Freescale Semiconductor Technical Data Document Number: MRF7S35120HS Rev. 1, 6/2008 RF Power Field Effect Transistor N - Channel Enhancement - Mode Lateral MOSFET MRF7S35120HSR3 Designed for pulsed wideband applications operating at frequencies between 3100 and 3500 MHz. • Typical Pulsed Performance: VDD = 32 Volts, IDQ = 150 mA, Pout = 120 Watts Peak (24 Watts Avg.), Pulsed Signal, f = 3500 MHz, Pulse Width = 100 μsec, Duty Cycle = 20% Power Gain — 12 dB Drain Efficiency — 40% • Typical WiMAX Performance: VDD = 32 Volts, IDQ = 900 mA, Pout = 18 Watts Avg., f = 3500 MHz, 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF Power Gain — 13 dB Drain Efficiency — 16% RCE — - 33 dB (EVM — 2.2% rms) • Capable of Handling 10:1 VSWR, @ 32 Vdc, 3300 MHz, 120 Watts Peak Power • Capable of Handling 3 dB Overdrive @ 32 Vdc Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Qualified Up to a Maximum of 32 VDD Operation • Integrated ESD Protection • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. 3100- 3500 MHz, 120 W PEAK, 32 V PULSED LATERAL N - CHANNEL RF POWER MOSFET CASE 465A - 06, STYLE 1 NI - 780S Table 1. Maximum Ratings Rating Symbol Value Unit Drain- Source Voltage VDSS - 0.5, +65 Vdc Gate- Source Voltage VGS - 6.0, +10 Vdc Storage Temperature Range Tstg - 65 to +150 °C Case Operating Temperature TC 150 °C TJ 225 °C Symbol Value (2,3) Unit Operating Junction Temperature (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 79°C, 120 W Pulsed, 100 μsec Pulse Width, 20% Duty Cycle Case Temperature 72°C, 120 W Pulsed, 500 μsec Pulse Width, 10% Duty Cycle RθJC 0.11 0.12 °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2008. All rights reserved. RF Device Data Freescale Semiconductor MRF7S35120HSR3 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1C (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Symbol Min Typ Max Unit Gate- Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 32 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 400 μAdc) VGS(th) 1.2 1.9 2.7 Vdc Gate Quiescent Voltage (VDD = 32 Vdc, ID = 150 mAdc, Measured in Functional Test) VGS(Q) 1.5 2.4 3 Vdc Drain- Source On - Voltage (VGS = 10 Vdc, ID = 2.0 Adc) VDS(on) 0.1 0.17 0.3 Vdc Reverse Transfer Capacitance (VDS = 32 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.87 — pF Output Capacitance (VDS = 32 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 464 — pF Input Capacitance (VDS = 32 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 214 — pF Characteristic Off Characteristics On Characteristics Dynamic Characteristics (1) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 32 Vdc, IDQ = 150 mA, Pout = 120 W Peak (24 W Avg.), f = 3100 MHz and f = 3500 MHz, Pulsed, 100 μsec Pulse Width, 20% Duty Cycle, 25 ns Input Rise Time Power Gain Gps 10.5 12 13.5 Drain Efficiency ηD Input Return Loss IRL dB 38 40 — % — - 15 -8 dB Pulsed RF Performance (In Freescale Application Test Fixture, 50 ohm system) VDD = 32 Vdc, IDQ = 150 mA, Pout = 120 W Peak (24 W Avg.), f = 3100 MHz and f = 3500 MHz, Pulsed, 100 μsec Pulse Width, 20% Duty Cycle, 25 ns Input Rise Time Output Pulse Droop (500 μsec Pulse Width, 10% Duty Cycle) Load Mismatch Tolerance (VSWR = 10:1 at all Phase Angles) DRPout VSWR - T — 0.3 — dB No Degradation in Output Power 1. Part internally matched both on input and output. MRF7S35120HSR3 2 RF Device Data Freescale Semiconductor B1 VBIAS + + C9 C8 C6 Z2 Z3 Z4 Z5 Z6 Z7 Z8 + + C2 C3 C4 C1 VSUPPLY Z24 Z13 Z11 Z1 + R1 C7 Z12 RF INPUT + Z9 Z14 Z15 Z16 Z17 Z18 Z19 Z20 Z21 Z22 Z23 RF OUTPUT C5 Z10 C10 DUT Z1 Z2* Z3* Z4 Z5, Z22 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 0.120″ x 0.082″ Microstrip 0.094″ x 0.310″ Microstrip 0.3502″ x 0.082″ Microstrip 0.120″ x 0.629″ Microstrip 0.050″ x 0.082″ Microstrip 0.052″ x 0.082″ Microstrip 0.084″ x 0.436″ Microstrip 1.142″ x 0.082″ Microstrip 0.144″ x 0.564″ Microstrip 0.078″ x 0.564″ Microstrip 0.048″ x 1.349″ Microstrip 0.120″ x 0.175″ Microstrip 0.087″ x 0.576″ Microstrip Z14 Z15 Z16 Z17 Z18 Z19 Z20 Z21 Z23 Z24 PCB 0.390″ x 0.576″ Microstrip 0.202″ x 0.082″ Microstrip 0.066″ x 0.162″ Microstrip 0.084″ x 0.330″ Microstrip 0.105″ x 0.082″ Microstrip 0.080″ x 0.147″ Microstrip 0.366″ x 0.082″ Microstrip 0.070″ x 0.207″ Microstrip 0.734″ x 0.082″ Microstrip 0.071″ x 0.477″ Microstrip Arlon CuClad 250GX - 0300- 55- 22, 0.030″, εr = 2.55 * Line length includes microstrip bends Figure 1. MRF7S35120HSR3 Test Circuit Schematic Table 5. MRF7S35120HSR3 Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1 47 Ω, 100 MHz Short Ferrite Bead 2743019447 Fair- Rite C1 470 μF, 63 V Electrolytic Capacitor 477KXM063M Illinois Cap. C2 47 μF, 50 V Electrolytic Capacitor 476KXM050M Illinois Cap. C3, C4 22 μF, 35 V Tantalum Capacitors T491X226K035AT Kemet C5 3.3 pF Chip Capacitor ATC100B3R3CT500XT ATC C6, C7, C10 2.7 pF Chip Capacitors ATC100B2R7BT500XT ATC C8, C9 22 μF, 25 V Tantalum Capacitors ECS - T1ED226R Panasonic TE series R1 51 Ω, 1/4 W Chip Resistor CRCW120651R0FKEA Vishay MRF7S35120HSR3 RF Device Data Freescale Semiconductor 3 C9 C1 C8 C6 B1 C3 R1 C4 C7 C2 C10 CUT OUT AREA C5 MRF7S35120HS Rev. 3a Figure 2. MRF7S35120HSR3 Test Circuit Component Layout MRF7S35120HSR3 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 100 Coss Ciss 100 ID, DRAIN CURRENT (AMPS) C, CAPACITANCE (pF) 1000 10 Crss 1 TJ = 200°C TJ = 175°C 10 TJ = 150°C Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc TC = 25°C 0.1 1 0 5 10 15 20 25 30 35 10 1 100 VDS, DRAIN−SOURCE VOLTAGE (VOLTS) VDS, DRAIN−SOURCE VOLTAGE (VOLTS) Figure 3. Capacitance versus Drain - Source Voltage Figure 4. DC Safe Operating Area 13 56 50 Ideal 41 3300 MHz 11 32 3100 MHz ηD 10 23 9 14 VDD = 32 Vdc, IDQ = 150 mA Pulse Width = 100 μsec Duty Cycle = 20% 8 3 100 10 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 12 Pout, OUTPUT POWER (dBm) PULSED P3dB = 52 dBm (157 W) Gps f = 3500 MHz 5 200 55 P2dB = 51.7 dBm (149 W) 54 53 P1dB = 51.3 dBm (135 W) 52 Actual 51 50 VDD = 32 Vdc, IDQ = 150 mA, f = 3500 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 49 48 36 37 38 39 40 41 42 43 44 Pout, OUTPUT POWER (WATTS) PULSED Pin, INPUT POWER (dBm) PULSED Figure 5. Pulsed Power Gain and Drain Efficiency versus Output Power Figure 6. Pulsed Output Power versus Input Power 45 13 14 IDQ = 1000 mA 12 13 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 32 V 500 mA 12 300 mA 11 150 mA 10 9 VDD = 32 Vdc, f = 3500 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 11 10 9 8 IDQ = 150 mA, f = 3500 MHz Pulse Width = 100 μsec Duty Cycle = 20% 7 8 VDD = 24 V 30 V 28 V 26 V 6 10 1 100 200 3 100 10 Pout, OUTPUT POWER (WATTS) PULSED Pout, OUTPUT POWER (WATTS) PULSED Figure 7. Pulsed Power Gain versus Output Power Figure 8. Pulsed Power Gain versus Output Power 200 MRF7S35120HSR3 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 3100 MHz −30_C 3100 MHz 25_C 200 13.5 3500 MHz −30_C 3300 MHz 25_C 150 3100 MHz 85_C 100 VDD = 32 Vdc, IDQ = 150 mA, f = 3100 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 3300 MHz 85_C 3500 MHz 85_C 50 12 25_C TC = −30_C 10.5 25_C ηD 5 15 10 20 25 Pin, INPUT POWER (WATTS) PULSED Gps, POWER GAIN (dB) 60 −30_C 50 25_C Gps 40 12 TC = −30_C 30 10.5 25_C 85_C 9 10 6 10 1 20 ηD 85_C 7.5 0 300 Figure 10. Pulsed Power Gain and Drain Efficiency versus Output Power — 3100 MHz VDD = 32 Vdc, IDQ = 150 mA, f = 3300 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 13.5 100 Pout, OUTPUT POWER (WATTS) PULSED Figure 9. Pulsed Output Power versus Input Power 15 10 1 ηD, DRAIN EFFICIENCY (%) 0 20 10 85_C 6 0 50 30 85_C 9 −30_C 40 Gps 7.5 VDD = 32 Vdc, IDQ = 150 mA Pulse Width = 100 μsec, Duty Cycle = 20% 60 ηD, DRAIN EFFICIENCY (%) 15 3500 MHz 25_C 3300 MHz −30_C Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) PULSED 250 100 0 300 Pout, OUTPUT POWER (WATTS) PULSED Figure 11. Pulsed Power Gain and Drain Efficiency versus Output Power — 3300 MHz 13.5 Gps, POWER GAIN (dB) 60 VDD = 32 Vdc, IDQ = 150 mA, f = 3500 MHz Pulse Width = 100 μsec, Duty Cycle = 20% −30_C 50 Gps 40 12 TC = −30_C 25_C 30 10.5 25_C 85_C 9 85_C 7.5 10 6 1 20 ηD ηD, DRAIN EFFICIENCY (%) 15 10 100 0 300 Pout, OUTPUT POWER (WATTS) PULSED Figure 12. Pulsed Power Gain and Drain Efficiency versus Output Power — 3500 MHz MRF7S35120HSR3 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 43 42 ηD 41 13 Gps 40 12.5 12 −9 11.5 IRL −18 11 10.5 10 3100 −27 VDD = 32 Vdc, IDQ = 150 mA, Pout = 120 W Pulse Width = 100 μsec, Duty Cycle = 20% 3150 3200 3250 3300 3350 3400 3450 −36 3500 IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) 13.5 ηD, DRAIN EFFICIENCY (%) 14 f, FREQUENCY (MHz) −28 21 −30 −31 20 RCE 19 18 ηD −32 17 −33 16 −34 15 −35 14 Gps −36 13 −37 −38 41 41.5 42 42.5 43 43.5 13.6 13.4 13.2 13 12 12.8 11 12.6 GAIN (dB) VDD = 32 Vdc, IDQ = 900 mA, f = 3500 MHz Single−Carrier OFDM 802.16d, 64 QAM 3/4 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF −29 ηD, DRAIN EFFICIENCY (%) RCE (RELATIVE CONSTELLATION ERROR (dB) Figure 13. Pulsed Power Gain, Drain Efficiency and IRL versus Frequency 44 Pout, OUTPUT POWER (dBm) Figure 14. Single - Channel OFDM Relative Constellation Error, Drain Efficiency and Gain versus Output Power MTTF (HOURS) 1010 109 108 107 90 110 130 150 170 190 210 TJ, JUNCTION TEMPERATURE (°C) 230 250 This above graph displays calculated MTTF in hours when the device is operated at VDD = 32 Vdc, Pout = 120 W Peak, Pulse Width = 100 μsec, Duty Cycle = 20%, and ηD = 40%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 15. MTTF versus Junction Temperature MRF7S35120HSR3 RF Device Data Freescale Semiconductor 7 Zo = 25 Ω Zload f = 3500 MHz f = 2900 MHz f = 3500 MHz f = 2900 MHz Zsource VDD = 32 Vdc, IDQ = 150 mA, Pout = 120 W Peak f MHz Zsource W Zload W 2900 0.825 - j4.72 6.03 - j0.487 3100 1.1 - j6.74 4.63 - j0.0472 3300 3.95 - j10.8 2.65 - j1.44 3500 18 - j1.1 3.65 - j2.56 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 16. Series Equivalent Source and Load Impedance MRF7S35120HSR3 8 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS 4X U (FLANGE) 4X Z (LID) B 1 K 2X 2 B (FLANGE) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. D bbb M T A M B M N (LID) ccc M R M T A M B M ccc M T A M M B M aaa M T A M S (INSULATOR) bbb M T A (LID) B M (INSULATOR) B M H C 3 E A A F T SEATING PLANE (FLANGE) CASE 465A - 06 ISSUE H NI - 780S DIM A B C D E F H K M N R S U Z aaa bbb ccc INCHES MIN MAX 0.805 0.815 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 0.365 0.375 0.365 0.375 −−− 0.040 −−− 0.030 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 20.45 20.70 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 1.45 1.70 4.32 5.33 19.61 20.02 19.61 20.02 9.27 9.53 9.27 9.52 −−− 1.02 −−− 0.76 0.127 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 5. SOURCE MRF7S35120HSR3 RF Device Data Freescale Semiconductor 9 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 May 2008 • Initial Release of Data Sheet 1 June 2008 • Corrected Pout error and changed from 42.5 Watts to 18 Watts, Typical WiMAX Performance bullet, p. 1 MRF7S35120HSR3 10 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800- 521- 6274 or +1 - 480- 768- 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or +1 - 303- 675- 2140 Fax: +1 - 303- 675- 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved. MRF7S35120HSR3 Document RF DeviceNumber: Data MRF7S35120HS Rev. 1, 6/2008 Freescale Semiconductor 11