0xFFF6 27 Watchdog timer WDTIFG Maskable 0xFFF4 26 Timer0_A3 TA0CCR0 CCIFG (see Note 3) Maskable 0xFFF2 25 Maskable 0xFFF0 24 Timer1_A2 Timer1_A2 TA1CCR0 CCIFG (see Note 3) Timer0_A3 TA0CCR1 CCIFG, TA0CCR2 CCIFG, TA0CTL TAIFG (see Notes 2 and 3) USCI_A0/USCI_B0 receive USCI_B0 I2C status UCA0RXIFG, UCB0RXIFG (see Note 2 and 4) Maskable 0xFFEE 23 USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit UCA0TXIFG, UCB0TXIFG (see Note 2 and 5) Maskable 0xFFEC 22 ADC10 ADC10IFG (see Note 3) Maskable 0xFFEA 21 0xFFE8 20 Maskable 0xFFE6 19 Maskable 0xFFE4 18 0xFFE2 17 0xFFE0 16 (See Note 7) 0xFFDE 15 (See Note 8) 0xFFDC to 0xFFC0 14 to 0, lowest I/O port P2 (eight flags) I/O port P1 (eight flags) P2IFG.0 to P2IFG.7 (see Notes 2 and 3) P1IFG.0 to P1IFG.7 (see Notes 2 and 3) NOTES: 1. 2. 3. 4. 5. 6. 7. A reset is executed if the CPU tries to fetch instructions from within the module register memory address range (0x0000 to 0x01FF). Multiple source flags. Interrupt flags are located in the module. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot. This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied. 8. The interrupt vectors at addresses 0xFFDC to 0xFFC0 are not used in this device and can be used for regular program code if necessary. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 special function registers Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 Address 7 6 00h 5 4 ACCVIE rw--0 2 1 0 NMIIE OFIE WDTIE rw--0 rw--0 rw--0 WDTIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE Oscillator fault enable NMIIE (Non)maskable interrupt enable ACCVIE Flash access violation interrupt enable Address 7 6 5 01h 10 3 UCA0RXIE USCI_A0 receive interrupt enable UCA0TXIE USCI_A0 transmit interrupt enable UCB0RXIE USCI_B0 receive interrupt enable UCB0TXIE USCI_B0 transmit interrupt enable POST OFFICE BOX 655303 4 3 2 1 0 UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw--0 rw--0 rw--0 rw--0 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 interrupt flag register 1 and 2 Address 7 6 5 02h 4 3 2 1 0 NMIIFG RSTIFG PORIFG OFIFG WDTIFG rw--0 rw--(0) rw--(1) rw--1 rw--(0) WDTIFG Set on watchdog timer overflow or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. OFIFG Flag set on oscillator fault RSTIFG External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up PORIFG Power-on interrupt flag. Set on VCC power-up. NMIIFG Set via RST/NMI pin Address 7 6 5 4 03h 3 2 1 0 UCB0TX IFG UCB0RX IFG UCA0TX IFG UCA0RX IFG rw--1 rw--0 rw--1 rw--0 UCA0RXIFG USCI_A0 receive interrupt flag UCA0TXIFG USCI_A0 transmit interrupt flag UCB0RXIFG USCI_B0 receive interrupt flag UCB0TXIFG USCI_B0 transmit interrupt flag Legend rw: rw-0,1: rw-(0,1): Bit can be read and written. Bit can be read and written. It is reset or set by PUC. Bit can be read and written. It is reset or set by POR. SFR bit is not present in device POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 memory organization MSP430F2112 MSP430F2122 MSP430F2132 Memory Main: interrupt vector Main: code memory Size Flash Flash 2 KB 0xFFFF to 0xFFC0 0xFFFF to 0xF800 4 KB 0xFFFF to 0xFFC0 0xFFFF to 0xF000 8 KB 0xFFFF to 0xFFC0 0xFFFF to 0xE000 Information memory Size Flash 256 Byte 0x10FFh to 0x1000 256 Byte 0x10FFh to 0x1000 256 Byte 0x10FFh to 0x1000 Boot memory Size ROM 1 KB 0x0FFF to 0x0C00 1 KB 0x0FFF to 0x0C00 1 KB 0x0FFF to 0x0C00 Size 256 B 0x02FF to 0x0200 512 Byte 0x03FF to 0x0200 512 Byte 0x03FF to 0x0200 16-bit 8-bit 8-bit SFR 0x01FF to 0x0100 0x00FF to 0x0010 0x000F to 0x0000 0x01FF to 0x0100 0x00FF to 0x0010 0x000F to 0x0000 0x01FF to 0x0100 0x00FF to 0x0010 0x000F to 0x0000 RAM Peripherals bootstrap loader (BSL) The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature number SLAA089. BSL FUNCTION 28-PIN PW PACKAGE PINS 32-PIN RHB PACKAGE PINS Data transmit 22 -- P1.1 22 -- P1.1 Data receive 10 -- P2.2 8 -- P2.2 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and four segments of information memory (A to D) of 64bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. D Segment A contains calibration data. After reset segment A is protected against programming or erasing. It can be unlocked but care should be taken not to erase this segment if the calibration data is required. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User’s Guide. oscillator and system clock The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low power, low-frequency oscillator, an internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the following clock signals: D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal or the internal very low power LF oscillator. Main clock (MCLK), the system clock used by the CPU. D D Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 calibration data stored in information memory segment A Calibration data is stored for both the DCO and for ADC10 organized in a tag-length-value structure. TAGS USED BY THE ADC CALIBRATION TAGS NAME ADDRESS VALUE DESCRIPTION TAG_DCO_30 0x10F6 0x01 DCO frequency calibration at VCC = 3 V and TA = 30°C at calibration TAG_ADC10_1 0x10DA 0x10 ADC10_1 calibration tag -- 0xFE Identifier for empty memory areas TAG_EMPTY LABELS USED BY THE ADC CALIBRATION TAGS CONDITION AT CALIBRATION / DESCRIPTION LABEL SIZE ADDRESS OFFSET CAL_ADC_25T85 INCHx = 0x1010, REF2_5 = 1, TA = 85°C word 0x000E CAL_ADC_25T30 INCHx = 0x1010, REF2_5 = 1, TA = 30°C word 0x000C REF2_5 = 1, TA = 30°C, IVREF+ = 1 mA word 0x000A CAL_ADC_15T85 INCHx = 0x1010, REF2_5 = 0, TA = 85°C word 0x0008 CAL_ADC_15T30 INCHx = 0x1010, REF2_5 = 0, TA = 30°C word 0x0006 CAL_ADC_15VREF_FACTOR CAL_ADC_25VREF_FACTOR REF2_5 = 0, TA = 30°C, IVREF+ = 0.5 mA word 0x0004 CAL_ADC_OFFSET External VREF = 1.5 V, fADC10CLK = 5 MHz word 0x0002 CAL_ADC_GAIN_FACTOR External VREF = 1.5 V, fADC10CLK = 5 MHz word 0x0000 CAL_BC1_1MHz -- byte 0x0007 CAL_DCO_1MHz -- byte 0x0006 CAL_BC1_8MHz -- byte 0x0005 CAL_DCO_8MHz -- byte 0x0004 CAL_BC1_12MHz -- byte 0x0003 CAL_DCO_12MHz -- byte 0x0002 CAL_BC1_16MHz -- byte 0x0001 CAL_DCO_16MHz -- byte 0x0000 brownout The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. digital I/O There are three 8-bit I/O ports implemented—ports P1 through P3: D D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. Each I/O has an individually programmable pullup/pulldown resistor. The MSP430F21x2 devices provides up to 24 total port I/O pins available externally. See the device pinout for more information. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 watchdog timer + (WDT+) The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. ADC10 The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and data transfer controller (DTC), for automatic conversion result handling, allowing ADC samples to be converted and stored without any CPU intervention. Comparator_A+ The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. Timer0_A3 Timer0_A3 is a 16-bit timer/counter with three capture/compare registers. Timer0_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer0_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER0_A3 SIGNAL CONNECTIONS INPUT PIN NUMBER 28-PIN PW 32-PIN RHB DEVICE INPUT SIGNAL 21 -- P1.0 21 -- P1.0 TACLK MODULE INPUT NAME TACLK ACLK ACLK SMCLK SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA OUTPUT PIN NUMBER 28-PIN PW 32-PIN RHB 9 -- P2.1 7 -- P2.1 TAINCLK INCLK 22 -- P1.1 22 -- P1.1 TA0 CCI0A 22 -- P1.1 22 -- P1.1 10 -- P2.2 8 -- P2.2 TA0 CCI0B 26 -- P1.5 26 -- P1.5 23 -- P1.2 24 -- P1.3 23 -- P1.2 24 -- P1.3 CCR0 TA0 DVSS GND 10 -- P2.2 8 -- P2.2 DVCC VCC ADC10 (internal) ADC10 (internal) TA1 CCI1A 23 -- P1.2 23 -- P1.2 CAOUT (internal) CCI1B 27 -- P1.6 27 -- P1.6 DVSS GND 19 - P2.3 18 -- P2.3 CCR1 TA1 DVCC VCC ADC10 (internal) ADC10 (internal) TA2 CCI2A 24 -- P1.3 24 -- P1.3 ACLK (internal) CCI2B 28 -- P1.7 28 -- P1.7 DVSS GND DVCC VCC POST OFFICE BOX 655303 CCR2 • DALLAS, TEXAS 75265 TA2 20 - P2.4 19 -- P2.4 ADC10 (internal) ADC10 (internal) 15 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Timer1_A2 Timer1_A2 is a 16-bit timer/counter with two capture/compare registers. Timer1_A2 can support multiple capture/compares, PWM outputs, and interval timing. Timer1_A2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER1_A2 SIGNAL CONNECTIONS INPUT PIN NUMBER 28-PIN PW 32-PIN RHB DEVICE INPUT SIGNAL 21 -- P1.0 21 -- P1.0 TACLK MODULE INPUT NAME TACLK ACLK ACLK SMCLK SMCLK 9 -- P2.1 7 -- P2.1 TAINCLK INCLK 22 -- P1.1 22 -- P1.1 TA0 CCI0A 17 -- P3.6 15 -- P3.6 TA0 CCI0B DVSS GND 18 -- P3.7 16 -- P3.7 DVCC VCC TA1 CCI1A CAOUT (internal) CCI1B DVSS GND DVCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 CCR1 OUTPUT PIN NUMBER 28-PIN PW 32-PIN RHB 17 -- P3.6 15 -- P3.6 18 -- P3.7 16 -- P3.7 TA0 TA1 universal serial communications interface (USCI) The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. Not all packages support the USCI functionality. USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA. USCI_B0 provides support for SPI (3 or 4 pin) and I2C. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 peripheral file map PERIPHERALS WITH WORD ACCESS ADC10 ADC data transfer start address ADC memory ADC control register 1 ADC control register 0 ADC analog enable 0 ADC analog enable 1 ADC data transfer control register 1 ADC data transfer control register 0 ADC10SA ADC10MEM ADC10CTL1 ADC10CTL0 ADC10AE0 ADC10AE1 ADC10DTC1 ADC10DTC0 0x01BC 0x01B4 0x01B2 0x01B0 0x004A 0x004B 0x0049 0x0048 Timer0_A3 Capture/compare register Capture/compare register Capture/compare register Timer0_A3 register Capture/compare control Capture/compare control Capture/compare control Timer0_A3 control Timer0_A3 interrupt vector TA0CCR2 TA0CCR1 TA0CCR0 TA0R TA0CCTL2 TA0CCTL1 TA0CCTL0 TA0CTL TA0IV 0x0176 0x0174 0x0172 0x0170 0x0166 0x0164 0x0162 0x0160 0x012E Timer1_A2 Capture/compare register Capture/compare register Timer1_A2 register Capture/compare control Capture/compare control Timer1_A2 control Timer1_A2 interrupt vector TA1CCR1 TA1CCR0 TA1R TA1CCTL1 TA1CCTL0 TA1CTL TA1IV 0x0194 0x0192 0x0190 0x0184 0x0182 0x0180 0x011E Flash Memory Flash control 3 Flash control 2 Flash control 1 FCTL3 FCTL2 FCTL1 0x012C 0x012A 0x0128 Watchdog Timer+ Watchdog/timer control WDTCTL 0x0120 PERIPHERALS WITH BYTE ACCESS USCI_B0 USCI_B0 transmit buffer USCI_B0 receive buffer USCI_B0 status USCI B0 I2C Interrupt enable USCI_B0 bit rate control 1 USCI_B0 bit rate control 0 USCI_B0 control 1 USCI_B0 control 0 USCI_B0 I2C slave address USCI_B0 I2C own address UCB0TXBUF UCB0RXBUF UCB0STAT UCB0CIE UCB0BR1 UCB0BR0 UCB0CTL1 UCB0CTL0 UCB0SA UCB0OA 0x06F 0x06E 0x06D 0x06C 0x06B 0x06A 0x069 0x068 0x011A 0x0118 USCI_A0 (28--pin and 32--pin version only) USCI_A0 transmit buffer USCI_A0 receive buffer USCI_A0 status USCI_A0 modulation control USCI_A0 baud rate control 1 USCI_A0 baud rate control 0 USCI_A0 control 1 USCI_A0 control 0 USCI_A0 IrDA receive control USCI_A0 IrDA transmit control USCI_A0 auto baud rate control UCA0TXBUF UCA0RXBUF UCA0STAT UCA0MCTL UCA0BR1 UCA0BR0 UCA0CTL1 UCA0CTL0 UCA0IRRCTL UCA0IRTCTL UCA0ABCTL 0x0067 0x0066 0x0065 0x0064 0x0063 0x0062 0x0061 0x0060 0x005F 0x005E 0x005D Comparator_A+ Comparator_A port disable Comparator_A control2 Comparator_A control1 CAPD CACTL2 CACTL1 0x005B 0x005A 0x0059 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 PERIPHERALS WITH BYTE ACCESS (continued) 18 Basic Clock System+ Basic clock system control 3 Basic clock system control 2 Basic clock system control 1 DCO clock frequency control BCSCTL3 BCSCTL2 BCSCTL1 DCOCTL 0x0053 0x0058 0x0057 0x0056 Port P3 Port P3 resistor enable Port P3 selection Port P3 direction Port P3 output Port P3 input P3REN P3SEL P3DIR P3OUT P3IN 0x0010 0x001B 0x001A 0x0019 0x0018 Port P2 Port P2 selection 2 Port P2 resistor enable Port P2 selection Port P2 interrupt enable Port P2 interrupt edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input P2SEL2 P2REN P2SEL P2IE P2IES P2IFG P2DIR P2OUT P2IN 0x0042 0x002F 0x002E 0x002D 0x002C 0x002B 0x002A 0x0029 0x0028 Port P1 Port P1 selection 2 register Port P1 resistor enable Port P1 selection Port P1 interrupt enable Port P1 interrupt edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input P1SEL2 P1REN P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN 0x0041 0x0027 0x0026 0x0025 0x0024 0x0023 0x0022 0x0021 0x0020 Special Function SFR interrupt flag 2 SFR interrupt flag 1 SFR interrupt enable 2 SFR interrupt enable 1 IFG2 IFG1 IE2 IE1 0x0003 0x0002 0x0001 0x0000 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 absolute maximum ratings (see Note 1) Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to + 4.1 V Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC+0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . --55°C to 150°C Storage temperature (programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --40°C to 105°C NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. 3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. recommended operating conditions PARAMETER MIN NOM MAX UNITS Supply voltage during program execution, VCC AVCC = DVCC = VCC (see Note 1) 1.8 3.6 V Supply voltage during flash memory programming, VCC AVCC = DVCC = VCC (see Note 1) 2.2 3.6 V Supply voltage, VSS AVSS = DVSS = VSS 0.0 0.0 V I version --40 85 T version --40 105 VCC = 1.8 V, Duty cycle = 50% ±10% dc 6 VCC = 2.7 V, Duty cycle = 50% ±10% dc 12 VCC ≥ 3.3 V, Duty cycle = 50% ±10% dc 16 Operating free-air free air temperature range, range TA Processor frequency fSYSYTEM (Maximum MCLK frequency) (see Notes 1, 2 and Figure 1) °C MHz NOTES: 1. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. 2. Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet. Legend: System Frequency --MHz 16 MHz Supply voltage range, during flash memory programming 12 MHz Supply voltage range, during program execution 6 MHz 1.8 V 2.2 V 2.7 V 3.3 V 3.6 V Supply Voltage --V NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V. Figure 1. Operating Area POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) active mode supply current (into VCC) excluding external current (see Notes 1 and 2) PARAMETER IAM, 1MHz IAM, 1MHz IAM, 4kHz IAM,100kHz Active mode (AM) current (1MHz) Active mode (AM) current (1MHz) Active mode (AM) current (4kHz) Active mode (AM) current (100kHz) TEST CONDITIONS TA fDCO = fMCLK = fSMCLK = 1MHz, fACLK = 32,768Hz, Program executes from flash, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 VCC 2.2 V MIN TYP MAX 200 250 µA fDCO = fMCLK = fSMCLK = 1MHz, fACLK = 32,768Hz, Program executes in RAM, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 3V 300 2.2 V 160 3V fMCLK = fSMCLK = fACLK = 32,768Hz/8 = 4,096Hz, fDCO = 0Hz, Program executes in flash, SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0 --40°C to 85°C fMCLK = fSMCLK = fDCO(0, 0) ≈ 100kHz, fACLK = 0Hz 0Hz, Program executes in flash, RSELx = 0, DCOx = 0, CPUOFF = 0 0, SCG0 = 0 0, SCG1 = 0, 0 OSCOFF = 1 --40°C to 85°C POST OFFICE BOX 655303 350 µA 260 2 5 22V 2.2 105_C 6 µA --40°C to 85°C 3 7 3V 105_C 105_C --40°C to 85°C 105_C 9 22V 2.2 3V 60 • DALLAS, TEXAS 75265 85 90 72 NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. 20 UNIT 95 100 µA MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 typical characteristics -- active mode supply current (into DVCC + AVCC) 8.0 5.0 fDCO = 16 MHz 6.0 fDCO = 12 MHz 5.0 4.0 fDCO = 8 MHz 3.0 2.0 4.0 TA = 25 °C 3.0 VCC = 3 V TA = 85 °C 2.0 TA = 25 °C 1.0 1.0 0.0 1.5 TA = 85 °C Active Mode Current -- mA Active Mode Current -- mA 7.0 VCC = 2.2 V fDCO = 1 MHz 2.0 2.5 3.0 3.5 4.0 0.0 0.0 VCC -- Supply Voltage -- V Figure 2. Active Mode Current vs VCC, TA = 25°C POST OFFICE BOX 655303 4.0 8.0 12.0 16.0 fDCO -- DCO Frequency -- MHz Figure 3. Active Mode Current vs DCO Frequency • DALLAS, TEXAS 75265 21 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) low-power mode supply currents (into VCC) excluding external current (see Notes 1 and 2) PARAMETER ILPM0, 1MHz ILPM0, 100kHz ILPM2 Low-power mode 0 (LPM0) current, current see Note 3 Low-power mode 0 (LPM0) current, current see Note 3 Low-power mode 2 (LPM2) current, current see Note 4 TEST CONDITIONS TA fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz, MHz fACLK = 32,768 Hz, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, _ CPUOFF = 1 1, SCG0 = 0 0, SCG1 = 0, 0 OSCOFF = 0 --40°C to 85°C fMCLK = 0 MHz, fSMCLK = fDCO(0, 0) ≈ 100 kHz, kHz fACLK = 0Hz, RSELx = 0, DCOx = 0, CPUOFF = 1 1, SCG0 = 0 0, SCG1 = 0, 0 OSCOFF = 1 fMCLK = fSMCLK = 0 MHz, fDCO = 1 MHz, fACLK = 32 32,768 768 Hz, Hz BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1 1, SCG0 = 0 0, SCG1 = 1, 1 OSCOFF = 0 --40°C to 85°C 105_C --40°C to 85°C 105_C 105_C --40°C to 85°C 105_C --40°C to 85°C 105_C --40°C to 85°C 105_C VCC 22V 2.2 3V 22V 2.2 3V 22V 2.2 3V --40°C to 85°C ILPM3,LFXT1 ILPM3,VLO Low-power mode 3 (LPM3) current, current see Note 4 Low-power mode 3 current, (LPM3) see Note 4 fDCO = fMCLK = fSMCLK = 0 MHz, MHz fACLK = 32,768 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 fDCO = fMCLK = fSMCLK = 0 MHz, fACLK from f internal i l LF oscillator ill (VLO), (VLO) CPUOFF = 1, 1 SCG0 = 1, 1 SCG1 = 1, 1 OSCOFF = 0 85°C 105°C --40°C to 85°C 85°C ILPM4 fDCO = fMCLK = fSMCLK = 0 MHz, MHz fACLK = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 TYP MAX 32 45 55 20 POST OFFICE BOX 655303 27 31 31 42 13 16 20 20 25 0.7 1.2 1.6 2.3 3 6 0.9 1.2 7 --40°C 0.25 0.7 25°C 0.3 0.7 1.2 1.9 85°C --40°C to 85°C 3V 2 5 0.7 0.8 1.4 2.1 105°C 2.5 6 --40°C 0.1 0.5 0.1 0.5 0.8 1.5 2 4 25°C 85°C 105°C 2.2 V/ 3V • DALLAS, TEXAS 75265 µA 31 2.8 105°C µA 46 3 22V 2.2 µA 74 NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. 3. Current for brownout and WDT clocked by SMCLK included. 4. Current for brownout and WDT clocked by ACLK included. 5. Current for brownout included. 22 70 1.6 3V UNIT 49 105°C 85°C Low-power mode 4 (LPM4) current, current see Note 5 2.2 V MIN µA µA µ µA A MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) typical characteristics -- LPM4 current ILPM4 -- Low-Power Mode Current -- µA 2.4 VCC = 3.6 V 2.2 VCC = 3 V 2.0 VCC = 2.2 V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 --40.0 --20.0 VCC = 1.8 V 0.0 20.0 40.0 60.0 80.0 100.0 TA -- Temperature -- °C Figure 4. ILPM4 -- LPM4 Current vs Temperature POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) Schmitt-trigger inputs -- Ports P1, P2, P3, JTAG, RST/NMI, and XIN (see Note 1) PARAMETER VIT+ VIT-- TEST CONDITIONS Positive-going P iti i input i t threshold th h ld voltage Negative-going N ti i input i t threshold th h ld voltage Vhys Input voltage hysteresis (VIT+ -- VIT--) RPull Pullup/pulldown resistor For pullup: VIN = VSS; For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC VCC MIN MAX UNIT 0.45 0.75 VCC 2.2 V 1.00 1.65 3V 1.35 2.25 0.25 0.55 2.2 V 0.55 1.20 3V 0.75 1.65 2.2 V 0.2 1.0 3V 0.3 1.0 20 TYP 35 50 5 V VCC V V kΩ pF NOTE 1: XIN only in bypass mode inputs -- Ports P1, P2 PARAMETER t(int) TEST CONDITIONS Port P1, P2: P1.x to P2.x, External trigger pulse width to set interrupt flag (see Note 2) External interrupt timing VCC 2.2 V/3 V MIN TYP MAX 20 UNIT ns NOTE 2: An external signal sets the interrupt flag every time the minimum interrupt puls width t(int) is met. It may be set even with trigger signals shorter than t(int). leakage current -- Ports P1, P2 and P3 PARAMETER Ilkg(Px.x) TEST CONDITIONS High-impedance leakage current See Notes 1 and 2 VCC 2.2 V/3 V MIN TYP MAX UNIT ±50 nA NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) outputs -- Ports P1, P2 and P3 PARAMETER VOH VOL High level output High-level voltage Low level output Low-level voltage NOTES: 1. The maximum total current, voltage drop specified. 2. The maximum total current, voltage drop specified. VCC MIN I(OHmax) = --1.5 mA (see Notes 1) TEST CONDITIONS 2.2 V VCC --0.25 TYP MAX VCC I(OHmax) = --6 mA (see Notes 2) 2.2 V VCC --0.6 VCC I(OHmax) = --1.5 mA (see Notes 1) 3V VCC --0.25 VCC I(OHmax) = --6 mA (see Notes 2) 3V VCC --0.6 VCC I(OLmax) = 1.5 mA (see Notes 1) 2.2 V VSS VSS+0.25 I(OLmax) = 6 mA (see Notes 2) 2.2 V VSS VSS+0.6 I(OLmax) = 1.5 mA (see Notes 1) 3V VSS VSS+0.25 I(OLmax) = 6 mA (see Notes 2) 3V VSS VSS+0.6 UNIT V V IOHmax and IOLmax, for all outputs combined, should not exceed ±12 mA to hold the maximum IOHmax and IOLmax, for all outputs combined, should not exceed ±48 mA to hold the maximum output frequency -- Ports P1, P2 and P3 PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT 7.5 MHz fPx.y Port output frequency (with load) P1.4/SMCLK, CL = 20 pF, RL = 1 kΩ (see Note 1 and 2) 2.2 V 3V 12 MHz fPort_CLK Clock output frequency P2.0/ACLK, P1.4/SMCLK, CL = 20 pF (see Note 2) 2.2 V 7.5 MHz 3V 16 MHz NOTES: 1. A resistive divider with 2 × 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. 2. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- outputs TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50.0 I OL -- Typical Low-Level Output Current -- mA I OL -- Typical Low-Level Output Current -- mA 25.0 TA = 25°C VCC = 2.2 V P2.4 20.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P2.4 40.0 TA = 85°C 30.0 20.0 10.0 0.0 0.0 2.5 TA = 25°C 0.5 VOL -- Low-Level Output Voltage -- V 1.0 Figure 5 I OH -- Typical High-Level Output Current -- mA I OH -- Typical High-Level Output Current -- mA --10.0 --15.0 --25.0 0.0 TA = 85°C TA = 25°C 0.5 1.0 1.5 2.0 2.5 VOH -- High-Level Output Voltage -- V 3.0 3.5 VCC = 3 V P2.4 --10.0 --20.0 --30.0 --40.0 TA = 85°C --50.0 0.0 TA = 25°C 0.5 1.0 1.5 Figure 8 NOTE: One output loaded at a time. POST OFFICE BOX 655303 2.0 2.5 3.0 VOH -- High-Level Output Voltage -- V Figure 7 26 2.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 VCC = 2.2 V P2.4 --5.0 --20.0 2.0 Figure 6 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 1.5 VOL -- Low-Level Output Voltage -- V • DALLAS, TEXAS 75265 3.5 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) POR/brownout reset (BOR) (see Notes 1 and 2) PARAMETER TEST CONDITIONS VCC(start) See Figure 9 dVCC/dt ≤ 3 V/s V(B_IT--) See Figure 9 through Figure 11 dVCC/dt ≤ 3 V/s Vhys(B_IT--) See Figure 9 dVCC/dt ≤ 3 V/s td(BOR) See Figure 9 t(reset) Pulse length needed at RST/NMI pin to accepted reset internally VCC MIN TYP MAX 0.7 × V(B_IT--) 70 2.2 V/3 V 2 130 UNIT V 1.71 V 210 mV 2000 µs µs NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT--) + Vhys(B_IT--) is ≤ 1.8V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT--) + Vhys(B_IT--). The default DCO settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. VCC Vhys(B_IT--) V(B_IT--) VCC(start) 1 0 t d(BOR) Figure 9. POR/Brownout Reset (BOR) vs Supply Voltage POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- POR/brownout reset (BOR) VCC 3V VCC(drop) -- V 2 VCC = 3 V Typical Conditions 1.5 t pw 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns tpw -- Pulse Width -- µs 1 ns tpw -- Pulse Width -- µs Figure 10. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC 2 3V VCC(drop) -- V VCC = 3 V 1.5 t pw Typical Conditions 1 VCC(drop) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw -- Pulse Width -- µs tpw -- Pulse Width -- µs Figure 11. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) main DCO characteristics D All ranges selected by RSELx overlap with RSELx + 1; e.g., RSELx = 0 overlaps RSELx = 1, and RSELx = 14 overlaps RSELx = 15. D DCO control bits DCOx have a step size as defined by parameter SDCO. D Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to: f average = 32 × f DCO(RSEL,DCO) × f DCO(RSEL,DCO+1) MOD × f DCO(RSEL,DCO)+(32−MOD) × f DCO(RSEL,DCO+1) DCO frequency PARAMETER VCC Supply voltage range TEST CONDITIONS VCC MIN TYP MAX UNIT RSELx < 14 1.8 3.6 V RSELx = 14 2.2 3.6 V RSELx = 15 3.0 3.6 V fDCO(0,0) DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 2.2 V/3 V 0.06 0.14 MHz fDCO(0,3) DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 2.2 V/3 V 0.07 0.17 MHz fDCO(1,3) DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 2.2 V/3 V 0.10 0.20 MHz fDCO(2,3) DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 2.2 V/3 V 0.14 0.28 MHz fDCO(3,3) DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 2.2 V/3 V 0.20 0.40 MHz fDCO(4,3) DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 0.28 0.54 MHz fDCO(5,3) DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 2.2 V/3 V 0.39 0.77 MHz fDCO(6,3) DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 2.2 V/3 V 0.54 1.06 MHz fDCO(7,3) DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 2.2 V/3 V 0.80 1.50 MHz fDCO(8,3) DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 2.2 V/3 V 1.10 2.10 MHz fDCO(9,3) DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 2.2 V/3 V 1.60 3.00 MHz fDCO(10,3) DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 2.2 V/3 V 2.50 4.30 MHz fDCO(11,3) DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 2.2 V/3 V 3.00 5.50 MHz fDCO(12,3) DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 2.2 V/3 V 4.30 7.30 MHz fDCO(13,3) DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 2.2 V/3 V 6.00 9.60 MHz fDCO(14,3) DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 2.2 V/3 V 8.60 13.9 MHz fDCO(15,3) DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 3V 12.0 18.5 MHz fDCO(15,7) DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 3V 16.0 26.0 MHz SRSEL Frequency step between range RSEL and RSEL+1 SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO) 2.2 V/3 V SDCO Frequency step between tap DCO and DCO+1 SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO) 2.2 V/3 V 1.05 1.08 1.12 Measured at P1.4/SMCLK 2.2 V/3 V 40 50 60 Duty Cycle 1.55 ratio POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 % 29 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) calibrated DCO frequencies -- tolerance at calibration PARAMETER TEST CONDITIONS Frequency tolerance at calibration TA VCC MIN TYP MAX UNIT 25°C 3V --1 ±0.2 +1 % 25°C 3V 0.990 1 1.010 MHz fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ; DCOCTL = CALDCO_1MHZ Gating time = 5 ms fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ; DCOCTL = CALDCO_8MHZ Gating time = 5 ms 25°C 3V 7.920 8 8.080 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ; DCOCTL = CALDCO_12MHZ Gating time = 5 ms 25°C 3V 11.88 12 12.12 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ; DCOCTL = CALDCO_16MHZ Gating time = 2 ms 25°C 3V 15.84 16 16.16 MHz MIN MAX UNIT calibrated DCO frequencies -- tolerance over temperature 0°C -- +85°C TA VCC 1-MHz tolerance over temperature PARAMETER 0°C to 85°C 3V --2.5 ±0.5 +2.5 % 8-MHz tolerance over temperature 0°C to 85°C 3V --2.5 ±1 +2.5 % 12-MHz tolerance over temperature 0°C to 85°C 3V --2.5 ±1 +2.5 % 16-MHz tolerance over temperature 0°C to 85°C fCAL(1MHz) fCAL(8MHz) fCAL(12MHz) fCAL(16MHz) 30 1-MHz 1 MHz calibration value 8-MHz 8 MHz calibration value 12-MHz 12 MHz calibration value 16 MHz calibration value 16-MHz TEST CONDITIONS BCSCTL1 = CALBC1_1MHZ; CALBC1 1MHZ; DCOCTL = CALDCO_1MHZ Gating time: 5ms BCSCTL1 = CALBC1_8MHZ; CALBC1 8MHZ; DCOCTL = CALDCO_8MHZ Gating time = 5 ms 0°C 0 C to 85°C 85 C 0°C 0 C to 85°C 85 C BCSCTL1 = CALBC1_12MHZ; CALBC1 12MHZ; DCOCTL = CALDCO_12MHZ Gating time = 5 ms 0°C 0 C to 85°C 85 C BCSCTL1 = CALBC1_16MHZ; DCOCTL = CALDCO CALDCO_16MHZ 16MHZ Gating time = 2 ms 0°C to 85°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3V TYP --3 ±2 +3 2.2 V 0.970 1 1.030 MHz % 3V 0.975 1 1.025 MHz 3.6 V 0.970 1 1.030 MHz 2.2 V 7.760 8 8.400 MHz 3V 7.800 8 8.200 MHz 3.6 V 7.600 8 8.240 MHz 2.2 V 11.64 12 12.36 MHz 3V 11.64 12 12.36 MHz 3.6 V 11.64 12 12.36 MHz 3V 15.52 16 16.48 MHz 3.6 V 15.00 16 16.48 MHz MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) calibrated DCO frequencies -- tolerance over supply voltage VCC TA VCC 1-MHz tolerance over VCC 25°C 1.8 V to 3.6 V --3 ±2 +3 % 8-MHz tolerance over VCC 25°C 1.8 V to 3.6 V --3 ±2 +3 % 12-MHz tolerance over VCC 25°C 2.2 V to 3.6 V --3 ±2 +3 % 16-MHz tolerance over VCC 25°C 3 V to 3.6 V --6 ±2 +3 % 25°C 1.8 V to 3.6 V 0.970 1 1.030 MHz PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time = 5 ms fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time = 5 ms 25°C 1.8 V to 3.6 V 7.760 8 8.240 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time = 5 ms 25°C 2.2 V to 3.6 V 11.64 12 12.36 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time = 2 ms 25°C 3 V to 3.6 V 15.00 16 16.48 MHz TA VCC MIN MAX UNIT 1-MHz tolerance overall --40°C to 105°C 1.8 V to 3.6 V --5 ±2 +5 % 8-MHz tolerance overall --40°C to 105°C 1.8 V to 3.6 V --5 ±2 +5 % 12-MHz tolerance overall --40°C to 105°C 2.2 V to 3.6 V --5 ±2 +5 % 16-MHz tolerance overall --40°C to 105°C 3 V to 3.6 V --6 ±3 +6 % calibrated DCO frequencies -- overall tolerance PARAMETER TEST CONDITIONS TYP fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time = 5 ms --40°C to 105°C 1.8 V to 3.6 V 0.950 1 1.050 MHz fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time = 5 ms --40°C to 105°C 1.8 V to 3.6 V 7.600 8 8.400 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time = 5 ms --40°C to 105°C 2.2 V to 3.6 V 11.40 12 12.60 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time = 2 ms --40°C to 105°C 3 V to 3.6 V 15.00 16 17.00 MHz POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- calibrated DCO frequency 1.03 TA = 85 °C 1.02 Frequency -- MHz TA = 25 °C 1.01 TA = 105 °C 1.00 TA = --40 °C 0.99 0.98 0.97 1.5 2.0 2.5 3.0 VCC -- Supply Voltage -- V 3.5 4.0 Figure 12. Calibrated 1 MHz Frequency vs VCC 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 ,electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) wake-up from lower power modes (LPM3/4) PARAMETER tDCO,LPM3/4 tCPU,LPM3/4 TEST CONDITIONS DCO clock wake wake-up up time from LPM3/4 (see Note 1) VCC MIN TYP MAX BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ 2.2 V/3 V 2 BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ 2.2 V/3 V 1.5 BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ 2.2 V/3 V 1 BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ 3V 1 UNIT µs s CPU wake-up time from LPM3/4 (see Note 2) 1/fMCLK + tClock,LPM3/4 NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK). 2. Parameter applicable only if DCOCLK is used for MCLK. typical characteristics -- DCO clock wake-up time from LPM3/4 DCO Wake Time -- us 10.00 RSELx = 0...11 1.00 0.10 0.10 RSELx = 12...15 1.00 10.00 DCO Frequency -- MHz Figure 13. Clock Wake-Up Time From LPM3 vs DCO Frequency POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) DCO with external resistor ROSC (see Note) PARAMETER TEST CONDITIONS VCC fDCO,ROSC DCO output frequency with ROSC DCOR = 1, RSELx = 4, 4 DCOx = 3 3, MODx = 0 0, TA = 25°C Dt Temperature drift DV Drift with VCC MIN TYP MAX UNIT 2.2 V 1.8 3V 1.95 DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V ±0.1 %/°C DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 10 %/V MHz NOTE: ROSC = 100 kΩ. Metal film resistor, type 0257. 0.6 W with 1% tolerance and TK = ±50 ppm/°C. typical characteristics -- DCO with external resistor ROSC 10.00 DCO Frequency -- MHz DCO Frequency -- MHz 10.00 1.00 0.10 RSELx = 4 0.01 10.00 100.00 1000.00 1.00 0.10 RSELx = 4 0.01 10.00 10000.00 ROSC -- External Resistor -- kΩ Figure 14. DCO Frequency vs ROSC, VCC = 2.2 V, TA = 25°C 2.25 DCO Frequency -- MHz ROSC = 100k 2.00 1.75 DCO Frequency -- MHz 10000.00 2.50 2.25 1.50 1.25 1.00 ROSC = 270k 0.75 0.50 --25 0 25 50 75 1.75 1.50 1.25 1.00 ROSC = 270k 0.75 0.50 ROSC = 1M 0.25 ROSC = 100k 2.00 ROSC = 1M 0.25 100 0.00 2.0 TA -- Temperature -- °C Figure 16. DCO Frequency vs Temperature, VCC = 3 V 34 1000.00 Figure 15. DCO Frequency vs ROSC, VCC = 3 V, TA = 25°C 2.50 0.00 --50 100.00 ROSC -- External Resistor -- kΩ POST OFFICE BOX 655303 2.5 3.0 3.5 VCC -- Supply Voltage -- V Figure 17. DCO Frequency vs VCC, TA = 25°C • DALLAS, TEXAS 75265 4.0 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, low frequency modes (see Note 4) PARAMETER TEST CONDITIONS VCC fLFXT1,LF LFXT1 oscillator crystal frequency, LF mode 0, 1 XTS = 0, LFXT1Sx = 0 or 1 1.8 V to 3.6 V fLFXT1,LF,logic LFXT1 oscillator logic level square wave input frequency, LF mode XTS = 0, XCAPx = 0, LFXT1Sx = 3 1.8 V to 3.6 V OALF CL,eff Oscillation allowance for LF crystals Integrated effective load capacitance LF mode capacitance, (see Note 1) MIN TYP 32,768 10,000 32,768 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32,768 kHz, CL,eff = 6 pF 500 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32,768 kHz, CL,eff = 12 pF 200 1 XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 11 Duty cycle LF mode fFault,LF Oscillator fault frequency, LF mode (see Note 3) XTS = 0, XCAPx = 0. LFXT1Sx = 3 (see Note 2) UNIT Hz 50,000 Hz kΩ XTS = 0, XCAPx = 0 XTS = 0, Measured at P2.0/ACLK, fLFXT1,LF = 32,768Hz MAX 2.2 V/3 V 30 2.2 V/3 V 10 pF 50 70 % 10,000 Hz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Measured with logic level input frequency but also applies to operation with crystals. 3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. 4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. -- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. -- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. -- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. internal very low power, low frequency oscillator (VLO) PARAMETER TEST CONDITIONS VCC TA = --40°C to 85°C 2.2 V/3 V fVLO VLO frequency TA = 105°C 2.2 V/3 V dfVLO/dT VLO frequency temperature drift See Note 1 2.2 V/3 V dfVLO/dVCC VLO frequency supply voltage drift See Note 2 1.8V to 3.6V MIN TYP MAX 4 12 20 22 UNIT kHz kHz 0.5 %/°C 4 %/V NOTES: 1. Calculated using the box method: I Version: (MAX(--40_C to 85_C) -- MIN(--40_C to 85_C))/MIN(--40_C to 85_C)/(85_C -- (--40_C)) T Version: (MAX(--40_C to 105_C) -- MIN(--40_C to 105_C))/MIN(--40_C to 105_C)/(105_C -- (--40_C)) 2. Calculated using the box method: (MAX(1.8 V to 3.6 V) -- MIN(1.8 V to 3.6 V))/MIN(1.8 V to 3.6 V)/(3.6 V -- 1.8 V) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, high frequency modes (see Note 5) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fLFXT1,HF0 LFXT1 oscillator crystal frequency, HF mode 0 XTS = 1, XCAPx = 0, LFXT1Sx = 0 1.8 V to 3.6 V 0.4 1 MHz fLFXT1,HF1 LFXT1 oscillator crystal frequency, HF mode 1 XTS = 1, XCAPx = 0, LFXT1Sx = 1 1.8 V to 3.6 V 1 4 MHz LFXT1 oscillator ill t crystal t l frequency, f HF mode 2 1.8 V to 3.6 V 2 10 MHz fLFXT1,HF2 XTS = 1, XCAPx = 0, LFXT1Sx = 2 2.2 V to 3.6 V 2 12 MHz 3 V to 3.6 V 2 16 MHz LFXT1 oscillator ill t logic l i level l l square wave input frequency, frequency HF mode 1.8 V to 3.6 V 0.4 10 MHz XTS = 1, XCAPx = 0, LFXT1Sx = 3 2.2 V to 3.6 V 0.4 12 MHz 3 V to 3.6 V 0.4 16 MHz fLFXT1,HF,logic OAHF CL,eff Duty cycle fFault,HF Oscillation allowance for HF crystals (see Figure 18 and Figure 19) Integrated effective load capacitance, HF mode (see Note 1) HF mode XTS = 1, XCAPx = 0, LFXT1Sx = 0, fLFXT1,HF = 1 MHz, CL,eff = 15 pF 2700 Ω XTS = 1, XCAPx = 0, LFXT1Sx = 1, fLFXT1,HF = 4 MHz, CL,eff = 15 pF 800 Ω XTS = 1, XCAPx = 0, LFXT1Sx = 2, fLFXT1,HF = 16 MHz, CL,eff = 15 pF 300 Ω 1 pF XTS = 1, XCAPx = 0 (see Note 2) XTS = 1, XCAPx = 0, Measured at P2.0/ACLK, fLFXT1,HF = 10 MHz 2.2 V/3 V 40 50 60 % XTS = 1, XCAPx = 0, Measured at P2.0/ACLK, fLFXT1,HF = 16 MHz 2.2 V/3 V 40 50 60 % 2.2 V/3 V 30 300 kHz Oscillator fault frequency, HF mode XTS = 1, XCAPx = 0, LFXT1Sx = 3 (see Note 4) (see Notes 3) NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. 3. Measured with logic level input frequency but also applies to operation with crystals. 4. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. 5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. -- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. -- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. -- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- LFXT1 oscillator in HF mode (XTS = 1) Oscillation Allowance -- Ohms 100000.00 10000.00 1000.00 LFXT1Sx = 2 100.00 LFXT1Sx = 1 LFXT1Sx = 0 10.00 0.10 1.00 10.00 100.00 Crystal Frequency -- MHz Figure 18. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C XT Oscillator Supply Current -- uA 1800.0 LFXT1Sx = 2 1600.0 1400.0 1200.0 1000.0 800.0 600.0 400.0 LFXT1Sx = 1 200.0 0.0 0.0 LFXT1Sx = 0 4.0 8.0 12.0 16.0 20.0 Crystal Frequency -- MHz Figure 19. XT Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Timer0_A3 PARAMETER TEST CONDITIONS fTA Timer0 A3 clock frequency Timer0_A3 Internal: SMCLK, ACLK, External: TACLK, TACLK INCLK INCLK, Duty cycle = 50% ± 10% tTA,cap Timer0_A3, capture timing TA0_0, TA1_0, TA2_0 VCC MIN TYP MAX 2.2 V 10 3V 16 2.2 V/3 V 20 UNIT MHz ns Timer1_A2 PARAMETER TEST CONDITIONS fTB Timer1 A2 clock frequency Timer1_A2 Internal: SMCLK, ACLK; External: TACLK, TACLK INCLK; Duty cycle = 50% ± 10% tTB,cap Timer1_A2, capture timing TA0_1, TA1_1 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VCC MIN TYP MAX 2.2 V 10 3V 16 2.2 V/3 V 20 UNIT MHz ns MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (UART mode) PARAMETER TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK, External: UCLK, Duty cycle = 50% ± 10% fUSCI USCI input clock frequency fmax,BITCLK Maximum BITCLK clock frequency (equals baudrate in MBaud) (see Note 1) tτ UART receive deglitch time (see Note 2) MAX UNIT fSYSTEM MHz 2.2V /3 V 2 MHz 2.2 V 50 150 600 ns 3V 50 100 600 ns NOTES: 1. The DCO wake-up time must be considered in LPM3/4 for baudrates above 1 MHz. 2. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. USCI (SPI master mode) (see Figure 20 and Figure 21) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time NOTE: f UCxCLK = TEST CONDITIONS VCC MIN TYP SMCLK, ACLK, Duty cycle = 50% ± 10% UCLK edge to SIMO valid, CL = 20 pF MAX UNIT fSYSTEM MHz 2.2 V 110 ns 3V 75 ns 2.2 V 0 ns 3V 0 ns 2.2 V 30 ns 3V 20 ns 1 with t LO∕HI ≥ max(t VALID,MO(USCI) + t SU,SI(Slave), t SU,MI(USCI) + t VALID,SO(Slave)). 2t LO∕HI For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. USCI (SPI slave mode) (see Figure 22 and Figure 23) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT tSTE,LEAD STE lead time, STE low to clock 2.2 V/3 V tSTE,LAG STE lag time, Last clock to STE high 2.2 V/3 V tSTE,ACC STE access time, STE low to SOMI data out 2.2 V/3 V 50 ns tSTE,DIS STE disable time, STE high to SOMI high impedance 2.2 V/3 V 50 ns tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time NOTE: f UCxCLK = UCLK edge to SOMI valid, CL = 20 pF 50 ns 10 ns 2.2 V 20 ns 3V 15 ns 2.2 V 10 ns 3V 10 ns 2.2 V 75 110 ns 3V 50 75 ns 1 with t LO∕HI ≥ max(t VALID,MO(Master) + t SU,SI(USCI), t SU,MI(Master) + t VALID,SO(USCI)) . 2t LO∕HI For the master’s parameters tSU,MI(Master) and tVALID,MO(Master) refer to the SPI parameters of the attached master. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 20. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI SOMI tVALID,MO SIMO Figure 21. SPI Master Mode, CKPH = 1 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 tHD,MI MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)3 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 22. SPI Slave Mode, CKPH = 0 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 23. SPI Slave Mode, CKPH = 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (I2C mode) (see Figure 24) PARAMETER fUSCI USCI input clock frequency fSCL SCL clock frequency TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK, External: UCLK, Duty Cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 400 kHz 2.2 V/3 V 0 fSCL ≤ 100kHz 2.2 V/3 V 4.0 us fSCL > 100kHz 2.2 V/3 V 0.6 us fSCL ≤ 100kHz 2.2 V/3 V 4.7 us fSCL > 100kHz 2.2 V/3 V 0.6 us tHD,STA Hold time (repeated) start tSU,STA Setup time for a repeated start tHD,DAT Data hold time 2.2 V/3 V 0 ns tSU,DAT Data setup time 2.2 V/3 V 250 ns tSU,STO Setup time for stop 2.2 V/3 V 4.0 us tSP Pulse width of spikes suppressed by input filter 2.2 V 50 150 600 ns 3V 50 100 600 ns tHD,STA tSU,STA tHD,STA SDA 1/fSCL tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 24. I2C Mode Timing 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Comparator_A+ (see Note 1) PARAMETER TEST CONDITIONS I(DD) CAON = 1 1, CARSEL = 0 0, CAREF = 0 I(Refladder/RefDiode) CAON = 1, CARSEL = 0, CAREF = 1/2/3 1/2/3, No load at P1.0/CA0 and P1.1/CA1 V(IC) V(Ref025) V(Ref050) VCC MIN TYP MAX 2.2 V 25 40 3V 45 60 2.2 V 30 50 3V 45 71 Common-mode input voltage CAON = 1 2.2 V/3 V 0 Voltage @ 0.25 V node PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P1.0/CA0 and P1.1/CA1 2.2 V/3 V 0.23 0.24 0.25 node PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P1.0/CA0 and P1.1/CA1 2.2 V/3 V 0.47 0.48 0.5 2.2 V 390 480 540 3V 400 490 550 V CC Voltage @ 0.5V V CC CC CC VCC --1 UNIT µA µA V V(RefVT) See Figure 28 and Figure 29 PCA0 = 1, CARSEL = 1, CAREF = 3, P1 0/CA0 and P1.1/CA1, P1 1/CA1 No load at P1.0/CA0 TA = 85°C V(offset) Offset voltage See Note 2 2.2 V/3 V --30 30 mV Vhys Input hysteresis CAON = 1 2.2 V/3 V 0 0.7 1.4 mV 2.2 V 80 165 300 3V 70 120 240 t(response) Response time (low to high and high to low) (see Note 3) TA = 25°C, Overdrive 10 mV, Without filter: CAF = 0 (see Note 3, Figure 25 and Figure 26) mV ns TA = 25°C, Overdrive 10 mV, 2.2 V 1.4 1.9 2.8 µs With filter: CAF = 1 3V 0.9 1.5 2.2 (see Note 3, Figure 25 and Figure 26) NOTES: 1. The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together. 3. Response time measured at P2.2/TA0_0/A2/CA4/CAOUT. If the Comparator_A+ is enabled a settling time of 60 ns (typical) is added to the response time. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 0V VCC 0 1 CAF CAON To Internal Modules Low-Pass Filter + _ V+ V-- 0 0 1 1 CAOUT Set CAIFG Flag τ ≈ 2.0 µs Figure 25. Block Diagram of Comparator_A+ Module VCAOUT Overdrive V-400 mV t(response) V+ Figure 26. Overdrive Definition CASHORT CA0 CA1 1 VIN + -- IOUT = 10µA Comparator_A+ CASHORT = 1 Figure 27. Comparator_A+ Short Resistance Test Condition 44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- Comparator_A+ 650.0 650.0 VCC = 2.2 V V(REFVT) -- Reference Volts -- mV V(REFVT) -- Reference Volts -- mV VCC = 3 V 600.0 600.0 Typical Typical 550.0 550.0 500.0 500.0 450.0 450.0 400.0 --45.0 --25.0 --5.0 15.0 35.0 55.0 75.0 95.0 115.0 400.0 --45.0 --25.0 --5.0 15.0 35.0 55.0 75.0 95.0 115.0 TA -- Free-Air Temperature -- °C TA -- Free-Air Temperature -- °C Figure 29. V(RefVT) vs Temperature, VCC = 2.2 V Figure 28. V(RefVT) vs Temperature, VCC = 3 V Short Resistance -- kOhms 100.00 VCC = 1.8V VCC = 2.2V VCC = 3.0V 10.00 VCC = 3.6V 1.00 0.0 0.2 0.4 0.6 0.8 1.0 VIN/VCC -- Normalized Input Voltage -- V/V Figure 30. Short Resistance vs VIN/VCC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, power supply and input range conditions (see Note 1) PARAMETER TEST CONDITIONS TA VCC VCC Analog supply voltage range VSS = 0 V VAx Analog input voltage range (see Note 2) All Ax terminals, Analog inputs selected in ADC10AE register IADC10 ADC10 supply current (see Note 3) fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0 ADC10SHT0 = 1, ADC10SHT1 = 0, ADC10DIV = 0 I: --40°C 40 C to 85°C 85 C T: --40°C to105°C fADC10CLK = 5 MHz, ADC10ON = 0, REF2_5V = 0, REFON = 1, REFOUT = 0 I: --40°C to 85°C T: --40°C to105°C fADC10CLK = 5 MHz, ADC10ON = 0, REF2_5V = 1, REFON = 1, REFOUT = 0 I: --40°C to 85°C T: --40°C to105°C 3V --40°C to 85°C 2.2 V/3 V 105°C 2.2 V/3 V --40°C to 85°C 2.2 V/3 V 105°C 2.2 V/3 V IREF+ Reference supply current reference buffer current, disabled (see Note 4) fADC10CLK = 5 MHz, ADC10ON = 0, 1 REF2 5V = 0 0, REFON = 1, REF2_5V REFOUT = 1, ADC10SR = 0 Reference buffer supply current with ADC10SR = 1 (see Note 4) fADC10CLK = 5 MHz, ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 1 CI Input capacitance Only one terminal Ax selected at a time I: --40°C to 85°C T: --40°C to105°C RI Input MUX ON resistance 0V ≤ VAx ≤ VCC I: --40°C to 85°C T: --40°C to105°C IREFB,1 NOTES: 1. 2. 3. 4. 46 TYP MAX UNIT 2.2 3.6 V 0 VCC V 2.2 V 0.52 1.05 3V 0.6 1.2 mA 2.2 V/3 V mA 0 25 0.25 Reference buffer supply current with ADC10SR = 0 (see Note 4) IREFB,0 MIN 2.2 V/3 V 0.4 04 mA 1.1 0.5 1.4 mA 1.8 mA 0.7 mA 0.8 mA 27 pF 2000 Ω The leakage current is defined in the leakage current table with Px.x/Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR-- for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC10. The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, built-in voltage reference PARAMETER VCC,REF+ VREF+ ILD,VREF+ Positive built-in reference analog supply voltage range Positive built-in reference voltage TCREF+ tREFON tREFBURST TA 2.2 2.8 IVREF+ ≤ 1 mA, REF2_5V = 1 2.9 IVREF+ ≤ IVREF+max, REF2_5V = 0 IVREF+ ≤ IVREF+max, REF2_5V = 1 TYP MAX UNIT V 2.2 V/ 3V 1.41 1.5 1.59 V 3V 2.35 2.5 2.65 V 2.2 V ±0.5 mA 3V ±1 IVREF+ = 500 µA ± 100 µA, Analog input voltage VAx ≈ 0.75 V, REF2_5V = 0 2.2 V/ 3V ±2 LSB IVREF+ = 500 µA ± 100 µA, Analog input voltage VAx ≈ 1.25 V, REF2_5V = 1 3V ±2 LSB ADC10SR = 0 3V 400 ADC10SR = 1 3V 2000 2.2 V/ 3V 100 IVREF+ = 100 µA→900 µA, 0 5 x VREF+, Error of VAx ≈ 0.5 conversion result ≤ 1 LSB Max. capacitance at pin VREF+ (see Note 1) IVREF+ ≤ ±1 mA, REFON = 1, REFOUT = 1 Temperature coefficient IVREF+ = const. with 0 mA ≤ IVREF+ ≤ 1 mA (see Note 3) Settling time of reference buffer (see Note 2) MIN IVREF+ ≤ 1 mA, REF2_5V = 0 VREF+ load regulation response time Settling time of internal reference voltage (see Note 2) VCC IVREF+ ≤ 0.5 mA, REF2_5V = 1 Maximum VREF+ load current VREF+ load regulation CVREF+ TEST CONDITIONS ns pF --40°C to 85°C 2.2 V/ 3V ±100 ppm/°C 85°C to 105°C 2.2 V/ 3V ±110 ppm/°C IVREF+ = 0.5 mA, REF2_5V = 0, REFON = 0 → 1 3.6 V 30 IVREF+ = 0.5 mA, REF2 5V = 0, REF2_5V REFON = 1, REFBURST = 1 ADC10SR = 0 2.2 V 1 ADC10SR = 1 2.2 V 2.5 IVREF+ = 0.5 mA, REF2 5V = 1, REF2_5V REFON = 1, REFBURST = 1 ADC10SR = 0 3V 2 ADC10SR = 1 3V 4.5 µs µs s µs s NOTES: 1. The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA2/A4/VREF+/VeREF+ (REFOUT = 1), must be limited; the reference buffer may become unstable, otherwise. 2. The condition is that the error in a conversion started after tREFON or tRefBuf is less than ±0.5 LSB. 3. Calculated using the box method: ((MAX(VREF(T)) -- MIN(VREF(T))) / MIN(VREF(T)) / (TMAX -- TMIN) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, external reference (see Note 1) PARAMETER VeREF+ Positive external reference input voltage range (see Note 2) TEST CONDITIONS UNIT VeREF-- ≤ VeREF+ ≤ (VCC -- 0.15 V) SREF1 = 1, SREF0 = 1 (see Note 3) 1.4 3.0 0 1.2 V 1.4 VCC V ∆VeREF Differential external reference input voltage range ∆VeREF = VeREF+ -- VeREF-- VeREF+ > VeREF-- (see Note 5) Static input current into VeREF-- MAX VCC VeREF+ > VeREF-- IVeREF-- TYP 1.4 Negative external reference input voltage range (see Note 4) Static input current into VeREF+ MIN VeREF+ > VeREF-- , SREF1 = 1, SREF0 = 0 VeREF-- IVeREF+ VCC V 0V ≤ VeREF+ ≤ VCC, SREF1 = 1, SREF0 = 0 2.2 V/3 V ±1 0V ≤ VeREF+ ≤ (VCC -- 0.15 V) ≤ 3 V, SREF1 = 1, SREF0 = 1 (see Note 3) 2.2 V/3 V 0 0V ≤ VeREF-- ≤ VCC 2.2 V/3 V ±1 µA A µA NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy. 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. 3. Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1. 4. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. 5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. 48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, timing parameters PARAMETER fADC10CLK fADC10OSC tCONVERT tADC10ON TEST CONDITIONS ADC10 built-in oscillator frequency Conversion time MIN MAX UNIT 2.2 V/3 V 0.45 6.3 ADC10SR = 1 2.2 V/3 V 0.45 1.5 ADC10DIVx = 0, ADC10SSELx = 0 fADC10CLK = fADC10OSC 2.2 V/3 V 3.7 6.3 MHz ADC10 built-in oscillator, ADC10SSELx = 0 fADC10CLK = fADC10OSC 2.2 V/3 V 2.06 3.51 µs MHz 13× ADC10DIV× 1/fADC10CLK fADC10CLK from ACLK, MCLK or SMCLK: ADC10SSELx ≠ 0 Turn on settling time of the ADC TYP ADC10SR = 0 For specified performance of ADC10 linearity parameters ADC10 input clock frequency VCC See Note 1 µs 100 ns NOTE 1: The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signals are already settled. 10-bit ADC, linearity parameters PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT EI Integral linearity error 2.2 V/3 V ±1 LSB ED Differential linearity error 2.2 V/3 V ±1 LSB 2.2 V/3 V ±1 LSB EO EG ET Offset error Gain error Total unadjusted error Source impedance RS < 100 Ω SREFx = 010, Unbuffered external reference; VeREF+ = 1.5 V 2.2 V ±1.1 ±2 LSB SREFx = 010, Unbuffered external reference; VeREF+ = 2.5 V 3V ±1.1 ±2 LSB SREFx = 011, Buffered external reference (see Note 2), VeREF+ = 1.5 V 2.2 V ±1.1 ±4 LSB SREFx = 011, Buffered external reference (see Note 2), VeREF+ = 2.5 V 3V ±1.1 ±3 LSB SREFx = 010, Unbuffered external reference; VeREF+ = 1.5 V 2.2 V ±2 ±5 LSB SREFx = 010, Unbuffered external reference; VeREF+ = 2.5 V 3V ±2 ±5 LSB SREFx = 011, Buffered external reference (see Note 2), VeREF+ = 1.5 V 2.2 V ±2 ±7 LSB SREFx = 011, Buffered external reference (see Note 2), VeREF+ = 2.5 V 3V ±2 ±6 LSB NOTE 2: The reference buffer’s offset adds to the gain and total unadjusted error. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, temperature sensor and built-in VMID PARAMETER ISENSOR Temperature sensor supply current (see Note 1) VSensor REFON = 0, INCHx = 0Ah, ADC10ON = 1, TA = 25_C ADC10ON = 1, INCHx = 0Ah (see Note 2) TCSENSOR VOffset,Sensor TEST CONDITIONS Sensor offset voltage Sensor output voltage (see Note 3) VCC MIN TYP MAX 2.2 V 40 120 3V 60 160 2.2 V/3 V ADC10ON = 1, INCHx = 0Ah (see Note 2) 3.55 --100 UNIT µA A mV/°C 100 mV Temperature sensor voltage at TA = 105°C (T version only) 2.2 V/3 V 1265 1365 1465 mV Temperature sensor voltage at TA = 85°C 2.2 V/3 V 1195 1295 1395 mV Temperature sensor voltage at TA = 25°C 2.2 V/3 V 985 1085 1185 Temperature sensor voltage at TA = 0°C 2.2 V/3 V 895 995 1095 2.2 V/3 V 30 mV tSensor(sample) Sample time required if channel 10 is selected (see Note 4) ADC10ON = 1, INCHx = 0Ah, Error of conversion result ≤ 1 LSB IVMID Current into divider at channel11 (see Note 5) ADC10ON = 1, 1 INCHx = 0Bh 0Bh, VMID VCC divider at channel 11 ADC10ON = 1, INCHx = 0Bh, VMID is ≈0.5 x VCC 2.2 V 1.06 1.1 1.14 3V 1.46 1.5 1.54 tVMID(sample) Sample time required if channel 11 is selected (see Note 6) ADC10ON = 1, INCHx = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V 1400 3V 1220 µs 2.2 V NA 3V NA µA A V ns NOTES: 1. The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor input (INCH = 0Ah). 2. The following formula can be used to calculate the temperature sensor output voltage: VSensor,typ = TCSensor ( 273 + T [°C] ) + VOffset,sensor [mV] or VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV] 3. Results based on characterization and/or production test, not TCSensor or VOffset,sensor. 4. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). 5. No additional current is needed. The VMID is used during sampling. 6. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) flash memory PARAMETER VCC(PGM/ ERASE) TEST CONDITIONS VCC Program and erase supply voltage MIN TYP 2.2 fFTG Flash timing generator frequency IPGM Supply current from VCC during program 2.2 V/3.6 V 257 1 IERASE Supply current from VCC during erase 2.2 V/3.6 V 1 tCPT Cumulative program time (see Note 1) 2.2 V/3.6 V tCMErase Cumulative mass erase time 2.2 V/3.6 V TJ = 25°C UNIT 3.6 V 476 kHz 5 mA 7 mA 10 ms 20 104 Program/erase endurance MAX ms 105 cycles tRetention Data retention duration 100 tWord Word or byte program time 30 tFTG tBlock, 0 Block program time for first byte or word 25 tFTG tBlock, 1-63 Block program time for each additional byte or word 18 tFTG tBlock, End Block program end-sequence wait time tMass Erase Mass erase time tSeg Erase Segment erase time See Note 2 years 6 tFTG 10593 tFTG 4819 tFTG NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). RAM PARAMETER V(RAMh) TEST CONDITIONS RAM retention supply voltage (see Note) CPU halted MIN 1.6 TYP MAX UNIT V NOTE: This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 JTAG and Spy-Bi-Wire interface TEST CONDITIONS PARAMETER VCC MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V/3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse length 2.2 V/3 V 0.025 15 us tSBW,En Spy-Bi-Wire enable time, TEST high to acceptance of first clock edge (see Note 1) 2.2 V/3 V 1 us tSBW,Ret Spy-Bi-Wire return to normal operation time 2.2 V/3 V 15 100 2.2 V 0 5 MHz 3V 0 10 MHz 2.2 V/3 V 25 90 kΩ fTCK TCK input frequency (see Note 2) RInternal Internal pulldown resistance on TEST 60 us NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before applying the first SBWCLK clock edge. 2. fTCK may be restricted to meet the timing requirements of the module selected. JTAG fuse (see Note) TEST CONDITIONS PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TEST for fuse-blow (F versions) IFB Supply current into TDI/TCLK during fuse blow tFB Time to blow fuse TA = 25°C VCC MIN NOM MAX 2.5 6 UNIT V 7 V 100 mA 1 ms NOTE: Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 APPLICATION INFORMATION Port P1 pin schematic: P1.0, input/output with Schmitt trigger Pad Logic P1REN.0 P1DIR.0 P1SEL2.0 0 0 from Comparator 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 ADC10CLK DVSS 1 P1OUT.0 0 P1.0/TACLK/ ADC10CLK/CAOUT Bus Keeper EN P1SEL.0 P1IN.0 EN Module X IN D P1IE.x EN P1IRQ.0 Q Set P1IFG.x P1SEL.0 P1IES.0 Interrupt Edge Select Port P1 (P1.0) pin functions PIN NAME (P1.x) (P1 x) x P1.0/TACLK/ / / ADC10CLK/CAOUT 0 CONTROL BITS / SIGNALS FUNCTION P1DIR.x P1SEL.x P1SEL2.x I: 0, O: 1 0 0 Timer0_A3.TACLK, Timer1_A2.TACLK 0 1 0 ADC10CLK 1 1 0 CAOUT 1 1 1 P1.0 (I/O) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P1 pin schematic: P1.1 to P1.3, input/output with Schmitt trigger Pad Logic P1REN.x 0 P1DIR.x 0 P1OUT.x 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Timer0_A3 output DVSS P1.1/TA0_0/TA0_1 P1.2/TA1_0 P1.3/TA2_0 Bus Keeper EN P1SEL.x P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q Set P1IFG.x P1SEL.x P1IES.x Interrupt Edge Select Port P1 (P1.1 to P1.3) pin functions PIN NAME (P1.x) (P1 x) x P1.1/TA0_0/TA0_1 / _ / _ 1 CONTROL BITS / SIGNALS FUNCTION P1.1 (I/O) Timer0_A3.CCI0A, Timer1_A2.CCI0A Timer0_A3.TA0 P1.2/TA1_0 / _ P1.3/TA2_0 / _ 54 2 3 P1DIR.x P1SEL.x P1SEL2.x I: 0; O: 1 0 0 0 1 0 1 1 0 I: 0; O: 1 0 0 Timer0_A3.CCI0A 0 1 0 Timer0_A3.TA0 1 1 0 0 0 P1.2 (I/O) P1.3 (I/O) I: 0; O: 1 Timer0_A3.CCI0A 0 1 0 Timer0_A3.TA0 1 1 0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P1 pin schematic: P1.4 P1REN.4 Pad Logic P1DIR.4 0 0 P1OUT.4 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 SMCLK DVSS Bus Keeper EN P1SEL.4 P1IN.4 P1.4/SMCLK/TCK EN Module X IN D P1IE.x P1IRQ.4 EN Q Set P1IFG.x P1SEL.x P1IES.x Interrupt Edge Select To JTAG From JTAG Port P1 (P1.4) pin functions CONTROL BITS / SIGNALS PIN NAME (P1.x) P1.4/SMCLK/TCK / / x 4 FUNCTION P1.4 (I/O) P1DIR.x P1SEL.x P1SEL2.x = 0 JTAG Mode I: 0; O: 1 0 0 SMCLK 1 1 0 TCK (see Note 1) X X 1 NOTES: 1. In JTAG Mode the internal pullup/pulldown resistors are disabled. 2. X: Don’t care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 55 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P1 pin schematic: P1.5 to P1.7 P1REN.x Pad Logic P1DIR.x 0 0 P1OUT.x 1 0 DVCC 1 Bus Keeper EN P1SEL.x P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q Set P1IFG.x P1SEL.x P1IES.x Interrupt Edge Select To JTAG From JTAG 56 1 Direction 0: Input 1: Output 1 Module X Out DVSS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P1.5/TA0_0/TMS P1.6/TA1_0/TDI/TCLK P1.7/TA2_0/TDO/TDI MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P1 (P1.5 to P1.7) pin functions CONTROL BITS / SIGNALS PIN NAME (P1.x) P1.5/TA0_0/TMS / _ / P1.6/TA1_0/ / _ / TDI/TCLK P1.7/TA2_0/TDO/TDI / _ / / x 5 6 FUNCTION P1.5 (I/O) P1SEL.x P1SEL2.x = 0 JTAG Mode I: 0; O: 1 0 0 Timer0_A3.TA0 1 1 0 TMS (see Note 1) X X 1 I: 0; O: 1 0 0 1 1 0 P1.6 (I/O) Timer0_A3.TA1 7 P1DIR.x Timer0_A3.CCI0B 0 1 0 TDI/TCLK (see Note 1) X X 1 I: 0; O: 1 0 0 P1.6 (I/O) Timer0_A3.TA2 1 1 0 TDO/TDI (see Note 1) X X 1 NOTES: 1. In JTAG Mode the internal pullup/pulldown resistors are disabled. 2. X: Don’t care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 57 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P2 pin schematic: P2.0 and P2.1, input/output with Schmitt trigger Pad Logic To ADC10 INCHx = y To Comparator_A From Comparator_A CAPD.x ADC10AE0.y P2REN.x DVSS 0 DVCC 1 1 P2DIR.x 0 Direction 0: Input 1: Output 1 P2OUT.x 0 Module X OUT 1 Bus Keeper EN P2SEL.x P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q Set P2IFG.x P2SEL.x P2IES.x 58 Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P2.0/ACLK/A0/CA2 P2.1/TAINCLK/ SMCLK/A1/CA3 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P2 (P2.0 and P2.1) pin functions CONTROL BITS / SIGNALS PIN NAME (P2.x) x P2.0/ACLK/A0/CA2 / / / 0 P2.1/TAINCLK/ / / SMCLK/A1/CA3 1 FUNCTION ADC10AE0.y CAPD.x P2DIR.x P2SEL.x P2SEL2.x = 0 P2.0 (I/O) 0 0 I: 0; O: 1 0 ACLK 0 0 1 1 A0 1 0 X X CA2 0 1 X X P2.1 (I/O) 0 0 I: 0; O: 1 0 Timer0_A3.TAINCLK, Timer1_A2.TAINCLK 0 0 0 1 SMCLK 0 0 1 1 A1 1 0 X X CA3 0 1 X X NOTE: X: Don’t care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 59 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P2 pin schematic: P2.2, input/output with Schmitt trigger Pad Logic To ADC10 INCHx = y To Comparator_A From Comparator_A CAPD.x ADC10AE0.y P2REN.x DVSS 0 DVCC 1 1 0 P2DIR.2 P2SEL2.2 Direction 0: Input 1: Output 1 Module Output 0 from Comparator 1 1 P2OUT.2 0 Bus Keeper EN P2SEL.2 P2IN.2 EN Module X IN D P2IE.x P2IRQ.2 EN Q Set P2IFG.x P2SEL.x P2IES.x 60 Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P2.2/TA0_0/A2/CA4/ CAOUT MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P2 (P2.2) pin functions PIN NAME (P2.x) (P2 x) x P2.2/TA0_0/A2/CA4/ / _ / / / CAOUT 2 FUNCTION CONTROL BITS / SIGNALS ADC10AE0.x CAPD.x P2DIR.x P2SEL.x P2SEL2.x P2.0 (I/O) 0 0 I: 0; O: 1 0 0 Timer0_A3.TA0 0 0 1 1 0 Timer0_A3.CCI0B 0 0 0 1 0 A2 1 0 X X X CA4 0 1 X X X CAOUT 0 0 1 1 1 NOTE: X: Don’t care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 61 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P2 pin schematic: P2.3 and P2.4, input/output with Schmitt trigger Pad Logic To/from ADC10 reference To ADC10 INCHx = y To Comparator_A From Comparator_A CAPD.x ADC10AE0.y P2REN.x DVSS 0 DVCC 1 1 P2DIR.x 0 Direction 0: Input 1: Output 1 P2OUT.x 0 Module X OUT 1 Bus Keeper EN P2SEL.x P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q Set P2IFG.x P2SEL.x P2IES.x 62 Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P2.3/TA1_0/A3/VRef-/ Ve Ref-/CA0 P2.4/TA2_0/A4/VRef-+/ Ve Ref+/CA1 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P2 (P2.3 and P2.4) pin functions CONTROL BITS / SIGNALS PIN NAME (P2.x) P2.3/TA1_0/A3/ / _ / / VRef-- /VeRef-- /CA0 P2.4/TA2_0/A4/ / _ / / VRef+/VeRef+/CA1 x 3 4 FUNCTION ADC10AE0.y CAPD.x P2DIR.x P2SEL.x P2SEL2.x = 0 P2.3 (I/O) 0 0 I: 0; O: 1 0 Timer0_A3.TA1 0 0 1 1 A3/VRef-- /VeRef-- 1 0 X X CA0 0 1 X X P2.4 (I/O) 0 0 I: 0; O: 1 0 Timer0_A3.TA2 0 0 1 1 A4/VRef+/VeRef+ 1 0 X X CA1 0 1 X X NOTE: X: Don’t care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 63 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P2 pin schematic: P2.5, input/output with Schmitt trigger Pad Logic To Comparator From Comparator CAPD.x To DCO in DCO DCOR P2REN.x P2DIR.5 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.5 DVSS P2.5/ROSC/CA5 Bus Keeper EN P2SEL.x P2IN.5 EN Module X IN D P2IE.5 P2IRQ.5 EN Q Set P2IFG.5 P2SEL.5 P2IES.5 Interrupt Edge Select Port P2 (P2.5) pin functions CONTROL BITS / SIGNALS PIN NAME (P2.x) P2.5/R / OSC//CA5 x 5 FUNCTION CAPD.5 DCOR P2DIR.5 P2SEL.5 P2SEL2.x = 0 P2.5 (I/O) 0 0 I: 0, O: 1 0 ROSC 0 1 X X DVSS 0 0 1 1 CA5 (see Note 2) 1 0 X X NOTES: 1. X: Don’t care. 2. Setting the CAPD.x bit disables the output driver as well as the input to prevent parasitic cross currents when applying analog signals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. 64 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P2 pin schematic: P2.6, input/output with Schmitt trigger BCSCTL3.LFXT1Sx = 11 P2.7/XOUT/CA7 LFXT1 off 0 LFXT1CLK 1 Pad Logic To Comparator From Comparator P2SEL.7 CAPD.6 P2REN.6 P2DIR.6 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.6 DVSS P2.6/XIN/CA6 Bus Keeper EN P2SEL.6 P2IN.6 EN Module X IN D P2IE.6 P2IRQ.6 EN Q Set P2IFG.6 P2SEL.6 P2IES.6 Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 65 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P2.6 pin functions CONTROL BITS / SIGNALS Pin Name (P2.x) P2.6/XIN/CA6 / / x 6 FUNCTION CAPD.6 P2DIR.6 P2SEL.6 P2SEL2.x = 0 P2.6 (I/O) 0 I: 0; O: 1 0 XIN (default) X 1 1 CA6 (see Note 2) 1 X 0 NOTES: 1. X: Don’t care. 2. Setting the CAPD.x bit disables the output driver as well as the input to prevent parasitic cross currents when applying analog signals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. 66 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P2 pin schematic: P2.7, input/output with Schmitt trigger BCSCTL3.LFXT1Sx = 11 P2.6/XIN/CA6 LFXT1 off 0 LFXT1CLK From P2.6/XIN 1 Pad Logic To Comparator From Comparator P2SEL.6 CAPD.7 P2REN.7 P2DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.7 DVSS P2.7/XOUT/CA7 Bus Keeper EN P2SEL.7 P2IN.7 EN Module X IN D P2IE.7 P2IRQ.7 EN Q Set P2IFG.7 P2SEL.7 P2IES.7 Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 67 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P2.7 pin functions CONTROL BITS / SIGNALS PIN NAME (P2.x) P2.7/XOUT/CA7 / / x 7 FUNCTION CAPD.7 P2DIR.7 P2SEL.7 P2SEL2.x = 0 P2.7 (I/O) 0 I: 0, O: 1 0 XOUT (default) X 1 1 CA7 (see Note 2) 1 X 0 NOTES: 1. X: Don’t care. 2. Setting the CAPD.x bit disables the output driver as well as the input to prevent parasitic cross currents when applying analog signals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. 68 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P3 pin schematic: P3.0, input/output with Schmitt trigger Pad Logic To ADC10 INCHx = y ADC10AE0.y P3REN.x DVSS 0 DVCC 1 1 P3DIR.x 0 Module direction 1 P3OUT.x 0 Module X OUT 1 Direction 0: Input 1: Output Bus Keeper EN P3SEL.x P3IN.x P3.0/UCB0STE/ UCA0CLK/A5 Port P3.0 pin functions CONTROL BITS / SIGNALS PIN NAME (P3.x) P3.0/UCB0STE/ / / UCA0CLK/A5 x 0 FUNCTION ADC10AE0.y P3DIR.x P3SEL.x P3SEL2.x = 0 P3.0 (I/O) 0 I: 0; O: 1 0 UCB0STE/UCA0CLK (see Notes 1 and 2) 0 X 1 A5 (see Notes 1 and 2) 1 X X NOTES: 1. X: Don’t care. 2. The pin direction is controlled by the USCI module. 3. If the I2C functionality is selected, the output drives only the logical 0 to VSS level. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 69 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P3 pin schematic: P3.1 to P3.5, input/output with Schmitt trigger Pad Logic P3REN.x P3DIR.x 0 Module direction 1 P3OUT.x 0 Module X OUT DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3SEL.x P3IN.x EN Module X IN D Port P3 (P3.1 to P3.5) pin functions CONTROL BITS / SIGNALS PIN NAME (P3.x) x P3.1/UCB0SIMO/ / / UCB0SDA 1 P3.2/UCB0SOMI/ / / UCB0SCL 2 P3.3/UCB0CLK/ / / UCA0STE 3 P3.4/UCA0TXD/ / / UCA0SIMO 4 P3.5/UCA0RXD/ / / UCA0SOMI 5 FUNCTION P3.1 (I/O) UCB0SIMO/UCB0SDA (see Notes 1, 2 and 3) P3.2 (I/O) UCB0SOMI/UCB0SCL (see Notes 1, 2 and 3) P3.3 (I/O) UCB0CLK/UCA0STE (see Notes 1 and 2) P3.4 (I/O) UCA0TXD/UCA0SIMO (see Notes 1 and 2) P3.5 (I/O) UCA0RXD/UCA0SOMI (see Notes 1 and 2) NOTES: 1. X: Don’t care. 2. The pin direction is controlled by the USCI module. 3. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. 70 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P3DIR.x P3SEL.x P3SEL2.x = 0 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Port P3 pin schematic: P3.6 to P3.7, input/output with Schmitt trigger Pad Logic To ADC10 INCHx = y ADC10AE0.y P3REN.x DVSS 0 DVCC 1 1 P3DIR.x 0 Direction 0: Input 1: Output 1 P3OUT.x 0 Module X OUT 1 P3.6/TA0_1/A6 P3.7/TA1_1/A7 Bus Keeper EN P3SEL.x P3IN.x Port P3 (P3.6 and P3.7) pin functions PIN NAME (P3.x) P3.6/TA0_1/A6 / _ / P3.7/TA1_1/A7 / _ / ADC10AE0.y P3DIR.x P3SEL.x P3SEL2 = 0 P3.6 (I/O) 0 I: 0; O: 1 0 Timer1_A2.TA0 0 1 1 Timer1_A2.CCI0B 0 0 1 A6 1 X X P3.7 (I/O) 0 I: 0; O: 1 0 Timer1_A2.TA1 0 1 1 Timer1_A2.CCI1A 0 0 1 A7 1 X X x 6 7 FUNCTION NOTES: 1. X: Don’t care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 71 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 APPLICATION INFORMATION JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger TDO Controlled by JTAG Controlled by JTAG JTAG TDO/TDI Controlled by JTAG DVCC DVCC TDI Fuse Burn & Test Fuse Test TDI/TCLK & Emulation Module DVCC TMS TMS DVCC During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry TCK TCK 72 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 APPLICATION INFORMATION JTAG fuse check mode MSP430F21x2 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF, of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see Figure 31). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS ITDI/TCLK ITF Figure 31. Fuse Check Mode Current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 73 MSP430F21x2 MIXED SIGNAL MICROCONTROLLER SLAS578A -- NOVEMBER 2007 -- REVISED APRIL 2008 Data Sheet Revision History LITERATURE NUMBER SUMMARY SLAS578 PRODUCT PREVIEW data sheet release SLAS578A PRODUCTION DATA data sheet release 74 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 21-Apr-2008 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty MSP430F2112IPW ACTIVE TSSOP PW 28 MSP430F2112IPWR ACTIVE TSSOP PW MSP430F2112IRHBR ACTIVE QFN MSP430F2112IRHBT ACTIVE MSP430F2112TPW 50 Lead/Ball Finish MSL Peak Temp (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM RHB 32 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR QFN RHB 32 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430F2112TPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430F2112TRHB PREVIEW QFN RHB 32 250 MSP430F2112TRHBR ACTIVE QFN RHB 32 3000 Green (RoHS & no Sb/Br) TBD CU NIPDAU Level-2-260C-1 YEAR MSP430F2112TRHBT ACTIVE QFN RHB 32 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430F2122IPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430F2122IPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430F2122IRHB PREVIEW QFN RHB 32 250 MSP430F2122IRHBR ACTIVE QFN RHB 32 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430F2122IRHBT ACTIVE QFN RHB 32 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430F2122TPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430F2122TPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TBD Call TI Call TI MSP430F2122TRHB PREVIEW QFN RHB 32 250 ACTIVE QFN RHB 32 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430F2122TRHBT ACTIVE QFN RHB 32 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430F2132IPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430F2132IPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430F2132IRHB PREVIEW QFN RHB 32 250 MSP430F2132IRHBR ACTIVE QFN RHB 32 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430F2132IRHBT ACTIVE QFN RHB 32 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430F2132TPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430F2132TPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430F2132TRHB PREVIEW QFN RHB 32 250 TBD TBD Call TI Call TI MSP430F2122TRHBR Addendum-Page 1 TBD Call TI Call TI Call TI Call TI Call TI Call TI PACKAGE OPTION ADDENDUM www.ti.com 21-Apr-2008 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty MSP430F2132TRHBR ACTIVE QFN RHB 32 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430F2132TRHBT ACTIVE QFN RHB 32 250 CU NIPDAU Level-2-260C-1 YEAR Green (RoHS & no Sb/Br) Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated