74AUP1G00 SINGLE 2 INPUT POSITIVE NAND GATE Description Pin Assignments The Advanced Ultra Low Power (AUP) CMOS logic family is designed for low power and extended battery life in portable applications. The 74AUP1G00 is a single two-input positive NAND gate with a standard push-pull output designed for operation over a power supply range of 0.8V to 3.6V. The device is fully specified for partial power down applications using IOFF. The IOFF circuitry disables the output, preventing damaging current backflow when the device is powered down. The gate performs the positive Boolean function: Y = A • B or Y = A + B Applications Features • • • • • • Advanced Ultra Low Power (AUP) CMOS • Low Dynamic Power Consumption CPD = 6pF (Typical at 3.6V) • Schmitt Trigger Action at all inputs makes the circuit tolerant for Supply Voltage Range from 0.8V to 3.6V ±4 mA Output Drive at 3.0V Low Static Power Consumption ICC < 0.9µA Suited for Battery and Low Power Needs Wide array of products such as: Tablets, E-readers Cell Phones, Personal Navigation / GPS MP3 Players ,Cameras, Video Recorders PCs, Ultrabooks, Notebooks, Netbooks Computer Peripherals, Hard Drives, SSDs, CD/DVD ROMs TVs, DVDs, DVRs, Set-Top Boxes slower input rise and fall time. The hysteresis is typically 250mV at VCC = 3.0V. • IOFF Supports Partial-Power-Down Mode Operation • ESD Protection Exceeds JESD 22 2000-V Human Body Model (A114) Exceeds 1000-V Charged Device Model (C101) • • • • Latch-Up Exceeds 100mA per JESD 78, Class I Leadless Packages Named per JESD30E Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) Halogen and Antimony Free. “Green” Device (Note 3) Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant. 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated’s definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green” products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds. 74AUP1G00 Document number: DS35145 Rev 6 - 2 1 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 Ordering Information 74AUP1G Logic Device 00 : 2-Input NAND Gate Package Code Package (Notes 4 & 5) 74AUP1G00SE-7 SE SOT353 74AUP1G00FS3-7 FS3 X2-DFN0808-4 74AUP1G00FW5-7 FW5 X1-DFN1010-6 74AUP1G00FW4-7 FW4 X2-DFN1010-6 74AUP1G00FX4-7 FX4 X2-DFN1409-6 Chip Scale Alternative 74AUP1G00FZ4-7 FZ4 X2-DFN1410-6 Notes: XXX -7 Function 74 : Logic Prefix AUP : 0.8 to 3.6 V Logic Family 1G : One Gate Device 00 Package SE : SOT353 FS3 : X2-DFN0808-4 FW5 : X1-DFN1010-6 FW4 :X2-DFN1010-6 FX4 : X2- DFN1409-6 FZ4 : X2- DFN1410-6 Package Size 2.0mm x 2.0mm x 1.1mm 0.65 mm lead pitch 0.8mm x 0.8mm x 0.35mm 0.5 mm pad pitch (diamond) 1.0mm x 1.0mm x 0.5mm 0.35 mm pad pitch 1.0mm x 1.0mm x 0.4mm 0.35 mm pad pitch 1.4mm x 0.9mm x 0.4mm 0.5 mm pad pitch 1.4mm x 1.0mm x 0.4mm 0.5 mm pad pitch Packing -7 : 7” Tape & Reel 7” Tape and Reel Quantity Part Number Suffix 3,000/Tape & Reel -7 5,000/Tape & Reel -7 5,000/Tape & Reel -7 5,000/Tape & Reel -7 5,000/Tape & Reel -7 5,000/Tape & Reel -7 4. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf. 5. The taping orientation is located on our website at http://www.diodes.com/datasheets/ap02007.pdf. Logic Diagram Pin Descriptions Pin Name Function A B GND Y Data Input Data Input Ground Data Output VCC Supply Voltage Function Table Inputs A L L H H B L H L H 74AUP1G00 Document number: DS35145 Rev 6 - 2 Output Y H H H L 2 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 Absolute Maximum Ratings (Notes 6 & 7) (@TA = +25°C, unless otherwise specified.) Symbol ESD HBM ESD CDM Description Human Body Model ESD Protection Charged Device Model ESD Protection Rating 2 1 Unit kV kV Supply Voltage Range -0.5 to +4.6 V VI Input Voltage Range -0.5 to +4.6 V Vo Voltage Applied to Output in High or Low State -0.5 to VCC +0.5 V IIK Input Clamp Current VI < 0 50 mA IOK Output Clamp Current (VO < 0 ) 50 mA VCC IO Continuous Output Current (VO = 0 to VCC) ±20 mA ICC Continuous Current Through VCC 50 mA IGND Continuous Current Through GND -50 mA Operating Junction Temperature -40 to +150 °C Storage Temperature -65 to +150 °C TJ TSTG Notes: 6. Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values. 7. Forcing the maximum allowed voltage could cause a condition exceeding the maximum current or conversely forcing the maximum current could cause a condition exceeding the maximum voltage. The ratings of both current and voltage must be maintained within the controlled range. Recommended Operating Conditions (Note 8) (@TA = +25°C, unless otherwise specified.) Symbol VCC Parameter Operating Voltage Max Unit 0.8 3.6 V V VI Input Voltage 0 3.6 VO Output Voltage 0 VCC V VCC = 0.8V — -20 µA VCC = 1.1V — -1.1 VCC = 1.4V — -1.7 VCC = 1.65V — -1.9 VCC = 2.3V — -3.1 VCC = 3.0V — -4 VCC = 0.8V — 20 VCC = 1.1V — 1.1 VCC = 1.4V — 1.7 VCC = 1.65V — 1.9 VCC = 2.3V — 3.1 VCC = 3.0V — 4 VCC = 0.8V to 3.6V — 200 ns/V -40 125 °C IOH IOL High-Level Output Current Low-Level Output Current ∆t/∆V Input Transition Rise or Fall Rate TA Operating Free-Air Temperature Note: Min mA µA mA 8. Unused inputs should be held at VCC or Ground. 74AUP1G00 Document number: DS35145 Rev 6 - 2 3 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 Electrical Characteristics (@TA = +25°C, unless otherwise specified.) Symbol Parameter VIH High-Level Input Voltage VIL Low-Level Input Voltage VOH High-Level Output Voltage VCC — 0.8V to 1.65V — 1.65V to 1.95V — — — 2.3V to 2.7V 3.0V to 3.6V 0.8V to 1.65V 0.65 x VCC 1.6 2.0 — — 1.65V to 1.95V — — — 2.3V to 2.7V 3.0V to 3.6V — — ∆IOFF ICC ∆ICC Power Down Leakage Current Delta Power Down Leakage Current 0.30 x VCC 0.8V to 3.6V VCC – 0.1 VCC – 0.1 1.1V 0.75 x VCC — 0.7 x VCC — IOH = -1.7mA 1.4V 1.11 — 1.03 — 1.32 — 1.3 — 2.05 — 1.97 — — IOH = -1.9mA IOH = -2.3mA 1.65V 2.3V 3V — — 1.9 — 1.85 2.72 — 2.67 — 2.6 — 2.55 — 0.8V to 3.6V — 0.1 — 0.1 IOL = 1.1mA 1.1V — 0.3 x VCC — 0.3 x VCC IOL = 1.7mA 1.4V — 0.31 — 0.37 IOL = 1.9mA 1.65V — 0.31 — 0.35 — 0.31 — 0.33 — 0.44 — 0.45 — 0.31 — 0.33 — 0.44 — 0.45 IOL = 2.3mA IOL = 4mA A or B Input VI = GND to 3.6V 2.3V 3V 0 to 3.6V VI or VO = 0V to 3.6V 0 VI or VO = 0V to 3.6V 0 V to 0.2V — — — ± 0.1 0.2 0.2 — — — V V IOL = 20µA IOL = 2.7mA IOFF — Unit V — — IOH = -1.1mA IOL = 3.1mA Input Current 0.30 x VCC — IOH = -20µA IOH = -4mA II — — 0.65 x VCC 1.6 2.0 — 0.35 x VCC 0.7 0.9 — IOH = -2.7mA Low-Level Output Voltage — TA = -40°C to +85°C Min Max — 0.80 x VCC 0.35 x VCC 0.7 0.9 — IOH = -3.1mA VOL TA = +25°C Min Max — 0.80 x VCC Test Conditions V ± 0.5 µA 0.6 µA 0.6 µA Supply Current VI = GND or VCC, IO = 0 0.8 V to 3.6V — 0.5 — 0.9 µA Additional Supply Current One Input at VCC -0.6V Other Inputs at VCC or GND 3.3V — 40 — 50 µA 74AUP1G00 Document number: DS35145 Rev 6 - 2 4 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 Electrical Characteristics (continued) (@TA = +25°C, unless otherwise specified.) Symbol VIH VIL VOH Parameter — 0.8V to 1.65V TA = -40°C to +125°C Min Max — 0.80 x VCC — 1.65V to 1.95V 0.70 x VCC — — — — 2.3V to 2.7V 3.0V to 3.6V — — 0.8V to 1.65V 1.6 2.0 — — 1.65V to 1.95V — — — 2.3V to 2.7V 3.0V to 3.6V — — IOH = -20µA 0.8V to 3.6V VCC – 0.11 0.30 x VCC 0.7 0.9 — IOH = -1.1mA 1.1V 0.6 x VCC — IOH = -1.7mA 1.4V 0.93 — IOH = -1.9mA 1.65V 1.17 — 1.77 — Test Conditions High-Level Input Voltage Low-Level Input Voltage High-Level Output Voltage VCC IOH = -2.3mA 2.3V IOH = -3.1mA IOH = -2.7mA 3V VOL Low-Level Output Voltage — 0.11 IOL = 1.1mA 1.1V — 0.33 x VCC IOL = 1.7mA 1.4V — 0.41 IOL = 1.9mA 1.65V 2.3V 3V ∆IOFF ICC ∆ICC A or B Input, VI = GND to 3.6V Power Down Leakage Current VI or VO = 0V to 3.6V Delta Power Down Leakage VI or VO = 0V to 3.6V Current VI = GND or VCC, IO = 0 Additional Supply Current Input at VCC -0.6V Other Inputs at VCC or GND 74AUP1G00 Document number: DS35145 Rev 6 - 2 0.39 0.36 — 0.50 — 0.36 V V 0.50 0 to 3.6V — ± 0.75 µA 0 — ± 3.5 µA ± 2.5 µA 0V to 0.2V Supply Current — — V — IOL = 4mA IOFF 2.40 — IOL = 2.7mA Input Current — — 2.30 IOL = 3.1mA II 1.67 0.8V to 3.6V IOL = 2.3mA V 0.25 x VCC IOL = 20µA IOH = -4mA Unit — 0.8V to 3.6V — 3.0 µA 3.3V — 75 µA 5 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 Switching Characteristics CL = 5pF, See Figure 1 Parameter tpd From Input TO OUTPUT VCC Y 0.8V 1.2V ± 0.1V 1.5V ± 0.1V 1.8V ± 0.15V 2.5V ± 0.2V 3.3V ± 0.3V A or B Min — 2.5 2.0 1.6 1.3 1.0 TA = +25°C Typ 17.5 5.3 3.8 3.1 2.5 2.2 Max — 11.0 6.8 5.3 4.0 3.6 TA = -40°C to +85°C Min Max — — 2.1 12.2 1.8 7.8 1.4 6.2 1.1 4.7 1.0 4.2 TA = -40°C to +125°C Min Max — — 2.1 13.5 1.8 8.6 1.4 6.9 1.1 5.2 1.0 4.7 Min — 2.4 2.4 2.0 1.4 1.3 TA = +25°C Typ 21.0 6.1 4.4 3.7 3.0 2.8 Max — 13.0 7.9 6.2 4.7 4.3 TA = -40°C to +85°C Min Max — — 2.2 14.4 2.2 9.2 1.9 7.3 1.3 5.6 1.2 4.9 TA = -40°C to +125°C Min Max — — 2.2 15.9 2.2 10.2 1.9 8.1 1.3 6.2 1.2 5.4 Min — 3.4 2.8 2.0 1.7 1.6 TA = +25°C Typ Max 24.5 — 6.9 14.8 5.0 8.9 4.1 7.0 3.5 5.3 3.2 4.9 TA = -40°C to +85°C Min Max — — 3.1 16.5 2.5 10.5 2.0 8.3 1.5 6.4 1.4 5.7 TA = -40°C to +125°C Min Max — — 3.1 18.2 2.5 11.6 2.0 9.2 1.5 7.1 1.4 6.3 Min — 4.6 3.0 2.6 2.4 2.3 TA = +25°C Typ 34.8 17.5 6.5 5.4 4.6 2.6 TA = -40°C to +85°C Min Max — — 4.1 22.6 2.9 14.0 2.3 11.1 2.1 8.5 2.1 7.6 TA = -40°C to +125°C Min Max — — 4.1 24.9 2.9 15.4 2.3 12.3 2.1 9.4 2.1 8.4 Unit ns CL = 10pF, See Figure 1 Parameter tpd From Input A or B TO OUTPUT VCC Y 0.8V 1.2V ± 0.1V 1.5V ± 0.1V 1.8V ± 0.15V 2.5V ± 0.2V 3.3V ± 0.3V Unit ns CL = 15pF, See Figure 1 Parameter tpd From Input A or B TO OUTPUT VCC Y 0.8V 1.2V ± 0.1V 1.5V ± 0.1V 1.8V ± 0.15V 2.5V ± 0.2V 3.3V ± 0.3V TO OUTPUT VCC Y 0.8V 1.2V ± 0.1V 1.5V ± 0.1V 1.8V ± 0.15V 2.5V ± 0.2V 3.3V ± 0.3V Unit ns CL = 30pF, See Figure 1 Parameter tpd From Input A or B 74AUP1G00 Document number: DS35145 Rev 6 - 2 Max — 22.0 11.8 9.3 7.1 6.5 6 of 16 www.diodes.com Unit ns February 2015 © Diodes Incorporated 74AUP1G00 Operating and Package Characteristics (@TA = +25°C, unless otherwise specified.) Parameter Note: Test Conditions VCC Typ Unit 0.8V 1.2V ± 0.1V 1.5V ± 0.1V 1.8V ± 0.15V 2.5V ± 0.2V 3.3V ± 0.3V 6.5 6.3 6.3 6.2 6.2 6.1 pF 0V or 3.3V 1.5 pF — — — — — — — — — — — — 371 430 435 445 470 460 143 240 250 250 275 265 Cpd Power Dissipation Capacitance f = 1MHz No Load Ci Input Capacitance Vi = VCC or GND SOT353 X2-DFN0808-4 X1-DFN1010-6 (Note 9) X2-DFN1010-6 X2-DFN1409-6 X2-DFN1410-6 SOT353 X2-DFN0808-4 X1-DFN1010-6 (Note 9) X2-DFN1010-6 X2-DFN1409-6 X2-DFN1410-6 θJA Thermal Resistance Junction-to-Ambient θJC Thermal Resistance Junction-to-Case °C/W °C/W 9. Test condition for each of the six package types: Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout. 74AUP1G00 Document number: DS35145 Rev 6 - 2 7 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 Parameter Measurement Information Vcc Inputs VI VM CL 0.8V VCC tr/tf ≤3ns VCC/2 5, 10, 15, 30pF 1.2V±0.1V VCC ≤3ns VCC/2 5, 10, 15, 30pF 1.5V±0.1V VCC ≤3ns VCC/2 5, 10, 15, 30pF 1.8V ±0.15V VCC ≤3ns VCC/2 5, 10, 15, 30pF 2.5V±0.2V VCC ≤3ns VCC/2 5, 10, 15, 30pF 3.3V±0.3V VCC ≤3ns VCC/2 5, 10, 15, 30pF Voltage Waveform Pulse Duration Voltage Waveform Propagation Delay Times Inverting and Non Inverting Outputs Figure 1 Load Circuit and Voltage Waveforms Notes: A. Includes test lead and test apparatus capacitance. B. All pulses are supplied at pulse repetition rate ≤ 10MHz. C. Inputs are measured separately one transition per measurement. D. tPLH and tPHL are the same as tPD. 74AUP1G00 Document number: DS35145 Rev 6 - 2 8 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 Marking Information (1) SOT353 (Top View) View) 4 7 5 XX : Identification code Y : Year 0~9 W : Week : A~Z : 1~26 week; a~z : 27~52 week; z represents 52 and 53 week X : A~Z : Internal code XX Y W X 1 2 3 Part Number 74AUP1G00SE-7 Package SOT353 Identification Code XH (2) X2-DFN0808-4, X1-DFN1010-6, X2-DFN1010-6, X2-DFN1409-6 and X2-DFN1410-6 (Top View) XX YWX Part Number 74AUP1G00FS3-7 74AUP1G00FW5-7 74AUP1G00FW4-7 74AUP1G00FX4-7 74AUP1G00FZ4-7 74AUP1G00 Document number: DS35145 Rev 6 - 2 XX : Identification Code Y : Year : 0~9 W : Week : A~Z : 1~26 week; a~z : 27~52 week; z represents 52 and 53 week X : A~Z : Internal code Package X2-DFN0808-4 X1-DFN1010-6 X2-DFN1010-6 X2-DFN1409-6 X2-DFN1410-6 9 of 16 www.diodes.com Identification Code YJ Q1 XH HA XH February 2015 © Diodes Incorporated 74AUP1G00 SOT353 Package Outline Dimensions and Suggested Pad Layout Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version. A SOT353 Dim Min Max Typ A 0.10 0.30 0.25 B 1.15 1.35 1.30 C 2.00 2.20 2.10 D 0.65 Typ F 0.40 0.45 0.425 H 1.80 2.20 2.15 J 0 0.10 0.05 K 0.90 1.00 1.00 L 0.25 0.40 0.30 M 0.10 0.22 0.11 0° 8° α All Dimensions in mm B C H K M J D C2 Z L F C2 Dimensions Z G X Y C1 C2 C1 G Y Value (in mm) 2.5 1.3 0.42 0.6 1.9 0.65 X 74AUP1G00 Document number: DS35145 Rev 6 - 2 10 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 X2-DFN0808-4 Package Outline Dimensions and Suggested Pad Layout Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version. A3 A1 A Seating Plane D Pin #1 ID e R0.05 TYP k E L1 D2 E2 L Z b X3 C Y1 X2 Y Dimensions C X X1 X2 X3 Y Y1 Y2 Y3 Y2 Y3 Value (in mm) 0.480 0.320 0.300 0.106 0.800 0.320 0.300 0.106 0.900 X1 X 74AUP1G00 Document number: DS35145 Rev 6 - 2 11 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 X1-DFN1010-6 (Type B) Package Outline Dimensions and Suggested Pad Layout Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version. A1 A Seating Plane X1-DFN1010-6 (Type B) Dim Min Max Typ A 0.50 0.39 A1 0.04 b 0.12 0.20 0.15 D 0.95 1.050 1.00 E 0.95 1.050 1.00 e 0.35 BSC e1 0.55 BSC L3 0.27 0.30 0.30 L3a 0.32 0.40 0.35 All Dimensions in mm D e L3a E L3(5x) e1 (Pin #1 ID) b C X1 Y(4x) Y2 Y3 G G1 Y1 Pin1 74AUP1G00 Document number: DS35145 Rev 6 - 2 Dimensions C G G1 X X1 Y Y1 Y2 Y3 Value (in mm) 0.350 0.150 0.150 0.200 0.900 0.500 0.525 0.475 1.150 X 12 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 X2-DFN1010-6 Package Outline Dimensions and Suggested Pad Layout Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version. A1 A A3 Dim D (Pin #1 ID) e b1 E K L(6x) X2-DFN1010-6 Min Max Typ A –– 0.40 0.39 A1 0.00 0.05 0.02 A3 –– –– 0.13 b 0.14 0.20 0.17 b1 0.05 0.15 0.10 D 0.95 1.05 1.00 E 0.95 1.05 1.00 e –– –– 0.35 L 0.35 0.45 0.40 K 0.15 –– –– Z –– –– 0.065 All Dimensions in mm b(6x) Z(4x) X1 C Y (6x) Y1 1 G(4x) 74AUP1G00 Document number: DS35145 Rev 6 - 2 Dimensions Value (in mm) C 0.350 G 0.150 X 0.200 X1 0.900 Y 0.550 Y1 1.250 X(6x) 13 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 X2-DFN1409-6 Package Outline Dimensions and Suggested Pad Layout Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version. A1 A A3 Seating Plane D e1 (Pin #1 ID) Ø(6x) e2 X2-DFN1409-6 Dim Min Max Typ A 0.40 0.39 A1 0 0.05 0.02 A3 0.13 Ø 0.20 0.30 0.25 D 1.35 1.45 1.40 E 0.85 0.95 0.90 e1 0.50 e2 0.50 Z1 0.075 Z2 0.075 All Dimensions in mm E Z1(4x) Z2(4x) C D (6x) Y C1 G1 Pin1 X 74AUP1G00 Document number: DS35145 Rev 6 - 2 G 14 of 16 www.diodes.com Dimensions Value (in mm) C C1 D G G1 X Y 1.000 0.500 0.300 0.200 0.200 0.400 0.150 February 2015 © Diodes Incorporated 74AUP1G00 X2-DFN1410-6 Package Outline Dimensions and Suggested Pad Layout Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version. A1 A3 A Seating Plane D e (Pin #1 ID) L(6x) E X2-DFN1410-6 Dim Min Max Typ A –– 0.40 0.39 A1 0.00 0.05 0.02 A3 –– –– 0.13 b 0.15 0.25 0.20 D 1.35 1.45 1.40 E 0.95 1.05 1.00 e –– –– 0.50 L 0.25 0.35 0.30 Z –– –– 0.10 Z1 0.045 0.105 0.075 All Dimensions in mm Z1(4x) Z(4x) b(6x) X1 C Y(6x) Y1 1 G(4x) 74AUP1G00 Document number: DS35145 Rev 6 - 2 Dimensions Value (in mm) C 0.500 G 0.250 X 0.250 X1 1.250 Y 0.525 Y1 1.250 X(6x) 15 of 16 www.diodes.com February 2015 © Diodes Incorporated 74AUP1G00 IMPORTANT NOTICE DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated. LIFE SUPPORT Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein: A. Life support devices or systems are devices or systems which: 1. are intended to implant into the body, or 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems. Copyright © 2015, Diodes Incorporated www.diodes.com 74AUP1G00 Document number: DS35145 Rev 6 - 2 16 of 16 www.diodes.com February 2015 © Diodes Incorporated