CYPRESS FM25C160B_13

FM25C160B
16Kb Serial 5V F-RAM Memory
Features
16K bit Ferroelectric Nonvolatile RAM
Organized as 2,048 x 8 bits
High Endurance 1 Trillion (1012) Read/Writes
38 year Data Retention
NoDelay™ Writes
Advanced High-Reliability Ferroelectric Process
Sophisticated Write Protection Scheme
Hardware Protection
Software Protection
Low Power Consumption
250 A Active Current (1 MHz)
4 A (typ.) Standby Current
Very Fast Serial Peripheral Interface - SPI
Up to 20 MHz maximum Bus Frequency
Direct hardware replacement for EEPROM
SPI Mode 0 & 3 (CPOL, CPHA=0,0 & 1,1)
Industry Standard Configuration
Industrial Temperature -40 C to +85 C
8-pin “Green”/RoHS SOIC (-G)
Description
Pin Configuration
The FM25C160B is a 16-kilobit nonvolatile memory
employing an advanced ferroelectric process. A
ferroelectric random access memory or F-RAM is
nonvolatile but operates in other respects as a RAM.
It provides reliable data retention for 38 years while
eliminating the complexities, overhead, and system
level reliability problems caused by EEPROM and
other nonvolatile memories.
The FM25C160B performs write operations at bus
speed. No write delays are incurred. Data is written to
the memory array immediately after it has been
successfully transferred to the device. The next bus
cycle may commence immediately without the need
for data polling. The FM25C160B is capable of
supporting up to 1012 read/write cycles, or a million
times more write cycles than EEPROM.
These capabilities make the FM25C160B ideal for
nonvolatile memory applications requiring frequent
or rapid writes. Examples range from data collection,
where the number of write cycles may be critical, to
demanding industrial controls where the long write
time of EEPROM can cause data loss.
The FM25C160B provides substantial benefits to
users of serial EEPROM, in a hardware drop-in
replacement. The FM25C160B uses the high-speed
SPI bus, which enhances the high-speed write
capability of F-RAM technology. The specifications
are guaranteed over an industrial temperature range
of -40°C to +85°C.
CS
SO
WP
1
8
2
7
3
6
VSS
4
5
Pin Name
/CS
/WP
/HOLD
SCK
SI
SO
VDD
VSS
VDD
HOLD
SCK
SI
Function
Chip Select
Write Protect
Hold
Serial Clock
Serial Data Input
Serial Data Output
5V
Ground
Ordering Information
FM25C160B-G
FM25C160B-GTR
“Green” 8-pin SOIC
“Green” 8-pin SOIC,
Tape & Reel
This product conforms to specifications per the terms of the Ramtron standard warranty. The product has completed Ramtron’s
internal qualification testing and has reached production status.
Cypress Semiconductor Corporation
•
Document Number: 001-84472 Rev. *A
198 Champion Court
•
San Jose, CA 95134-1709 • 408-943-2600
Revised March 07, 2013
FM25C160B - 16Kb 5V SPI F-RAM
WP
Instruction Decode
Clock Generator
Control Logic
Write Protect
CS
HOLD
SCK
256 x 64
FRAM Array
Instruction Register
Address Register
Counter
11
SI
8
Data I/O Register
SO
3
Nonvolatile Status
Register
Figure 1. Block Diagram
Pin Description
Pin Name
/CS
I/O
Input
SCK
Input
/HOLD
Input
/WP
Input
SI
Input
SO
Output
VDD
VSS
Supply
Supply
Pin Description
Chip Select: This active low input activates the device. When high, the device enters
low-power standby mode, ignores other inputs, and all outputs are tri-stated. When
low, the device internally activates the SCK signal. A falling edge on /CS must occur
prior to every op-code.
Serial Clock: All I/O activity is synchronized to the serial clock. Inputs are latched on
the rising edge and outputs occur on the falling edge. Since the device is static, the
clock frequency may be any value between 0 and 20 MHz and may be interrupted at
any time.
Hold: The /HOLD pin is used when the host CPU must interrupt a memory operation
for another task. When /HOLD is low, the current operation is suspended. The device
ignores any transition on SCK or /CS. All transitions on /HOLD must occur while
SCK is low.
Write Protect: This active low pin prevents write operations to the status register. This
is critical since other write protection features are controlled through the status
register. A complete explanation of write protection is provided on page 6. *Note that
the function of /WP is different from the FM25160.
Serial Input: All data is input to the device on this pin. The pin is sampled on the rising
edge of SCK and is ignored at other times. It should always be driven to a valid logic
level to meet IDD specifications.
* SI may be connected to SO for a single pin data interface.
Serial Output. SO is the data output pin. It is driven actively during a read and remains
tri-state at all other times including when /HOLD is low. Data transitions are driven on
the falling edge of the serial clock.
* SO may be connected to SI for a single pin data interface.
Supply Voltage. 5V
Ground
Document Number: 001-84472 Rev. *A
Page 2 of 14
FM25C160B - 16Kb 5V SPI F-RAM
Overview
Serial Peripheral Interface – SPI Bus
The FM25C160B is a serial F-RAM memory. The
memory array is logically organized as 2,048 x 8 and
is accessed using an industry standard Serial
Peripheral Interface or SPI bus. Functional operation
of the F-RAM is similar to serial EEPROMs. The
major difference between the FM25C160B and a
serial EEPROM with the same pin-out relates to its
superior write performance. This makes the
FM25C160B a drop-in replacement for most 16Kb
SPI EEPROMs that support modes 0 & 3.
The FM25C160B employs a Serial Peripheral
Interface (SPI) bus. It is specified to operate at speeds
up to 20 MHz. This high-speed serial bus provides
high performance serial communication to a host
microcontroller. Many common microcontrollers
have hardware SPI ports allowing a direct interface.
It is quite simple to emulate the port using ordinary
port pins for microcontrollers that do not. The
FM25C160B operates in SPI Mode 0 and 3.
Memory Architecture
When accessing the FM25C160B, the user addresses
2,048 locations each with 8 data bits. These data bits
are shifted serially. The addresses are accessed using
the SPI protocol, which includes a chip select (to
permit multiple devices on the bus), an op-code and a
two-byte address. The upper 5 bits of the address
range are „don‟t care‟ values. The complete address
of 11-bits specifies each byte address uniquely.
Most functions of the FM25C160B either are
controlled by the SPI interface or are handled
automatically by on-board circuitry. The access time
for memory operation essentially is zero, beyond the
time needed for the serial protocol. That is, the
memory is read or written at the speed of the SPI bus.
Unlike an EEPROM, it is not necessary to poll the
device for a ready condition since writes occur at bus
speed. That is, by the time a new bus transaction can
be shifted into the part, a write operation will be
complete. This is explained in more detail in the
interface section below.
The SPI interface uses a total of four pins: clock,
data-in, data-out, and chip select. A typical system
configuration uses one or more FM25C160B devices
with a microcontroller that has a dedicated SPI port,
as Figure 2 illustrates. Note that the clock, data-in,
and data-out pins are common among all devices.
The Chip Select and Hold pins must be driven
separately for each FM25C160B device.
For a microcontroller that has no dedicated SPI bus, a
general purpose port may be used. To reduce
hardware resources on the controller, it is possible to
connect the two data pins (SI, SO) together and tie
off (high) the Hold pin. Figure 3 shows a
configuration that uses only three pins.
Users expect several obvious system benefits from
the FM25C160B due to its fast write cycle and high
endurance as compared with EEPROM. However
there are less obvious benefits as well. For example
in a high noise environment, the fast-write operation
is less susceptible to corruption than an EEPROM
since it is completed quickly. By contrast, an
EEPROM requiring milliseconds to write is
vulnerable to noise during much of the cycle.
Protocol Overview
The SPI interface is a synchronous serial interface
using clock and data lines. It is intended to support
multiple devices on the bus. Each device is activated
using a chip select. Once chip select is activated by
the bus master, the FM25C160B will begin
monitoring the clock and data lines. The relationship
between the falling edge of /CS, the clock and data is
dictated by the SPI mode. The device will make a
determination of the SPI mode on the falling edge of
each chip select. While there are four such modes, the
FM25C160B supports modes 0 and 3. Figure 4 shows
the required signal relationships for modes 0 and 3.
For both modes, data is clocked into the FM25C160B
on the rising edge of SCK and data is expected on the
first rising edge after /CS goes active. If the clock
begins from a high state, it will fall prior to beginning
data transfer in order to create the first rising edge.
Note: The FM25C160B contains no power
management circuits other than a simple internal
power-on reset. It is the user’s responsibility to
ensure that VDD is within data sheet tolerances to
prevent incorrect operation. It is recommended
that the part is not powered down with chip
enable active.
The SPI protocol is controlled by op-codes. These
op-codes specify the commands to the part. After /CS
is activated the first byte transferred from the bus
master is the op-code. Following the op-code, any
addresses and data are then transferred. Note that the
WREN and WRDI op-codes are commands with no
subsequent data transfer.
Important: The /CS pin must go inactive after an
operation is complete and before a new op-code
can be issued. There is one valid op-code only per
active chip select.
Document Number: 001-84472 Rev. *A
Page 3 of 14
FM25C160B - 16Kb 5V SPI F-RAM
SCK
MOSI
MISO
SO
SPI
Microcontroller
SI SCK
SO
FM25C160B
CS
SI SCK
FM25C160B
HOLD
CS
HOLD
SS1
SS2
HOLD1
HOLD2
MOSI: Master Out, Slave In
MISO: Master In, Slave Out
SS: Slave Select
Figure 2. System Configuration with SPI port
SO
Microcontroller
SI SCK
FM25C160B
CS
HOLD
Figure 3. System Configuration without SPI port
SPI Mode 0: CPOL=0, CPHA=0
7
6
5
4
3
2
1
0
SPI Mode 3: CPOL=1, CPHA=1
7
6
5
4
3
2
1
0
Figure 4. SPI Modes 0 & 3
Document Number: 001-84472 Rev. *A
Page 4 of 14
FM25C160B - 16Kb 5V SPI F-RAM
Data Transfer
All data transfers to and from the FM25C160B occur
in 8-bit groups. They are synchronized to the clock
signal (SCK) and they transfer most significant bit
(MSB) first. Serial inputs are clocked in on the rising
edge of SCK. Outputs are driven on the falling edge
of SCK.
Command Structure
There are six commands called op-codes that can be
issued by the bus master to the FM25C160B. They
are listed in the table below. These op-codes control
the functions performed by the memory. They can be
divided into three categories. First, are commands
that have no subsequent operations. They perform a
single function such as to enable a write operation.
Second are commands followed by one byte, either in
or out. They operate on the status register. Last are
commands for memory transactions followed by
address and one or more bytes of data.
Table 1. Op-code Commands
Name
Description
WREN
WRDI
RDSR
WRSR
READ
WRITE
Set Write Enable Latch
Write Disable
Read Status Register
Write Status Register
Read Memory Data
Write Memory Data
Op-code value
0000_0110b
0000_0100b
0000_0101b
0000_0001b
0000_0011b
0000_0010b
WREN - Set Write Enable Latch
The FM25C160B will power up with writes disabled.
The WREN command must be issued prior to any
write operation. Sending the WREN op-code will
allow the user to issue subsequent op-codes for write
operations. These include writing the status register
and writing the memory.
Sending the WREN op-code causes the internal Write
Enable Latch to be set. A flag bit in the status
register, called WEL, indicates the state of the latch.
WEL=1 indicates that writes are permitted. A write to
the status register has no effect on the WEL bit.
Completing any write operation will automatically
clear the write-enable latch and prevent further writes
without another WREN command. Figure 5 below
illustrates the WREN command bus configuration.
WRDI - Write Disable
The WRDI command disables all write activity by
clearing the Write Enable Latch. The user can verify
that writes are disabled by reading the WEL bit in the
status register and verifying that WEL=0. Figure 6
illustrates the WRDI command bus configuration.
Figure 5. WREN Bus Configuration
Figure 6. WRDI Bus Configuration
Document Number: 001-84472 Rev. *A
Page 5 of 14
FM25C160B - 16Kb 5V SPI F-RAM
RDSR - Read Status Register
The RDSR command allows the bus master to verify
the contents of the Status register. Reading Status
provides information about the current state of the
write protection features. Following the RDSR opcode, the FM25C160B will return one byte with the
contents of the Status register. The Status register is
described in detail in a later section.
WRSR – Write Status Register
The WRSR command allows the user to select
certain write protection features by writing a byte to
the Status register. Prior to issuing a WRSR
command, the /WP pin must be high or inactive. Note
that on the FM25C160B, /WP only prevents writing
to the Status register, not the memory array. Prior to
sending the WRSR command, the user must send a
WREN command to enable writes. Note that
executing a WRSR command is a write operation and
therefore clears the Write Enable Latch. The bus
timing for RDSR and WRSR are shown below.
Figure 7. RDSR Bus Timing
Figure 8. WRSR Bus Timing
Status Register & Write Protection
The write protection features of the FM25C160B are
multi-tiered. First, a WREN op-code must be issued
prior to any write operation. Assuming that writes are
enabled using WREN, writes to memory are
controlled by the Status register. As described above,
writes to the status register are performed using the
WRSR command and subject to the /WP pin. The
Status register is organized as follows.
whether a write cycle is complete or not. The WPEN,
BP1 and BP0 control write protection features. They
are nonvolatile (shaded yellow). The WEL flag
indicates the state of the Write Enable Latch. This bit
is internally set by the WREN command and is
cleared by terminating a write cycle (/CS high) or by
using the WRDI command.
BP1 and BP0 are memory block write protection bits.
They specify portions of memory that are write
protected as shown in the following table.
Table 2. Status Register
Bit
Name
7
WPEN
6
0
5
0
4
0
3
BP1
2
BP0
1
WEL
0
0
Bits 0 and 4-6 are fixed at 0 and cannot be modified.
Note that bit 0 (/RDY in EEPROMs) is wired low
since F-RAM writes have no delay and the memory
is never busy. All EEPROMs use Ready to indicate
Document Number: 001-84472 Rev. *A
Table 3. Block Memory Write Protection
BP1
BP0 Protected Address Range
0
0
None
0
1
600h to 7FFh (upper ¼)
1
0
400h to 7FFh (upper ½)
1
1
000h to 7FFh (all)
Page 6 of 14
FM25C160B - 16Kb 5V SPI F-RAM
The BP1 and BP0 bits and the Write Enable Latch
are the only mechanisms that protect the memory
from writes. The remaining write protection features
protect inadvertent changes to the block protect bits.
The WPEN bit controls the effect of the hardware
/WP pin. When WPEN is low, the /WP pin is
ignored. When WPEN is high, the /WP pin controls
write access to the status register. Thus the Status
register is write protected if WPEN=1 and /WP=0.
Table 4. Write Protection
WEL
WPEN
/WP
0
X
X
1
0
X
1
1
0
1
1
1
Protected Blocks
Protected
Protected
Protected
Protected
Memory Operation
The SPI interface, with its relatively high maximum
clock frequency, highlights the fast write capability
of the F-RAM technology. Unlike SPI-bus
EEPROMs, the FM25C160B can perform sequential
writes at bus speed. No page register is needed and
any number of sequential writes may be performed.
Write Operation
All writes to the memory array begin with a WREN
op-code. The next op-code is the WRITE instruction.
This op-code is followed by a two-byte address
value. The upper 5-bits of the address are don‟t care.
In total, the 11-bits specify the address of the first
byte of the write operation. Subsequent bytes are data
and they are written sequentially. Addresses are
incremented internally as long as the bus master
continues to issue clocks. If the last address of 7FFh
is reached, the counter will roll over to 0000h. Data is
written MSB first.
Unlike EEPROMs, any number of bytes can be
written sequentially and each byte is written to
memory immediately after it is clocked in (after the
8th clock). The rising edge of /CS terminates a
WRITE op-code operation.
Document Number: 001-84472 Rev. *A
This scheme provides a write protection mechanism,
which can prevent software from writing the memory
under any circumstances. This occurs if the BP1 and
BP0 are set to 1, the WPEN bit is set to 1, and /WP is
set to 0. This occurs because the block protect bits
prevent writing memory and the /WP signal in
hardware prevents altering the block protect bits (if
WPEN is high). Therefore in this condition, hardware
must be involved in allowing a write operation. The
following table summarizes the write protection
conditions.
Unprotected Blocks
Protected
Unprotected
Unprotected
Unprotected
Status Register
Protected
Unprotected
Protected
Unprotected
Read Operation
After the falling edge of /CS, the bus master can issue
a READ op-code. Following this instruction is a twobyte address value. The upper 5-bits of the address
are don‟t care. In total, the 11-bits specify the address
of the first byte of the read operation. After the opcode and address are complete, the SI line is ignored.
The bus master issues 8 clocks, with one bit read out
for each. Addresses are incremented internally as
long as the bus master continues to issue clocks. If
the last address of 7FFh is reached, the counter will
roll over to 0000h. Data is read MSB first. The rising
edge of /CS terminates a READ op-code operation.
The bus configuration for read and write operations is
shown below.
Hold
The /HOLD pin can be used to interrupt a serial
operation without aborting it. If the bus master takes
the /HOLD pin low while SCK is low, the current
operation will pause. Taking the /HOLD pin high
while SCK is low will resume an operation. The
transitions of /HOLD must occur while SCK is low,
but the SCK pin can toggle during a hold state.
Page 7 of 14
FM25C160B - 16Kb 5V SPI F-RAM
Figure 9. Memory Write
Figure 10. Memory Read
Endurance
Internally, a F-RAM operates with a read and restore
mechanism. Therefore, endurance cycles are applied
for each access: read or write. The F-RAM
architecture is based on an array of rows and
columns. Each access causes a cycle for an entire
row. In the FM25C160B, a row is 64 bits wide.
Every 8-byte boundary marks the beginning of a new
Document Number: 001-84472 Rev. *A
row. Endurance can be optimized by ensuring
frequently accessed data is located in different rows.
Regardless, F-RAM read and write endurance is
effectively unlimited at the 20MHz clock speed.
Even at 2000 accesses per second to the same row, 15
years time will elapse before 1012 endurance cycles
occur.
Page 8 of 14
FM25C160B - 16Kb 5V SPI F-RAM
Electrical Specifications
Absolute Maximum Ratings
Symbol
Description
VDD
Power Supply Voltage with respect to VSS
VIN
Voltage on any pin with respect to VSS
TSTG
TLEAD
VESD
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
Electrostatic Discharge Voltage
- Human Body Model (AEC-Q100-002 Rev. E)
- Charged Device Model (AEC-Q100-011 Rev. B)
- Machine Model (AEC-Q100-003 Rev. E)
Package Moisture Sensitivity Level
Ratings
-1.0V to +7.0V
-1.0V to +7.0V
and VIN < VDD+1.0V
-55 C to + 125 C
260 C
4kV
1.25kV
300V
MSL-1
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating
only, and the functional operation of the device at these or any other conditions above those listed in the operational section of this
specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
DC Operating Conditions (TA = -40 C to + 85 C, VDD = 4.5V to 5.5V unless otherwise specified)
Symbol Parameter
Min
Typ
Max
Units
VDD
Power Supply Voltage
4.5
5.0
5.5
V
IDD
VDD Supply Current
@ SCK = 1.0 MHz
0.25
mA
@ SCK = 20.0 MHz
4.0
mA
ISB
Standby Current
4
10
A
ILI
Input Leakage Current
1
A
ILO
Output Leakage Current
1
A
VIL
Input Low Voltage
-0.3
0.3 VDD
V
VIH
Input High Voltage
0.7 VDD
VDD + 0.3
V
VOL
Output Low Voltage
0.4
V
@ IOL = 2 mA
VOH
Output High Voltage
VDD – 0.8
V
@ IOH = -2 mA
VHYS
Input Hysteresis
0.05 VDD
V
Notes
1
2
3
3
4
Notes
1. SCK toggling between VDD-0.3V and VSS, other inputs VSS or VDD-0.3V.
2. SCK = SI = /CS=VDD. All inputs VSS or VDD.
3. VIN or VOUT = VSS to VDD.
4. This parameter is characterized but not 100% tested.
Document Number: 001-84472 Rev. *A
Page 9 of 14
FM25C160B - 16Kb 5V SPI F-RAM
AC Parameters (TA = -40 C to + 85 C, VDD = 4.5V to 5.5V unless otherwise specified)
Min
Max
Symbol
Parameter
fCK
SCK Clock Frequency
0
20
tCH
Clock High Time
22
tCL
Clock Low Time
22
tCSU
Chip Select Setup
10
tCSH
Chip Select Hold
10
tOD
Output Disable
20
tODV
Output Data Valid
20
tOH
Output Hold
0
tD
Deselect Time
60
tR
Data In Rise Time
50
tF
Data In Fall Time
50
tSU
Data Setup Time
5
tH
Data Hold Time
5
tHS
/Hold Setup Time
10
tHH
/Hold Hold Time
10
tHZ
/Hold Low to Hi-Z
20
tLZ
/Hold High to Data Active
20
Units
MHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Notes
1
1
2
1,3
1,3
2
2
Notes
1.
2.
3.
tCH + tCL = 1/fCK.
Rise and fall times measured between 10% and 90% of waveform.
This parameter is characterized and not 100% tested.
Capacitance (TA = 25 C, f=1.0 MHz, VDD = 5V)
Symbol
Parameter
Max
CO
Output Capacitance (SO)
8
CI
Input Capacitance
6
Units
pF
pF
Notes
1
1
Notes
1.
This parameter is characterized and not 100% tested.
AC Test Conditions
Input Pulse Levels
Input rise and fall times
Input and output timing levels
Output Load Capacitance
10% and 90% of VDD
5 ns
0.5 VDD
30 pF
Data Retention
Symbol
Parameter
TDR
@ +85ºC
@ +80ºC
@ +75ºC
Document Number: 001-84472 Rev. *A
Min
10
19
38
Max
-
Units
Years
Years
Years
Notes
Page 10 of 14
FM25C160B - 16Kb 5V SPI F-RAM
Serial Data Bus Timing
tD
CS
tCSU
SCK
tSU
tF
1/tCK
tCL
tR
tCSH
tCH
tH
SI
tOH
tODV
tOD
SO
/Hold Timing
tHS
CS
tHH
SCK
tHH
tHS
HOLD
SO
tHZ
tLZ
Power Cycle Timing
VDD
VDD min
tVF
tVR
tPU
tPD
CS
Power Cycle Timing (TA = -40 C to + 85 C, VDD = 4.5V to 5.5V unless otherwise specified)
Symbol
Parameter
Min
Max
Units
tPU
VDD(min) to First Access Start
1
ms
tPD
Last Access Complete to VDD(min)
0
s
tVR
VDD Rise Time
30
s/V
tVF
VDD Fall Time
30
s/V
Notes
1. Slope measured at any point on VDD waveform.
Document Number: 001-84472 Rev. *A
Notes
1
1
Page 11 of 14
FM25C160B - 16Kb 5V SPI F-RAM
Mechanical Drawing
(8-pin SOIC – JEDEC MS-012, Variation AA)
Recommended PCB Footprint
7.70
3.90 ±0.10
3.70
6.00 ±0.20
2.00
Pin 1
0.65
1.27
4.90 ±0.10
1.27
0.33
0.51
0.25
0.50
1.35
1.75
0.10
0.25
0.19
0.25
45
0.10 mm
0 -8
0.40
1.27
Refer to JEDEC MS-012 for complete dimensions and notes.
All dimensions in millimeters.
SOIC Package Marking Scheme
XXXXXXXP
RLLLLLLL
RICYYWW
Legend:
XXXXXXX= part number, P= package type (G=SOIC)
R=rev code, LLLLLLL= lot code
RIC=Ramtron Int‟l Corp, YY=year, WW=work week
Example: FM25C160B, “Green” SOIC package, Year 2010, Work Week 51
FM25C160BG
A00002G1
RIC1051
Document Number: 001-84472 Rev. *A
Page 12 of 14
FM25C160B - 16Kb 5V SPI F-RAM
Revision History
Revision
1.0
1.1
1.2
3.0
Date
11/10/2010
2/15/2011
3/30/2011
1/6/2012
Summary
Initial Release
Changed tPU and tVF spec limits.
Added ESD ratings.
Changed to Production status. Changed tVF spec.
Document History
Document Title: FM25C160B 16Kb Serial 5V F-RAM Memory
Document Number: 001-84472
Revision
ECN
Orig. of
Change
Submission
Date
**
3902952
GVCH
02/25/2013
New Spec
*A
3924523
GVCH
03/07/2013
Changed tPU spec value from 10ms to 1ms
Document Number: 001-84472 Rev. *A
Description of Change
Page 13 of 14
FM25C160B - 16Kb 5V SPI F-RAM
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors.
To find the office closest to you, visit us at Cypress Locations.
Products
PSoC® Solutions
Automotive
cypress.com/go/automotive
Clocks & Buffers
cypress.com/go/clocks
Interface
cypress.com/go/interface
Lighting & Power Control
cypress.com/go/powerpsoc
cypress.com/go/plc
Cypress Developer Community
Memory
cypress.com/go/memory
Community | Forums | Blogs | Video | Training
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
Technical Support
USB Controllers
cypress.com/go/usb
cypress.com/go/support
psoc.cypress.com/solutions
PSoC 1 | PSoC 3 | PSoC 5
RAMTRON is a registered trademark and NoDelay™ is a trademark of Cypress Semiconductor Corp. All other trademarks or registered
trademarks referenced herein are the property of their respective owners.
© Cypress Semiconductor Corporation, 2011-2013. The information contained herein is subject to change without notice. Cypress
Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor
does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life
support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore,
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably
be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the
manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to
worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby
grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the
Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product
to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification,
translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission
of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume
any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the
user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in
doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Document Number: 001-84472 Rev. *A
Page 14 of 14