19-5629; Rev 0; 11/10 数字温度计和温度监控器, 带有SPI/3线接口 MAX31722/MAX31723数 字 温 度 计 和 温 度 监 控 器 带 有 SPI™/3线接口,能够提供器件温度的读数。器件无需额 外元件,可真正实现温度到数字的转换。通过SPI接口或3 线串口与器件通信,读取温度值,接口可由用户选择。当 需要更高的温度分辨率时,用户可以调节读数的分辨率, 范围在9位至12位。这一点对于需要快速检测温度失控条 件的系统非常有用。温度监控器具有专用的漏极开路输出 (TOUT)。两种温度监控器工作模式(比较器和中断)能够根 据用户定义的非易失存储门限(THIGH和TLOW)控制温度监 控器的工作。两款器件均工作在1.7V至3.7V电源电压。 应用 网络设备 蜂窝基站 工业设备 特性 S 温度测量无需任何外部元件 S 温度测量范围:-55°C至+125°C S MAX31722温度测量精度为±2.0°C S MAX31723温度测量精度为±0.5°C S 可配置温度计分辨率:9位至12位(0.5°C至0.0625°C分 辨率) S 温度监控器输出,具有用户定义的非易失门限 S 通过SPI (模式0和模式2)或3线串口读/写数据 S 1.7V至3.7V电源电压范围 S 采用8引脚µMAX®封装 定购信息 热敏感系统 PART TEMP RANGE MAX31722MUA+ -55NC to +125NC PIN-PACKAGE 8 FMAX MAX31722MUA+T -55NC to +125NC 8 FMAX MAX31723MUA+ -55NC to +125NC 8 FMAX MAX31723MUA+T -55NC to +125NC 8 FMAX +表示无铅(Pb)/符合RoHS标准的封装。 T = 卷带包装。 功能框图 VDD VDD SDI SDO SCLK CE SERMODE GND PRECISION REFERENCE OVERSAMPLING MODULATOR DIGITAL DECIMATOR CONFIGURATION/ STATUS REGISTER I/O CONTROL AND INPUT SENSE MAX31722 MAX31723 TEMPERATURE REGISTER THIGH AND TLOW REGISTERS TOUT THERMOSTAT COMPARATOR SPI是Motorola, Inc.的商标。 µMAX是Maxim Integrated Products, Inc.的注册商标。 _______________________________________________________________________________ Maxim Integrated Products 1 本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。 有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区), 或访问Maxim的中文网站:china.maxim-ic.com。 MAX31722/MAX31723 概述 MAX31722/MAX31723 数字温度计和温度监控器, 带有SPI/3线接口 ABSOLUTE MAXIMUM RATINGS Operating Junction Temperature Range.......... -55NC to +125NC Storage Temperature Range............................. -55NC to +125NC Lead Temperature (soldering, 10s).................................+300NC Soldering Temperature (reflow).......................................+260NC Voltage Range on VDD Relative to GND...............-0.3V to +6.0V Voltage Range on Any Other Pin Relative to GND....-0.3V to +6.0V Continuous Power Dissipation (TA = +70NC) FMAX (derate 4.5mW/NC above +70NC).......................362mW EEPROM Programming Temperature Range.. ...-40NC to +85NC Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. RECOMMENDED OPERATING CHARACTERISTICS (TJ = -55NC to +125NC, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Supply Voltage VDD (Note 1) Input Logic-High VIH (Note 1) Input Logic-Low VIL (Note 1) MIN TYP 1.7 0.7 x VDD -0.3 MAX UNITS 3.7 V VDD + 0.3 V 0.3 x VDD V DC ELECTRICAL CHARACTERISTICS (VDD = 1.7V to 3.7V, TJ = -55NC to +125NC, unless otherwise noted.) PARAMETER SYMBOL MAX31722 Thermometer Error TERR MAX31723 Thermometer Error TERR CONDITIONS MIN -55NC to +125NC Q3.0 0NC to +70NC Q0.5 -55NC to +125NC Q2.0 9 9-bit conversions Logic 0 Output (SDO, TOUT) Logic 1 Output (SDO) Leakage Current tCONVT VOL VOH 50 100 12-bit conversions 200 (Note 2) (Note 3) Shutdown Current 2 ICC1 UNITS NC NC Bits 25 11-bit conversions IL ICC 12 10-bit conversions 0.4 VDD 0.4 -1 Active temperature conversions (Note 4) Active Current MAX Q2.0 Resolution Conversion Time TYP -40NC to +85NC ms V V +1 FA 1150 Communication only 100 EEPROM writes (-40NC to +85NC) 1150 EEPROM writes during active temperature conversions (-40NC to +85NC) 1200 2 FA FA 数字温度计和温度监控器, 带有SPI/3线接口 MAX31722/MAX31723 AC ELECTRICAL CHARACTERISTICS: 3-WIRE INTERFACE (VDD = 1.7V to 3.7V, TJ = -55NC to +125NC, unless otherwise noted.) (Figures 1, 2) PARAMETER SYMBOL CONDITIONS MIN Data to SCLK Setup tDC (Notes 5, 6) 35 SCLK to Data Hold tCDH (Notes 5, 6) 35 SCLK to Data Valid tCDD (Notes 5, 6, 7) TYP MAX UNITS ns ns 80 ns SCLK Low Time tCL (Note 6) 100 SCLK High Time tCH (Note 6) 100 ns SCLK Frequency tCLK (Note 6) DC SCLK Rise and Fall tR, tF CE to SCLK Setup tCC (Note 6) 400 ns SCLK to CE Hold tCCH (Note 6) 100 ns CE Inactive Time tCWH (Note 6) 400 CE to Output High-Z tCDZ (Notes 5, 6) 40 ns SCLK to Output High-Z tCCZ (Notes 5, 6) 40 ns MAX UNITS ns 5.0 200 MHz ns ns AC ELECTRICAL CHARACTERISTICS: SPI INTERFACE (VDD = 1.7V to 3.7V, TJ = -55NC to +125NC, unless otherwise noted.) (Figures 3, 4) PARAMETER SYMBOL CONDITIONS MIN Data to SCLK Setup tDC (Notes 5, 6) 35 SCLK to Data Hold tCDH (Notes 5, 6) 35 SCLK to Data Valid tCDD (Notes 5, 6, 7) TYP ns ns 80 ns tCL (Note 6) 100 SCLK High Time tCH (Note 6) 100 SCLK Frequency tCLK (Note 6) DC SCLK Rise and Fall tR, tF CE to SCLK Setup tCC (Note 6) 400 ns SCLK to CE Hold tCCH (Note 6) 100 ns CE Inactive Time tCWH (Note 6) 400 CE to Output High-Z tCDZ (Notes 5, 6) SCLK Low Time ns ns 5.0 200 MHz ns ns 40 ns MAX UNITS 15 ms AC ELECTRICAL CHARACTERISTICS: EEPROM (VDD = 1.7V to 3.7V, TJ = -55NC to +125NC, unless otherwise noted.) PARAMETER EEPROM Write Cycle Time EEPROM Write Endurance SYMBOL tWR NEEWR CONDITIONS MIN -40NC to +85NC (Note 8) -40NC P TA P +85NC (Note 8) TA = +25NC (Note 8) 20,000 80,000 TYP Cycles Note 1: All voltages are referenced to ground. Currents entering the IC are specified positive, and currents exiting the IC are negative. Note 2:Logic 0 voltages are specified at a sink current of 3mA. Note 3:Logic 1 voltages are specified at a source current of 1mA. Note 4:ICC specified with SCLK = VDD and CE = GND. Note 5:Measured at VIH = 0.7V x VDD or VIL = 0.3 x VDD and 10ms maximum rise and fall times. Note 6:Measured with 50pF load. Note 7:Measured at VOH = 0.7 x VDD or VOL = 0.3 x VDD. Measured from the 50% point of SCLK to the VOH minimum of SDO. Note 8:VDD must be > 2.0V during EEPROM write cycles. 3 MAX31722/MAX31723 数字温度计和温度监控器, 带有SPI/3线接口 CE tCC SCLK tCCZ tCDH tCDZ tCDD tCDD tDC A0 I/O* A1 A7 D0 WRITE ADDRESS BYTE D1 READ DATA BIT *I/O IS SDI AND SDO CONNECTED TOGETHER. 图1. 时序图:3线读数据传输 tCWH CE tCC tCCH tR tCL tF SCLK tCDH tCH tDC I/O* A0 A1 WRITE ADDRESS BYTE *I/O IS SDI AND SDO CONNECTED TOGETHER. 图2. 时序图:3线写数据传输 4 A7 D0 WRITE DATA 数字温度计和温度监控器, 带有SPI/3线接口 MAX31722/MAX31723 CE tCC SCLK tCDD tCDD tCDH tDC SDI A7 A6 A0 tCDZ SDO D7 D6 WRITE ADDRESS BYTE D1 D0 READ DATA BYTE NOTE: SCLK CAN BE EITHER POLARITY, TIMING SHOWN FOR CPOL = 1. 图3. 时序图:SPI读数据传输 tCWH CE tCC tR tCL tCCH tF SCLK tCDH tCH tCDH tDC SDI A7 A6 WRITE ADDRESS BYTE A0 D7 D0 WRITE DATA BYTE NOTE: SCLK CAN BE EITHER POLARITY, TIMING SHOWN FOR CPOL = 1. 图4. 时序图:SPI写数据传输 5 典型工作特性 (TA = +25°C, unless otherwise noted.) TEMPERATURE CONVERSION ACTIVE SUPPLY CURRENT vs. TEMPERATURE 1.4 VDD = 3.7V 1.2 1.0 ICC (µA) 800 VDD = 3.0V 600 400 VDD = 3.7V VDD = 1.7V 0.8 VDD = 3.0V 0.6 0.4 200 VDD = 1.7V 0.2 0 0 -55 -35 -15 5 25 45 65 -55 -35 -15 85 105 125 0.5 12-BIT TEMPERATURE CONVERSIONS VDD = 3.0V 0.4 0.3 3σ 0.2 0.1 0 -0.1 -0.2 -3σ -0.3 -0.4 -0.5 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 MAX31722/3 toc03 TEMPERATURE CONVERSION ERROR vs. REFERENCE TEMPERATURE ERROR (°C) 5 25 45 65 TEMPERATURE (°C) TEMPERATURE (°C) 6 MAX31722/3 toc02 1000 STANDBY SUPPLY CURRENT vs. TEMPERATURE MAX31722/3 toc01 1200 ICC (µA) MAX31722/MAX31723 数字温度计和温度监控器, 带有SPI/3线接口 85 105 125 数字温度计和温度监控器, 带有SPI/3线接口 TOP VIEW TOUT 1 CE 2 SCLK 3 GND 4 + MAX31722 MAX31723 8 VDD 7 SERMODE 6 SDI 5 SDO µMAX 引脚说明 引脚 名称 1 功能 TOUT 2 CE 3 SCLK 4 GND 地,接地连接。 5 SDO 串行数据输出。选择SPI通信时,SDO引脚为SPI总线的串行数据输出;选择3线通信时,必须将该引脚 连接至SDI引脚。SDI和SDO引脚连接在一起时,作为一个I/O引脚。 6 SDI 串行数据输入。选择SPI通信时,SDI引脚为SPI总线的串行数据输入;选择3线通信时,必须将该引脚 连接至SDO引脚。SDI和SDO引脚连接在一起时,作为一个I/O引脚。 7 SERMODE 8 VDD 温度监控器输出。开漏输出,用于指示温度超出内部报警门限。 芯片使能。通过SPI或3线接口进行通信时必须将该引脚置为高电平。 串行时钟输入,用于同步SPI或3线接口的串行数据传输。 串口模式控制输入,通过该引脚选择串口模式。连接至VDD时,选择SPI通信;连接至GND时,选择3线 通信。 供电电源,电源输入。 详细说明 MAX31722/MAX31723为经过工厂校准的温度传感器,无 需任何外部元件。用户可改变配置/状态寄存器,将器件 置于连续温度转换模式或单次转换模式。连续转换模式下, 器件连续转换温度,并将结果存储在温度寄存器中。由于 在后台执行转换,读取温度寄存器不影响正在进行的转换。 单次温度转换模式下,器件执行一次温度转换,将结果存 储在温度寄存器中,然后返回关断状态。该转换模式可理 想用于功耗敏感应用。温度转换结果的默认分辨率为9位, 对于需要检测温度小幅变化的应用,用户可将转换分辨率 从9位更改至10、11或12位,通过设置配置/状态寄存器实 现。 器件可配置为温度监控器,允许TOUT引脚作为中断,温 度超出所设置的门限THIGH和TLOW时,触发中断。器件可 使用串行外设接口(SPI)或标准3线接口通信。用户可通过 SERMODE引脚选择通信标准,连接至VDD时为SPI,连接 至GND时为3线。 7 MAX31722/MAX31723 引脚配置 MAX31722/MAX31723 数字温度计和温度监控器, 带有SPI/3线接口 测量温度 用于功耗敏感应用。关于上电后如何更改设置的详细信息, 请参见设置 部分。 器件的核心功能是对温度传感器直接进行数字转换。器件 采用片上温度测量技术测量温度,工作温度范围为-55°C 至+125°C。器件上电时处于节电关断模式;上电后,器 件可置于连续转换模式或单次转换模式。连续转换模式下, 器件连续计算温度,并将最新结果存储在温度寄存器中, 寄存器地址为01h (LSB)和02h (MSB)。由于温度转换在后 台执行,所以读取温度寄存器不影响正在进行的转换。只 有SPI或3线接口停止操作时,才更新温度值。也就是说, 当温度寄存器更新为最新温度转换结果时,CE必须无效。 单次转换模式下,器件执行一次温度转换,然后返回至关 断模式,将温度存储在温度寄存器中,该转换模式可理想 26 S 25 24 MSB 温度转换分辨率可配置(9、10、11或12位),默认状态为9 位。与之相对应的温度分辨率为0.5°C、0.25°C、0.125°C 或0.0625°C。每次转换之后,温度数据以二进制补码格 式存储在温度寄存器中。将地址设置为温度寄存器01h (LSB),然后02h (MSB),可通过SPI或3线接口读回该信息。 表1所列为输出数据与实测温度的精确关系。表1假设器件 配置为12位分辨率。如果器件配置为低分辨率模式,这些 位包含零。数据通过数字接口串行传输,SPI通信时MSB 在前,3线通信时LSB在前。温度寄存器的MSB包含符号 (S)位,表示正或负温度。 23 22 21 (UNITS = NC) 2-1 2-2 2-3 2-4 0 20 02h LSB 0 0 0 01h 图5. 温度、THIGH和TLOW寄存器格式 表1. 12位分辨率温度/数据关系 8 TEMPERATURE (NC) DIGITAL OUTPUT (BINARY) DIGITAL OUTPUT (HEX) +125 0111 1101 0000 0000 7D00 +25.0625 0001 1001 0001 0000 1910 +10.125 0000 1010 0010 0000 0A20 +0.5 0000 0000 1000 0000 0080 0 0000 0000 0000 0000 0000 -0.5 1111 1111 1000 0000 FF80 -10.125 1111 0101 1110 0000 F5E0 -25.0625 1110 0110 1111 0000 E6F0 -55 1100 1001 0000 0000 C900 数字温度计和温度监控器, 带有SPI/3线接口 比较器模式 器件的温度监控器可设置为上电时处于比较器模式或中 断模式,根据用户可编程门限(THIGH和TLOW)确定是否触 发温度监控器报警/中断指示开漏输出(TOUT)。THIGH和 TLOW寄存器包含二进制补码格式的摄氏度温度值,储存 在EEPROM存储器,采用非易失存储温度数据,独立工作 时,可在安装器件之前进行编程。 温度监控器处于比较器模式时,TOUT可设置工作在任意 滞回状态。实测温度超过THIGH值时,触发TOUT报警输出。 在温度首次下降到TLOW存储门限以下之前,TOUT一直保 持报警状态。比较器模式下,将器件置于关断模式不会清 除TOUT报警,图6所示为温度监控器比较器工作模式。 THIGH和TLOW寄存器的数据格式与温度寄存器(图5)完全相 同。每次温度转换之后,将测量值与存储在THIGH和TLOW 寄存器中的数值进行比较。THIGH寄存器分配的地址为03h (LSB)和04h (MSB),TLOW寄存器分配的地址为05h (LSB) 和06h (MSB)。根据比较结果和器件的工作模式,更新 TOUT输出。温度监控器比较时使用的THIGH和TLOW位数 与配置/状态寄存器中R1和R0位设置的转换分辨率相同。 例如,如果分辨率为9位,温度监控器比较器只使用THIGH 和TLOW的9个MSB位。 中断模式下,当测量温度超过THIGH时,触发TOUT中断报 警。一旦触发中断,则在连续转换模式下,只有将器件置 于关断状态,或者读取器件的任一寄存器(配置/状态、温度、 THIGH或TLOW)时,才能清除TOUT中断;单次转换模式下, 只有读取器件的任一寄存器(配置/状态、温度、THIGH或 TLOW)时,才能清除TOUT中断。在这两种模式下,一旦 清除TOUT中断,则只有测量温度下降到TLOW以下时,才 能重新触发中断。因此,这种触发/清除中断的过程是在 THIGH和TLOW事件之间循环进行(即,THIGH、清除中断、 TLOW、清除中断、THIGH、清除中断、TLOW、清除中断、 依次循环)。图6所示为温度监控器的中断工作模式。 如果用户不希望使用器件的温度监控器功能,TOUT输 出应保持浮空。注意,如果未使用温度监控器,THIGH和 TLOW寄存器可用于储存系统数据。 中断模式 THIGH TEMPERATURE TLOW INACTIVE TOUT OUTPUT—COMPARATOR MODE ACTIVE INACTIVE TOUT OUTPUT—INTERRUPT MODE ACTIVE ASSUMES A READ HAS OCCURED CONVERSIONS 图6. TOUT工作示例 9 MAX31722/MAX31723 温度监控器 MAX31722/MAX31723 数字温度计和温度监控器, 带有SPI/3线接口 设置 表2. 寄存器地址结构 READ ADDRESS (HEX) WRITE ADDRESS (HEX) ACTIVE REGISTER 00 80 Configuration/Status 01 No access Temperature LSB 02 No access Temperature MSB 03 83 THIGH LSB 04 84 THIGH MSB 05 85 TLOW LSB 06 86 TLOW MSB 表3. 配置/状态寄存器位说明 10 设置器件时所关心的区域是配置/状态寄存器。利用SPI或 3线通信接口,通过选择相应寄存器位置的对应地址,即 可完成所有设置。表2所示为器件寄存器的地址。 配置/状态寄存器设置 在器件中存取配置/状态寄存器时,读操作使用地址00h, 写操作使用地址80h。读或写配置/状态寄存器的数据时, SPI通信为MSB在前,3线通信为LSB在前。表3所示为寄 存器的格式,说明了每位的功能,并提供每位的出厂状态。 表4根据R1和R0位的设置,定义数字温度计的分辨率。如 交流电气特性 部分所述,分辨率和转换时间之间存在一定 的折中关系。用户可对R1和R0位进行读写操作,这两位 为非易失位,参见表4。 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 0 MEMW NVB 1SHOT TM R1 R0 SD BIT 7 This bit is always a value of 0. BIT 6 MEMW: Memory write bit. Power-up state = 0. The user has read/write access to the MEMW bit, which is stored in the voltage memory. 0 = A write of the configuration/status register is stored in RAM memory. 1 = A write of the configuration/status register is stored in EEPROM. Note: The status of this bit is ignored if a EEPROM write occurs to the other nonvolatile registers, THIGH and TLOW. The nonvolatile bits of the configuration/status register are written if a EEPROM write cycle occurs to the THIGH and TLOW registers. BIT 5 NVB: Nonvolatile memory busy flag. Power-up state = 0 and is stored in volatile memory. 0 = Indicates that the nonvolatile memory is not busy. 1 = Indicates there is a write to a EEPROM memory cell in progress. BIT 4 1SHOT: One-shot temperature conversion bit. Power-up state = 0 and is stored in volatile memory. 0 = Disables 1SHOT mode. 1 = If the SD bit is 1 (continuous temperature conversions are not taking place), a 1 written to the 1SHOT bit causes the devices to perform one temperature conversion and store the results in the temperature register at addresses 01h (LSB) and 02h (MSB). The bit clears itself to 0 upon completion of the temperature conversion. The user has read/write access to the 1SHOT bit, although writes to this bit are ignored if the SD bit is a 0 (continuous conversion mode). BIT 3 TM: Thermostat operating mode. Factory power-up state = 0. The user has read/write access to the TM bit, which is stored in nonvolatile memory. 0 = The thermostat output is in comparator mode. 1 = The thermostat output is in interrupt mode. 数字温度计和温度监控器, 带有SPI/3线接口 BIT 2 R1: Thermostat resolution bit 1. Factory power-up state = 0 and is stored in nonvolatile memory. Sets the conversion resolution (see Table 4). BIT 1 R0: Thermostat resolution bit 0. Factory power-up state = 0 and is stored in nonvolatile memory. Sets the conversion resolution (see Table 4). BIT 0 SD: Factory power-up state = 1. The user has read/write access to the SD bit, which is stored in nonvolatile memory. 0 = The devices continuously perform temperature conversions and store the last completed result in the temperature register. 1 = The conversion in progress is completed and stored, and then the devices revert to a low-power shutdown mode. The communication port remains active. 串行外设接口(SPI) 表4. 温度计分辨率配置 THERMOMETER RESOLUTION (BITS) MAX CONVERSION TIME (ms) 0 9 25 1 10 50 1 0 11 100 1 1 12 200 R1 R0 0 0 串行接口 器件能够灵活地在两种串行接口模式之间进行选择。器件 可采用SPI接口或3线接口进行通信。使用的接口方法由 SERMODE引脚决定。SERMODE连接至VDD时,选择SPI 通信;SERMODE连接至地时,选择3线通信。 SPI是一种用于地址和数据传输的同步总线。将SERMODE 连接至VDD,选择SPI模式串行通信。SPI使用四个引脚: SDO (串行数据输出)、SDI (串行数据输入)、CE (芯片使能) 和SCLK (串行时钟)。SPI应用中,器件为从器件,微控制 器为主控制器。SDI和SDO分别是器件的串行数据输入和 输出引脚。CE输入用于启动和终止数据传输。SCLK用于 同步主控制器(微控制器)和从器件(IC)之间的数据传输。 串行时钟(SCLK)由微控制器产生,只有CE为高电平时且将 地址和数据传输至SPI总线上任一器件期间,该时钟才有 效。在有些微控制器中需设置时钟无效时的极性。器件具 有一项重要功能:CE变为有效时,通过采样SCLK,确定 时钟无效时的电平。因此,可以支持任一SCLK极性。在 内部选通沿上锁存输入数据(SDI),在翻转沿上移出输出数 据(SDO) (参见表5和图7)。传输的每一位均有一个时钟脉 冲。地址和数据位按八位一组传输,MSB在前。 表5. 功能表 MODE CE SCLK SDI SDO Disable reset Low Input disabled Input disabled High impedance Write High Data bit latch High impedance Read High X Next data bit shift** CPOL = 1*, SCLK rising CPOL = 0, SCLK falling CPOL = 1, SCLK falling CPOL = 0, SCLK rising 注:CPHA位极性必须设置为1。 *CPOL为时钟极性位,在微控制器的控制寄存器中进行设置。 **读操作期间,在8位数据准备好之前,SDO保持高阻态。 11 MAX31722/MAX31723 表3. 配置/状态寄存器位说明(续) MAX31722/MAX31723 数字温度计和温度监控器, 带有SPI/3线接口 CPOL = 1 CE SHIFT INTERNAL STROBE SHIFT INTERNAL STROBE SCLK CPOL = 0 CE SCLK NOTE: CPOL IS A BIT THAT IS SET IN THE MICROCONTROLLER’S CONTROL REGISTER. 图7. 串行时钟作为微控制器时钟极性(CPOL)的功能 地址和数据字节 地址和数据字节移入串行数据输入(SDI)和移出串行数据 输出(SDO)时,MSB在前。任何传输都需要在地址字节指 定写入或读取操作,后面跟一个或多个数据字节。读操作 时,从SDO输出数据;写操作时,数据输入至SDI。CE驱 动为高电平后,输入的第一个字节总为地址字节。该字节 的MSB (A7)决定是读操作还是写操作。如果A7为0,发生 一次或多次读循环;如果A7为1,发生一次或多次写循环。 在多字节突发模式下,数据传输可每次1个字节。CE驱动 为高电平后,将地址写入器件。地址的后面可写或读一个 或多个数据字节。对于单字节传输,读或写1个字节,然 后CE驱动为低电平(见图8和图9)。然而,对于多字节传输, 写入地址后,可以对器件读或写多个字节(见图10)。单字 12 节突发读/写操作按次序指向所有存储器位置,并从7Fh/ FFh循环至00h/80h。存储器地址无效时,报告FFh值。 3线串行数据总线 3线通信模式与SPI模式的工作方式类似。但是,3线模式 下,采用一个双向I/O,而非独立的数据输入和数据输出 信号。3线由I/O (SDI和SDO引脚连接在一起)、CE和SCLK 引脚组成。3线模式下,每个字节首先移入LSB,而SPI模 式下每个字节首先移入MSB。与SPI模式相同,对器件写 入地址字节,其后跟一个数据字节或多个数据字节。图11 所示为读、写时序;图12所示为多字节突发传输模式。3 线模式下,在SCLK的上升沿输入数据,在SCLK的下降沿 输出数据。 数字温度计和温度监控器, 带有SPI/3线接口 MAX31722/MAX31723 CE SCLK SDI A7 SDO A6 A5 A4 A3 A2 A1 A0 HIGH-Z D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 图8. SPI单字节读操作 CE SCLK SDI A7 SDO A6 A5 A4 A3 A2 A1 A0 HIGH-Z 图9. SPI单字节写操作 CE SCLK WRITE SDI ADDRESS BYTE SDI ADDRESS BYTE DATA BYTE 0 DATA BYTE 1 DATA BYTE N DATA BYTE 0 DATA BYTE 1 DATA BYTE N READ SDO 图10. SPI多字节突发传输模式 13 MAX31722/MAX31723 数字温度计和温度监控器, 带有SPI/3线接口 CE SCLK I/O* A0 A1 A2 A3 A4 A5 A6 A7 D0 D1 D2 D3 D4 D5 D6 D7 *I/O IS SDI AND SDO CONNECTED TOGETHER. 图11. 3线单字节传输 CE SCLK I/O* ADDRESS BYTE DATA BYTE 0 DATA BYTE 1 DATA BYTE N *I/O IS SDI AND SDO CONNECTED TOGETHER. 图12. 3线多字节突发传输模式 封装信息 如需最近的封装外形信息和焊盘布局(占位面积),请查询china.maxim-ic.com/packages。请注意,封装编码中的“+” 、“#”或“-” 仅表示RoHS状态。封装图中可能包含不同的尾缀字符,但封装图只与封装有关,与RoHS状态无关。 14 封装类型 封装编码 8 FMAX U8+1 外形编号 21-0036 焊盘布局编号 90-0092 数字温度计和温度监控器, 带有SPI/3线接口 修订号 修订日期 0 11/10 说明 修改页 — 最初版本。 Maxim北京办事处 北京8328信箱 邮政编码100083 免费电话:800 810 0310 电话:010-6211 5199 传真:010-6211 5299 Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。 Maxim Integrated Products, Inc. 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 © 2010 Maxim Integrated Products 15 Maxim是Maxim Integrated Products,Inc.的注册商标。 MAX31722/MAX31723 修订历史 MAX31722, MAX31723 数字温度计和温度监控器,带有SPI/3线接口 - 概述 Login 产品 方案 设计 销售联络 支持中心 公司简介 Page 1 of 2 Register 简体中文 (cn) 我的Maxim Maxim > 产品 > 传感器 > MAX31722, MAX31723 Maxim > 产品 > 汽车电子 > MAX31722, MAX31723 Maxim > 产品 > 热管理 > MAX31722, MAX31723 MAX31722, MAX31723 数字温度计和温度监控器,带有SPI/3线接口 业内首款低电压3线/SPI温度传感器,简化低功耗系统设计 概述 技术文档 定购信息 相关产品 用户说明 (0) 所有内容 状况 数据资料 状况:生产中。 英文 下载 Rev. 0 (PDF, 768kB) 概述 中文 下载 Rev. 0 (PDF, 883.4kB) Email Email MAX31722/MAX31723数字温度计和温度监控器带有SPI™/3线接口,能够提供器件温度的读数。器件无需额外元 件,可真正实现温度到数字的转换。通过SPI接口或3线串口与器件通信,读取温度值,接口可由用户选择。当需要 更高的温度分辨率时,用户可以调节读数的分辨率,范围在9位至12位。这一点对于需要快速检测温度失控条件的 系统非常有用。温度监控器具有专用的漏极开路输出(/TOUT)。两种温度监控器工作模式(比较器和中断)能够根据 用户定义的非易失存储门限(THIGH和TLOW)控制温度监控器的工作。两款器件均工作在1.7V至3.7V电源电压。 现备有评估板:MAX31723PMB1 MAXPMBAE 关键特性 温度测量无需任何外部元件 温度测量范围:-55°C至+125°C MAX31722温度测量精度为±2.0°C MAX31723温度测量精度为±0.5°C 可配置温度计分辨率:9位至12位(0.5°C至0.0625°C分辨率) 温度监控器输出,具有用户定义的非易失门限 通过SPI (模式0和模式2)或3线串口读/写数据 1.7V至3.7V电源电压范围 采用8引脚µMAX®封装 关键特性: Temperature Sensors Part Number Sensor Type Alarm Output Functions Interface Accuracy (±°C) Parasite Pwr. Temp. Thresh. Temp. Resolution (bits) Oper. Temp. (°C) Smallest Available Pckg. (mm2) max w/pins MAX31722 Local Overt MAX31723 Memory Single Temperature Alarm Standalone Thermostat 2 3Wire/SPI 3-Wire No 0.5 Programmable (NV) 12 -55 to +125 15.6 查看所有Temperature Sensors (105) Pricing Notes: This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized distributor. 图表 http://china.maximintegrated.com/datasheet/index.mvp/id/6975 2012-12-10 MAX31722, MAX31723 数字温度计和温度监控器,带有SPI/3线接口 - 概述 Page 2 of 2 功能框图 更多信息 新品发布 [ 2012-02-09 ] 没有找到你需要的产品吗? 应用工程师帮助选型,下个工作日回复 参数搜索 应用帮助 信息索引 概述 技术文档 定购信息 相关产品 概述 关键特性 应用/使用 关键指标 图表 注释、注解 数据资料 技术文档 评估板 可靠性报告 软件/模型 价格与供货 样品 在线订购 封装信息 无铅信息 类似功能器件 类似应用器件 评估板 类似型号器件 配合该器件使用的产品 参考文献: 19-5629 Rev. 0; 2010-11-16 本页最后一次更新: 2010-11-16 © 2012 Maxim Integrated版权所有 联络我们' | 隐私权政策 | http://china.maximintegrated.com/datasheet/index.mvp/id/6975 法律声明 | 代理商网站入口 | 关注我们 2012-12-10 19-5629; Rev 0; 11/10 Digital Thermometers and Thermostats with SPI/3-Wire Interface The MAX31722/MAX31723 digital thermometers and thermostats with an SPI™/3-wire interface provide temperature readings that indicate the device temperature. No additional components are required; the devices are truly temperature-to-digital converters. Temperature readings are communicated from the device over an SPI interface or a 3-wire serial interface. The choice of interface is selectable by the user. For applications that require greater temperature resolution, the user can adjust the readout resolution from 9 to 12 bits. This is particularly useful in applications where thermal runaway conditions must be detected quickly. The thermostat has a dedicated open-drain output (TOUT). Two thermostat operating modes, comparator and interrupt, control thermostat operation based on user-defined nonvolatile trip points (THIGH and TLOW). Both devices feature a 1.7V to 3.7V supply rail. Features S Temperature Measurements Require No External Components S Measures Temperatures from -55NC to +125NC S MAX31722 Thermometer Accuracy is ±2.0NC S MAX31723 Thermometer Accuracy is ±0.5NC S Thermometer Resolution is Configurable from 9 to 12 Bits (0.5NC to 0.0625NC Resolution) S Thermostat Output with User-Defined Nonvolatile Thresholds S Data is Read from/Written to by SPI (Mode 0 and 2) or 3-Wire Serial Interface S 1.7V to 3.7V Power-Supply Range S Available in 8-Pin µMAX® Package Ordering Information Applications PART TEMP RANGE Networking Equipment MAX31722MUA+ -55NC to +125NC 8 FMAX Cellular Base Stations MAX31722MUA+T -55NC to +125NC 8 FMAX MAX31723MUA+ -55NC to +125NC 8 FMAX MAX31723MUA+T -55NC to +125NC 8 FMAX Industrial Equipment Any Thermally Sensitive Systems PIN-PACKAGE +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. Functional Diagram VDD VDD SDI SDO SCLK CE SERMODE GND PRECISION REFERENCE OVERSAMPLING MODULATOR DIGITAL DECIMATOR CONFIGURATION/ STATUS REGISTER I/O CONTROL AND INPUT SENSE MAX31722 MAX31723 TEMPERATURE REGISTER THIGH AND TLOW REGISTERS TOUT THERMOSTAT COMPARATOR SPI is a trademark of Motorola, Inc. µMAX is a registered trademark of Maxim Integrated Products, Inc. ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX31722/MAX31723 General Description MAX31722/MAX31723 Digital Thermometers and Thermostats with SPI/3-Wire Interface ABSOLUTE MAXIMUM RATINGS Voltage Range on VDD Relative to GND...............-0.3V to +6.0V Voltage Range on Any Other Pin Relative to GND....-0.3V to +6.0V Continuous Power Dissipation (TA = +70NC) FMAX (derate 4.5mW/NC above +70NC).......................362mW EEPROM Programming Temperature Range.. ...-40NC to +85NC Operating Junction Temperature Range.......... -55NC to +125NC Storage Temperature Range............................. -55NC to +125NC Lead Temperature (soldering, 10s).................................+300NC Soldering Temperature (reflow).......................................+260NC Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. RECOMMENDED OPERATING CHARACTERISTICS (TJ = -55NC to +125NC, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Supply Voltage VDD (Note 1) Input Logic-High VIH (Note 1) Input Logic-Low VIL (Note 1) MIN TYP 1.7 0.7 x VDD -0.3 MAX UNITS 3.7 V VDD + 0.3 V 0.3 x VDD V DC ELECTRICAL CHARACTERISTICS (VDD = 1.7V to 3.7V, TJ = -55NC to +125NC, unless otherwise noted.) PARAMETER SYMBOL MAX31722 Thermometer Error TERR MAX31723 Thermometer Error TERR CONDITIONS MIN -55NC to +125NC Q3.0 0NC to +70NC Q0.5 -55NC to +125NC Q2.0 9 9-bit conversions tCONVT MAX Q2.0 Resolution Conversion Time TYP -40NC to +85NC 12 10-bit conversions 50 11-bit conversions 100 12-bit conversions 200 Logic 0 Output (SDO, TOUT) (Note 2) 0.4 Logic 1 Output (SDO) VOH (Note 3) IL Active Current Shutdown Current 2 ICC ICC1 VDD 0.4 -1 Active temperature conversions (Note 4) NC NC Bits 25 VOL Leakage Current UNITS ms V V +1 FA 1150 Communication only 100 EEPROM writes (-40NC to +85NC) 1150 EEPROM writes during active temperature conversions (-40NC to +85NC) 1200 2 FA FA Digital Thermometers and Thermostats with SPI/3-Wire Interface MAX31722/MAX31723 AC ELECTRICAL CHARACTERISTICS: 3-WIRE INTERFACE (VDD = 1.7V to 3.7V, TJ = -55NC to +125NC, unless otherwise noted.) (Figures 1, 2) PARAMETER SYMBOL CONDITIONS MIN Data to SCLK Setup tDC (Notes 5, 6) 35 SCLK to Data Hold tCDH (Notes 5, 6) 35 SCLK to Data Valid tCDD (Notes 5, 6, 7) SCLK Low Time TYP MAX UNITS ns ns 80 ns tCL (Note 6) 100 ns SCLK High Time tCH (Note 6) 100 SCLK Frequency tCLK (Note 6) DC SCLK Rise and Fall tR, tF CE to SCLK Setup tCC (Note 6) 400 ns SCLK to CE Hold tCCH (Note 6) 100 ns CE Inactive Time tCWH (Note 6) 400 CE to Output High-Z tCDZ (Notes 5, 6) 40 ns SCLK to Output High-Z tCCZ (Notes 5, 6) 40 ns MAX UNITS ns 5.0 MHz 200 ns ns AC ELECTRICAL CHARACTERISTICS: SPI INTERFACE (VDD = 1.7V to 3.7V, TJ = -55NC to +125NC, unless otherwise noted.) (Figures 3, 4) PARAMETER SYMBOL CONDITIONS MIN Data to SCLK Setup tDC (Notes 5, 6) 35 SCLK to Data Hold tCDH (Notes 5, 6) 35 SCLK to Data Valid tCDD (Notes 5, 6, 7) SCLK Low Time TYP ns ns 80 ns tCL (Note 6) 100 ns SCLK High Time tCH (Note 6) 100 SCLK Frequency tCLK (Note 6) DC SCLK Rise and Fall tR, tF CE to SCLK Setup tCC (Note 6) 400 ns SCLK to CE Hold tCCH (Note 6) 100 ns CE Inactive Time tCWH (Note 6) 400 CE to Output High-Z tCDZ (Notes 5, 6) ns 5.0 MHz 200 ns ns 40 ns MAX UNITS 15 ms AC ELECTRICAL CHARACTERISTICS: EEPROM (VDD = 1.7V to 3.7V, TJ = -55NC to +125NC, unless otherwise noted.) PARAMETER EEPROM Write Cycle Time EEPROM Write Endurance SYMBOL tWR NEEWR CONDITIONS MIN -40NC to +85NC (Note 8) -40NC P TA P +85NC (Note 8) 20,000 TA = +25NC (Note 8) 80,000 TYP Cycles Note 1: All voltages are referenced to ground. Currents entering the IC are specified positive, and currents exiting the IC are negative. Note 2: Logic 0 voltages are specified at a sink current of 3mA. Note 3: Logic 1 voltages are specified at a source current of 1mA. Note 4: ICC specified with SCLK = VDD and CE = GND. Note 5: Measured at VIH = 0.7V x VDD or VIL = 0.3 x VDD and 10ms maximum rise and fall times. Note 6: Measured with 50pF load. Note 7: Measured at VOH = 0.7 x VDD or VOL = 0.3 x VDD. Measured from the 50% point of SCLK to the VOH minimum of SDO. Note 8: VDD must be > 2.0V during EEPROM write cycles. 3 MAX31722/MAX31723 Digital Thermometers and Thermostats with SPI/3-Wire Interface CE tCC SCLK tCCZ tCDH tCDZ tCDD tCDD tDC A0 I/O* A1 A7 D0 WRITE ADDRESS BYTE D1 READ DATA BIT *I/O IS SDI AND SDO CONNECTED TOGETHER. Figure 1. Timing Diagram: 3-Wire Read Data Transfer tCWH CE tCC tCCH tR tCL tF SCLK tCDH tCH tDC I/O* A0 A1 WRITE ADDRESS BYTE *I/O IS SDI AND SDO CONNECTED TOGETHER. Figure 2. Timing Diagram: 3-Wire Write Data Transfer 4 A7 D0 WRITE DATA Digital Thermometers and Thermostats with SPI/3-Wire Interface MAX31722/MAX31723 CE tCC SCLK tCDD tCDD tCDH tDC SDI A7 A6 A0 tCDZ SDO D7 D6 WRITE ADDRESS BYTE D1 D0 READ DATA BYTE NOTE: SCLK CAN BE EITHER POLARITY, TIMING SHOWN FOR CPOL = 1. Figure 3. Timing Diagram: SPI Read Data Transfer tCWH CE tCC tR tCL tCCH tF SCLK tCDH tCH tCDH tDC SDI A7 A6 WRITE ADDRESS BYTE A0 D7 D0 WRITE DATA BYTE NOTE: SCLK CAN BE EITHER POLARITY, TIMING SHOWN FOR CPOL = 1. Figure 4. Timing Diagram: SPI Write Data Transfer 5 Typical Operating Characteristics (TA = +25°C, unless otherwise noted.) TEMPERATURE CONVERSION ACTIVE SUPPLY CURRENT vs. TEMPERATURE 1.4 VDD = 3.7V 1.2 1.0 ICC (µA) 800 VDD = 3.0V 600 400 VDD = 3.7V VDD = 1.7V 0.8 VDD = 3.0V 0.6 0.4 200 VDD = 1.7V 0.2 0 0 -55 -35 -15 5 25 45 65 -55 -35 -15 85 105 125 0.5 12-BIT TEMPERATURE CONVERSIONS VDD = 3.0V 0.4 0.3 3σ 0.2 0.1 0 -0.1 -0.2 -3σ -0.3 -0.4 -0.5 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 MAX31722/3 toc03 TEMPERATURE CONVERSION ERROR vs. REFERENCE TEMPERATURE ERROR (°C) 5 25 45 65 TEMPERATURE (°C) TEMPERATURE (°C) 6 MAX31722/3 toc02 1000 STANDBY SUPPLY CURRENT vs. TEMPERATURE MAX31722/3 toc01 1200 ICC (µA) MAX31722/MAX31723 Digital Thermometers and Thermostats with SPI/3-Wire Interface 85 105 125 Digital Thermometers and Thermostats with SPI/3-Wire Interface MAX31722/MAX31723 Pin Configuration TOP VIEW TOUT 1 CE 2 SCLK 3 GND 4 + MAX31722 MAX31723 8 VDD 7 SERMODE 6 SDI 5 SDO µMAX Pin Description PIN NAME 1 TOUT FUNCTION 2 CE 3 SCLK Serial-Clock Input. Used to synchronize data movement on the serial interface for either SPI or 3-wire interfaces. 4 GND Ground. Ground connection. 5 SDO Serial-Data Output. When SPI communication is selected, the SDO pin is the serial-data output for the SPI bus. When 3-wire communication is selected, this pin must be connected to the SDI pin. The SDI and SDO pins function as a single I/O pin when connected together. 6 SDI Serial-Data Input. When SPI communication is selected, the SDI pin is the serial-data input for the SPI bus. When 3-wire communication is selected, this pin must be connected to the SDO pin. The SDI and SDO pins function as a single I/O pin when connected together. 7 SERMODE Serial-Interface Mode Input. This pin selects which interface is used. When connected to VDD, SPI communication is selected. When connected to GND, 3-wire communication is selected. 8 VDD Thermostat Output. Open-drain output indicator for internal thermal alarm limits. Chip Enable. Must be asserted high for communication to take place for either the SPI or 3-wire interfaces. Supply Voltage. Power-supply input. Detailed Description The MAX31722/MAX31723 are factory-calibrated temperature sensors that require no external components. The user can alter the configuration/status register to place the device in a continuous temperature conversion mode or into a one-shot conversion mode. In the continuous conversion mode, the devices continuously convert the temperature and store the result in the temperature register. As conversions are performed in the background, reading the temperature register does not affect the conversion in progress. In the one-shot temperature conversion mode, the devices perform one temperature conversion, store the result in the temperature register, and then return to the shutdown state. This conversion mode is ideal for power-sensitive applications. The temperature conversion results have a default resolution of 9 bits. In applications where small incremental temperature changes are critical, the user can change the conversion resolution from 9 bits to 10, 11, or 12. This is accomplished by programming the configuration/status register. The devices can be configured as a thermostat, allowing for the TOUT pin to behave as an interrupt, triggering when the programmed limits, THIGH and TLOW, are surpassed. The devices can communicate using either a serial peripheral interface (SPI) or standard 3-wire interface. The user can select either communication standard through the SERMODE pin, connecting it to VDD for SPI and to GND for 3-wire. 7 MAX31722/MAX31723 Digital Thermometers and Thermostats with SPI/3-Wire Interface Measuring Temperature mode is ideal for power-sensitive applications. Details on how to change the setting after power-up are contained in the Programming section. The core of the devices’ functionality is its direct-to-digital temperature sensor. The devices measure temperature through the use of an on-chip temperature measurement technique with a -55NC to +125NC operating range. The devices power up in a power-conserving shutdown mode. After power-up, the devices can be placed in a continuous conversion mode or in a one-shot conversion mode. In the continuous conversion mode, the devices continuously compute the temperature and store the most recent result in the temperature register at addresses 01h (LSB) and 02h (MSB). As conversions are performed in the background, reading the temperature register does not affect the conversion in progress. The temperature value is not updated until the SPI or 3-wire interface is inactive. In other words, CE must be inactive for the temperature register to be updated with the most recent temperature conversion value. In the one-shot conversion mode, the devices perform one temperature conversion and then return to the shutdown mode, storing temperature in the temperature register. This conversion 26 S 25 24 The resolution of the temperature conversion is configurable (9, 10, 11, or 12 bits) with 9 bits reading the default state. This equates to a temperature resolution of 0.5NC, 0.25NC, 0.125NC, or 0.0625NC. Following each conversion, thermal data is stored in the temperature register in two’s complement format. The information can be retrieved over the SPI or 3-wire interface with the address set to the temperature register, 01h (LSB) and then 02h (MSB). Table 1 describes the exact relationship of output data to measured temperature. Table 1 assumes the devices are configured for 12-bit resolution. If the devices are configured in a lower resolution mode, those bits contain zeros. The data is transmitted serially over the digital interface, MSB first for SPI communication and LSB first for 3-wire communication. The MSB of the temperature register contains the sign (S) bit, denoting whether the temperature is positive or negative. 23 MSB 22 21 2-2 2-3 2-4 0 02h LSB (UNITS = NC) 2-1 20 0 0 0 01h Figure 5. Temperature, THIGH, and TLOW Register Format Table 1. 12-Bit Resolution Temperature/Data Relationship 8 TEMPERATURE (NC) DIGITAL OUTPUT (BINARY) DIGITAL OUTPUT (HEX) 7D00 +125 0111 1101 0000 0000 +25.0625 0001 1001 0001 0000 1910 +10.125 0000 1010 0010 0000 0A20 +0.5 0000 0000 1000 0000 0080 0000 0 0000 0000 0000 0000 -0.5 1111 1111 1000 0000 FF80 -10.125 1111 0101 1110 0000 F5E0 -25.0625 1110 0110 1111 0000 E6F0 -55 1100 1001 0000 0000 C900 Digital Thermometers and Thermostats with SPI/3-Wire Interface The devices’ thermostat can be programmed to power up in either comparator mode or interrupt mode, which activate and deactivate the open-drain thermostat output (TOUT) based on user-programmable trip points (THIGH and TLOW). The THIGH and TLOW registers contain Celsius temperature values in two’s complement format and are stored in EEPROM memory. As such, the values are nonvolatile and can be programmed prior to installing the devices for stand-alone operation. The data format of the THIGH and TLOW registers is identical to that of the temperature register (Figure 5). After every temperature conversion, the measurement is compared to the values stored in the THIGH and TLOW registers. The THIGH register is assigned to address locations 03h (LSB) and 04h (MSB), and the TLOW register is assigned to address locations 05h (LSB) and 06h (MSB). The TOUT output is updated based on the result of the comparison and the operating mode of the devices. The number of THIGH and TLOW bits used during the thermostat comparison is equal to the conversion resolution set by the R1 and R0 bits in the configuration/ status register. For example, if the resolution is 9 bits, only the nine MSBs of THIGH and TLOW are used by the thermostat comparator. If the user does not wish to use the thermostat capabilities of the devices, the TOUT output should be left unconnected. Note that if the thermostat is not used, the THIGH and TLOW registers can be used for general storage of system data. Comparator Mode When the thermostat is in comparator mode, TOUT can be programmed to operate with any amount of hysteresis. The TOUT output becomes active when the measured temperature exceeds the THIGH value. TOUT then stays active until the first time the temperature falls below the value stored in TLOW. Putting the devices into shutdown mode does not clear TOUT in comparator mode. Figure 6 illustrates thermostat comparator mode operation. Interrupt Mode In interrupt mode, the TOUT output first becomes active when the measured temperature exceeds the THIGH value. Once activated, in continuous conversion mode TOUT can only be cleared by either putting the devices into shutdown mode or by reading from any register (configuration/status, temperature, THIGH, or TLOW) on the devices. In one-shot mode, TOUT can only be cleared by reading from any register (configuration/ status, temperature, THIGH, or TLOW) on the devices. THIGH TEMPERATURE TLOW INACTIVE TOUT OUTPUT—COMPARATOR MODE ACTIVE INACTIVE TOUT OUTPUT—INTERRUPT MODE ACTIVE ASSUMES A READ HAS OCCURED CONVERSIONS Figure 6. TOUT Operation Example 9 MAX31722/MAX31723 Thermostat MAX31722/MAX31723 Digital Thermometers and Thermostats with SPI/3-Wire Interface In either mode, once TOUT has been deactivated, it is only reactivated when the measured temperature falls below the TLOW value. Thus, this interrupt/clear process is cyclical between THIGH and TLOW events (i.e, THIGH, clear, TLOW, clear, THIGH, clear, TLOW, clear, etc.). Figure 6 illustrates the thermostat interrupt mode operation. Table 2. Register Address Structure READ ADDRESS (HEX) Programming The area of interest in programming the devices is the configuration/status register. All programming is done through the SPI or 3-wire communication interface by selecting the appropriate address of the desired register location. Table 2 illustrates the addresses for the device registers. Configuration/Status Register Programming WRITE ADDRESS (HEX) ACTIVE REGISTER 00 80 Configuration/Status 01 No access Temperature LSB 02 No access Temperature MSB 03 83 THIGH LSB 04 84 THIGH MSB 05 85 TLOW LSB 06 86 TLOW MSB The configuration/status register is accessed in the devices with the 00h address for reads and the 80h address for writes. Data is read from or written to the configuration/status register MSB first for SPI communication and LSB first for 3-wire communication. Table 3 illustrates the format of the register, describes the effect each bit has on device functionality, and provides the bit’s factory state. Table 4 defines the resolution of the digital thermometer, based on the settings of the R1 and R0 bits. There is a direct trade-off between resolution and conversion time, Table 3. Configuration/Status Register Bit Descriptions 10 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 0 MEMW NVB 1SHOT TM R1 R0 SD BIT 7 This bit is always a value of 0. BIT 6 MEMW: Memory write bit. Power-up state = 0. The user has read/write access to the MEMW bit, which is stored in the voltage memory. 0 = A write of the configuration/status register is stored in RAM memory. 1 = A write of the configuration/status register is stored in EEPROM. Note: The status of this bit is ignored if a EEPROM write occurs to the other nonvolatile registers, THIGH and TLOW. The nonvolatile bits of the configuration/status register are written if a EEPROM write cycle occurs to the THIGH and TLOW registers. BIT 5 NVB: Nonvolatile memory busy flag. Power-up state = 0 and is stored in volatile memory. 0 = Indicates that the nonvolatile memory is not busy. 1 = Indicates there is a write to a EEPROM memory cell in progress. BIT 4 1SHOT: One-shot temperature conversion bit. Power-up state = 0 and is stored in volatile memory. 0 = Disables 1SHOT mode. 1 = If the SD bit is 1 (continuous temperature conversions are not taking place), a 1 written to the 1SHOT bit causes the devices to perform one temperature conversion and store the results in the temperature register at addresses 01h (LSB) and 02h (MSB). The bit clears itself to 0 upon completion of the temperature conversion. The user has read/write access to the 1SHOT bit, although writes to this bit are ignored if the SD bit is a 0 (continuous conversion mode). BIT 3 TM: Thermostat operating mode. Factory power-up state = 0. The user has read/write access to the TM bit, which is stored in nonvolatile memory. 0 = The thermostat output is in comparator mode. 1 = The thermostat output is in interrupt mode. Digital Thermometers and Thermostats with SPI/3-Wire Interface BIT 2 R1: Thermostat resolution bit 1. Factory power-up state = 0 and is stored in nonvolatile memory. Sets the conversion resolution (see Table 4). BIT 1 R0: Thermostat resolution bit 0. Factory power-up state = 0 and is stored in nonvolatile memory. Sets the conversion resolution (see Table 4). BIT 0 SD: Factory power-up state = 1. The user has read/write access to the SD bit, which is stored in nonvolatile memory. 0 = The devices continuously perform temperature conversions and store the last completed result in the temperature register. 1 = The conversion in progress is completed and stored, and then the devices revert to a low-power shutdown mode. The communication port remains active. Serial Peripheral Interface (SPI) Table 4. Thermometer Resolution Configuration THERMOMETER RESOLUTION (BITS) MAX CONVERSION TIME (ms) 0 9 25 1 10 50 1 0 11 100 1 1 12 200 R1 R0 0 0 as depicted in the AC Electrical Characteristics. The user has read/write access to the R1 and R0 bits, which are nonvolatile. See Table 4. Serial Interface The devices offer the flexibility to choose between two serial interface modes. They can communicate with the SPI interface or with a 3-wire interface. The interface method used is determined by the SERMODE pin. When SERMODE is connected to VDD, SPI communication is selected. When SERMODE is connected to ground, 3-wire communication is selected. Table 5. Function Table MODE CE Disable reset Low Write High Read High The SPI is a synchronous bus for address and data transfer. The SPI mode of serial communication is selected by connecting SERMODE to VDD. Four pins are used for the SPI: SDO (serial-data out), SDI (serial-data in), CE (chip enable), and SCLK (serial clock). The devices are the slave device in an SPI application, with the microcontroller being the master. SDI and SDO are the serial-data input and output pins for the devices, respectively. The CE input is used to initiate and terminate a data transfer. SCLK is used to synchronize data movement between the master (microcontroller) and the slave (IC) devices. The serial clock (SCLK), which is generated by the microcontroller, is active only when CE is high and during address and data transfer to any device on the SPI bus. The inactive clock polarity is programmable in some microcontrollers. The devices offer an important feature in that the level of the inactive clock is determined by sampling SCLK when CE becomes active. Therefore, either SCLK polarity can be accommodated. Input data (SDI) is latched on the internal strobe edge and output data (SDO) is shifted out on the shift edge (see Table 5 and Figure 7). There is one clock for each bit transferred. Address and data bits are transferred in groups of eight, MSB first. SCLK SDI SDO Input disabled Input disabled High impedance Data bit latch High impedance X Next data bit shift** CPOL = 1*, SCLK rising CPOL = 0, SCLK falling CPOL = 1, SCLK falling CPOL = 0, SCLK rising Note: CPHA bit polarity must be set to 1. *CPOL is the clock polarity bit that is set in the control register of the microcontroller. **SDO remains at high impedance until 8 bits of data are ready to be shifted out during a read. 11 MAX31722/MAX31723 Table 3. Configuration/Status Register Bit Descriptions (continued) MAX31722/MAX31723 Digital Thermometers and Thermostats with SPI/3-Wire Interface CPOL = 1 CE SHIFT INTERNAL STROBE SHIFT INTERNAL STROBE SCLK CPOL = 0 CE SCLK NOTE: CPOL IS A BIT THAT IS SET IN THE MICROCONTROLLER’S CONTROL REGISTER. Figure 7. Serial Clock as a Function of Microcontroller Clock Polarity (CPOL) Address and Data Bytes Address and data bytes are shifted MSB first into the serial-data input (SDI) and out of the serial-data output (SDO). Any transfer requires the address of the byte to specify a write or a read, followed by one or more bytes of data. Data is transferred out of the SDO for a read operation and into the SDI for a write operation. The address byte is always the first byte entered after CE is driven high. The MSB (A7) of this byte determines if a read or write takes place. If A7 is 0, one or more read cycles occur. If A7 is 1, one or more write cycles occur. Data transfers can occur 1 byte at a time in multiple-byte burst mode. After CE is driven high, an address is written to the devices. After the address, one or more data bytes can be written or read. For a single-byte transfer, 1 byte is read or written and then CE is driven low (see Figures 8 and 9). For a multiple-byte transfer, however, multiple bytes can be read or written to the devices after the address has been written (see Figure 10). A 12 single-byte burst read/write sequentially points through all memory locations and loops from 7Fh/FFh to 00h/80h. Invalid memory addresses report an FFh value. 3-Wire Serial-Data Bus The 3-wire communication mode operates similarly to the SPI mode. However, in 3-wire mode, there is one bidirectional I/O instead of separate data-in and dataout signals. The 3-wire consists of the I/O (SDI and SDO pins connected together), CE, and SCLK pins. In 3-wire mode, each byte is shifted in LSB first, unlike SPI mode where each byte is shifted in MSB first. As is the case with the SPI mode, an address byte is written to the devices followed by a single data byte or multiple data bytes. Figure 11 illustrates a read and write cycle. Figure 12 illustrates a multiple-byte burst transfer. In 3-wire mode, data is input on the rising edge of SCLK and output on the falling edge of SCLK. Digital Thermometers and Thermostats with SPI/3-Wire Interface MAX31722/MAX31723 CE SCLK SDI A7 SDO A6 A5 A4 A3 A2 A1 A0 HIGH-Z D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Figure 8. SPI Single-Byte Read CE SCLK SDI A7 SDO A6 A5 A4 A3 A2 A1 A0 HIGH-Z Figure 9. SPI Single-Byte Write CE SCLK WRITE SDI ADDRESS BYTE SDI ADDRESS BYTE DATA BYTE 0 DATA BYTE 1 DATA BYTE N DATA BYTE 0 DATA BYTE 1 DATA BYTE N READ SDO Figure 10. SPI Multiple-Byte Burst Transfer 13 MAX31722/MAX31723 Digital Thermometers and Thermostats with SPI/3-Wire Interface CE SCLK I/O* A0 A1 A2 A3 A4 A5 A6 A7 D0 D1 D2 D3 D4 D5 D6 D7 *I/O IS SDI AND SDO CONNECTED TOGETHER. Figure 11. 3-Wire Single-Byte Transfer CE SCLK I/O* ADDRESS BYTE DATA BYTE 0 DATA BYTE 1 DATA BYTE N *I/O IS SDI AND SDO CONNECTED TOGETHER. Figure 12. 3-Wire Multiple-Byte Burst Transfer Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. 14 PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 8 FMAX U8+1 21-0036 90-0092 Digital Thermometers and Thermostats with SPI/3-Wire Interface REVISION NUMBER REVISION DATE 0 11/10 DESCRIPTION Initial release PAGES CHANGED — Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2010 Maxim Integrated Products 15 Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX31722/MAX31723 Revision History 19-6332; Rev 0; 5/12 MAX31723PMB1 Peripheral Module General Description The MAX31723PMB1 peripheral module provides the necessary hardware to interface the MAX31723 digital thermometer and thermostat to any system that utilizes PmodK-compatible expansion ports configurable for SPI and/or GPIO communication. The IC provides temperature-to-digital conversion with no additional components. Temperature readings are communicated from the device over an SPI interface or a 3-wire serial interface. The choice of interface is selectable by the user. For applications that require greater temperature resolution, the user can adjust the readout resolution from 9 bits to 12 bits. This is particularly useful in applications where thermal runaway conditions must be detected quickly. The thermostat has a dedicated open-drain output (TOUT). Two thermostat operating modes (comparator and interrupt) control thermostat operation based on user-defined nonvolatile trip points (THIGH and TLOW). Refer to the MAX31723 IC data sheet for detailed information regarding operation of the IC. Features S Measures Temperatures from -55NC to +125NC S Thermometer Accuracy is Q0.5NC S Thermometer Resolution is Configurable from 9 Bits to 12 Bits S Thermostat Output with User-Defined Nonvolatile Thresholds S SPI or 3-Wire Interface Selectable through Jumpers S 6-Pin Pmod-Compatible Connector (SPI/GPIO) S Example Software Written in C for Portability S RoHS Compliant S Proven PCB Layout S Fully Assembled and Tested Ordering Information appears at end of data sheet. MAX31723PMB1 Peripheral Module Pmod is a trademark of Digilent Inc. __________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX31723PMB1 Peripheral Module Component List DESIGNATION C1 DESCRIPTION DESIGNATION QTY 0.1FF Q10%, 16V X7R ceramic capacitor (0603) Murata GRM188R71C104KA01D R1–R4 4 150I Q5% resistors (0603) R5 1 4.7kI Q5% resistor (0603) R6 1 10kI Q5% resistor (0603) QTY 1 DESCRIPTION C2 1 1FF Q10%, 10V X7R ceramic capacitor (0603) TDK C1608X7R1A105K U1 1 Digital thermometer and thermostat (8 FMAXM) Maxim MAX31723MUA+ J1 1 6-pin right-angle male header — 3 Shorting jumpers 1 10-pin (2 x 5) straight male header — 1 PCB: EPCB31723PM1 JP1 Component Suppliers SUPPLIER PHONE WEBSITE Murata Electronics North America, Inc. 770-436-1300 www.murata-northamerica.com TDK Corp. 847-803-6100 www.component.tdk.com Note: Indicate that you are using the MAX31723PMB1 when contacting these component suppliers Detailed Description SPI/3-Wire Interface The MAX31723PMB1 peripheral module can plug directly into a Pmod-compatible port (configured for SPI/3-wire) through connector J1. For information on SPI and 3-wire protocols, refer to the MAX31723 IC data sheet. The user selects between SPI and 3-wire communication protocols by setting the correct jumper configuration on JP2. See Figure 1 for proper jumper settings. Connector J1 provides connection of the module to the Pmod host. The pin functions and pin assignments adhere to the Pmod standard recommended by Digilent. Note that when this module is operating in 3-wire mode, the hostside interface must be configured as GPIO to allow for bitbanged communication. 3-wire mode has the advantage of freeing up an interface pin on the IC to allow for connection to the thermostat/alarm output. See Table 1. The JP1 jumper block is used to configure the communication mode with the host board. The peripheral module can communicate in either SPI or 3-wire mode. The correct shunt settings are shown in Table 2 and Figure 1. Table 1. Connector J1 (SPI/3-Wire Communication) PIN SIGNAL DESCRIPTION 1 SS Chip enable. Must be asserted high for communication to take place for either the SPI or 3-wire interface. MOSI When SPI communication is selected, this pin is the serial-data input for the IC. When 3-wire communication is selected, this pin carries bidirectional data between the host and the IC. 3 MISO When SPI communication is selected, this pin is the serial-data output for the IC. When 3-wire communication is selected, this pin carries the IC TOUT signal. 4 SCK Serial clock. Used to synchronize data movement on the serial interface for either the SPI or 3-wire interface. 5 GND Ground 6 VCC Power supply 2 µMAX is a registered trademark of Maxim Integrated Products, Inc. __________________________________________________________________ Maxim Integrated Products 2 MAX31723PMB1 Peripheral Module Table 2. Connector JP1 (Serial-Bus Type Selection) SHUNT SPI MODE 3-WIRE MODE 1 3-5 1-2 2 4-6 3-5 3 9-10 4-6 Software and FPGA Code Example software and drivers are available that execute directly without modification on several FPGA development boards that support an integrated or synthesized microprocessor. These boards include the Digilent Nexys 3, Avnet LX9, and Avnet ZEDBoard, although other platforms can be added over time. Maxim provides complete Xilinx ISE projects containing HDL, Platform Studio, and SDK projects. In addition, a synthesized bit stream, ready for FPGA download, is provided for the demonstration application. The software project (for the SDK) contains several source files intended to accelerate customer evaluation and design. These include a base application (maximModules.c) that demonstrates module functionality and uses an API interface (maximDeviceSpecific Utilities.c) to set and access Maxim device functions within a specific module. The source code is written in standard ANSI C format, and all API documentation including theory/operation, register description, and function prototypes are documented in the API interface file (maximDeviceSpecificUtilities.h & .c). SPI MODE 3-WIRE MODE The complete software kit is available for download at www.maxim-ic.com. Quick start instructions are also available as a separate document. Figure 1. JP1 Jumper Settings __________________________________________________________________ Maxim Integrated Products 3 MAX31723PMB1 Peripheral Module VCC R5 4.7k J1 1 2 3 4 5 6 R1 R2 R3 R4 150 150 150 150 U1 1 TOUT 2 SS MOSI MISO SCK GND VCC 3 GND 4 MAX31723 TOUT VDD CE SERMODE SCLK SDI GND SDO 8 VCC 7 SERMODE 6 SDI 5 SDO R6 10k GND C2 1uF C1 VCC GND 0.1uF GND JP2 SDI MOSI SDO SERMODE 1 3 5 7 9 2 4 6 8 10 SDO MISO VCC TOUT MOSI SDI MOSI SDI MISO SDO MISO SDO TOUT TOUT no connect SERMODE Programming header - sets up either SPI mode or 3-Wire mode (see diagram to the right) VCC SPI mode SERMODE GND 3-Wire mode Figure 2. MAX31723PMB1 Peripheral Module Schematic Figure 3. MAX31723PMB1 Peripheral Module Component Placement Guide—Component Side __________________________________________________________________ Maxim Integrated Products 4 MAX31723PMB1 Peripheral Module Figure 4. MAX31723PMB1 Peripheral Module PCB Layout—Component Side Figure 5. MAX31723PMB1 Peripheral Module PCB Layout—Inner Layer 1 (Ground) Figure 6. MAX31723PMB1 Peripheral Module PCB Layout—Inner Layer 2 (Power) __________________________________________________________________ Maxim Integrated Products 5 MAX31723PMB1 Peripheral Module Figure 7. MAX31723PMB1 Peripheral Module PCB Layout—Solder Side Figure 8. MAX31723PMB1 Peripheral Module Component Placement Guide—Solder Side __________________________________________________________________ Maxim Integrated Products 6 MAX31723PMB1 Peripheral Module Ordering Information PART TYPE MAX31723PMB1# Peripheral Module #Denotes RoHS compliant. __________________________________________________________________ Maxim Integrated Products 7 MAX31723PMB1 Peripheral Module Revision History REVISION NUMBER REVISION DATE 0 5/12 DESCRIPTION Initial release PAGES CHANGED — Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2012 Maxim Integrated Products 8 Maxim is a registered trademark of Maxim Integrated Products, Inc.