PHOTODARLINGTON OPTOCOUPLERS (NO BASE CONNECTION) MOC119 DESCRIPTION PACKAGE DIMENSIONS The MOC119 device has a gallium arsenide infrared emitting diode coupled to a silicon darlington phototransistor. PIN 1 ID. 0.270 (6.86) 0.240 (6.10) SEATING PLANE 6 FEATURES • High current transfer ratio of 300% 1 • No base connection for improved noise immunity • Underwriters Laboratory (UL) recognized File# E90700 0.350 (8.89) 0.330 (8.38) 0.070 (1.78) 0.045 (1.14) 0.200 (5.08) 0.115 (2.92) 0.020 (0.51) MIN 0.154 (3.90) 0.100 (2.54) APPLICATIONS • • • • • Appliances, measuring instruments I/O interface for computers Programmable controllers Portable electronics Interfacing and coupling systems of different potentials and impedance • Solid state relays ANODE 1 0.016 (0.40) 0.008 (0.20) 6 N/C 0.022 (0.56) 0.016 (0.41) CATHODE 2 N/C 3 ABSOLUTE MAXIMUM RATINGS 0.300 (7.62) TYP 0° to 15° 0.100 (2.54) TYP 5 COLLECTOR 4 EMITTER NOTE All dimensions are in inches (millimeters) (TA = 25°C Unless otherwise specified.) Parameter TOTAL DEVICE Storage Temperature Symbol Value Units TSTG -55 to +150 °C Operating Temperature TOPR -55 to +100 °C Lead Solder Temperature TSOL 260 for 10 sec °C Total Device Power Dissipation @ TA = 25°C Input-Output Isolation Voltage EMITTER DC/Average Forward Input Current Reverse Input Voltage LED Power Dissipation @ TA = 25°C mW mW/°C VISO 5300 Vac(rms) IF 60 mA VR 3 V PD Derate above 25°C DETECTOR VCEO Collector-Emitter Voltage Emitter-Collector Voltage VECO Detector Power Dissipation @ TA = 25°C PD Derate above 25°C Continuous Collector Current 2001 Fairchild Semiconductor Corporation DS300382 2/16/01 250 2.94 PD Derate above 25°C IC 1 OF 5 120 mW 1.41 mW/°C 30 V 7 V 150 mW 1.76 mW/°C 150 mA www.fairchildsemi.com PHOTODARLINGTON OPTOCOUPLERS (NO BASE CONNECTION) MOC119 ELECTRICAL CHARACTERISTICS (TA = 25°C Unless otherwise specified.) INDIVIDUAL COMPONENT CHARACTERISTICS Parameter Test Conditions EMITTER Input Forward Voltage Input Capacitance Reverse Leakage Current DETECTOR Collector-Emitter Breakdown Voltage Emitter-Collector Breakdown Voltage Collector-Emitter Dark Current Symbol (IF = 10 mA) VF (VR = 0, f = 1 MHz) Min Typ** Max Unit 1.15 1.5 V 100 µA CIN 18 (VR = 3.0 V) IR 0.05 pF (IC = 100 µA) BVCEO 30 V (IE = 10 µA) BVECO 7 V (VCE = 10 V) ICEO 100 nA Max Units TRANSFER CHARACTERISTICS DC Characteristic Test Conditions Current Transfer Ratio, (IF = 10 mA, VCE = 2 V) Symbol Min Typ** CTR 30 (300) 45 (450) Symbol Min Typ** mA (%) TRANSFER CHARACTERISTICS Characteristic Test Conditions SWITCHING TIMES Turn-on Time Max Units ton 3.5 µs toff 95 µs (VCE = 10 V, RL = 1001, IF = 5 mA) Turn-off Time ISOLATION CHARACTERISTICS Characteristic Input-Output Isolation Voltage Isolation Resistance Isolation Capacitance Collector - Emitter Saturation Voltage Test Conditions (II-O 61 µA, 1 min.) (II-O 61 µA, 1 min.) (VI-O = 500 VDC) (V = 0 V, f = 1 MHz) (IC = 10 mA, IF = 10 mA) Symbol VISO Min Typ** Units Vac(pk) 5300 Vac(rms) RISO 1011 CISO 0.2 VCE (SAT) Max 7500 1 pf 1 V 2/16/01 DS300382 Note ** Typical values at TA = 25°C www.fairchildsemi.com 2 OF 5 PHOTODARLINGTON OPTOCOUPLERS (NO BASE CONNECTION) CTR - CURRENT TRANSFER RATIO (NORMALIZED) CTR - CURRENT TRANSFER RATIO (NORMALIZED) MOC119 TA = 0˚C, 25˚C TA = 70˚C TA = 100˚C TA = -55˚C 1 NORMALIZED TO: CTR @ IF = 10 mA TA = 25˚C VCE = 5 V 0.1 0.1 1 10 100 10 1 NORMALIZED TO: CTR @ IF = 10 mA TA = 25˚C VCE = 10 V 0.1 -80 IF - LED INPUT CURRENT (mA) ICEO - COLLECTOR-EMITTER DARK CURRENT (nA) IC - COLLECTOR CURRENT (NORMALIZED) NORMALIZED TO: IF = 1 mA VCE = 5 V IF = 10 mA 10 IF = 5 mA 8 6 4 IF = 2 mA 2 IF = 1 mA 0 0 1 2 3 4 5 6 7 8 -20 0 20 40 60 80 100 120 Fig. 2 Current Transfer Ratio vs. Ambient Temperature 16 12 -40 TA - AMBIENT TEMPERATURE (˚C) Fig. 1 Output Current vs. Input Current 14 -60 9 10000 NORMALIZED TO: TA = 25˚C VCE = 10 V 1000 100 10 1 0.1 0.01 10 0 20 40 60 80 100 TA - AMBIENT TEMPERATURE (˚C) VCE- COLLECTOR -EMITTER VOLTAGE (V) Fig. 4 Dark Current vs. Ambient Temperature Fig. 3 Collector Current vs. Collector-Emitter Voltage 1000 1000 RL = 1 k1 VCC = 10 V 100 10 TOFF - TIME (µs) TON - TIME (µs) RL = 100 1 RL = 10 1 RL = 1 k1 100 RL = 100 1 10 RL = 10 1 1 VCC = 10 V 1 0.1 0.1 1 10 100 IF - LED INPUT CURRENT (mA) 2/16/01 1 10 100 IF - LED INPUT CURRENT (mA) Fig. 5 Turn-On Time vs. Input Current DS300382 0.1 Fig. 6 Turn-Off Time vs. Input Current 3 OF 5 www.fairchildsemi.com PHOTODARLINGTON OPTOCOUPLERS (NO BASE CONNECTION) MOC119 ORDERING INFORMATION Option Order Entry Identifier Description S SD W 300 300W 3S 3SD .S .SD .W .300 .300W .3S .3SD Surface Mount Lead Bend Surface Mount; Tape and reel 0.4” Lead Spacing VDE 0884 VDE 0884, 0.4” Lead Spacing VDE 0884, Surface Mount VDE 0884, Surface Mount, Tape & Reel QT Carrier Tape Specifications (“D” Taping Orientation) 12.0 ± 0.1 4.85 ± 0.20 4.0 ± 0.1 0.30 ± 0.05 4.0 ± 0.1 Ø1.55 ± 0.05 1.75 ± 0.10 7.5 ± 0.1 16.0 ± 0.3 13.2 ± 0.2 9.55 ± 0.20 0.1 MAX 10.30 ± 0.20 Ø1.6 ± 0.1 User Direction of Feed www.fairchildsemi.com 4 OF 5 2/16/01 DS300382 PHOTODARLINGTON OPTOCOUPLERS (NO BASE CONNECTION) DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body,or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in a significant injury of the user. DS300382 2/16/01 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 5 OF 5 www.fairchildsemi.com