6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611, HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631, HCPL-4661 High CMR, High Speed TTL Compatible Optocouplers Data Sheet Lead (Pb) Free RoHS 6 fully compliant RoHS 6 fully compliant options available; -xxxE denotes a lead-free product Description Features The 6N137, HCPL-26xx/06xx/4661, HCNW137/26x1 are optically coupled gates that combine a GaAsP light emitting diode and an integrated high gain photo detector. An enable input allows the detector to be strobed. The output of the detector IC is an open collector Schottkyclamped transistor. The internal shield provides a guaranteed common mode transient immunity specification up to 15,000 V/µs at Vcm = 1000 V. • 15 kV/µs minimum Common Mode Rejection (CMR) at VCM = 1 kV for HCNW2611, HCPL-2611, HCPL-4661, HCPL-0611, HCPL-0661 • High speed: 10 MBd typical • LSTTL/TTL compatible • Low input current capability: 5 mA • Guaranteed AC and DC performance over temper ature: -40 °C to +85 °C • Available in 8-Pin DIP, SOIC-8, widebody packages • Strobable output (single channel products only) • Safety approval UL recognized - 3750 Vrms for 1 minute and 5000 Vrms* for 1 minute per UL1577 CSA approved IEC/EN/DIN EN 60747-5-5 approved with VIORM = 567 Vpeak for 06xx Option 060 VIORM = 630 Vpeak for 6N137/26xx Option 060 VIORM = 1414 Vpeak for HCNW137/26x1 • MIL-PRF-38534 hermetic version available (HCPL-56xx/66xx) This unique design provides maximum AC and DC circuit isolation while achieving TTL compatibility. The optocoupler AC and DC operational parameters are guaranteed from -40 °C to +85 °C allowing troublefree system performance. Functional Diagram 6N137, HCPL-2601/2611 HCPL-0600/0601/0611 8 V CC NC 1 HCPL-2630/2631/4661 HCPL-0630/0631/0661 ANODE 1 1 8 V CC ANODE 2 7 VE CATHODE 1 2 7 V O1 CATHODE 3 6 VO CATHODE 2 3 6 V O2 NC 4 LED ON OFF ON OFF ON OFF SHIELD 5 GND TRUTH TABLE (POSITIVE LOGIC) OUTPUT ENABLE L H H H H L H L L NC H NC ANODE 2 4 SHIELD 5 GND TRUTH TABLE (POSITIVE LOGIC) LED OUTPUT ON L OFF H A 0.1 µF bypass capacitor must be connected between pins 5 and 8. Applications • Isolated line receiver • Computer-peripheral interfaces • Microprocessor system interfaces • Digital isolation for A/D, D/A conversion • Switching power supply • Instrument input/output isolation • Ground loop elimination • Pulse transformer replacement • Power transistor isolation in motor drives • Isolation of high speed logic systems *5000 Vrms/1 Minute rating is for HCNW137/26X1 and Option 020 (6N137, HCPL-2601/11/30/31, HCPL-4661) products only. CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The 6N137, HCPL-26xx, HCPL-06xx, HCPL-4661, HCNW137, and HCNW26x1 are suitable for high speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments. Selection Guide Widebody Minimum CMR 8-Pin DIP (300 Mil) Small-Outline SO-8 (400 Mil) Hermetic Input Single On-SingleDualSingleDual Single and Dual dV/dt VCM Current OutputChannel Channel Channel ChannelChannelChannel (V/µs) (V) (mA) Enable PackagePackagePackagePackage Package Packages 1000 10 5,000 1,000 5 YES 6N137 5 YES NO HCPL-0600 HCNW137 HCPL-2630 HCPL-0630 10,000 1,000 YES HCPL-2601HCPL-0601 HCNW2601 NO HCPL-2631 HCPL-0631 15,000 1,000 YES HCPL-2611HCPL-0611 HCNW2611 NO HCPL-4661 HCPL-0661 1,000 50 YES HCPL-2602 3, 500 300 YES HCPL-2612[1] 1,000 50 YES HCPL-261A[1]HCPL-061A[1] 3 [1] NO HCPL-263A[1]HCPL-063A[1] 1,000[2]1,000 YES HCPL-261N[1]HCPL-061N[1] NO HCPL-263N[1]HCPL-063N[1] [3] 1,000 50 12.5 HCPL-193x[1] HCPL-56xx[1] HCPL-66xx[1] Notes: 1. Technical data are on separate Avago publications. 2. 15 kV/µs with VCM = 1 kV can be achieved using Avago application circuit. 3. Enable is available for single channel products only, except for HCPL-193x devices. 2 Ordering Information HCPL-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577. HCNWxxxx is UL Rcognized with 5000 Vrms for 1 minute per UL1577. Option Part Number 6N137 HCPL-2601 HCPL-2611 HCPL-2630 HCPL-2631 HCPL-4661 3 RoHS Compliant Non RoHS Compliant -000E No option -300E #300 X X -500E #500 X X -020E #020 -320E #320 -520E #520 -060E #060 -560E -560 -000E No option -300E #300 X X -500E #500 X X -020E #020 -320E #320 -520E #520 -060E #060 -360E - -000E No option -300E #300 X X -500E #500 X X -020E #020 -320E #320 -520E #520 -060E #060 -360E #360 X X -560E #560 X X -000E No option -300E #300 -500E #500 -020E #020 -320E #320 X X -520E -520 X X -000E No option -300E #300 X X -500E #500 X X -020E #020 -320E #320 X X -520E #520 X X Package Surface Mount Gull Wing Tape & Reel UL 5000 Vrms/ 1 Minute Rating IEC/EN/DIN EN 60747-5-5 Quantity 50 per tube 300mil DIP-8 X X X X X X 50 per tube X X 1000 per reel X 50 per tube X 50 per tube X 1000 per reel X X 50 per tube X 1000 per reel 50 per tube 300mil DIP-8 X X X X X 50 per tube X X 1000 per reel X 50 per tube X 50 per tube X 1000 per reel X X 50 per tube X 50 per tube 50 per tube 300mil DIP-8 X X X X 50 per tube X X 1000 per reel X 50 per tube X 50 per tube X 1000 per reel X X 50 per tube X 50 per tube X 1000 per reel 50 per tube 300mil DIP-8 X X X X 50 per tube X X 1000 per reel X 50 per tube X 50 per tube X 1000 per reel 50 per tube 300mil DIP-8 50 per tube X X 1000 per reel X 50 per tube X 50 per tube X 1000 per reel Option Part Number HCPL-0600 HCPL-0601 HCPL-0611 HCPL-0630 HCPL-0631 HCPL-0661 HCNW137 HCNW2601 HCNW2611 RoHS Compliant Non RoHS Compliant -000E No option -500E #500 -060E #060 -560E #560 -000E No option -500E #500 -000E No option -300E #300 -500E #500 Surface Mount Package Gull Wing Tape & Reel UL 5000 Vrms/ 1 Minute Rating IEC/EN/DIN EN 60747-5-5 X 100 per tube X SO-8 X 1500 per reel X X X X 100 per tube X 1500 per reel X SO-8 100 per tube X 400 mil DIP-8 Quantity X X X X X 1500 per reel X X X 42 per tube X X 42 per tube X X 750 per reel To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Combination of Option 020 and Option 060 is not available. Example 1: HCPL-2611-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packag ing with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant. Example 2: HCPL-2630 to order product of 300mil DIP package in tube packaging and non RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information. Notes: The notation ‘#xxx’ is used for existing products, while (new) products launched since July 15, 2001 and RoHS compliant option will use ‘-xxxE‘. Schematic IF 6N137, HCPL-2601/2611 HCPL-0600/0601/0611 HCNW137, HCNW2601/2611 HCPL-2630/2631/4661 HCPL-0630/0631/0661 ICC ICC 8 2+ IO 6 VCC VO 1 8 IF1 IO1 + 7 VCC VO1 VF1 – VF 2 SHIELD – 3 SHIELD IE 7 VE USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 5). 5 GND 3 IF2 IO2 – 6 VF2 + 4 SHIELD 6N137 Schematic a 6N137 Schematic b 4 VO2 5 GND Package Outline Drawings 8-pin DIP Package** (6N137, HCPL-2601/11/30/31, HCPL-4661) 7.62 ± 0.25 (0.300 ± 0.010) 9.65 ± 0.25 (0.380 ± 0.010) 8 TYPE NUMBER 7 6 5 6.35 ± 0.25 (0.250 ± 0.010) OPTION CODE* DATE CODE A XXXXZ YYWW RU 1 2 3 UL RECOGNITION 4 1.78 (0.070) MAX. 1.19 (0.047) MAX. 5° TYP. 3.56 ± 0.13 (0.140 ± 0.005) 4.70 (0.185) MAX. 0.51 (0.020) MIN. 2.92 (0.115) MIN. 0.65 (0.025) MAX. 1.080 ± 0.320 (0.043 ± 0.013) 2.54 ± 0.25 (0.100 ± 0.010) + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002) DIMENSIONS IN MILLIMETERS AND (INCHES). *MARKING CODE LETTER FOR OPTION NUMBERS "L" = OPTION 020 "V" = OPTION 060 OPTION NUMBERS 300 AND 500 NOT MARKED. NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. **JEDEC Registered Data (for 6N137 only). 8-pin DIP Package with Gull Wing Surface Mount Option 300 (6N137, HCPL-2601/11/30/31, HCPL-4661) LAND PATTERN RECOMMENDATION 9.65 ± 0.25 (0.380 ± 0.010) 8 7 6 1.016 (0.040) 5 6.350 ± 0.25 (0.250 ± 0.010) 1 2 3 10.9 (0.430) 4 1.27 (0.050) 1.19 (0.047) MAX. 1.780 (0.070) MAX. 9.65 ± 0.25 (0.380 ± 0.010) 7.62 ± 0.25 (0.300 ± 0.010) 3.56 ± 0.13 (0.140 ± 0.005) 1.080 ± 0.320 (0.043 ± 0.013) 0.635 ± 0.130 2.54 (0.025 ± 0.005) (0.100) BSC DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 5 0.635 ± 0.25 (0.025 ± 0.010) 2.0 (0.080) + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002) 12° NOM. Small-Outline SO-8 Package (HCPL-0600/01/11/30/31/61) LAND PATTERN RECOMMENDATION 8 7 6 5 XXX YWW 3.937 ± 0.127 (0.155 ± 0.005) PIN ONE 1 2 3 5.994 ± 0.203 (0.236 ± 0.008) TYPE NUMBER (LAST 3 DIGITS) DATE CODE 7.49 (0.295) 4 0.406 ± 0.076 (0.016 ± 0.003) 1.9 (0.075) 1.270 BSC (0.050) 0.64 (0.025) * 5.080 ± 0.127 (0.200 ± 0.005) 0.432 45° X (0.017) 7° 3.175 ± 0.127 (0.125 ± 0.005) 1.524 (0.060) * TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH) 5.207 ± 0.254 (0.205 ± 0.010) 0 ~ 7° 0.228 ± 0.025 (0.009 ± 0.001) 0.203 ± 0.102 (0.008 ± 0.004) 0.305 MIN. (0.012) DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX. NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX. 8-Pin Widebody DIP Package (HCNW137, HCNW2601/11) 11.00 MAX. (0.433) 11.23 ± 0.15 (0.442 ± 0.006) 8 7 6 5 TYPE NUMBER DATE CODE A HCNWXXXX 9.00 ± 0.15 (0.354 ± 0.006) YYWW 1 2 3 4 10.16 (0.400) TYP. 1.55 (0.061) MAX. 7° TYP. 5.10 MAX. (0.201) 3.10 (0.122) 3.90 (0.154) 2.54 (0.100) TYP. 1.80 ± 0.15 (0.071 ± 0.006) 0.40 (0.016) 0.56 (0.022) + 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) 0.51 (0.021) MIN. DIMENSIONS IN MILLIMETERS (INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 6 8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW137, HCNW2601/11) 11.23 ± 0.15 (0.442 ± 0.006) 8 7 6 LAND PATTERN RECOMMENDATION 5 9.00 ± 0.15 (0.354 ± 0.006) 1 2 3 13.56 (0.534) 4 1.3 (0.051) 2.29 (0.09) 12.30 ± 0.30 (0.484 ± 0.012) 1.55 (0.061) MAX. 11.00 MAX. (0.433) 4.00 MAX. (0.158) 1.80 ± 0.15 (0.071 ± 0.006) 2.54 (0.100) BSC 0.75 ± 0.25 (0.030 ± 0.010) 1.00 ± 0.15 (0.039 ± 0.006) + 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) DIMENSIONS IN MILLIMETERS (INCHES). 7° NOM. LEAD COPLANARITY = 0.10 mm (0.004 INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. Reflow Soldering Profile The recommended reflow soldering conditions are per JEDEC Standard J-STD-020 (latest revision). Non-halide flux should be used. Regulatory Information The 6N137, HCPL-26xx/06xx/46xx, and HCNW137/26xx have been approved by the following organizations: UL Recognized under UL 1577, Component Recognition Program, File E55361. CSA Approved under CSA Component Acceptance Notice #5, File CA 88324. 7 IEC/EN/DIN EN 60747-5-5 Insulation and Safety Related Specifications 8-pin DIP Widebody (300 Mil) SO-8 (400 Mil) Parameter Symbol ValueValueValueUnit Conditions Minimum External L(101) 7.1 4.9 9.6 mm Air Gap (External Clearance) Measured from input terminals to output terminals, shortest distance through air. Minimum External L(102) 7.4 4.8 10.0 mm Tracking (External Creepage) Measured from input terminals to output terminals, shortest distance path along body. Minimum Internal 0.08 0.08 1.0 mm Plastic Gap (Internal Clearance) Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity. Minimum Internal NA NA 4.0 mm Tracking (Internal Creepage) Measured from input terminals to output terminals, along internal cavity. Tracking Resistance CTI (Comparative Tracking Index) V DIN IEC 112/VDE 0303 Part 1 Isolation Group IIIa IIIa IIIa Material Group (DIN VDE 0110, 1/89, Table 1) 200 200 200 Option 300 - surface mount classification is Class A in accordance with CECC 00802. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (HCPL-06xx Option 060 Only) Description Symbol Characteristic Unit Installation classification per DIN VDE 0110, Table 1 for rated mains voltage ≤ 150 Vrms I-IV for rated mains voltage ≤ 300 Vrms I-IV for rated mains voltage ≤ 600 Vrms I-III Climatic Classification 40/85/21 Pollution Degree (DIN VDE 0110/39) 2 Maximum Working Insulation Voltage VIORM 567V peak Input-to-Output Test Voltage, Method b* VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial Discharge < 5 pC VPR 1063V peak Input-to-Output Test Voltage, Method a* VIORM x 1.6 = VPR, Type and Sample Test, tm = 10 sec, Partial Discharge < 5 pC VPR 907V peak Highest Allowable Overvoltage (Transient Overvoltage, tini = 60 sec) Safety Limiting Values (Maximum values allowed in the event of a failure) Case Temperature Input Current** Output Power** Insulation Resistance at TS, VIO = 500 V VIOTM 6000V peak TS 150°C IS,INPUT 150mA PS,OUTPUT600mW RS≥109 Ω *Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed description. Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application. 8 IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (HCPL-26xx; 46xx; 6N13x Option 060 Only) Description Symbol Characteristic Unit Installation classification per DIN VDE 0110, Table 1 for rated mains voltage ≤ 300 Vrms I-IV for rated mains voltage ≤ 450 Vrms I-IV Climatic Classification 40/85/21 Pollution Degree (DIN VDE 0110/39) 2 Maximum Working Insulation Voltage VIORM 630V peak Input to Output Test Voltage, Method b* VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, VPR 1181V peak Partial Discharge < 5 pC Input to Output Test Voltage, Method a* VIORM x 1.6 = VPR, Type and sample test, tm = 10 sec, VPR 1008V peak Partial Discharge < 5 pC Highest Allowable Overvoltage (Transient Overvoltage, tini = 60 sec) VIOTM 6000V peak Safety Limiting Values (Maximum values allowed in the event of a failure) Case Temperature TS 175°C Input Current IS,INPUT 230mA Output Power PS,OUTPUT600mW Insulation Resistance at TS, VIO = 500 V RS≥109 Ω *Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed description. Note: Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in application. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (HCNW137/2601/2611 Only) Description Symbol Characteristic Unit Installation classification per DIN VDE 0110, Table 1 for rated mains voltage ≤ 600 Vrms I-IV for rated mains voltage ≤ 1000 Vrms I-III Climatic Classification 40/85/21 Pollution Degree (DIN VDE 0110/39) 2 Maximum Working Insulation Voltage VIORM 1414V peak Input to Output Test Voltage, Method b* VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, VPR 2651V peak Partial Discharge < 5 pC Input to Output Test Voltage, Method a* VIORM x 1.6 = VPR, Type and sample test, tm = 10 sec, VPR 2262V peak Partial Discharge < 5 pC Highest Allowable Overvoltage (Transient Overvoltage, tini = 60 sec) VIOTM 8000V peak Safety Limiting Values (Maximum values allowed in the event of a failure) Case Temperature TS 150°C Input Current IS,INPUT 400mA Output Power PS,OUTPUT700mW Insulation Resistance at TS, VIO = 500 V RS≥109 Ω *Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed description. Note: Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in application. 9 Absolute Maximum Ratings* (No Derating Required up to 85 °C) Parameter Symbol Storage Temperature Package** Min. Max. Units TS -55125 °C Operating Temperature TA -4085 °C † Average Forward Input Current I F Single 8-Pin DIP Single SO-8 Widebody 20 mA Dual 8-Pin DIP Dual SO-8 15 Reverse Input Voltage 8-Pin DIP, SO-8 5 VR Widebody V 1 3 PI Widebody 40mW Supply Voltage (1 Minute Maximum) VCC7 V Enable Input Current Single 8-Pin DIP Single SO-8 Widebody 2 1, 3 Input Power Dissipation Enable Input Voltage (Not to VE Exceed VCC by more than 500 mV) Note VCC + 0.5 V IE5mA Output Collector Current IO 50 mA1 Output Collector Voltage VO 7 Output Collector Power PO Dissipation Single 8-Pin DIP Single SO-8 Widebody Dual 8-Pin DIP Dual SO-8 85 V1 mW 60 1, 4 Lead Solder Temperature TLS 8-Pin DIP 260 °C for 10 sec., (Through Hole Parts Only) 1.6 mm below seating plane Widebody 260 °C for 10 sec., up to seating plane Solder Reflow Temperature SO-8 andSee Package Outline Profile (Surface Mount Parts Only) Option 300 Drawings section *JEDEC Registered Data (for 6N137 only). **Ratings apply to all devices except otherwise noted in the Package column. †0 °C to 70 °C on JEDEC Registration. Recommended Operating Conditions Parameter Symbol Min. Max. Units Input Current, Low Level IFL* 0250µA Input Current, High Level[1] IFH**5 15 mA Power Supply Voltage VCC 4.55.5 V Low Level Enable Voltage VEL 00.8 V High Level Enable Voltage† VEH2.0VCCV Operating Temperature TA -4085 °C Fan Out (at RL = 1 kΩ) N Output Pull-up Resistor RL † [1] 330 5 TTL Loads 4 k Ω *The off condition can also be guaranteed by ensuring that VFL ≤ 0.8 V. **The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be used for best performance and to permit at least a 20% LED degradation guardband. †For single channel products only. 10 Electrical Specifications Over recommended temperature (TA = -40 °C to +85 °C) unless otherwise specified. All Typicals at VCC = 5 V, TA = 25 °C. All enable test conditions apply to single channel products only. See note 5. Parameter Sym. Package Min. Typ. Max. Units Test Conditions Fig. Note High Level Output IOH* All 5.5 100 µAVCC = 5.5 V, VE = 2.0 V, 1 1, 6, Current VO = 5.5 V, IF = 250 mA19 Input Threshold ITH Single Channel 2.0 5.0 mA VCC = 5.5 V, VE = 2.0 V, CurrentWidebody VO = 0.6 V, Dual Channel 2.5 I (Sinking) = 13 mA OL 2, 3 19 Low Level Output VOL* 8-Pin DIP 0.35 0.6 V VCC = 5.5 V, VE = 2.0 V, Voltage SO-8 IF = 5 mA, Widebody0.4 IOL (Sinking) = 13 mA 2, 3, 4, 5 1, 19 High Level Supply ICCH Single Channel 7.0 10.0* mA VE = 0.5 V VCC = 5.5 V Current6.5 VE = VCC IF = 0 mA Dual Channel10 15 Both Channels 7 Low Level Supply ICCL Single Channel 9.0 13.0* mA VE = 0.5 V VCC = 5.5 V Current8.5 VE = VCC IF = 10 mA Dual Channel13 21 Both Channels 8 High Level Enable Current IEH Single Channel Low Level Enable Current IEL* High Level Enable Voltage VEH Low Level Enable Voltage VEL 0.8V Input Forward VF 8-Pin DIP Voltage SO-8 Widebody -0.7 -1.6 mA VCC = 5.5 V, VE = 2.0 V -0.9 -1.6 mAVCC = 5.5 V, VE = 0.5 V 2.0 9 V 19 1.4 1.5 1.75* V TA = 25 °C 1.3 1.80 1.251.641.85 TA = 25 °C 1.2 2.05 IF = 10 mA 6, 7 1 Input Reverse BVR* 8-Pin DIP 5 V IR = 10 μA1 Breakdown SO-8 VoltageWidebody3 IR = 100 μA, TA = 25°C Input Diode DVF / 8-Pin DIP-1.6 mV/°C IF = 10 mA Temperature ∆TASO-8 Coefficient Widebody -1.9 Input Capacitance CIN 8-Pin DIP SO-8 Widebody 60 pF 7 1 f = 1 MHz, VF = 0 V 1 70 *JEDEC registered data for the 6N137. The JEDEC Registration specifies 0 °C to +70 °C. Avago specifies -40 °C to +85 °C. 11 Switching Specifications (AC) Over Recommended Temperature (TA = -40 °C to +85 °C), VCC = 5 V, IF = 7.5 mA unless otherwise specified. All Typicals at TA = 25 °C, VCC = 5 V. Parameter Sym. Package** Min. Typ. Max. Units Test Conditions Propagation Delay tPLH 20 48 75* nsTA = 25°C RL = 350 Ω Time to High 100 CL = 15 pF Output Level Fig. Note 8, 9, 10 1, 10, 19 Propagation Delay tPHL 25 50 75* nsTA = 25°C Time to Low 100 Output Level 1, 11, 19 Pulse Width |tPHL - tPLH| Distortion 13, 19 8-Pin DIP 3.5 35 ns SO-8 Widebody 40 8, 9, 10, 11 Propagation Delay tPSK 40 ns Skew 12, 13, 19 Output Rise Time (10-90%) tr 24 ns 12 1, 19 Output Fall Time (90-10%) tf 10 ns 12 1, 19 Propagation Delay tELH Single Channel 30 ns RL = 350 Ω, Time of Enable CL = 15 pF, from VEH to VEL VEL = 0 V, VEH = 3 V Propagation Delay Time of Enable from VEL to VEH 13,14 14 tEHLSingle Channel20 ns15 *JEDEC registered data for the 6N137. **Ratings apply to all devices except otherwise noted in the Package column. Parameter Sym. Device Min. Typ. Units Test Conditions Fig. Note Logic High |CMH|6N137 1,00010,000V/µs |VCM| = 10 V Common HCPL-2630 5,000 10,000 |VCM| = 1 kV Mode HCPL-0600/0630 Transient HCNW137 Immunity HCPL-2601/2631 10,00015,000 |VCM| = 1 kV HCPL-0601/0631 HCNW2601 HCPL-2611/4661 15,00025,000 |VCM| = 1 kV HCPL-0611/0661 HCNW2611 VCC = 5 V, IF = 0 mA, 15 VO(MIN) = 2 V, RL = 350 Ω, TA = 25 °C 1, 16, 18, 19 Logic Low |CML| 6N137 1,00010,000V/µs |VCM| = 10 V Common HCPL-2630 5,000 10,000 |VCM| = 1 kV Mode HCPL-0600/0630 Transient HCNW137 Immunity HCPL-2601/2631 10,00015,000 |VCM| = 1 kV HCPL-0601/0631 HCNW2601 HCPL-2611/4661 15,00025,000 |VCM| = 1 kV HCPL-0611/0661 HCNW2611 VCC = 5 V, IF = 7.5 mA, 15 VO(MAX) = 0.8 V, RL = 350 Ω, TA = 25°C 1, 17, 18, 19 12 Package Characteristics All Typicals at TA = 25 °C. Parameter Sym. Package Min. Typ. Max. Units Test Conditions Fig. Note Input-Output II-O* Single 8-Pin DIP 1 µA 45% RH, t = 5 s, InsulationSingle SO-8 VI-O = 3 kV dc, TA = 25 °C 20, 21 Input-Output VISO Momentary With- stand Voltage** RH ≤ 50%, t = 1 min, TA = 25 °C 20, 21 20, 22 Input-Output RI-O 8-Pin DIP, SO-8 1012 Ω VI-O = 500 Vdc 12 Resistance Widebody 10 1013TA = 25 °C 1011TA = 100 °C 1, 20, 23 8-Pin DIP, SO-8 Widebody OPT 020† 3750 V rms 5000 5000 Input-Output CI-O 8-Pin DIP, SO-8 0.6 pF f = 1 MHz, TA = 25 °C 1, 20, CapacitanceWidebody 0.5 0.6 23 Input-Input II-I Dual Channel0.005 µA RH ≤ 45%, t = 5 s, Insulation VI-I = 500 V Leakage Current Resistance (Input-Input) RI-I Dual Channel 24 1011 Ω 24 Capacitance CI-I Dual 8-Pin DIP 0.03 (Input-Input)Dual SO-8 0.25 pF f = 1 MHz 24 *JEDEC registered data for the 6N137. The JEDEC Registration specifies 0 °C to 70 °C. Avago specifies -40 °C to 85 °C. **The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.” †For 6N137, HCPL-2601/2611/2630/2631/4661 only. Notes: 1. Each channel. 2. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not exceed 20 mA. 3. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current does not exceed 15 mA. 4. Derate linearly above 80 °C free-air temperature at a rate of 2.7 mW/°C for the SOIC-8 package. 5. Bypassing of the power supply line is required, with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 17. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm. 6. The JEDEC registration for the 6N137 specifies a maximum IOH of 250 µA. Avago guarantees a maximum IOH of 100 µA. 7. The JEDEC registration for the 6N137 specifies a maximum ICCH of 15 mA. Avago guarantees a maximum ICCH of 10 mA. 8. The JEDEC registration for the 6N137 specifies a maximum ICCL of 18 mA. Avago guarantees a maximum ICCL of 13 mA. 9. The JEDEC registration for the 6N137 specifies a maximum IEL of –2.0 mA. Avago guarantees a maximum IEL of -1.6 mA. 10. The tPLH propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the output pulse. 11. The tPHL propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse. 12. tPSK is equal to the worst case difference in tPHL and/or tPLH that will be seen between units at any given temperature and specified test conditions. 13. See application section titled “Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew” for more information. 14. The tELH enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the rising edge of the output pulse. 15. The tEHL enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the falling edge of the output pulse. 16. CMH is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., VO > 2.0 V). 17. CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., VO < 0.8 V). 18. For sinusoidal voltages, (|dVCM | / dt)max = πfCMVCM(p-p). 19. No external pull up is required for a high logic state on the enable input. If the VE pin is not used, tying VE to VCC will result in improved CMR performance. For single channel products only. 20. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together. 21. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 Vrms for one second (leakage detection current limit, II-O ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 607475-5 Insulation Characteristics Table, if applicable. 22. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V rms for one second (leakage detection current limit, II-O ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 607475-5 Insulation Characteristics Table, if applicable. 23. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel products only. 24. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only 13 * FOR SINGLE CHANNEL PRODUCTS ONLY 5 0 -60 -40 -20 0 20 40 60 4 4 RL = 350 Ω RL = 1 KΩ 2 RL = 4 KΩ 0 -60 -40 -20 0 20 40 60 80 100 TA – TEMPERATURE – °C Figure 3. Typical input threshold current vs. temperature 14 0 1 2 3 4 5 6 Figure 2. Typical output voltage vs. forward input current ITH – INPUT THRESHOLD CURRENT – mA ITH – INPUT THRESHOLD CURRENT – mA 8-PIN DIP, SO-8 VCC = 5.0 V VO = 0.6 V 1 RL = 4 KΩ 1 IF – FORWARD INPUT CURRENT – mA Figure 1. Typical high level output current vs. temperature 3 RL = 1 KΩ 2 TA – TEMPERATURE – °C 5 RL = 350 Ω 3 0 80 100 VCC = 5 V TA = 25 °C 5 6 5 WIDEBODY VCC = 5.0 V VO = 0.6 V 4 3 2 RL = 1 KΩ RL = 350 Ω 1 RL = 4 KΩ 0 -60 -40 -20 0 20 40 60 80 100 TA – TEMPERATURE – °C WIDEBODY 6 VO – OUTPUT VOLTAGE – V VCC = 5.5 V VO = 5.5 V VE = 2.0 V* IF = 250 µA 10 6 8-PIN DIP, SO-8 6 VO – OUTPUT VOLTAGE – V IOH – HIGH LEVEL OUTPUT CURRENT – µA 15 VCC = 5 V TA = 25 °C 5 4 RL = 350 Ω 3 RL = 1 KΩ 2 RL = 4 KΩ 1 0 0 1 2 3 4 5 6 IF – FORWARD INPUT CURRENT – mA * FOR SINGLE CHANNEL PRODUCTS ONLY 0.6 0.5 IO = 16 mA IO = 12.8 mA 0.4 0.3 0.2 IO = 9.6 mA IO = 6.4 mA 0.1 0 -60 -40 -20 0 20 40 60 80 100 WIDEBODY 0.8 VCC = 5.5 V VE = 2.0 V IF = 5.0 mA 0.7 0.6 0.5 IO = 16 mA IO = 12.8 mA 0.4 0.3 IO = 9.6 mA IO = 6.4 mA 0.2 0.1 0 -60 -40 -20 TA – TEMPERATURE – °C 0 20 40 60 80 100 8-PIN DIP, SO-8 IF - FORWARD CURRENT - mA IF – FORWARD CURRENT – mA 10 IF + VF – 1.0 0.1 0.01 0.001 1.1 1.2 1.3 1.4 1.5 1.6 100 10 WIDEBODY TA = 25 oC IF + VF - 1.0 0.1 0.01 0.001 1.2 1.3 1.4 1.5 1.6 1.7 VF - FORWARD VOLTAGE - V VF – FORWARD VOLTAGE – V 8-PIN DIP, SO-8 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 0.1 1 10 100 IF – PULSE INPUT CURRENT – mA dVF/dT – FORWARD VOLTAGE TEMPERATURE COEFFICIENT – mV/°C dVF/dT – FORWARD VOLTAGE TEMPERATURE COEFFICIENT – mV/°C Figure 6. Typical input diode forward characteristic -2.4 WIDEBODY -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 0.1 1 10 100 IF – PULSE INPUT CURRENT – mA Figure 7. Typical temperature coefficient of forward voltage vs. input current 15 VCC = 5.0 V VE = 2.0 V* VOL = 0.6 V * FOR SINGLE CHANNEL PRODUCTS ONLY 60 IF = 10-15 mA 50 IF = 5.0 mA 40 20 -60 -40 -20 0 20 40 60 80 100 Figure 5. Typical low level output current vs. temperature 1000 TA = 25 °C 100 70 TA – TEMPERATURE – °C TA – TEMPERATURE – °C Figure 4. Typical low level output voltage vs. temperature 1000 IOL – LOW LEVEL OUTPUT CURRENT – mA 0.7 8-PIN DIP, SO-8 VCC = 5.5 V VE = 2.0 V* IF = 5.0 mA VOL – LOW LEVEL OUTPUT VOLTAGE – V VOL – LOW LEVEL OUTPUT VOLTAGE – V 0.8 SINGLE CHANNEL PULSE GEN. ZO = 50 Ω t f = t r = 5 ns IF INPUT MONITORING NODE +5 V 1 VCC 8 2 7 3 6 4 5 0.1µF BYPASS GND DUAL CHANNEL IF OUTPUT VO MONITORING NODE VCC 8 2 7 3 6 RM GND IF = 7.50 mA INPUT IF IF = 3.75 mA t PHL t PLH OUTPUT VO 1.5 V Figure 8. Test circuit for tPHL and tPLH 80 tPLH , RL = 4 KΩ tPHL , RL = 350 Ω 1 KΩ 60 4 KΩ tPLH , RL = 1 KΩ 40 20 tPLH , RL = 350 Ω 0 -60 -40 -20 20 0 40 60 tP – PROPAGATION DELAY – ns tP – PROPAGATION DELAY – ns 105 VCC = 5.0 V IF = 7.5 mA 75 45 VCC = 5.0 V IF = 7.5 mA RL = 350Ω 0 RL = 1 kΩ 0 20 40 60 80 100 TA - TEMPERATURE - oC Figure 11. Typical pulse width distortion vs. temperature 16 tr, tf – RISE, FALL TIME – ns PWD - PULSE WIDTH DISTORTION - ns RL = 4 kΩ -10 -60 -40 -20 tPHL , RL = 350 Ω 1 KΩ 4 KΩ 5 9 7 11 13 15 Figure 10. Typical propagation delay vs. pulse input current 40 10 tPLH , RL = 1 KΩ IF – PULSE INPUT CURRENT – mA Figure 9. Typical propagation delay vs. temperature 20 tPLH , RL = 350 Ω 60 TA – TEMPERATURE – °C 30 tPLH , RL = 4 KΩ 90 30 80 100 VCC = 5.0 V TA = 25°C VCC = 5.0 V IF = 7.5 mA tRISE tFALL RL = 4 kΩ 300 290 60 RL = 1 kΩ 40 RL = 350 Ω 20 0 -60 -40 -20 0.1µF BYPASS CL* 4 *CL IS APPROXIMATELY 15 pF WHICH INCLUDES PROBE AND STRAY WIRING CAPACITANCE. 100 +5 V 1 RL INPUT MONITORING NODE RL *CL RM PULSE GEN. Z O = 50 Ω t f = t r = 5 ns RL = 350 Ω, 1 kΩ, 4 kΩ 0 20 40 60 80 100 TA – TEMPERATURE – °C Figure 12. Typical rise and fall time vs. temperature 5 OUTPUT VO MONITORING NODE PULSE GEN. Z O = 50 Ω t f = t r = 5 ns INPUT VE MONITORING NODE +5 V 7.5 mA IF 1 VCC 8 2 7 3 6 4 5 3.0 V 0.1 µF BYPASS RL 1.5 V t EHL OUTPUT VO MONITORING NODE *C L GND INPUT VE t ELH OUTPUT VO 1.5 V *C L IS APPROXIMATELY 15 pF WHICH INCLUDES PROBE AND STRAY WIRING CAPACITANCE. tE – ENABLE PROPAGATION DELAY – ns Figure 13. Test circuit for tEHL and tELH 120 VCC = 5.0 V VEH = 3.0 V VEL = 0 V 90 IF = 7.5 mA tELH, RL = 4 kΩ 60 tELH, RL = 1 kΩ 30 tELH, RL = 350 Ω tEHL, RL = 350 Ω, 1 kΩ, 4 kΩ 0 -60 -40 -20 0 20 40 60 80 100 TA – TEMPERATURE – °C Figure 14. Typical enable propagation delay vs. temperature IF SINGLE CHANNEL IF 1 B A VFF 2 7 3 6 4 GND DUAL CHANNEL B VCC 8 +5 V 0.1 µF BYPASS 1 A RL 5 2 7 3 6 4 VCM GND VCM VCM VO VO + – PULSE GENERATOR Z O = 50 Ω VCM (PEAK) 0V 5V +5 V RL VFF OUTPUT VO MONITORING NODE + – PULSE GENERATOR Z O = 50 Ω SWITCH AT A: IF = 0 mA VO (MIN.) SWITCH AT B: IF = 7.5 mA VO (MAX.) 0.5 V Figure 15. Test circuit for common mode transient immunity and typical waveforms 17 VCC 8 CMH CML 5 0.1 µF BYPASS OUTPUT VO MONITORING NODE PS (mW) 700 IS (mA) 600 500 400 300 200 100 0 0 25 50 75 100 125 150 175 200 TS – CASE TEMPERATURE – °C OUTPUT POWER – PS, INPUT CURRENT – IS OUTPUT POWER – PS, INPUT CURRENT – IS HCPL-2611 OPTION 060 800 HCNWXXXX PS (mW) IS (mA) 800 700 600 500 400 300 200 100 0 0 25 50 75 100 125 150 175 TS – CASE TEMPERATURE – °C Figure 16. Thermal derating curve, dependence of safety limiting value with case temperature per IEC/EN/DIN EN 60747-5-5 GND BUS (BACK) VCC BUS (FRONT) NC ENABLE 0.1µF NC OUTPUT 10 mm MAX. (SEE NOTE 5) Figure 17. Recommended printed circuit board layout 18 SINGLE CHANNEL DEVICE ILLUSTRATED. SINGLE CHANNEL DEVICE VCC1 5V 5V 8 390 Ω 470 Ω IF + D1* 2 6 VF – GND 1 0.1 µF BYPASS 3 5 SHIELD 1 GND 2 VE 7 2 *DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT. DUAL CHANNEL DEVICE CHANNEL 1 SHOWN VCC1 5 V D1* IF 1 7 0.1 µF BYPASS VF – GND 1 VCC2 390 Ω + 2 5 GND 2 SHIELD 1 Figure 18. Recommended TTL/LSTTL to TTL/LSTTL interface circuit 19 5V 8 470 Ω VCC2 2 Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew Propagation delay is a figure of merit which describes how quickly a logic signal propagates through a system. The propagation delay from low to high (tPLH) is the amount of time required for an input signal to propagate to the output, causing the output to change from low to high. Similarly, the propagation delay from high to low (tPHL) is the amount of time required for the input signal to propagate to the output causing the output to change from high to low (see Figure 8). Pulse-width distortion (PWD) results when tPLH and tPHL differ in value. PWD is defined as the difference between tPLH and tPHL and often determines the maximum data rate capability of a transmission system. PWD can be expressed in percent by dividing the PWD (in ns) by the minimum pulse width (in ns) being transmitted. Typically, PWD on the order of 20-30% of the minimum pulse width is tolerable; the exact figure depends on the particular application (RS232, RS422, T-l, etc.). Propagation delay skew, tPSK, is an important parameter to consider in parallel data applications where synchroniza tion of signals on parallel data lines is a concern. If the parallel data is being sent through a group of optocouplers, differences in propagation delays will cause the data to arrive at the outputs of the optocouplers at different times. If this difference in propagation delays is large enough, it will determine the maximum rate at which parallel data can be sent through the optocouplers. Propagation delay skew is defined as the difference between the minimum and maximum propagation delays, either tPLH or tPHL, for any given group of optocouplers which are operating under the same conditions (i.e., the same drive current, supply voltage, output load, and operating temperature). As illustrated in Figure 19, if the in- puts of a group of optocouplers are switched either ON or OFF at the same time, tPSK is the difference between the shortest propagation delay, either tPLH or tPHL, and the longest propagation delay, either tPLH or tPHL. As mentioned earlier, tPSK can determine the maximum parallel data transmission rate. Figure 20 is the timing diagram of a typical parallel data application with both the clock and the data lines being sent through optocouplers. The figure shows data and clock signals at the inputs and outputs of the optocouplers. To obtain the maximum data transmission rate, both edges of the clock signal are being used to clock the data; if only one edge were used, the clock signal would need to be twice as fast. Propagation delay skew represents the uncertainty of where an edge might be after being sent through an optocoupler. Figure 20 shows that there will be uncertainty in both the data and the clock lines. It is important that these two areas of uncertainty not overlap, otherwise the clock signal might arrive before all of the data outputs have settled, or some of the data outputs may start to change before the clock signal has arrived. From these considerations, the absolute minimum pulse width that can be sent through optocouplers in a parallel application is twice tPSK. A cautious design should use a slightly longer pulse width to ensure that any additional uncertainty in the rest of the circuit does not cause a problem. The tPSK specified optocouplers offer the advantages of guaranteed specifications for propagation delays, pulsewidth distortion and propagation delay skew over the recommended temperature, input current, and power supply ranges. DATA IF 50% INPUTS CLOCK 1.5 V VO IF VO 50% DATA OUTPUTS 1.5 V t PSK t PSK CLOCK t PSK Figure 19. Illustration of propagation delay skew - tPSK 20 Figure 20. Parallel data transmission example For product information and a complete list of distributors, please go to our website: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes AV02-0170EN AV02-0940EN - April 16, 2013