ATMEL AT29LV040A-15JI

Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Single Voltage, Range 3V to 3.6V Supply
3-volt Only Read and Write Operation
Software Protected Programming
Fast Read Access Time – 150 ns
Low Power Dissipation
– 15 mA Active Current
– 40 µA CMOS Standby Current
Sector Program Operation
– Single Cycle Reprogram (Erase and Program)
– 2048 Sectors (256 Bytes/Sector)
– Internal Address and Data Latches for 256 Bytes
Two 16K Bytes Boot Blocks with Lockout
Fast Sector Program Cycle Time – 20 ms Max
Internal Program Control and Timer
DATA Polling for End of Program Detection
Typical Endurance > 10,000 Cycles
CMOS and TTL Compatible Inputs and Outputs
Commercial and Industrial Temperature Ranges
Green (Pb/Halide-free) Packaging Option
4-megabit
(512K x 8)
3-volt Only
256-byte Sector
Flash Memory
AT29LV040A
1. Description
The AT29LV040A is a 3-volt only in-system Flash Programmable and Erasable Read
Only Memory (PEROM). Its 4 megabits of memory is organized as 524,288 words by
8 bits. Manufactured with Atmel’s advanced nonvolatile CMOS EEPROM technology,
the device offers access times to 150 ns, and a low 54 mW power dissipation. When
the device is deselected, the CMOS standby current is less than 40 µA. The device
endurance is such that any sector can typically be written to in excess of 10,000
times. The programming algorithm is compatible with other devices in Atmel’s 3-volt
only Flash memories.
To allow for simple in-system reprogrammability, the AT29LV040A does not require
high input voltages for programming. Three-volt-only commands determine the operation of the device. Reading data out of the device is similar to reading from an
EPROM. Reprogramming the AT29LV040A is performed on a sector basis; 256 bytes
of data are loaded into the device and then simultaneously programmed.
During a reprogram cycle, the address locations and 256 bytes of data are captured at
microprocessor speed and internally latched, freeing the address and data bus for
other operations. Following the initiation of a program cycle, the device will automatically erase the sector and then program the latched data using an internal control
timer. The end of a program cycle can be detected by DATA polling of I/O7. Once the
end of a program cycle has been detected, a new access for a read or program can
begin.
0334G–FLASH–2/05
2. Pin Configurations
Function
A0 - A18
Addresses
CE
Chip Enable
OE
Output Enable
WE
Write Enable
I/O0 - I/O7
Data Inputs/Outputs
NC
No Connect
32-lead PLCC Top View
29
28
27
26
25
24
23
22
21
14
15
16
17
18
19
20
5
6
7
8
9
10
11
12
13
A14
A13
A8
A9
A11
OE
A10
CE
I/O7
I/O1
I/O2
GND
I/O3
I/O4
I/O5
I/O6
A7
A6
A5
A4
A3
A2
A1
A0
I/O0
4
3
2
1
32
31
30
A12
A15
A16
A18
VCC
WE
A17
2.1
Pin Name
2.2
32-lead TSOP (Type 1) Top View
A11
A9
A8
A13
A14
A17
WE
VCC
A18
A16
A15
A12
A7
A6
A5
A4
2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
OE
A10
CE
I/O7
I/O6
I/O5
I/O4
I/O3
GND
I/O2
I/O1
I/O0
A0
A1
A2
A3
AT29LV040A
0334G–FLASH–2/05
AT29LV040A
3. Block Diagram
4. Device Operation
4.1
Read
The AT29LV040A is accessed like an EPROM. When CE and OE are low and WE is high, the
data stored at the memory location determined by the address pins is asserted on the outputs.
The outputs are put in the high impedance state whenever CE or OE is high. This dual-line control gives designers flexibility in preventing bus contention.
4.2
Software Data Protection Programming
The AT29LV040A has 2048 individual sectors, each 256 bytes. Using the software data protection feature, byte loads are used to enter the 256 bytes of a sector to be programmed. The
AT29LV040A can only be programmed or reprogrammed using the software data protection feature. The device is programmed on a sector basis. If a byte of data within the sector is to be
changed, data for the entire 256-byte sector must be loaded into the device. The AT29LV040A
automatically does a sector erase prior to loading the data into the sector. An erase command is
not required.
Software data protection protects the device from inadvertent programming. A series of three
program commands to specific addresses with specific data must be presented to the device
before programming may occur. The same three program commands must begin each program
operation. All software program commands must obey the sector program timing specifications.
Power transitions will not reset the software data protection feature, however the software feature will guard against inadvertent program cycles during power transitions.
Any attempt to write to the device without the 3-byte command sequence will start the internal
write timers. No data will be written to the device; however, for the duration of tWC, a read operation will effectively be a polling operation.
After the software data protection’s 3-byte command code is given, a byte load is performed by
applying a low pulse on the WE or CE input with CE or WE low (respectively) and OE high. The
address is latched on the falling edge of CE or WE, whichever occurs last. The data is latched by
the first rising edge of CE or WE.
The 256 bytes of data must be loaded into each sector. Any byte that is not loaded during the
programming of its sector will be erased to read FFH. Once the bytes of a sector are loaded into
the device, they are simultaneously programmed during the internal programming period. After
3
0334G–FLASH–2/05
the first data byte has been loaded into the device, successive bytes are entered in the same
manner. Each new byte to be programmed must have its high-to-low transition on WE (or CE)
within 150 µs of the low-to-high transition of WE (or CE) of the preceding byte. If a high-to-low
transition is not detected within 150 µs of the last low-to-high transition, the load period will end
and the internal programming period will start. A8 to A18 specify the sector address. The sector
address must be valid during each high-to-low transition of WE (or CE). A0 to A7 specify the
byte address within the sector. The bytes may be loaded in any order; sequential loading is not
required. Once a programming operation has been initiated, and for the duration of tWC, a read
operation will effectively be a polling operation.
4.3
Hardware Data Protection
Hardware features protect against inadvertent programs to the AT29LV040A in the following
ways: (a) VCC sense – if VCC is below 1.8V (typical), the program function is inhibited; (b) VCC
power on delay – once VCC has reached the VCC sense level, the device will automatically time
out 10 ms (typical) before programming; (c) Program inhibit – holding any one of OE low, CE
high or WE high inhibits program cycles; and (d) Noise filter – pulses of less than 15 ns (typical)
on the WE or CE inputs will not initiate a program cycle.
4.4
Input Levels
While operating with a 3.3V ±10% power supply, the address inputs and control inputs (OE, CE
and WE) may be driven from 0 to 5.5V without adversely affecting the operation of the device.
The I/O lines can only be driven from 0 to 3.6V.
4.5
Product Identification
The product identification mode identifies the device and manufacturer as Atmel. It may be
accessed by hardware or software operation. The hardware operation mode can be used by an
external programmer to identify the correct programming algorithm for the Atmel product. In
addition, users may wish to use the software product identification mode to identify the part (i.e.,
using the device code), and have the system software use the appropriate sector size for program operations. In this manner, the user can have a common board design for 256K to 4megabit densities and, with each density’s sector size in a memory map, have the system software apply the appropriate sector size.
For details, see Operating Modes (for hardware operation) or Software Product Identification.
The manufacturer and device code is the same for both modes.
4.6
DATA Polling
The AT29LV040A features DATA polling to indicate the end of a program cycle. During a program cycle an attempted read of the last byte loaded will result in the complement of the loaded
data on I/O7. Once the program cycle has been completed, true data is valid on all outputs and
the next cycle may begin. DATA polling may begin at any time during the program cycle.
4.7
Toggle Bit
In addition to DATA polling the AT29LV040A provides another method for determining the end
of a program or erase cycle. During a program or erase operation, successive attempts to read
data from the device will result in I/O6 toggling between one and zero. Once the program cycle
has completed, I/O6 will stop toggling and valid data will be read. Examining the toggle bit may
begin at any time during a program cycle.
4
AT29LV040A
0334G–FLASH–2/05
AT29LV040A
4.8
Optional Chip Erase Mode
The entire device can be erased by using a 6-byte software code. Please see Software Chip
Erase application note for details.
4.9
Boot Block Programming Lockout
The AT29LV040A has two designated memory blocks that have a programming lockout feature.
This feature prevents programming of data in the designated block once the feature has been
enabled. Each of these blocks consists of 16K bytes; the programming lockout feature can be
set independently for either block. While the lockout feature does not have to be activated, it can
be activated for either or both blocks.
These two 16K memory sections are referred to as boot blocks. Secure code which will bring up
a system can be contained in a boot block. The AT29LV040A blocks are located in the first 16K
bytes of memory and the last 16K bytes of memory. The boot block programming lockout feature
can therefore support systems that boot from the lower addresses of memory or the higher
addresses. Once the programming lockout feature has been activated, the data in that block can
no longer be erased or programmed; data in other memory locations can still be changed
through the regular programming methods. To activate the lockout feature, a series of seven
program commands to specific addresses with specific data must be performed. Please see
Boot Block Lockout Feature Enable Algorithm.
If the boot block lockout feature has been activated on either block, the chip erase function will
be disabled.
4.9.1
Boot Block Lockout Detection
A software method is available to determine whether programming of either boot block section is
locked out. See Software Product Identification Entry and Exit sections. When the device is in
the software product identification mode, a read from location 00002H will show if programming
the lower address boot block is locked out while reading location.
7FFF2H will do so for the upper boot block. If the data is FE, the corresponding block can be
programmed; if the data is FF, the program lockout feature has been activated and the corresponding block cannot be programmed. The software product identification exit mode should be
used to return to standard operation.
5. Absolute Maximum Ratings*
Temperature Under Bias................................ -55°C to +125°C
Storage Temperature ..................................... -65°C to +150°C
All Input Voltages (Including NC Pins)
with Respect to Ground ...................................-0.6V to +6.25V
All Output Voltages
with Respect to Ground .............................-0.6V to VCC + 0.6V
*NOTICE:
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
Voltage on A9 (Including NC Pins)
with Respect to Ground ...................................-0.6V to +13.5V
5
0334G–FLASH–2/05
6. DC and AC Operating Range
AT29LV040A-15
AT29LV040A-20
AT29LV040A-25
0°C - 70°C
0°C - 70°C
0°C - 70°C
-40°C - 85°C
-40°C - 85°C
-40°C - 85°C
3.3V ± 0.3V
3.3V ± 0.3V
3.3V ± 0.3V
Com.
Operating
Temperature (Case)
Ind.
(1)
VCC Power Supply
Notes:
1. After power is applied and VCC is at the minimum specified datasheet value, the system should wait 20 ms before an operational mode is started.
2.
Not recommended for New Designs.
7. Operating Modes
Mode
CE
OE
WE
Ai
I/O
VIL
VIL
VIH
Ai
DOUT
VIL
VIH
VIL
Ai
DIN
VIH
X(1)
X
X
High Z
Program Inhibit
X
X
VIH
Program Inhibit
X
VIL
X
Output Disable
X
VIH
X
VIL
VIL
VIH
Read
Program
(2)
Standby/Write Inhibit
High Z
Product Identification
Hardware
A1 - A18 = VIL, A9 = VH(3), A0 = VIL
Manufacturer Code(4)
A1 - A18 = VIL, A9 = VH(3), A0 = VIH
Device Code(4)
A0 = VI
Manufacturer Code(4)
A0 = VIH
Device Code(4)
Software(5)
Notes:
1. X can be VIL or VIH.
2. Refer to AC Programming Waveforms.
3. VH = 12.0V ± 0.5V.
4. Manufacturer Code: 1F, Device Code: C4.
5. See details under Software Product Identification Entry/Exit.
8. DC Characteristics
Symbol
Parameter
Condition
ILI
Input Load Current
ILO
Max
Units
VIN = 0V to VCC
1
µA
Output Leakage Current
VI/O = 0V to VCC
1
µA
Com.
40
ISB1
VCC Standby Current CMOS
CE = VCC - 0.3V to VCC
µA
Ind.
50
µA
ISB2
VCC Standby Current TTL
CE = 2.0V to VCC
1
mA
ICC
VCC Active Current
f = 5 MHz; IOUT = 0 mA; VCC = 3.6V
15
mA
VIL
Input Low Voltage
0.6
V
VIH
Input High Voltage
VOL
Output Low Voltage
IOL = 1.6 mA; VCC = 3.0V
VOH
Output High Voltage
IOH = -100 µA; VCC = 3.0V
6
Min
2.0
V
.45
2.4
V
V
AT29LV040A
0334G–FLASH–2/05
AT29LV040A
9. AC Read Characteristics
AT29LV040A-15
AT29LV040A-20
AT29LV040A-25
Min
Min
Min
Symbol
Parameter
tACC
Address to Output Delay
150
CE to Output Delay
150
tCE
(1)
Max
Max
Max
Units
200
250
ns
200
250
ns
tOE (2)
OE to Output Delay
0
50
0
100
0
120
ns
tDF(3)(4)
CE or OE to Output Float
0
30
0
50
0
60
ns
tOH
Output Hold from OE, CE or Address,
Whichever Occurred First
0
Note:
0
0
ns
Not recommended for New Designs.
10. AC Read Waveforms(1)(2)(3)(4)
Notes:
1. CE may be delayed up to tACC - tCE after the address transition without impact on tACC.
2. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE or by tACC - tOE after an address change
without impact on tACC.
3. tDF is specified from OE or CE whichever occurs first (CL = 5 pF).
4. This parameter is characterized and is not 100% tested.
7
0334G–FLASH–2/05
11. Input Test Waveforms and Measurement Level
tR, tF < 5 ns
12. Output Test Load
13. Pin Capacitance
f = 1 MHz, T = 25°C(1)
Symbol
Typ
Max
Units
Conditions
CIN
4
6
pF
VIN = 0V
COUT
8
12
pF
VOUT = 0V
Note:
8
1. These parameters are characterized and not 100% tested.
AT29LV040A
0334G–FLASH–2/05
AT29LV040A
14. AC Byte Load Characteristics
Symbol
Parameter
Min
Max
Units
tAS, tOES
Address, OE Set-up Time
10
ns
tAH
Address Hold Time
100
ns
tCS
Chip Select Set-up Time
0
ns
tCH
Chip Select Hold Time
0
ns
tWP
Write Pulse Width (WE or CE)
200
ns
tDS
Data Set-up Time
100
ns
tDH, tOEH
Data, OE Hold Time
10
ns
tWPH
Write Pulse Width High
200
ns
15. AC Byte Load Waveforms(1)(2)
15.1
WE Controlled
15.2
CE Controlled
Notes:
1. The 3-byte address and data commands shown on the next page must be applied prior to byte loads.
2. A complete sector (256 bytes) should be loaded using these waveforms shown in these byte load waveform diagrams.
9
0334G–FLASH–2/05
16. Program Cycle Characteristics
Symbol
Parameter
Min
Max
Units
tWC
Write Cycle Time
20
ms
tAS
Address Set-up Time
10
ns
tAH
Address Hold Time
100
ns
tDS
Data Set-up Time
100
ns
tDH
Data Hold Time
10
ns
tWP
Write Pulse Width
200
ns
tBLC
Byte Load Cycle Time
tWPH
Write Pulse Width High
150
200
µs
ns
17. Software Protected Program Waveform
Notes:
1. OE must be high when WE and CE are both low.
2. A8 through A18 must specify the sector address during each high-to-low transition of WE (or CE) after the software code
has been entered.
3. All words that are not loaded within the sector being programmed will be indeterminate.
18. Programming Algorithm(1)
LOAD DATA AA
TO
ADDRESS 5555
LOAD DATA 55
TO
ADDRESS 2AAA
10
Notes:
1. Data Format: I/O7 - I/O0 (Hex);
Address Format: A14 - A0 (Hex).
2. Data Protect state will be re-activated at
end of program cycle.
LOAD DATA A0
TO
ADDRESS 5555
WRITES ENABLED
LOAD DATA
TO
SECTOR (256 BYTES)(3)
ENTER DATA
PROTECT STATE(2)
3. 256 bytes of data MUST BE loaded.
AT29LV040A
0334G–FLASH–2/05
AT29LV040A
19. Data Polling Characteristics(1)
Symbol
Parameter
Min
tDH
Data Hold Time
10
ns
tOEH
OE Hold Time
10
ns
Max
(2)
tOE
OE to Output Delay
tWR
Write Recovery Time
Notes:
Typ
Units
ns
0
ns
1. These parameters are characterized and not 100% tested.
2. See tOE spec in AC Read Characteristics.
20. Data Polling Waveforms
21. Toggle Bit Characteristics(1)
Symbol
Parameter
Min
tDH
Data Hold Time
10
ns
tOEH
OE Hold Time
10
ns
tOE
OE to Output Delay(2)
tOEHP
OE High Pulse
tWR
Notes:
Write Recovery Time
Typ
Max
Units
ns
150
ns
0
ns
1. These parameters are characterized and not 100% tested.
2. See tOE spec in AC Read Characteristics.
22. Toggling Bit Waveforms(1)(3)
Notes:
1. Toggling either OE or CE or both OE and CE will operate toggle bit.
2. Beginning and ending state of I/O6 will vary.
3. Any address location may be used by the address should not vary.
11
0334G–FLASH–2/05
AT29LV040A
23. Software Product Identification
Entry(1)
25. Boot Block Lockout
Feature Enable Algorithm(1)
LOAD DATA AA
TO
ADDRESS 5555
LOAD DATA AA
TO
ADDRESS 5555
LOAD DATA 55
TO
ADDRESS 2AAA
LOAD DATA 55
TO
ADDRESS 2AAA
LOAD DATA 90
TO
ADDRESS 5555
LOAD DATA 80
TO
ADDRESS 5555
PAUSE 20 mS
LOAD DATA AA
TO
ADDRESS 5555
ENTER PRODUCT
IDENTIFICATION
MODE(2)(3)(5)
LOAD DATA 55
TO
ADDRESS 2AAA
24. Software Product Identification
Exit(1)
LOAD DATA AA
TO
ADDRESS 5555
LOAD DATA 40
TO
ADDRESS 5555
LOAD DATA 55
TO
ADDRESS 2AAA
LOAD DATA F0
TO
ADDRESS 5555
Notes:
PAUSE 20 mS
Notes:
EXIT PRODUCT
IDENTIFICATION
MODE(4)
LOAD DATA 00
TO
ADDRESS 00000H(2)
LOAD DATA FF
TO
ADDRESS FFFFFH(3)
PAUSE 20 mS
PAUSE 20 mS
1. Data Format: I/O7 - I/O0 (Hex);
Address Format: A14 - A0 (Hex).
2. Lockout feature set on lower address boot block.
3. Lockout feature set on higher address boot block.
1. Data Format: I/O7 - I/O0 (Hex);
Address Format: A14 - A0 (Hex).
2. A1 - A18 = VIL.
Manufacturer Code is read for A0 = VIL;
Device Code is read for A0 = VIH.
3. The device does not remain in identification mode if
powered down.
4. The device returns to standard operation mode.
5. Manufacturer Code is 1F. The Device Code is C4.
12
0334G–FLASH–2/05
AT29LV040A
26. Ordering Information
26.1
Standard Package
tACC
(ns)
ICC (mA)
Active
Standby
Ordering Code
Package
15
0.04
AT29LV040A-15JC
AT29LV040A-15TC
32J
32T
Commercial
(0° to 70°C)
15
0.05
AT29LV040A-15JI
AT29LV040A-15TI
32J
32T
Industrial
(-40° to 85°C)
15
0.04
AT29LV040A-20JC
AT29LV040A-20TC
32J
32T
Commercial
(0° to 70°C)
15
0.05
AT29LV040A-20JI
AT29LV040A-20TI
32J
32T
Industrial
(-40° to 85°C)
15
0.04
AT29LV040A-25JC
AT29LV040A-25TC
32J
32T
Commercial
(0° to 70°C)
15
0.05
AT29LV040A-25JI
AT29LV040A-25TI
32J
32T
Industrial
(-40° to 85°C)
150
200
250
Note:
26.2
Operation Range
Not recommended for New Designs.
Green Package Option (Pb/Halide-free)
ICC (mA)
tACC
(ns)
Active
Standby
150
15
0.05
Ordering Code
Package
AT29LV040A-15JU
AT29LV040A-15TU
32J
32T
Operation Range
Industrial
(-40° to 85°C)
Package Type
32J
32-lead, Plastic J-leaded Chip Carrier (PLCC)
32T
32-lead, Thin Small Outline Package (TSOP)
13
0334G–FLASH–2/05
27. Packaging Information
27.1
32J – PLCC
1.14(0.045) X 45˚
PIN NO. 1
IDENTIFIER
1.14(0.045) X 45˚
0.318(0.0125)
0.191(0.0075)
E1
E2
B1
E
B
e
A2
D1
A1
D
A
0.51(0.020)MAX
45˚ MAX (3X)
COMMON DIMENSIONS
(Unit of Measure = mm)
D2
Notes:
1. This package conforms to JEDEC reference MS-016, Variation AE.
2. Dimensions D1 and E1 do not include mold protrusion.
Allowable protrusion is .010"(0.254 mm) per side. Dimension D1
and E1 include mold mismatch and are measured at the extreme
material condition at the upper or lower parting line.
3. Lead coplanarity is 0.004" (0.102 mm) maximum.
SYMBOL
MIN
NOM
MAX
A
3.175
–
3.556
A1
1.524
–
2.413
A2
0.381
–
–
D
12.319
–
12.573
D1
11.354
–
11.506
D2
9.906
–
10.922
E
14.859
–
15.113
E1
13.894
–
14.046
E2
12.471
–
13.487
B
0.660
–
0.813
B1
0.330
–
0.533
e
NOTE
Note 2
Note 2
1.270 TYP
10/04/01
R
14
2325 Orchard Parkway
San Jose, CA 95131
TITLE
32J, 32-lead, Plastic J-leaded Chip Carrier (PLCC)
DRAWING NO.
REV.
32J
B
AT29LV040A
0334G–FLASH–2/05
AT29LV040A
27.2
32T – TSOP
PIN 1
0º ~ 8º
c
Pin 1 Identifier
D1 D
L
b
e
L1
A2
E
A
GAGE PLANE
SEATING PLANE
COMMON DIMENSIONS
(Unit of Measure = mm)
A1
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
19.80
20.00
20.20
D1
18.30
18.40
18.50
Note 2
E
7.90
8.00
8.10
Note 2
L
0.50
0.60
0.70
SYMBOL
Notes:
1. This package conforms to JEDEC reference MO-142, Variation BD.
2. Dimensions D1 and E do not include mold protrusion. Allowable
protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side.
3. Lead coplanarity is 0.10 mm maximum.
L1
0.25 BASIC
b
0.17
0.22
0.27
c
0.10
–
0.21
e
NOTE
0.50 BASIC
10/18/01
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
32T, 32-lead (8 x 20 mm Package) Plastic Thin Small Outline
Package, Type I (TSOP)
DRAWING NO.
REV.
32T
B
15
0334G–FLASH–2/05
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, and others, are registered trademarks, and
Everywhere You AreSM and others are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be
trademarks of others.
Printed on recycled paper.
0334G–FLASH–2/05