IRF740LC, SiHF740LC Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • • • • • • • 400 RDS(on) (Ω) VGS = 10 V Qg (Max.) (nC) 0.55 39 Qgs (nC) 10 Qgd (nC) 19 Configuration Single RoHS* COMPLIANT This new series of low charge Power MOSFETs achieve significantly lower gate charge over conventional MOSFETs. Utilizing the new LCDMOS technology, the device improvements are achieved without added product cost, allowing for reduced gate drive requirements and total system savings. In addition, reduced switching losses and improved efficiency are achievable in a variety of high frequency applications. Frequencies of a few MHz at high current are possible using the new Low Charge MOSFETs. These device improvements combined with the proven ruggedness and reliability that are characteristic of Power MOSFETs ofter the designer a new standard in power transistors for switching applications. TO-220AB G D Available DESCRIPTION D G Ultra Low Gate Charge Reduced Gate Drive Requirement Enhanced 30 V VGS Rating Reduced Ciss, Coss, Crss Extremely High Frequency Operation Repetitive Avalanche Rated Compliant to RoHS Directive 2002/95/EC S S N-Channel MOSFET ORDERING INFORMATION Package TO-220AB IRF740LCPbF SiHF740LC-E3 IRF740LC SiHF740LC Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted) PARAMETER Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Currenta Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche Currenta Repetitive Avalanche Energya Maximum Power Dissipation Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque SYMBOL VDS VGS VGS at 10 V TC = 25 °C TC = 100 °C ID IDM TC = 25 °C for 10 s 6-32 or M3 screw EAS IAR EAR PD dV/dt TJ, Tstg LIMIT 400 ± 30 10 6.3 32 1.0 520 10 13 125 4.0 - 55 to + 150 300d 10 1.1 UNIT V A W/°C mJ A mJ W V/ns °C lbf · in N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 50 V, starting TJ = 25 °C, L = 9.1 mH, Rg = 25 Ω, IAS = 10 A (see fig. 12). c. ISD ≤ 10 A, dI/dt ≤ 120 A/μs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91053 S11-0507-Rev. B, 21-Mar-11 www.vishay.com 1 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF740LC, SiHF740LC Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 1.0 UNIT °C/W SPECIFICATIONS (TJ = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 μA 400 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.76 - V/°C VGS(th) VDS = VGS, ID = 250 μA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 400 V, VGS = 0 V - - 25 VDS = 320 V, VGS = 0 V, TJ = 125 °C - - 250 Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage ID = 6.0 Ab μA - - 0.55 Ω gfs VDS = 50 V, ID = 6.0 Ab 3.0 - - S Input Capacitance Ciss VGS = 0 V, - 1100 - Output Capacitance Coss VDS = 25 V, - 190 - Reverse Transfer Capacitance Crss f = 1.0 MHz, see fig. 5 - 18 - Total Gate Charge Qg - - 39 - - 10 Drain-Source On-State Resistance Forward Transconductance RDS(on) VGS = 10 V Dynamic VGS = 10 V ID = 10 A, VDS = 320 V pF Gate-Source Charge Qgs Gate-Drain Charge Qgd - - 19 Turn-On Delay Time td(on) - 11 - - 31 - - 25 - - 20 - - 4.5 - - 7.5 - - - 10 - - 32 - - 2.0 V - 380 570 ns - 2.8 4.2 μC Rise Time Turn-Off Delay Time Fall Time tr td(off) see fig. 6 and 13b VDD = 200 V, ID = 10 A , Rg = 9.1 Ω, RD = 20 Ω, see fig. 10b tf Internal Drain Inductance LD Internal Source Inductance LS Between lead, 6 mm (0.25") from package and center of die contact D nC ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 10 A, VGS = 0 Vb TJ = 25 °C, IF = 10 A, dI/dt = 100 A/μsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 μs; duty cycle ≤ 2 %. www.vishay.com 2 Document Number: 91053 S11-0507-Rev. B, 21-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF740LC, SiHF740LC Vishay Siliconix TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) 100 101 150 °C 4.5 V 10-1 ID, Drain Current (A) ID, Drain Current (A) 101 VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V Top 20 µs Pulse Width TC = 25 °C 10-2 10-2 10-1 100 VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V 4.5 V 10-1 91053_02 20 µs Pulse Width TC = 150 °C 10-1 100 Fig. 2 - Typical Output Characteristics, TC = 150 °C Document Number: 91053 S11-0507-Rev. B, 21-Mar-11 6 7 8 9 10 Fig. 3 - Typical Transfer Characteristics 101 VDS, Drain-to-Source Voltage (V) 5 VGS, Gate-to-Source Voltage (V) 91053_03 Top 10-2 10-2 20 µs Pulse Width VDS = 50 V 4 RDS(on), Drain-to-Source On Resistance (Normalized) ID, Drain Current (A) 100 10-1 10-2 Fig. 1 - Typical Output Characteristics, TC = 25 °C 101 25 °C 101 VDS, Drain-to-Source Voltage (V) 91053_01 100 91053_04 3.0 2.5 ID = 10 A VGS = 10 V 2.0 1.5 1.0 0.5 0.0 - 60 - 40 - 20 0 20 40 60 80 100 120 140 160 TJ, Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF740LC, SiHF740LC Vishay Siliconix 2000 Ciss ISD, Reverse Drain Current (A) Capacitance (pF) 1600 VGS = 0 V, f = 1 MHz Ciss = Cgs + Cgd, Cds Shorted Crss = Cgd Coss = Cds + Cgd 1200 Coss 800 400 Crss 0 100 0.8 VDS = 80 V 8 4 102 5 10 µs 2 10 100 µs 5 1 ms 2 1 10 ms 5 For test circuit see figure 13 91053_06 6 12 18 24 30 36 QG, Total Gate Charge (nC) TC = 25 °C TJ = 150 °C Single Pulse 2 0.1 1 42 Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 1.8 2 VDS = 200 V 0 1.6 Operation in this area limited by RDS(on) 5 VDS = 320 V 0 1.4 1.2 VSD, Source-to-Drain Voltage (V) 103 16 1.0 Fig. 7 - Typical Source-Drain Diode Forward Voltage ID, Drain Current (A) VGS, Gate-to-Source Voltage (V) VGS = 0 V 91053_07 ID = 11 A 12 25 °C 0.6 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 20 101 100 101 VDS, Drain-to-Source Voltage (V) 91053_05 150 °C 91053_08 2 5 10 2 5 102 2 5 103 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91053 S11-0507-Rev. B, 21-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF740LC, SiHF740LC Vishay Siliconix RD VDS VGS 10 8 ID, Drain Current (A) D.U.T. RG + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 6 Fig. 10a - Switching Time Test Circuit 4 VDS 2 90 % 0 25 50 75 100 125 150 TC, Case Temperature (°C) 91053_09 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (ZthJC) 10 1 0 − 0.5 PDM 0.2 0.1 0.1 0.05 t1 t2 0.02 0.01 Notes: 1. Duty Factor, D = t1/t2 2. Peak Tj = PDM x ZthJC + TC Single Pulse (Thermal Response) 10-2 10-5 91053_11 10-4 10-3 10-2 0.1 1 10 t1, Rectangular Pulse Duration (s) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Document Number: 91053 S11-0507-Rev. B, 21-Mar-11 www.vishay.com 5 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF740LC, SiHF740LC Vishay Siliconix L Vary tp to obtain required IAS VDS VDS tp VDD D.U.T. RG + - IAS V DD VDS A 10 V 0.01 Ω tp IAS Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms EAS, Single Pulse Energy (mJ) 1200 ID 4.5 A 6.3 A Bottom 10 A Top 1000 800 600 400 200 0 VDD = 50 V 25 91053_12c 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91053 S11-0507-Rev. B, 21-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF740LC, SiHF740LC Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91053. Document Number: 91053 S11-0507-Rev. B, 21-Mar-11 www.vishay.com 7 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix TO-220AB MILLIMETERS A E F D H(1) Q ØP 3 2 L(1) 1 M* L b(1) INCHES DIM. MIN. MAX. MIN. MAX. A 4.25 4.65 0.167 0.183 b 0.69 1.01 0.027 0.040 b(1) 1.20 1.73 0.047 0.068 c 0.36 0.61 0.014 0.024 D 14.85 15.49 0.585 0.610 E 10.04 10.51 0.395 0.414 e 2.41 2.67 0.095 0.105 e(1) 4.88 5.28 0.192 0.208 F 1.14 1.40 0.045 0.055 H(1) 6.09 6.48 0.240 0.255 J(1) 2.41 2.92 0.095 0.115 L 13.35 14.02 0.526 0.552 0.150 L(1) 3.32 3.82 0.131 ØP 3.54 3.94 0.139 0.155 Q 2.60 3.00 0.102 0.118 ECN: X12-0208-Rev. N, 08-Oct-12 DWG: 5471 Notes * M = 1.32 mm to 1.62 mm (dimension including protrusion) Heatsink hole for HVM • Xi’an and Mingxin actual photo C b e J(1) e(1) Revison: 08-Oct-12 Document Number: 71195 1 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 1 Document Number: 91000