EVALUATION KIT AVAILABLE MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps General Description The MAX44244/MAX44245/MAX44248 family of parts provide ultra-precision, low-noise, zero-drift single/quad/ dual operational amplifiers featuring very low-power operation with a wide supply range. The devices incorporate a patented auto-zero circuit that constantly measures and compensates the input offset to eliminate drift over time and temperature as well as the effect of 1/f noise. These devices also feature integrated EMI filters to reduce high-frequency signal demodulation on the output. The op amps operate from either a single 2.7V to 36V supply or dual ±1.35V to ±18V supply. The devices are unity-gain stable with a 1MHz gain-bandwidth product and a low 90µA supply current per amplifier. The low offset and noise specifications and high supply range make the devices ideal for sensor interfaces and transmitters. The devices are available in FMAXM, SO, SOT23, and TSSOP packages and are specified over the -40NC to +125NC automotive operating temperature range. Applications Features S Very Low Input Voltage Offset 7.5µV (max) S Low 30nV/NC Offset Drift (max) S Low 90µA Quiescent Current per Amplifier S Low Input Noise 50nV/√Hz at 1kHz 0.5µVP-P from 0.1Hz to 10Hz S 1MHz Gain-Bandwidth Product S EMI Suppression Circuitry S Rail-to-Rail Output S 2.7V to 36V Supply Range S µMAX, SO, SOT23, TSSOP packages Ordering Information appears at end of data sheet. For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX44244.related. Sensors Interfaces 4-20mA and 0 to10V Transmitters PLC Analog I/O Modules µMAX is a registered trademark of Maxim Integrated Products, Inc. Weight Scales Portable Medical Devices Typical Operating Circuit LP+ VREF MAX6033 REF ISIG (4-20mA) R1 MAX5216 DAC R2 MAX44244 R3 RSENSE LP- For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com. 19-6367; Rev 1; 6/13 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps ABSOLUTE MAXIMUM RATINGS VDD to VSS.............................................................-0.3V to +40V Common-Mode Input Voltage.........(VSS - 0.3V) to (VDD + 0.3V) Differential Input Voltage IN_+, IN_- .......................................6V Continuous Input Current Into Any Pin............................ Q20mA Output Voltage to VSS (OUT_).................– 0.3V to (VDD + 0.3V) Output Short-Circuit Duration (OUT_)...................................... 1s Operating Temperature Range......................... -40NC to +125NC Storage Temperature........................................ -65NC to +150NC Junction Temperature......................................................+150NC Lead Temperature (soldering, 10s).................................+300NC Soldering Temperature (reflow).......................................+260NC Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. PACKAGE THERMAL CHARACTERISTICS (Note 1) SO-8 Junction-to-Ambient Thermal Resistance (BJA).........132NC/W Junction-to-Case Thermal Resistance (BJC)................38NC/W SO-14 TSSOP Junction-to-Ambient Thermal Resistance (BJA).........110NC/W Junction-to-Case Thermal Resistance (BJC)................30NC/W FMAX Junction-to-Ambient Thermal Resistance (BJA).........120NC/W Junction-to-Case Thermal Resistance (BJC)................37NC/W SOT23 Junction-to-Ambient Thermal Resistance (BJA)......324.3NC/W Junction-to-Case Thermal Resistance (BJC)................82NC/W Junction-to-Ambient Thermal Resistance (BJA)......206.3NC/W Junction-to-Case Thermal Resistance (BJC)................42NC/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. ELECTRICAL CHARACTERISTICS (VDD = 10V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kI to VDD/2, TA = -40NC to +125NC, unless otherwise noted. Typical values are at +25NC.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 36 V POWER SUPPLY Supply Voltage Range Power-Supply Rejection Ratio (Note 3) Quiescent Current per Amplifier VDD PSRR IDD Guaranteed by PSRR 2.7 TA = +25NC, VIN+ = VIN- = VDD/2 - 1V 140 -40NC < TA < +125NC 133 TA = +25NC 148 90 -40NC < TA < +125NC dB 130 145 FA DC SPECIFICATIONS Input Common-Mode Range Common-Mode Rejection Ratio (Note 3) Input Offset Voltage (Note 3) Input Offset Voltage Drift (Note 3) Maxim Integrated VCM CMRR VOS TC VOS Guaranteed by CMRR test VSS 0.05 TA = +25NC, VCM = VSS - 0.05V to VDD 1.5V 126 -40NC < TA < +125NC, VCM = VSS - 0.05V to VDD - 1.5V 120 TA = +25NC VDD 1.5 V 130 dB 2 -40NC < TA < +125NC 7.5 10 10 30 FV nV/NC 2 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps ELECTRICAL CHARACTERISTICS (continued) (VDD = 10V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kI to VDD/2, TA = -40NC to +125NC, unless otherwise noted. Typical values are at +25NC.) (Note 2) PARAMETER Input Bias Current (Note 3) Input Offset Current (Note 3) Open-Loop Gain (Note 3) SYMBOL IB IOS AVOL Output Short-Circuit Current Output Voltage Swing CONDITIONS MIN TA = +25NC TYP MAX 150 300 -40NC < TA < +125NC 700 TA = +25NC 300 -40NC < TA < +125NC VSS + 0.5V P VOUT P VDD 0.5V 600 1400 TA = +25NC 140 -40NC < TA < +125NC 135 To VDD or VSS, noncontinuous UNITS pA pA 150 dB 40 mA VDD VOUT TA = +25NC 80 -40NC < TA < +125NC 110 VOUT VSS TA = +25NC 50 -40NC < TA < +125NC 75 mV AC SPECIFICATIONS Input Voltage-Noise Density eN Input Voltage Noise Input Current-Noise Density Gain-Bandwidth Product iN f = 1kHz 50 nV/√Hz 0.1Hz < f < 10Hz 500 nVP-P f = 1kHz 0.1 pA/√Hz 1 MHz Slew Rate SR AV = 1V/V, VOUT = 2VP-P 0.7 V/Fs Capacitive Loading CL No sustained oscillation, AV = 1V/V 400 pF THD+N VOUT = 2VP-P, AV = +1V/V, f = 1kHz -100 dB Total Harmonic Distortion Plus Noise EMI Rejection Ratio GBW EMIRR VRF_PEAK = 100mV f = 400MHz 75 f = 900MHz 78 f = 1800MHz 80 f = 2400MHz 90 dB ELECTRICAL CHARACTERISTICS (VDD = 30V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kI to VDD/2, TA = -40NC to +125NC, unless otherwise noted. Typical values are at +25NC.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX 90 130 UNITS POWER SUPPLY Quiescent Current per Amplifier IDD TA = +25NC -40NC < TA < +125NC 145 FA DC SPECIFICATIONS Input Common-Mode Range Maxim Integrated VCM Guaranteed by CMRR test VSS 0.05 VDD 1.5 V 3 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps ELECTRICAL CHARACTERISTICS (continued) (VDD = 30V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kI to VDD/2, TA = -40NC to +125NC, unless otherwise noted. Typical values are at +25NC.) (Note 2) PARAMETER Common-Mode Rejection Ratio (Note 3) Input Offset Voltage (Note 3) Input Offset Voltage Drift (Note 3) Input Bias Current (Note 3) Input Offset Current (Note 3) Open-Loop Gain (Note 3) SYMBOL CMRR VOS MIN TYP TA = +25NC, VCM = VSS - 0.05V to VDD 1.5V 130 140 -40NC < TA < +125NC, VCM = VSS - 0.05V to VDD - 1.5V 126 IB IOS AVOL TA = +25NC 2 -40NC < TA < +125NC 7.5 10 TA = +25NC 10 30 150 300 -40NC < TA < +125NC 700 TA = +25NC 300 -40NC < TA < +125NC VSS + 0.5V P VOUT P VDD - 0.5V MAX 600 1400 TA = +25NC 146 -40NC < TA < +125NC 140 To VDD or VSS, noncontinuous UNITS dB TC VOS Output Short-Circuit Current Output Voltage Swing CONDITIONS 150 FV nV/°C pA pA dB 40 mA VDD VOUT TA = +25NC 200 -40NC < TA < +125NC 270 VOUT VSS TA = +25NC 140 -40NC < TA < +125NC 220 mV AC SPECIFICATIONS Input Voltage-Noise Density eN Input Voltage Noise Input Current-Noise Density Gain-Bandwidth Product iN f = 1kHz 50 nV/√Hz 0.1Hz < f < 10Hz 500 nVP-P f = 1kHz 0.1 pA/√Hz 1 MHz GBW Slew Rate SR AV = 1V/V, VOUT = 2VP-P 0.7 V/Fs Capacitive Loading CL No sustained oscillation, AV = 1V/V 400 pF THD+N VOUT = 2VP-P, AV = +1V/V, f = 1kHz -100 dB Total Harmonic Distortion Plus Noise EMI Rejection Ratio EMIRR VRF_PEAK = 100mV f = 400MHz 75 f = 900MHz 78 f = 1800MHz 80 f = 2400MHz 90 dB Note 2: All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design. Note 3: Guaranteed by design. Note 4: At IN+ and IN-. Defined as 20log (VRF_PEAK/δVOS). Maxim Integrated 4 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Typical Operating Characteristics (TA = =+25°C, otherwise (V 10V, Vunless VIN+ = Vnoted.) DD SS = 0V, IN- = VDD/2, RL = 5kω to VDD/2. Typical values are at TA = +25°C.) 30 OCCURANCE (%) 30 25 20 15 20 15 10 10 96 0 0.5 1.0 1.5 2.0 2.5 3.0 92 90 88 86 82 0 3.5 4 5 6 7 8 80 9 10 11 12 13 14 0 10 20 30 INPUT OFFSET VOLTAGE (µV) INPUT OFFSET VOLTAGE DRIFT (nV/°C) SUPPLY VOLTAGE (V) SUPPLY CURRENT vs. TEMPERATURE INPUT OFFSET VOLTAGE vs. COMMON-MODE VOLTAGE INPUT OFFSET VOLTAGE VS. TEMPERATURE 1 OFFSET VOLTAGE (µV) 96 94 92 90 88 86 3 2 OFFSET VOLTAGE (µV) 98 0 -1 -2 40 MAX44248 toc06 2 MAX44248 toc04 100 MAX44248 toc05 0 94 84 5 5 SUPPLY CURRENT (µA) 25 98 SUPPLY CURRENT (µA) 35 100 MAX44248 toc02 40 OCCURANCE (%) 35 MAX44248 toc01 45 SUPPLY CURRENT vs. SUPPLY VOLTAGE INPUT OFFSET VOLTAGE DRIFT MAX44248 toc03 INPUT OFFSET VOLTAGE HISTOGRAM 1 0 -1 -2 -3 84 -3 -4 82 -5 -4 80 0 25 50 75 100 -6 125 2 4 -50 6 -25 140 0 25 50 75 TEMPERATURE (°C) 100 125 INPUT BIAS CURRENT vs. TEMPERATURE MAX44248 toc07 160 INPUT BIAS CURRENT (pA) 0 INPUT BIAS CURRENT COMMON-MODE VOLTAGE 180 120 100 80 60 40 800 600 400 200 0 -200 20 -400 0 0 2 4 6 8 COMMON-MODE VOLTAGE (V) Maxim Integrated -2 COMMON-MODE VOLTAGE (V) TEMPERATURE (°C) VS. -4 MAX44248 toc08 -25 INPUT BIAS CURRENT (pA) -50 10 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) 5 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Typical Operating Characteristics (continued) (VDD = 10V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kω to VDD/2. Typical values are at TA = +25°C.) COMMON-MODE REJECTION RATIO vs. FREQUENCY -105 -40 -60 -80 PSRR (dB) CMRR (dB) -115 -120 -100 -125 -120 -130 100 -120 1k 10k 100k -160 -50 1M -25 0 25 50 75 100 10 125 100 1k 10k 100k FREQUENCY (Hz) TEMPERATURE (°C) FREQUENCY (Hz) OUTPUT VOLTAGE HIGH vs. TEMPERATURE OUTPUT VOLTAGE LOW vs. TEMPERATURE OUTPUT VOLTAGE HIGH vs. SOURCE CURRENT 60 MAX44248 toc12 80 70 1000 50 1M MAX44248 toc14 10 -80 -140 -135 -140 -60 -100 MAX44248 toc13 CMRR (dB) -20 -110 -40 MAX44248 toc11 -20 0 MAX44248 toc10 -100 MAX44248 toc09 0 POWER-SUPPLY REJECTION RATIO vs. FREQUENCY COMMON-MODE REJECTION RATIO vs. TEMPERATURE 50 40 30 40 VDD - VOUT (mV) VOUT - VSS (mV) VDD - VOUT (mV) 60 30 20 100 10 20 10 10 0 0 -50 -25 0 25 50 75 100 125 1 -50 TEMPERATURE (°C) -25 0 25 50 75 100 125 1 INPUT VOLTAGE NOISE vs. FREQUENCY 100 10 MAX44248 toc16 200 180 INPUT VOLTAGE NOISE (nV/√Hz) MAX44248 toc15 1000 10 SOURCE CURRENT (mA) OUTPUT VOLTAGE LOW vs. SINK CURRENT VOUT - VSS (mV) 0.1 TEMPERATURE (°C) 160 140 120 100 80 60 40 20 0 1 0.1 1 SINK CURRENT (mA) Maxim Integrated 10 10 100 1k 10k 100k FREQUENCY (Hz) 6 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Typical Operating Characteristics (continued) (VDD = 10V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kω to VDD/2. Typical values are at TA = +25°C.) INPUT CURRENT NOISE vs. FREQUENCY MAX44248 toc17 SMALL-SIGNAL GAIN vs. FREQUENCY 8 120 SMALL-SIGNAL GAIN (dB) INPUT-CURRENT NOISE (pA/√Hz) 9 400nV/div 140 MAX44248 toc18 10 7 6 5 4 3 100 80 60 40 20 2 0 1 -20 0 -40 10 1s/div MAX44248 toc19 INPUT VOLTAGE 0.1Hz TO 10Hz NOISE 100 1k 10k 100k 0.1 1 10 FREQUENCY (Hz) LARGE-SIGNAL GAIN vs. FREQUENCY 1k 10k SMALL-SIGNAL STEP RESPONSE MAX44248 toc20 120 100 100k 1M LARGE-SIGNAL STEP RESPONSE MAX44248 toc22 MAX44248 toc21 140 LARGE-SIGNAL GAIN (dB) 100 FREQUENCY (Hz) VIN 100mV/div VIN 2V/div VOUT 50mV/div VOUT 500mV/div 80 60 40 20 0 -20 -40 0.1 1 10 100 1k 10k 100k 1M 4µs/div 4µs/div FREQUENCY (Hz) TOTAL HARMONIC DISTORTION vs. FREQUENCY POWER-UP TIME MAX44248 toc23 VDD 10V/div MAX44248 toc24 0 -20 THD (dB) -40 VOUT 2V/div RLOAD = 1kI -60 RLOAD = 600I -80 -100 -120 RLOAD = 5kI -140 20µs/div 10 100 1k 10k 100k FREQUENCY (Hz) Maxim Integrated 7 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Typical Operating Characteristics (continued) (VDD = 10V, VSS = 0V, VIN+ = VIN- = VDD/2, RL = 5kω to VDD/2. Typical values are at TA = +25°C.) OUTPUT STABILITY vs. CAPACITIVE LOAD OUTPUT STABILITY vs. ISOLATION RESISTANCE 100 STABLE 10 1 1k STABLE 100 UNSTABLE 10 1 100 1000 10,000 100,000 100 1000 10,000 CAPACITIVE LOAD (pF) CAPACITIVE LOAD (pF) CROSSTALK vs. FREQUENCY OUTPUT IMPEDANCE vs. FREQUENCY 90 OUTPUT IMPEDANCE (I) -20 -40 -60 -80 -100 100,000 MAX44248 toc28 100 MAX44248 toc27 0 CROSSTALK (dB) MAX44248 toc26 MAX44248 toc25 UNSTABLE 1k 10k ISOLATION RESISTANCE (I) RESISTIVE LOAD (I) 10k 80 70 60 50 40 30 20 -120 10 0 -140 100 1k 10k 100k 100 1M 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) EMIRR vs. FREQUENCY MAX44248 toc29 120 100 EMIRR (dB) 80 60 40 20 0 10 100 1,000 10,000 FREQUENCY (MHz) Maxim Integrated 8 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Pin Configurations TOP VIEW + OUTA 1 5 VDD MAX44244 VSS 2 INA+ 3 4 N.C. 1 INA- 2 INA+ 3 VSS 4 + 8 MAX44244 INA- N.C. 7 VDD 6 OUTA 5 N.C. µMAX SOT23 OUTA 1 INA- 2 INA+ 3 + MAX44245 14 OUTD 13 IND- 12 IND+ VDD 4 11 VSS INB+ 5 10 INC+ INB- 6 9 INC- OUTB 7 8 OUTC + OUTA 1 INA- 2 13 IND12 IND+ INA+ 3 MAX44245 VDD 4 INA- 1 2 + 10 INC+ INB- 6 9 INC- OUTB 7 8 OUTC SO-14 8 MAX44248 11 VSS INB+ 5 TSSOP OUTA 14 OUTD 7 VDD OUTB INA+ 3 6 INB- VSS 4 5 INB+ OUTA 1 INA- 2 INA+ 3 VSS 4 + 8 MAX44248 VDD 7 OUTB 6 INB- 5 INB+ µMAX SO-8 Maxim Integrated 9 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Pin Description PIN MAX44244 MAX44245 MAX44248 NAME FUNCTION SOT23 µMAX SO-14 TSSOP SO-8 µMAX 1 6 1 1 1 1 2 4 11 11 4 4 VSS Negative Supply Voltage 3 3 3 3 3 3 INA+ Channel A Positive Input 4 2 2 2 2 2 INA- Channel A Negative Input 5 7 4 4 8 8 VDD Positive Supply Voltage — — 5 5 5 5 INB+ Channel B Positive Input — — 6 6 6 6 INB- Channel B Negative Input — — 7 7 7 7 OUTB Channel B Output — — 8 8 — — OUTC Channel C Output — — 9 9 — — INC- Channel C Negative Input — — 10 10 — — INC+ Channel C Positive Input — — 12 12 — — IND+ Channel D Positive Input — — 13 13 — — IND- Channel D Negative Input — — 14 14 — — OUTD — 1, 5, 8 — — — — N.C. OUTA Channel A Output Channel D Output No Connection. Not internally connected. Detailed Description Applications Information The MAX44244/MAX44245/MAX44248 are high-precision amplifiers with less than 2FV (typ) input-referred offset and low input voltage-noise density at 10Hz. 1/f noise, in fact, is eliminated to improve the performance in low-frequency applications. These characteristics are achieved through an auto-zeroing technique that cancels the input offset voltage and 1/f noise of the amplifier. The devices feature ultra-high precision operational amplifiers with a high supply voltage range designed for load cell, medical instrumentation, and precision instrument applications. External Noise Suppression in EMI Form These devices have input EMI filters to prevent effects of radio frequency interference on the output. The EMI filters comprise passive devices that present significant higher impedance to higher frequency signals. See the EMIRR vs. Frequency graph in the Typical Operating Characteristics section for details. High Supply Voltage Range The devices feature 90µA current consumption per channel and a voltage supply range from either 2.7V to 36V single supply or ±1.35V to ±18V split supply. Maxim Integrated 4–20mA Current-Loop Communication Industrial environments typically have a large amount of broadcast electromagnetic interference (EMI) from highvoltage transients and switching motors. This combined with long cables for sensor communication leads to high-voltage noise on communication lines. Current-Loop communication is resistant to this noise because the EMI induced current is low. This configuration also allows for low-power sensor applications to be powered from the communication lines. The Typical Operating Circuit shows how the device can be used to make a current loop driver. The circuit uses low-power components such as the MAX44244 op amp, the 16-bit MAX5216 DAC, and the high-precision 60µA-only MAX6033 reference. In this 10 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps circuit, both the DAC and the reference are referred to the local ground. The MAX44244 op-amp inputs are capable of swinging to the negative supply (which is the local ground in this case). R3 acts as a current mirror with RSENSE. Therefore, if RSENSE = 50Ω (i.e. 20mA will drop 1V) and if the current through R3 is 10μA when IOUT is 20mA (0.05% error) then R3 = 100kΩ. R1 is chosen along with the reference voltage to provide the 4mA offset. R2 = 512kΩ for 20mA full scale or R2 = 614kΩ for 20% overrange. RSENSE is ratiometric with R3, R1 independently sets the offset current and R2 independently sets the DAC scaling. Driving High-Performance ADCs The MAX44244/MAX44245/MAX44248’s low input offset voltage and low noise make these amplifiers ideal for ADC buffering. Weight scale applications require a lownoise, precision amplifier in front of an ADC. Figure 1 details an example of a load cell and amplifier driven from the same 5V supply, along with a 16-bit delta sigma ADC such as the MAX11205. The MAX11205 is an ultra-low-power (< 300FA, max active current), high-resolution, serial output ADC. It provides the highest resolution per unit power in the industry and is optimized for applications that require very high dynamic range with low power such as sensors on a 4–20mA industrial control loop. The devices provide a high-accuracy internal oscillator that requires no external components. Layout Guidelines The MAX44244/MAX44245/MAX44248 feature ultra-low input offset voltage and noise. Therefore, to get optimum performance follow the layout guidelines. Avoid temperature tradients at the junction of two dissimilar metals. The most common dissimilar metals used on a PCB are solder-to-component lead and solder-to-board trace. Dissimilar metals create a local thermocouple. A variation in temperature across the board can cause an additional offset due to Seebeck effect at the solder junctions. To minimize the Seebeck effect, place the amplifier away from potential heat sources on the board, if possible. Orient the resistors such that both the ends are heated equally. It is a good practice to match the input signal path to ensure that the type and number of thermoelectric juntions remain the same. For example, consider using dummy 0ω resistors oriented in such a way that the thermoelectric source, due to the real resistors in the signal path, are cancelled. It is recommended to flood the PCB with ground plane. The ground plane ensures that heat is distributed uniformly reducing the potential offset voltage degradation due to Seebeck effect. 5V 5V ½ MAX44248 AMP A VDD 5V RF VIN+ RG VDD MAX11205 RF VIN- OUTPUT MICRO CONTROLLER VSS AMP B ½ MAX44248 Figure 1. Weight Application Maxim Integrated 11 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Chip Information Package Information Ordering Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PROCESS: BiCMOS PART TEMP RANGE PINPACKAGE TOP MARK PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 5 SOT23 U5+1 21-0057 90-0174 MAX44244AUK+* -40°C to +125°C 5 SOT23 AFMR MAX44244AUA+* -40°C to +125°C 8 µMAX — 8 SO S8+4 21-0041 90-0096 MAX44245ASD+ -40°C to +125°C 14 SO — 8 µMAX U8+1 21-0036 90-0092 MAX44245AUD+ -40°C to +125°C 14 TSSOP — 14 SO S14M+4 21-0041 90-0112 MAX44248AUA+ -40°C to +125°C 8 µMAX — 14 TSSOP U14M-1 21-0066 90-0113 8 SO — MAX44248ASA+ -40°C to +125°C +Denotes a lead(Pb)-free/RoHS-compliant package. *Future Product—Contact factory for availability. Maxim Integrated 12 MAX44244/MAX44245/MAX44248 36V, Precision, Low-Power, 90µA, Single/Quad/Dual Op Amps Revision History REVISION NUMBER REVISION DATE 0 7/12 Initial release 1 6/13 Added the MAX44244/MAX44245 to data sheet. Updated the Electrical Characteristics, Absolute Maximum Ratings, Pin Description, and Pin Configurations. DESCRIPTION PAGES CHANGED — 1–13 Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 © 2013 Maxim Integrated 13 The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.