NCP4683 300 mA, Low Dropout Regulator The NCP4683 is a CMOS Linear voltage regulator with 300 mA output current capability. The device has high output voltage accuracy, low supply current and high ripple rejection. The NCP4683 is easy to use, with output current fold−back protection circuit included. A Chip Enable function is included to save power by lowering supply current. The line and load transient responses are very good, thus this regulator is suitable for use as a power supply for communication equipment. http://onsemi.com MARKING DIAGRAMS Features • • • • • • • • • • • Operating Input Voltage Range: 1.40 V to 5.25 V Output Voltage Range: 0.8 V to 3.6 V (available in 0.1 V steps) Output Voltage Accuracy: ±1.0% (VOUT > 2.0 V) Supply Current: 50 mA Dropout Voltage: 0.25 V (IOUT = 300 mA, VOUT = 2.8 V) High PSRR: 70 dB (f = 1 kHz) Line Regulation: 0.02%/V Typ. Stable with Ceramic Capacitors: 1.0 mF or more Current Fold Back Protection Available in UDFN4 1.0 x 1.0 mm, SC−70, SOT23 Packages These are Pb−Free Devices Typical Applications • • • • Battery−powered Equipment Networking and Communication Equipment Cameras, DVRs, STB and Camcorders Home Appliances VIN C1 1m VOUT VOUT CE GND SOT−23−5 CASE 1212 XXX XMM SC−70 CASE 419A 1 UDFN4 CASE 517BR 1 XX MM XX, XXX, XXXX = Specific Device Code M, MM = Date Code NCP4683x VIN XXX M ORDERING INFORMATION See detailed ordering, marking and shipping information in the package dimensions section on page 18 of this data sheet. C2 1m Figure 1. Typical Application Schematic © Semiconductor Components Industries, LLC, 2012 July, 2012 − Rev. 2 1 Publication Order Number: NCP4683/D NCP4683 VOUT VIN VIN VOUT Vref Vref Current Limit CE CE Current Limit GND GND NCP4683Dxxxx NCP4683Hxxxx Figure 2. Simplified Schematic Block Diagram PIN FUNCTION DESCRIPTION Pin No. UDFN1010* Pin No. SC−70 Pin No. SOT23 Pin Name Description 1 4 5 VOUT Output pin 2 3 2 GND Ground 3 1 3 CE Chip enable pin (Active “H”) 4 5 1 VIN Input pin − 2 4 NC No connection *Tab is GND level. (They are connected to the reverse side of this IC. The tab is better to be connected to the GND, but leaving it open is also acceptable. ABSOLUTE MAXIMUM RATINGS Rating Symbol Input Voltage (Note 1) Value Unit VIN 6.0 V Output Voltage VOUT −0.3 to VIN + 0.3 V Chip Enable Input VCE −0.3 to 6.0 V Output Current IOUT 400 mA PD 400 mW Power Dissipation UDFN1010 Power Dissipation SC−70 380 Power Dissipation SOT23 420 Junction Temperature TJ −40 to 150 °C Storage Temperature TSTG −55 to 125 °C ESD Capability, Human Body Model (Note 2) ESDHBM 2000 V ESD Capability, Machine Model (Note 2) ESDMM 200 V Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. 2. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114) ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115) Latchup Current Maximum Rating tested per JEDEC standard: JESD78. http://onsemi.com 2 NCP4683 THERMAL CHARACTERISTICS Symbol Value Unit Thermal Characteristics, UDFN 1.0 x 1.0 mm Thermal Resistance, Junction−to−Air Rating RqJA 250 °C/W Thermal Characteristics, SOT23 Thermal Resistance, Junction−to−Air RqJA 238 °C/W Thermal Characteristics, SC−70 Thermal Resistance, Junction−to−Air RqJA 263 °C/W ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V or 2.5 V, whichever is greater; IOUT = 1 mA, CIN = COUT = 1.0 mF, unless otherwise noted. Typical values are at TA = +25°C. Parameter Test Conditions Operating Input Voltage Output Voltage TA = +25°C VOUT ≥ 2.0 V −40°C ≤ TA ≤ 85°C Output Voltage Temp. Coefficient Line Regulation Load Regulation Dropout Voltage Min VIN VOUT Typ Max Unit 1.40 5.25 V x0.99 x1.01 V VOUT < 2.0 V −20 20 mV VOUT ≥ 2.0 V x0.97 x1.03 V VOUT < 2.0 V −60 60 mV −40°C ≤ TA ≤ 85°C DVOUT/DTA ±80 VOUT(NOM) + 0.5 V ≤ VIN ≤ 5.0 V LineReg 0.02 IOUT = 1 mA to 300 mA LoadReg VDO VOUT = 0.9 V 0.51 0.65 1.0 V ≤ VOUT < 1.2 V 0.46 0.59 1.2 V ≤ VOUT < 1.4 V 0.39 0.50 1.4 V ≤ VOUT < 1.7 V 0.35 0.44 1.7 V ≤ VOUT < 2.1 V 0.30 0.39 2.1 V ≤ VOUT < 2.5 V 0.26 0.34 2.5 V ≤ VOUT < 3.0 V 0.25 0.30 3.0 V ≤ VOUT < 3.6 V 0.22 0.29 IOUT = 300 mA VOUT = 0.8 V Output Current Short Current Limit Symbol IOUT VOUT = 0 V Quiescent Current 0.10 %/V 15 40 mV 0.56 0.72 V 300 mA ISC 60 IQ 50 75 mA 0.1 1.0 mA Standby Current VCE = 0 V, TA = 25°C ISTB CE Pin Threshold Voltage CE Input Voltage “H” VCEH CE Input Voltage “L” VCEL CE Pull Down Current ppm/°C mA V 1.0 0.4 ICEPD 0.3 mA VIN = VOUT + 1 V or VIN = 3 V, DVIN = 0.2 Vpk−pk, IOUT = 30 mA, f = 1 kHz PSRR 65 dB Output Noise Voltage f = 10 Hz to 100 kHz, IOUT = 30 mA, VOUT = 1.2 V, VIN = 3.2 V VN 65 mVrms Low Output Nch Tr. On Resistance VIN = 4 V, VCE = 0 V, D version only RLOW 50 W Power Supply Rejection Ratio http://onsemi.com 3 NCP4683 TYPICAL CHARACTERISTICS 1.4 2.0 1.8 1.2 1.0 1.6 0.8 4.2 V 0.6 3.6 V 2.2 V 5.0 V 1.2 1.0 4.2 V 0.8 3.5 V 0.4 0.2 0.2 0 100 200 300 400 IOUT (mA) 500 600 700 0 0 100 Figure 3. Output Voltage vs. Output Current 1.2 V Version (TJ = 255C) 300 400 IOUT (mA) 500 600 700 3.5 3.0 2.0 5.0 V 2.5 1.5 4.2 V 1.0 VOUT (V) VIN = 5.25 V 2.5 VOUT (V) 200 Figure 4. Output Voltage vs. Output Current 1.8 V Version (TJ = 255C) 3.0 3.8 V VIN = 5.25 V 5.0 V 2.0 4.3 V 1.5 1.0 0.5 0 2.8 V 0.6 0.4 0 VIN = 5.25 V 1.4 5.0 V VOUT (V) VOUT (V) 2.8 V VIN = 5.25 V 0.5 0 100 200 300 400 500 600 700 0.0 0 100 200 300 400 500 600 IOUT (mA) IOUT (mA) Figure 5. Output Voltage vs. Output Current 2.8 V Version (TJ = 255C) Figure 6. Output Voltage vs. Output Current 3.3 V Version (TJ = 255C) 0.5 700 0.40 0.35 0.30 TJ = 85°C 25°C 0.3 VDO (V) VDO (V) 0.4 0.2 −40°C 0.25 TJ = 85°C 0.20 25°C 0.15 −40°C 0.10 0.1 0.05 0 0 50 100 150 200 250 0.00 300 0 50 100 150 200 250 IOUT (mA) IOUT (mA) Figure 7. Dropout Voltage vs. Output Current 1.2 V Version Figure 8. Dropout Voltage vs. Output Current 1.8 V Version http://onsemi.com 4 300 NCP4683 0.25 0.25 0.20 0.20 TJ = 85°C 0.15 25°C 0.10 VDO (V) VDO (V) TYPICAL CHARACTERISTICS −40°C 0.15 TJ = 85°C 0.10 25°C −40°C 0.05 0 0.05 0 50 100 150 IOUT (mA) 200 250 300 0 0 Figure 9. Dropout Voltage vs. Output Current 2.8 V Version 1.25 1.82 1.21 1.81 VOUT (V) VOUT (V) 1.22 1.17 1.77 1.16 1.76 0 20 40 1.75 −40 80 0 20 40 60 80 Figure 11. Output Voltage vs. Temperature, 1.2 V Version Figure 12. Output Voltage vs. Temperature, 1.8 V Version 3.35 VIN = 3.8 V 2.82 3.32 2.81 3.31 VOUT (V) 3.33 2.80 2.79 3.30 3.29 2.78 3.28 2.77 3.27 2.76 3.26 −20 0 20 40 60 VIN = 4.3 V 3.34 2.83 −40 −20 TJ, JUNCTION TEMPERATURE (°C) 2.84 2.75 VIN = 2.8 V TJ, JUNCTION TEMPERATURE (°C) 2.85 VOUT (V) 60 300 1.79 1.78 −20 250 1.80 1.18 1.15 −40 200 1.84 1.83 1.19 150 IOUT (mA) 1.85 1.23 1.20 100 Figure 10. Dropout Voltage vs. Output Current 3.3 V Version VIN = 2.2 V 1.24 50 3.25 −40 80 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 13. Output Voltage vs. Temperature, 2.8 V Version Figure 14. Output Voltage vs. Temperature, 3.3 V Version http://onsemi.com 5 NCP4683 70 60 60 50 50 40 30 30 20 10 10 0 1 2 3 4 0 5 2 3 4 5 VIN, INPUT VOLTAGE (V) Figure 16. Supply Current vs. Input Voltage, 1.8 V Version 60 60 50 50 40 30 40 30 20 20 10 10 1 2 3 4 0 5 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 17. Supply Current vs. Input Voltage, 2.8 V Version Figure 18. Supply Current vs. Input Voltage, 3.3 V Version 70 70 VIN = 2.2 V 60 VIN = 2.8 V 60 50 IGND (mA) 50 40 30 40 30 20 20 10 10 0 1 VIN, INPUT VOLTAGE (V) 70 0 0 Figure 15. Supply Current vs. Input Voltage, 1.2 V Version 70 0 IGND (mA) 40 20 0 IGND (mA) IGND (mA) 70 IGND (mA) IGND (mA) TYPICAL CHARACTERISTICS 40 20 0 20 40 60 0 40 80 20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 19. Supply Current vs. Temperature, 1.2 V Version Figure 20. Supply Current vs. Temperature, 1.8 V Version http://onsemi.com 6 NCP4683 TYPICAL CHARACTERISTICS 70 VIN = 3.8 V 60 60 50 50 IGND (mA) IGND (mA) 70 40 30 10 10 40 20 0 20 40 60 0 80 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) Figure 22. Supply Current vs. Temperature, 3.3 V Version 2.0 1.8 1.6 1 mA VOUT (V) 1.4 0.8 30 mA 0.6 IOUT = 50 mA 0.4 1.2 1.0 1 mA 0.8 30 mA 0.6 IOUT = 50 mA 0.4 0.2 0.2 0 1 2 3 4 0.0 5 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 23. Output Voltage vs. Input Voltage, 1.2 V Version Figure 24. Output Voltage vs. Input Voltage, 1.8 V Version 3.2 3.5 2.8 3.0 2.4 2.5 VOUT (V) 2.0 1.6 1.2 1 mA 0.8 1 1.5 30 mA 1 mA 0.5 IOUT = 50 mA 0 2.0 1.0 30 mA 0.4 0.0 20 TJ, JUNCTION TEMPERATURE (°C) 1.0 0.0 40 Figure 21. Supply Current vs. Temperature, 2.8 V Version 1.2 VOUT (V) 30 20 1.4 VOUT (V) 40 20 0 VIN = 4.3 V 2 3 4 0.0 5 IOUT = 50 mA 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 25. Output Voltage vs. Input Voltage, 2.8 V Version Figure 26. Output Voltage vs. Input Voltage, 3.3 V Version http://onsemi.com 7 NCP4683 TYPICAL CHARACTERISTICS 100 100 IOUT = 1 mA 90 80 80 70 70 30 mA 60 PSRR (dB) PSRR (dB) 90 50 40 150 mA 30 40 30 10 10 10 100 0 0.1 1000 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 27. PSRR, 1.2 V Version, VIN = 3.0 V Figure 28. PSRR, 1.8 V Version, VIN = 3.0 V 100 100 90 90 80 80 70 70 150 mA 60 50 PSRR (dB) PSRR (dB) 30 mA 50 20 1 150 mA 60 20 0 0.1 IOUT = 1 mA 30 mA 40 IOUT = 1 mA 30 50 10 10 10 150 mA 30 20 1 30 mA 40 20 0 0.1 IOUT = 1 mA 60 100 0 0.1 1000 1 10 100 FREQUENCY (kHz) FREQUENCY (kHz) Figure 29. PSRR, 2.8 V Version, VIN = 3.8 V Figure 30. PSRR, 3.3 V Version, VIN = 4.3 V 1000 5.0 3.0 4.5 4.0 2.0 VN (mVrms/√Hz) VN (mVrms/√Hz) 2.5 1.5 1.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.5 0 0.01 0.1 1 10 100 0 0.01 1000 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 31. Output Voltage Noise, 1.2 V Version, VIN = 2.2 V Figure 32. Output Voltage Noise, 1.8 V Version, VIN = 2.8 V http://onsemi.com 8 NCP4683 TYPICAL CHARACTERISTICS 7.0 18 16 6.0 14 VN (mVrms/√Hz) 4.0 3.0 2.0 12 10 8.0 6.0 4.0 1.0 2.0 0 0.01 0.1 1 10 100 0 0.01 1000 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 33. Output Voltage Noise, 2.8 V Version, VIN = 3.8 V Figure 34. Output Voltage Noise, 3.3 V Version, VIN = 4.3 V 3.7 3.2 2.7 VIN (V) VOUT (V) 2.2 1.210 1.205 1.200 1.195 1.190 1.185 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 35. Line Transients, 1.2 V Version, tR = tF = 5 ms, IOUT = 30 mA 4.3 3.8 3.3 VIN (V) 2.8 VOUT (V) VN (mVrms/√Hz) 5.0 1.810 1.805 1.800 1.795 1.790 1.785 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 36. Line Transients, 1.8 V Version, tR = tF = 5 ms, IOUT = 30 mA http://onsemi.com 9 NCP4683 TYPICAL CHARACTERISTICS 5.3 4.8 4.3 VIN (V) VOUT (V) 3.8 2.810 2.805 2.800 2.795 2.790 2.785 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 37. Line Transients, 2.8 V Version, tR = tF = 5 ms, IOUT = 30 mA 5.8 5.3 4.8 VIN (V) VOUT (V) 4.3 3.310 3.305 3.300 3.295 3.290 3.285 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 38. Line Transients, 3.3 V Version, tR = tF = 5 ms, IOUT = 30 mA 45 30 15 IOUT (mA) VOUT (V) 0 1.22 1.21 1.20 1.19 1.18 1.17 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 39. Load Transients, 1.2 V Version, IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 1.8 V http://onsemi.com 10 NCP4683 TYPICAL CHARACTERISTICS 45 30 15 IOUT (mA) VOUT (V) 0 1.82 1.81 1.80 1.79 1.78 1.77 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 40. Load Transients, 1.8 V Version, IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 2.8 V 45 30 15 IOUT (mA) VOUT (V) 0 2.82 2.81 2.80 2.79 2.78 2.77 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 41. Load Transients, 2.8 V Version, IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 3.8 V 45 30 15 IOUT (mA) VOUT (V) 0 3.32 3.31 3.30 3.29 3.28 3.27 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 42. Load Transients, 3.3 V Version, IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 4.3 V http://onsemi.com 11 NCP4683 TYPICAL CHARACTERISTICS 150 100 50 1.215 IOUT (mA) VOUT (V) 0 1.210 1.205 1.200 1.195 1.190 1.185 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 43. Load Transients, 1.2 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 1.8 V 150 100 50 IOUT (mA) VOUT (V) 0 1.815 1.810 1.805 1.800 1.795 1.790 1.785 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 44. Load Transients, 1.8 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 2.8 V 150 100 50 IOUT (mA) VOUT (V) 0 2.815 2.810 2.805 2.800 2.795 2.790 2.785 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 45. Load Transients, 2.8 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 3.8 V http://onsemi.com 12 NCP4683 3.315 IOUT (mA) VOUT (V) TYPICAL CHARACTERISTICS 3.310 3.305 3.300 150 3.295 100 3.290 50 3.285 0 40 80 0 120 160 200 240 280 320 360 400 t (ms) Figure 46. Load Transients, 3.3 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 4.3 V 450 300 150 IOUT (mA) VOUT (V) 0 1.30 1.25 1.20 1.15 1.10 1.05 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 47. Load Transients, 1.2 V Version, IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 2.2 V 450 300 150 IOUT (mA) VOUT (V) 0 1.90 1.85 1.80 1.75 1.70 1.65 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 48. Load Transients, 1.8 V Version, IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 2.8 V http://onsemi.com 13 NCP4683 TYPICAL CHARACTERISTICS 450 300 150 IOUT (mA) VOUT (V) 0 2.90 2.85 2.80 2.75 2.70 2.65 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 49. Load Transients, 2.8 V Version, IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 3.8 V 450 300 150 IOUT (mA) VOUT (V) 0 3.40 3.35 3.30 3.25 3.20 3.15 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 50. Load Transients, 3.3 V Version, IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 4.3 V 3 Chip Enable 2 1 IOUT = 300 mA IOUT = 1 mA 1.5 1.0 0.5 IOUT = 30 mA 0 −0.5 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 51. Start−up, 1.2 V Version, VIN = 2.2 V http://onsemi.com 14 VCE (V) VOUT (V) 0 NCP4683 TYPICAL CHARACTERISTICS 3 Chip Enable 2 1 IOUT = 1 mA VCE (V) VOUT (V) 0 IOUT = 300 mA 1.5 1.0 IOUT = 30 mA 0.5 0 −0.5 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 52. Start−up, 1.8 V Version, VIN = 2.8 V 6 IOUT = 1 mA Chip Enable 2 0 2.5 VCE (V) VOUT (V) 3.0 4 2.0 1.5 IOUT = 300 mA 1.0 0.5 IOUT = 30 mA 0 −0.5 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 53. Start−up, 2.8 V Version, VIN = 3.8 V 6 Chip Enable 4 2 IOUT = 30 mA IOUT = 1 mA 4.0 3.0 2.0 1.0 IOUT = 300 mA 0 −1.0 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 54. Start−up, 3.3 V Version, VIN = 4.3 V http://onsemi.com 15 VCE (V) VOUT (V) 0 NCP4683 TYPICAL CHARACTERISTICS 3 2 1 0 VCE (V) VOUT (V) Chip Enable 2.0 IOUT = 1 mA 1.5 IOUT = 30 mA 1.0 0.5 0 −0.5 IOUT = 300 mA 0 1 2 3 4 5 t (ms) 6 7 8 9 10 Figure 55. Shutdown, 1.2 V Version B, VIN = 2.2 V 3 2 1 0 VCE (V) VOUT (V) Chip Enable 2.0 IOUT = 1 mA 1.5 1.0 IOUT = 30 mA 0.5 0 −0.5 IOUT = 300 mA 0 100 200 300 400 500 600 700 800 900 1000 t (ms) Figure 56. Shutdown, 1.8 V Version D, VIN = 2.8 V 6 4 4.0 0 IOUT = 1 mA 3.0 2.0 IOUT = 30 mA 1.0 0 −1.0 2 VCE (V) VOUT (V) Chip Enable IOUT = 300 mA 0 100 200 300 400 500 600 700 800 900 1000 t (ms) Figure 57. Shutdown, 2.8 V Version D, VIN = 3.8 V http://onsemi.com 16 NCP4683 TYPICAL CHARACTERISTICS 6 4 4.0 3.0 IOUT = 1 mA 2.0 0 0 IOUT = 30 mA 1.0 −1.0 0 2 VCE (V) VOUT (V) Chip Enable IOUT = 300 mA 100 200 300 400 500 600 700 800 900 1000 t (ms) Figure 58. Shutdown, 3.3 V Version D, VIN = 4.3 V APPLICATION INFORMATION down current source. If the enable function is not needed connect CE pin to VIN. A typical application circuit for NCP4683 series is shown in Figure 59. NCP4683x VIN VIN C1 1m Current Limit VOUT This regulator includes fold−back type current limit circuit. This type of protection doesn’t limit current up to current capability in normal operation, but when over current occurs, output voltage and current decrease until over current condition ends. Typical characteristics of this protection type can be observed in the Output Voltage vs. Output Current graphs shown in the typical characteristics chapter of this datasheet. VOUT CE GND C2 1m Output Discharger Figure 59. Typical Application Schematic The D version includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode. Input Decoupling Capacitor (C1) A 1 mF ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4683. Higher values and lower ESR improves line transient response. Thermal A 1 mF ceramic output decoupling capacitor is enough to achieve stable operation of the IC. If a tantalum capacitor is used, and its ESR is high, loop oscillation may result. The capacitors should be connected as close as possible to the output and ground pins. Larger values and lower ESR improves dynamic parameters. As power across the IC increase, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature increase for the part. When the device has good thermal conductivity through the PCB the junction temperature will be relatively low in high power dissipation applications. Enable Operation PCB layout Output Decoupling Capacitor (C2) The enable pin CE may be used for turning the regulator on and off. The IC is switched on when a high level voltage is applied to the CE pin. The enable pin has an internal pull Make the VIN and GND line as large as practical. If their impedance is high, noise pickup or unstable operation may result. Connect capacitors C1 and C2 as close as possible to the IC, and make wiring as short as possible. http://onsemi.com 17 NCP4683 ORDERING INFORMATION Nominal Output Voltage Description Marking Package Shipping† NCP4683DMU12TCG 1.20 Auto discharge Q4 UDFN4 (Pb−Free) 10000 / Tape & Reel NCP4683DMU18TCG 1.80 Auto discharge R0 UDFN4 (Pb−Free) 10000 / Tape & Reel NCP4683DMU185TCG 1.85 Auto discharge T0 UDFN4 (Pb−Free) 10000 / Tape & Reel NCP4683DMU285TCG 2.85 Auto discharge T1 UDFN4 (Pb−Free) 10000 / Tape & Reel NCP4683DMU31TCG 3.1 Auto discharge S3 UDFN4 (Pb−Free) 10000 / Tape & Reel NCP4683HMU12TCG 1.20 Standard L4 UDFN4 (Pb−Free) 10000 / Tape & Reel NCP4683HMU185TCG 1.85 Standard P0 UDFN4 (Pb−Free) 10000 / Tape & Reel NCP4683DSQ18T1G 1.80 Auto discharge AH18 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4683DSQ28T1G 2.80 Auto discharge AH28 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4683DSQ33T1G 3.30 Auto discharge AH33 SC−70 (Pb−Free) 3000 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *Marking codes for XDFN0808 packages are unified. **To order other package and voltage variants, please contact your ON Semiconductor sales representative. http://onsemi.com 18 NCP4683 PACKAGE DIMENSIONS SOT−23 5−LEAD CASE 1212 ISSUE A A 5 E 1 L1 A1 4 2 L 3 5X e A2 0.05 S B D NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS. 3. DATUM C IS THE SEATING PLANE. A E1 b 0.10 C M C B S A S C RECOMMENDED SOLDERING FOOTPRINT* 3.30 DIM A A1 A2 b c D E E1 e L L1 5X 0.85 5X 0.95 PITCH 0.56 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 19 MILLIMETERS MIN MAX --1.45 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.70 3.10 2.50 3.10 1.50 1.80 0.95 BSC 0.20 --0.45 0.75 NCP4683 PACKAGE DIMENSIONS SC−88A (SC−70−5/SOT−353) CASE 419A−02 ISSUE K A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A−01 OBSOLETE. NEW STANDARD 419A−02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. G 5 4 −B− S 1 2 DIM A B C D G H J K N S 3 D 5 PL 0.2 (0.008) M B M N J C H K http://onsemi.com 20 INCHES MIN MAX 0.071 0.087 0.045 0.053 0.031 0.043 0.004 0.012 0.026 BSC --0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.80 1.10 0.10 0.30 0.65 BSC --0.10 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 NCP4683 PACKAGE DIMENSIONS UDFN4 1.0x1.0, 0.65P CASE 517BR ISSUE O PIN ONE REFERENCE 2X 0.05 C 4X A B D ÉÉ ÉÉ typ DETAIL A 0.05 C 2X c 0.18 L2 E NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 mm FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L3 3X TOP VIEW 0.43 4X 0.23 (A3) 0.05 C A 3X 0.05 C NOTE 4 A1 SIDE VIEW e DETAIL A 3X 2 D2 45 5 SEATING PLANE L 0.65 PITCH DETAIL B D2 4 b 0.05 BOTTOM VIEW 2X 0.52 PACKAGE OUTLINE 3 4X MILLIMETERS MIN MAX −−− 0.60 0.00 0.05 0.10 REF 0.20 0.30 1.00 BSC 0.43 0.53 1.00 BSC 0.65 BSC 0.20 0.30 0.27 0.37 0.02 0.12 RECOMMENDED MOUNTING FOOTPRINT* e/2 1 C 0.10 DETAIL B DIM A A1 A3 b D D2 E e L L2 L3 1.30 M C A B NOTE 3 0.53 4X 0.30 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 21 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NCP4683/D