ONSEMI NLAS4051S

NLAS4051S
Analog Multiplexer/
Demultiplexer
TTL Compatible, Single−Pole, 8−Position
Plus Common Off
The NLAS4051S is an improved version of the MC14051 and
MC74HC4051 fabricated in sub−micron Silicon Gate CMOS
technology for lower RDS(on) resistance and improved linearity with
low current. This device may be operated either with a single supply or
dual supply up to ±3.0 V to pass a 6.0 VPP signal without coupling
capacitors.
When operating in single supply mode, it is only necessary to tie
VEE, pin 7 to ground. For dual supply operation, VEE is tied to a
negative voltage, not to exceed maximum ratings.
Features
• Improved RDS(on) Specifications
• Pin for Pin Replacement for MAX4051 and MAX4051A
•
One Half the Resistance Operating at 5.0 V
Single or Dual Supply Operation
♦ Single 2.5−5.0 V Operation, or Dual ±3.0 V Operation
♦ With VCC of 3.0 to 3.3 V, Device Can Interface with 1.8 V
Logic, No Translators Needed
♦ Address and Inhibit Logic are Over−Voltage Tolerant and May
Be Driven Up +6.0 V Regardless of VCC
Improved Linearity Over Standard HC4051 Devices
♦
•
• Space Saving TSSOP Package
• This is a Pb−Free Device
VCC
16
1
NO1
MARKING
DIAGRAM
16
16
NLAS
4051
ALYWG
G
1
TSSOP−16
DT SUFFIX
CASE 948F
A
L
Y
W
G
1
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
Device
Package
Shipping†
NLAS4051SDTR2G TSSOP−16 2500/Tape & Reel
(Pb−Free)
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
NO2
NO4
NO0
NO6 ADDC ADDB ADDA
15
14
13
12
2
3
NO3 COM
http://onsemi.com
4
5
NO7
NO5
11
10
6
7
Inhibit VEE
9
8
GND
Figure 1. Pin Connection
(Top View)
© Semiconductor Components Industries, LLC, 2008
May, 2008 − Rev. 0
1
Publication Order Number:
NLAS4051S/D
NLAS4051S
TRUTH TABLE
NO0
Address
Inhibit
C
B
A
ON
SWITCHES*
NO1
1
X
don’t care
X
don’t care
X
don’t care
All switches
open
NO2
0
0
0
0
COM−NO0
0
0
0
1
COM−NO1
0
0
1
0
COM−NO2
0
0
1
1
COM−NO3
0
1
0
0
COM−NO4
0
1
0
1
COM−NO5
0
1
1
0
COM−NO6
0
1
1
1
COM−NO7
NO3
COM
NO4
NO5
NO6
NO7
ADDC
ADDB
ADDA
*NO and COM pins are identical and interchangeable. Either may
be considered an input or output; signals pass equally well in
either direction.
LOGIC
Inhibit
Figure 2. Logic Diagram
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Parameter
Symbol
Value
Unit
Negative DC Supply Voltage
(Referenced to GND)
VEE
−7.0 to )0.5
V
Positive DC Supply Voltage (Note 1)
(Referenced to GND)
(Referenced to VEE)
VCC
−0.5 to )7.0
−0.5 to )7.0
V
VIS
VEE −0.5 to VCC )0.5
V
(Referenced to GND)
VIN
−0.5 to 7.0
V
I
$50
mA
TSTG
−65 to )150
°C
Lead Temperature, 1 mm from Case for 10 Seconds
TL
260
°C
Junction Temperature under Bias
TJ
)150
°C
Thermal Resistance
JA
164
°C/W
Power Dissipation in Still Air
PD
450
mW
MSL
Level 1
FR
UL 94 V−0 @ 0.125 in
VESD
u2000
u200
u1000
V
ILATCHUP
$300
mA
Analog Input Voltage
Digital Input Voltage
DC Current, Into or Out of Any Pin
Storage Temperature Range
Moisture Sensitivity
Flammability Rating
ESD Withstand Voltage
Latchup Performance
Oxygen Index: 30% − 35%
Human Body Model (Note 2)
Machine Model (Note 3)
Charged Device Model (Note 4)
Above VCC and Below GND at 125°C (Note 5)
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. The absolute value of VCC $|VEE| ≤ 7.0.
2. Tested to EIA/JESD22−A114−A.
3. Tested to EIA/JESD22−A115−A.
4. Tested to JESD22−C101−A.
5. Tested to EIA/JESD78.
http://onsemi.com
2
NLAS4051S
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Min
Max
Unit
Negative DC Supply Voltage
(Referenced to GND)
VEE
−5.5
GND
V
Positive DC Supply Voltage
(Referenced to GND)
(Referenced to VEE)
VCC
2.5
2.5
5.5
6.6
V
VIS
VEE
VCC
V
VIN
0
5.5
V
TA
−55
125
°C
tr, tf
0
0
100
20
ns/V
Analog Input Voltage
Digital Input Voltage
(Note 6) (Referenced to GND)
Operating Temperature Range, All Package Types
Input Rise/Fall Time
(Channel Select or Enable Inputs)
VCC = 3.0 V $ 0.3 V
VCC = 5.0 V $ 0.5 V
6. Unused digital inputs may not be left open. All digital inputs must be tied to a high−logic voltage level or a low−logic input voltage level.
DC CHARACTERISTICS − Digital Section (Voltages Referenced to GND)
Symbol
Condition
Parameter
Guaranteed Limit
VCC
V
−55 to 25°C
v85°C
v125°C
Unit
Minimum High−Level Input Voltage,
Address and Inhibit Inputs
VIH
2.5
3.0
4.5
5.5
1.75
2.1
3.15
3.85
1.75
2.1
3.15
3.85
1.75
2.1
3.15
3.85
V
Maximum Low−Level Input Voltage,
Address and Inhibit Inputs
VIL
2.5
3.0
4.5
5.5
.45
0.9
1.35
1.65
.45
0.9
1.35
1.65
.45
0.9
1.35
1.65
V
VIN = 6.0 or GND
IIN
0 V to 6.0 V
$0.1
$1.0
$1.0
A
Address, Inhibit and
VIS = VCC or GND
ICC
6.0
4.0
40
80
A
Maximum Input Leakage Current,
Address or Inhibit Inputs
Maximum Quiescent Supply Current
(per Package)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC ELECTRICAL CHARACTERISTICS − Analog Section
Symbol
Parameter
Guaranteed Limit
VCC
V
VEE
V
−55 to 25°C
v85°C
v125°C
Unit
RON
3.0
4.5
3.0
0
0
−3.0
86
37
26
108
46
33
120
55
37
Test Conditions
Maximum “ON” Resistance
(Note 7)
VIN = VIL or VIH
VIS = (VEE to VCC)
|IS| = 10 mA
(Figures 4 thru 9)
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
VIN = VIL or VIH, VIS= 2.0 V
VIS = ½ (VCC − VEE), VIS= 3.0 V
|IS| = 10 mA, VIS= 2.0 V
RON
3.0
4.5
3.0
0
0
−3.0
15
13
10
20
18
15
20
18
15
ON Resistance Flatness
|IS| = 10 mA VCOM = 1, 2, 3.5 V
VCOM = 2, 0, 2 V
Rflat(ON)
4.5
3.0
3.0
4
2
4
2
5
3
Maximum Off−Channel
Leakage Current
Switch Off
VIN = VIL or VIH
VIO = VCC −1.0 V or VEE +1.0 V
(Figure 17)
INC(OFF)
INO(OFF)
6.0
3.0
0
−3.0
0.1
0.1
5.0
5.0
100
100
nA
Maximum On−Channel
Leakage Current,
Channel− to−Channel
Switch On
VIO = VCC −1.0 V or VEE +1.0 V
(Figure 17)
ICOM(ON)
6.0
3.0
0
−3.0
0.1
0.1
5.0
5.0
100
100
nA
7. At supply voltage (VCC) approaching 2.5 V the analog switch on−resistance becomes extremely non−linear. Therefore, for low voltage
operation it is recommended that these devices only be used to control digital signals.
http://onsemi.com
3
NLAS4051S
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC CHARACTERISTICS (Input tr = tf = 3 ns)
Guaranteed Limit
Parameter
Minimum Break−Before−
Make Time
Symbol
Test Conditions
VIN = VIL or VIH
VIS = VCC
RL = 300 CL = 35 pF
(Figure 19)
−55 to 25°C
VCC
V
VEE
V
Min
Typ*
v85°C
v125°C
Unit
3.0
4.5
3.0
0.0
0.0
−3.0
1.0
1.0
1.0
6.5
5.0
3.5
−
−
−
−
−
−
ns
tBBM
*Typical Characteristics are at 25°C.
AC CHARACTERISTICS (CL = 35 pF, Input tr = tf = 3 ns)
Guaranteed Limit
VCC
V
VEE
V
tTRANS
2.5
3.0
4.5
3.0
Turn−on Time
(Figures 14, 15, 20, and 21)
Inhibit to NO or NC
tON
Turn−off Time
(Figures 14, 15, 20, and 21)
Inhibit to NO or NC
tOFF
Symbol
Parameter
Transition Time
(Address Selection Time)
(Figure 18)
−55 to 25°C
Min
v85°C
Typ
Max
0
0
0
−3.0
22
20
16
16
40
28
23
23
2.5
3.0
4.5
3.0
0
0
0
−3.0
22
18
16
16
2.5
3.0
4.5
3.0
0
0
0
−3.0
22
18
16
16
Min
v125°C
Max
Min
Max
Unit
45
30
25
25
50
35
30
28
ns
40
28
23
23
45
30
25
25
50
35
30
28
ns
40
28
23
23
45
30
25
25
50
35
30
28
ns
Typical @ 255C, VCC = 5.0 V
Maximum Input Capacitance, Select Inputs
Analog I/O
CIN
8
CNO or CNC
10
Common I/O
CCOM
10
Feedthrough
C(ON)
1.0
pF
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)
Parameter
Condition
Symbol
Typ
VCC
V
VEE
V
25°C
Unit
Maximum On−Channel Bandwidth or
Minimum Frequency Response
VIS = ½ (VCC − VEE)
Source Amplitude = 0 dBm
(Figures 10 and 22)
BW
3.0
4.5
6.0
3.0
0.0
0.0
0.0
−3.0
80
90
95
95
MHz
Off−Channel Feedthrough Isolation
f =100 kHz; VIS = ½ (VCC − VEE)
Source = 0 dBm
(Figures 12 and 22)
VISO
3.0
4.5
6.0
3.0
0.0
0.0
0.0
−3.0
−93
−93
−93
−93
dB
Maximum Feedthrough On Loss
VIS = ½ (VCC − VEE)
Source = 0 dBm
(Figures 10 and 22)
VONL
3.0
4.5
6.0
3.0
0.0
0.0
0.0
−3.0
−2
−2
−2
−2
dB
Charge Injection
VIN = VCC to VEE, fIS = 1 kHz, tr = tf = 3 ns
RIS = 0 , CL= 1000 pF, Q = CL * VOUT
(Figures 16 and 23)
Q
5.0
3.0
0.0
−3.0
9.0
12
pC
Total Harmonic Distortion THD + Noise
fIS = 1 MHz, RL = 10 K, CL = 50 pF,
VIS = 5.0 VPP sine wave
VIS = 6.0 VPP sine wave
(Figure 13)
6.0
3.0
0.0
−3.0
0.10
0.05
http://onsemi.com
4
THD
%
NLAS4051S
100
100
10
2.0 V
80
0.1
RON ()
ICC (nA)
1
0.01
VCC = 3.0 V
0.001
40
3.0 V
4.5 V
VCC = 5.0 V
0.00001
−40
−20
0
20
60
80
100
0
−4.0
120
−2.0
0
2.0
4.0
6.0
Temperature (°C)
VIS (VDC)
Figure 3. ICC versus Temp, VCC = 3 V and 5 V
Figure 4. RON versus VCC, Temp = 255C
50
100
90
125°C
125°C
85°C
40
80
25°C
70
RON ()
60
50
85°C
40
25°C
30
20
−55°C
30
20
10
−55°C
10
0
0.5
1.0
1.5
0
2.0
0.5
1.0
1.5
2.0
2.5
VCom (V)
Figure 5. Typical On Resistance
VCC = 2.0 V, VEE = 0 V
Figure 6. Typical On Resistance
VCC = 3.0 V, VEE = 0 V
25
20
15
15
RON ()
20
25°C
10
3.0
125°C
125°C
85°C
85°C
10
25°C
−55°C
−55°C
5
5
0
0
0
VCom (V)
25
RON ()
5.5 V
20
0.0001
RON ()
60
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VCom (V)
VCom (V)
Figure 7. Typical On Resistance
VCC = 4.5 V, VEE = 0 V
Figure 8. Typical On Resistance
VCC = 5.5 V, VEE = 0 V
http://onsemi.com
5
4.0
4.5
NLAS4051S
25
125°C
85°C
RON ()
20
15
10
−55°C
25°C
5
0
−4
−2
0
VCom (V)
2
4
50
90
40
72
30
54
PHASE SHIFT 18%/DIV (dB)
BANDWIDTH (dB)
Figure 9. Typical On Resistance
VCC = 3.3 V, VEE = −3.3 V
20
10
0
−10
BANDWIDTH (ON−RESPONSE)
−20
−30
−40
−50
36
18
0
PHASE SHIFT
−18
−36
−54
−72
−90
0.1
1.0
10
100
0.1
FREQUENCY (mHz)
1.0
10
100
FREQUENCY (mHz)
Figure 10. Bandwidth, VCC = 5.0 V
Figure 11. Phase Shift, VCC = 5.0 V
0
0
−20
−30
DISTORTION (%)
OFF ISOLATION 10 dB/DIV
−10
−40
−50
−60
−70
3.0
5.5
0.1
4.5
$3.3
−80
−90
−100
0.1
1.0
10
0.01
100
10
FREQUENCY (mHz)
100
1000
10000
10000
FREQUENCY (mHz)
Figure 12. Off Isolation, VCC = 5.0 V
Figure 13. Total Harmonic Distortion
http://onsemi.com
6
NLAS4051S
30
30
TA = 25°C
VCC = 4.5 V
25
20
20
TIME (ns)
TIME (ns)
25
15
tON (ns)
10
15
tOFF (ns)
5
0
2.5
3
3.5
4
4.5
10
tON
5
tOFF
0
−55
5
−40
25
85
125
VCC (VOLTS)
Temperature (°C)
Figure 14. tON and tOFF versus VCC
Figure 15. tON and tOFF versus Temp
3.0
100
2.5
10
VCC = 5 V
LEAKAGE (nA)
Q (pC)
2.0
1.5
1.0
0.5
VCC = 3 V
0
1
ICOM(OFF)
2
3
4
VCC = 5.0 V
INO(OFF)
0.001
5
−55
−20
25
70
85
125
VCOM (V)
TEMPERATURE (°C)
Figure 16. Charge Injection versus COM Voltage
Figure 17. Switch Leakage versus Temperature
VCC
0.1 F
ICOM(ON)
0.1
0.01
0
−0.5
1
VCC
Output
VEE
VOUT
300 50%
Input
50%
0V
35 pF
VCC
90%
Output
Address Select Pin
VEE
10%
ttrans
Figure 18. Channel Selection Propagation Delay
http://onsemi.com
7
ttrans
NLAS4051S
VCC
DUT
VCC
Input
Output
GND
VOUT
0.1 F
300 tBMM
35 pF
90%
90% of VOH
Output
Address Select Pin
GND
Figure 19. tBBM (Time Break−Before−Make)
VCC
DUT
Input
VCC
0.1 F
50%
0V
Output
VOUT
Open
50%
300 VOH
35 pF
90%
90%
Output
GND
Enable
Input
tON
tOFF
Figure 20. tON/tOFF
VCC
VCC
Input
DUT
Output
50%
300 VOUT
Open
50%
0V
VCC
35 pF
Output
Input
10%
VOL
Enable
tOFF
Figure 21. tON/tOFF
http://onsemi.com
8
10%
tON
NLAS4051S
50 DUT
Reference
Transmitted
Input
Output
50 Generator
50 Channel switch Address and Inhibit/s test socket is normalized. Off isolation is measured across an off
channel. On loss is the bandwidth of an On switch. VISO, Bandwidth and VONL are independent of the input
signal direction.
ǒVVOUT
Ǔ for VIN at 100 kHz
IN
V
VONL = On Channel Loss = 20 Log ǒ OUTǓ for VIN at 100 kHz to 50 MHz
VIN
VISO = Off Channel Isolation = 20 Log
Bandwidth (BW) = the frequency 3 dB below VONL
Figure 22. Off Channel Isolation/On Channel Loss (BW)/Crosstalk
(On Channel to Off Channel)/VONL
DUT
VCC
VIN
Output
Open
GND
CL
Output
Off
Off
On
VIN
Figure 23. Charge Injection: (Q)
TYPICAL OPERATION
+5.0 V
16
VEE
GND
+3.0 V
VCC
16
VEE
7
8
GND
VCC
7
8
−3.0 V
Figure 24. 5.0 Volts Single Supply
VCC = 5.0 V, VEE = 0
Figure 25. Dual Supply
VCC = 3.0 V, VEE = −3.0 V
http://onsemi.com
9
VOUT
NLAS4051S
PACKAGE DIMENSIONS
TSSOP−16
CASE 948F−01
ISSUE B
16X K REF
0.10 (0.004)
0.15 (0.006) T U
T U
M
S
V
S
K
ÇÇÇ
ÇÇÇ
ÉÉÉ
ÇÇÇ
ÉÉÉ
S
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
N
8
1
0.25 (0.010)
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
16X
0.36
16X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
10
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
NLAS4051S
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
11
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NLAS4051S/D