[AK4614] AK4614 6/12-Channel Audio CODEC GENERAL DESCRIPTION The AK4614 is a single chip audio CODEC that includes six ADC channels and twelve DAC channels. The converters are designed with Enhanced Dual Bit architecture for the ADC’s, and Advanced Multi-Bit architecture for the DAC, enabling very low noise performance. Fabricated on a low power process, the AK4614 operates off of a +3.3V analog supply and a +1.8V digital supply. The AK4614 supports both single-ended and differential inputs and outputs. A wide range of applications can be realized, including home theater, pro audio and car audio. The AK4614 is available in an 80-pin LQFP package. FEATURES 1. 6channel 24bit ADC - 128x Oversampling - Linear Phase Digital Anti-Alias Filter - Analog Anti-Alias Filter for Single-Ended Input and Differential Input - ADC S/(N+D) 92dB: Single-Ended Input 97dB: Differential Input - ADC DR, S/N 103dB: Single-Ended Input 104dB: Differential Input - Digital HPF for offset cancellation - I/F format: MSB justified, I2S or TDM - Overflow flag 2. 12channel 24bit DAC - 128x Oversampling - Linear Phase 24bit 8 times Digital Filter - Analog Smoothing Filter for Single-Ended Output - DAC S/(N+D) 94dB: Single-Ended Output 100dB: Differential Output - DAC DR, S/N 105dB: Single-Ended Output 108dB: Differential Output - Individual channel digital volume with 256 levels and 0.5dB steps - Soft mute - De-emphasis for 32kHz, 44.1kHz and 48kHz - Zero Detect Function - I/F format: MSB justified, LSB justified (16bit, 20bit, 24bit), I2S or TDM 3. Sampling Frequency - Normal Speed Mode: 32kHz to 48kHz - Double Speed Mode: 64kHz to 96kHz - Quad Speed Mode: 128kHz to 192kHz 4. Master / Slave mode MS1025-E-05 2015/06 -1- [AK4614] 5. Master clock - Slave mode: 256fs, 384fs or 512fs (Normal Speed Mode: fs=32kHz 48kHz) 256fs (Double Speed Mode: fs=64kHz 96kHz) 128fs (Quad Speed Mode: fs=128kHz 192kHz) - Master mode: 256fs or 512fs (Normal Speed Mode: fs=32kHz 48kHz) 256fs (Double Speed Mode: fs=64kHz 96kHz) 128fs (Quad Speed Mode: fs=128kHz 192kHz) 6. 4-wire Serial and I2C Bus µP I/F for mode setting 7. Power Supply - Analog Power Supply: AVDD1, AVDD2 = 3.0 3.6V - Digital Power Supply: DVDD = 1.6 2.0V - I/O Buffer Power Supply: TVDD1, TVDD2 = 1.6 3.6V 8. Power Supply Current : 119 mA (fs=48kHz) 9. Ta = - 40 105ºC 10. Package: 80pin LQFP (0.5mm pitch) MS1025-E-05 2015/06 -2- [AK4614] ■ Block Diagram M/S LIN1+ / LIN1 ADC1 HPF1 PDN LIN1- DVMPD RIN1+ / RIN1 ADC1 RIN1- HPF1 XTI / MCKI LIN2+ / LIN2 ADC2 HPF2 ADC2 HPF2 ADC3 HPF3 ADC3 HPF3 X’tal Oscillation LIN2RIN2+ / RIN2 RIN2LIN3+ / LIN3 Audio I/F XTO Divider LIN3- XATL RIN3+ / RIN3 RIN3LOUT1+ / LOUT1 LOUT1- MCKO SCF1 MCLK LRCK BICK LRCK BICK DAC1 DATT1 DEM1 DAC1 DATT1 DEM1 TST3 DATT2 DEM2 TST5 TST1 TST2 ROUT1+ / ROUT1 ROUT1- SCF1 TST4 LOUT2+ / LOUT2 LOUT2- SCF2 DAC2 ROUT2+ / ROUT2 ROUT2- SCF2 DAC2 DATT2 DEM2 SCF3 DAC3 DATT3 DEM3 LOUT3+ / LOUT3 LOUT3- SCF3 LOUT4+ / LOUT4 LOUT4- SCF4 ROUT4+ / ROUT4 ROUT4- SCF4 LOUT5+ / LOUT5 LOUT5- SDTO2 SDOUT3 SDTO3 OVF1 / DZF1 OVF2 / DZF2 DAC4 DAC4 SDIN1 SDTI1 SDIN2 SDTI2 SDIN3 SDTI3 DATT4 DEM4 SDIN4 SDTI4 SDIN5 SDTI5 SDIN6 SDTI6 DATT4 DEM4 SCF5 DAC5 DATT5 DEM5 SCF5 DAC5 DATT5 DEM5 CAD0 LOUT6+ / LOUT6 LOUT6- SDOUT2 DATT3 DEM3 DAC3 ROUT5+ / ROUT5 ROUT5- SDTO1 VCOM ROUT3+ / ROUT3 ROUT3- SDOUT1 SCF6 DAC6 DATT6 DEM6 DAC6 DATT6 DEM6 CAD1 uP I/F I2C CSN CCLK / SCL CDTI / SDA ROUT6+ /ROUT6 ROUT6- SCF6 CDTO VREFH1 VREFH2 AVDD1 VSS1 AVDD2 VSS2 DVDD VSS3 TVDD1 VSS4 TVDD2 Figure 1. Block Diagram MS1025-E-05 2015/06 -3- [AK4614] ■ Ordering Guide -40 +105C 80pin LQFP(0.5mm pitch) Evaluation Board for AK4614 AK4614VQ AKD4614 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 / LOUT6 LOUT6+ 1 ROUT51 ROUT5+ / ROUT5 1 LOUT51 LOUT5+ / LOUT5 1 ROUT41 ROUT4+ / ROUT4 1 LOUT41 LOUT4+ / LOUT4 1 VREFH2 1 AVDD2 1 VSS2 1 ROUT31 ROUT3+ / ROUT3 1 LOUT31 LOUT3+ / LOUT3 1 ROUT21 ROUT2+ / ROUT2 1 LOUT21 1 59 58 LOUT6- 60 ■ Pin Layout ROUT6+ / ROUT6 61 40 LOUT2+ / LOUT2 ROUT6- 62 39 ROUT1- OVF1 / DZF1 63 38 ROUT1+ / ROUT1 OVF2 / DZF2 64 37 LOUT1- LIN1+ / LIN1 65 36 LOUT1+ / LOUT1 LIN1- 66 35 DVMPD RIN1+ / RIN1 67 34 SDTI6 RIN1- 68 33 SDTI5 LIN2+ / LIN2 69 32 SDTI4 LIN2- 70 31 SDTI3 RIN2+ / RIN2 71 30 SDTI2 RIN2- 72 29 SDTI1 LIN3+ / LIN3 73 LIN3- 80 pin LQFP (TOP VIEW) 28 BICK 74 27 LRCK 8 9 10 11 12 13 14 15 16 17 18 19 20 CCLK / SCL CSN CDTI / SDA CDTO TVDD2 VSS3 DVDD NC TST2 M/S MCKO PDN XTO XTI / MCKI 7 TVDD1 21 I2C 22 80 6 79 RIN3- CAD1 RIN3+ / RIN3 5 VSS4 4 SDTO1 23 TST5 24 78 CAD0 77 VCOM 3 VREFH1 TST4 SDTO2 2 SDTO3 25 1 26 76 TST3 75 TST1 VSS1 AVDD1 Figure 2. Pin Layout MS1025-E-05 2015/06 -4- [AK4614] ■ Compatibility with AK4628 1. Functions Function Number of ADC channel Number of DAC channel Input Output I/F Format TDM512 XTAL OSC Parallel / Serial Select Pin Control Data Output Pin Ta Package AK4628 2-channel 8-channel Single Single I2S, LJ, RJ(20/24bit), TDM No No Yes No -40 +85C 44pinLQFP AK4614 6-channel 12-channel Single or Diff Single or Diff I2S, LJ, RJ(16/20/24bit), TDM Fs=48kHz Yes No Yes -40 +105C 80pinLQFP AK4628 4.5 5.5V No No 4.5 5.5V 2.7 5.5V No No AK4614 No 3.0 3.6V 3.0 3.6V 1.6 2.0V No 1.6 3.6V 1.6 3.6V AK4628 96k / 192k Single: 92 / 90 Differential : - / Single: 102 / 106 Differential : - / 128 level 100k I2C, 3wire AK4614 192k / 192k Single: 92 / 94 Differential : 97 / 100 Single: 103 / 105 Differential: 104 / 108 256 level 400k I2C, 4wire 2. Power Supply Voltage Name AVDD AVDD1 AVDD2 DVDD TVDD TVDD1 TVDD2 3. Specification Parameter Fs (AD/DA) THD+N (AD/DA) S/N (AD/DA) Output DATT µP I/F MS1025-E-05 2015/06 -5- [AK4614] PIN/FUNCTION No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Pin Name TST1 I/O I TST3 I TST4 I TST5 I CAD0 CAD1 I2C I I I CCLK I SCL I CSN I CDTI I SDA I/O CDTO TVDD2 VSS3 DVDD NC O - TST2 I M/S I MCKO PDN O I - 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 XTO XTI MCKI TVDD1 VSS4 SDTO1 SDTO2 SDTO3 LRCK BICK SDTI1 SDTI2 SDTI3 SDTI4 SDTI5 SDTI6 DVMPD O I I O O O I/O I/O I I I I I I I Function Test Pin This pin must be connected to VSS3. Test Pin This pin must be connected to VSS3. Test Pin This pin must be connected to VSS3. Test Pin This pin must be connected to VSS3. Chip Address 0 Pin Chip Address 1 Pin µP I/F Mode Select Pin “L”: 4-wire Serial, “H”: I2C Bus Control Data Clock Pin in serial control mode I2C = “L”: CCLK (4-wire Serial) Control Data Clock Pin in serial control mode I2C = “H”: SCL (I2C Bus) Chip Select Pin in 4-wire serial control mode This pin must be connected to TVDD2 at I2C bus control mode Control Data Input Pin in serial control mode I2C = “L”: CDTI (4-wire Serial) Control Data Input Pin in serial control mode I2C = “H”: SDA (I2C Bus) Control Data Output Pin in 4-wire serial control mode Input / Output Buffer Power Supply 1 Pin, 1.6V3.6V Ground Pin, 0V Digital Power Supply Pin, 1.6V2.0V No Connection. No internal bonding. This pin must be connected to the ground. Test Pin This pin must be connected to VSS4. Master Mode Select Pin “L”: Slave Mode “H”: Master Mode Master Clock Output Pin Power-Down & Reset Pin When “L”, the AK4614 is powered-down and the control registers are reset to default state. If the state of CAD1-0 changes, then the AK4614 must be reset by PDN. X’tal Output Pin X’tal Input Pin External Master Clock Input Pin Input / Output Buffer Power Supply 1 Pin, 1.6V3.6V Digital Ground Pin, 0V Audio Serial Data Output 1 Pin Audio Serial Data Output 2 Pin Audio Serial Data Output 3 Pin Input /Output Channel Clock Pin Audio Serial Data Clock Pin Audio Serial Data Input 1 Pin Audio Serial Data Input 2 Pin Audio Serial Data Input 3 Pin Audio Serial Data Input 4 Pin Audio Serial Data Input 5 Pin Audio Serial Data Input 6 Pin DAC output VCOM voltage power down pin “L”: DAC outputs are VCOM voltage “H”: DAC outputs are Hi-Z. MS1025-E-05 2015/06 -6- [AK4614] No. 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 Pin Name LOUT1+ LOUT1 LOUT1ROUT1+ ROUT1 ROUT1LOUT2+ LOUT2 LOUT2ROUT2+ ROUT2 ROUT2LOUT3+ LOUT3 LOUT3ROUT3+ ROUT3 ROUT3VSS2 AVDD2 VREFH2 LOUT4+ LOUT4 LOUT4ROUT4+ ROUT4 ROUT4LOUT5+ LOUT5 LOUT5ROUT5+ ROUT5 ROUT5LOUT6+ LOUT6 LOUT6ROUT6+ ROUT6 ROUT6OVF1 I/O O O O O O O O O O O O O O O O O O O I O O O O O O O O O O O O O O O O O O O DZF1 O OVF2 O DZF2 O LIN1+ LIN1 LIN1- I I - RIN1+ RIN1 I I Function Lch Analog Positive Output 1 Pin (DOE1 bit = “H”) Lch Analog Output 1 Pin (DOE1 bit = “L”) Lch Analog Negative Output 1 Pin (When DOE1 bit = “L”, this pin must be open.) Rch Analog Positive Output 1 Pin (DOE1 bit = “H”) Rch Analog Output 1 Pin (DOE1 bit = “L”) Rch Analog Negative Output 1 Pin (When DOE1 bit = “L”, this pin must be open.) Lch Analog Positive Output 2 Pin (DOE2 bit = “H”) Lch Analog Output 2 Pin (DOE2 bit = “L”) Lch Analog Negative Output 2 Pin (When DOE2 bit = “L”, this pin must be open.) Rch Analog Positive Output 2 Pin (DOE2 bit = “H”) Rch Analog Output 2 Pin (DOE2 bit = “L”) Rch Analog Negative Output 2 Pin (When DOE2 bit = “L”, this pin must be open.) Lch Analog Positive Output 3 Pin (DOE3 bit = “H”) Lch Analog Output 3 Pin (DOE3 bit = “L”) Lch Analog Negative Output 3 Pin (When DOE3 bit = “L”, this pin must be open.) Rch Analog Positive Output 3 Pin (DOE3 bit = “H”) Rch Analog Output 3 Pin (DOE3 bit = “L”) Rch Analog Negative Output 3 Pin (When DOE3 bit = “L”, this pin must be open.) Ground Pin, 0V Analog Power Supply Pin, 3.0V3.6V Positive Voltage Reference Input Pin, AVDD2 Lch Analog Positive Output 4 Pin (DOE4 bit = “H”) Lch Analog Output 4 Pin (DOE4 bit = “L”) Lch Analog Negative Output 4 Pin (When DOE4 bit = “L”, this pin must be open.) Rch Analog Positive Output 4 Pin (DOE4 bit = “H”) Rch Analog Output 4 Pin (DOE4 bit = “L”) Rch Analog Negative Output 4 Pin (When DOE4 bit = “L”, this pin must be open.) Lch Analog Positive Output 5 Pin (DOE5 bit = “H”) Lch Analog Output 5 Pin (DOE5 bit = “L”) Lch Analog Negative Output 5 Pin (When DOE5 bit = “L”, this pin must be open.) Rch Analog Positive Output 5 Pin (DOE5 bit = “H”) Rch Analog Output 5 Pin (DOE5 bit = “L”) Rch Analog Negative Output 5 Pin (When DOE5 bit = “L”, this pin must be open.) Lch Analog Positive Output 6 Pin (DOE6 bit = “H”) Lch Analog Output 6 Pin (DOE6 bit = “L”) Lch Analog Negative Output 6 Pin (When DOE6 bit = “L”, this pin must be open.) Rch Analog Positive Output 6 Pin (DOE6 bit = “H”) Rch Analog Output 6 Pin (DOE6 bit = “L”) Rch Analog Negative Output 6 Pin (When DOE6 bit = “L”, this pin must be open.) Analog Input Overflow Detect 1 Pin (Note 1) This pin goes to “H” if the analog input of Lch or Rch overflows. Zero Input Detect 1 Pin (Note 2) When the input data of the group 1 follow total 8192 LRCK cycles with “0” input data, this pin goes to “H”. And when RSTN bit is “0”, PMDAC bit is “0”, this pin goes to “H”. Analog Input Overflow Detect 2 Pin (Note 1) This pin goes to “H” if the analog input of Lch or Rch overflows. Zero Input Detect 2 Pin (Note 2) When the input data of the group 2 follow total 8192 LRCK cycles with “0” input data, this pin goes to “H”. And when RSTN bit is “0”, PMDAC bit is “0”, this pin goes to “H”. Lch Analog Positive Input 1 Pin (DIE1 bit = “H”) Lch Analog Input 1 Pin (DIE1 bit = “L”) Lch Analog Negative Input 1 Pin (When DIE1 bit = “L”, this pin must be open.) (Note 3) Rch Analog Positive Input 1 Pin (DIE1 bit = “H”) Rch Analog Input 1 Pin (DIE1 bit = “L”) MS1025-E-05 2015/06 -7- [AK4614] No. Pin Name RIN1- I/O - Function Rch Analog Negative Input 1 Pin (When DIE1 bit = “L”, this pin must be open.) 68 (Note 3) LIN2+ I Lch Analog Positive Input 2 Pin (DIE2 bit = “H”) 69 LIN2 I Lch Analog Input 2 Pin (DIE2 bit = “L”) LIN2Lch Analog Negative Input 2 Pin (When DIE2 bit = “L”, this pin must be open.) 70 (Note 3) RIN2+ I Rch Analog Positive Input 2 Pin (DIE2 bit = “H”) 71 RIN2 I Rch Analog Input 2 Pin (DIE2 bit = “L”) RIN2Rch Analog Negative Input 2 Pin (When DIE2 bit = “L”, this pin must be open.) 72 (Note 3) LIN3+ I Lch Analog Positive Input 3 Pin (DIE3 bit = “H”) 73 LIN3 I Lch Analog Input 3 Pin (DIE3 bit = “L”) LIN3Lch Analog Negative Input 3 Pin (When DIE3 bit = “L”, this pin must be open.) 74 (Note 3) 75 VSS1 Ground Pin, 0V 76 AVDD1 Analog Power Supply Pin, 3.0V3.6V 77 VREFH1 I Positive Voltage Reference Input Pin, AVDD1 VCOM O Common Voltage Output Pin, AVDD1x1/2 78 Large external capacitor around 2.2µF is used to reduce power-supply noise. RIN3+ I Rch Analog Positive Input 3 Pin (DIE3 bit = “H”) 79 RIN3 I Rch Analog Input 3 Pin (DIE3 bit = “L”) RIN3Rch Analog Negative Input 3 Pin (When DIE3 bit = “L”, this pin must be open.) 80 (Note 3) Note 1. This pin becomes OVF pin when OVFE bit is set to “1”. Note 2. This pin becomes DZF pin when OVFE bit is set to “0”. Note 3. This pin becomes analog negative input pin in differential input mode, and becomes output pin invert the positive input pin in single-end input mode. This pin must be open in single-end input mode. Note 4. All digital input pins except for pull-down must not be left floating. MS1025-E-05 2015/06 -8- [AK4614] ABSOLUTE MAXIMUM RATINGS (VSS1=VSS2=VSS3=VSS4=0V; Note 5) Parameter Symbol min max Unit Power Supplies Analog AVDD1,2 -0.3 4.2 V Digital DVDD -0.3 2.2 V Output buffer TVDD1,2 -0.3 4.2 V Input Current (any pins except for supplies) IIN mA 10 Analog Input Voltage VINA -0.3 AVDD1,2+0.3 V Digital Input Voltage (TST2,M/S,PDN,XTI/MCKI,LRCK,BICK, VIND1 -0.3 TVDD1+0.3 V SDTI1,SDTI2,SDTI3,SDTI4,SDTI5,SDTI6, DVMPD pins) (TST1,TST3,TST4,TST5,CAD0,CAD1,I2C, VIND2 -0.3 TVDD2+0.3 V CCLK/SCL,CSN,CDTI/SDA pins) Ambient Temperature (power applied) Ta -40 105 C Storage Temperature Tstg -65 150 C Note 5. All voltages with respect to ground. VSS1, VSS2, VSS3 and VSS4 must be connected to the same analog ground plane. AVDD1 and AVDD2 must be the same voltage. WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. RECOMMENDED OPERATING CONDITIONS (VSS1=VSS2=VSS3=VSS4=0V; Note 5) Parameter Symbol min typ max Unit Power Supplies Analog AVDD1,2 3.0 3.3 3.6 V (Note 6) Digital DVDD 1.6 1.8 2.0 V I/O buffer 1 TVDD1 DVDD 3.3 3.6 V (Stereo Mode & Normal Speed Mode) I/O buffer 1 TVDD1 3.0 3.3 3.6 V (Except Stereo Mode & Normal Speed Mode) I/O buffer 2 TVDD2 DVDD 3.3 3.6 V Note 6. The power up sequence between AVDD1, AVDD2, DVDD, TVDD1 and TVDD2 is not critical. Each power supplies should be powered up during the PDN pin = “L”. The PDN pin should be “H” after all power supplies are powered up. All power supplies should be powered on, only a part of these power supplies cannot be powered off. (Power off means power supplies equal to ground or power supplies are floating.) Do not turn off only the AK4614 under the condition that a surrounding device is powered on and the I2C bus is in use. WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet. MS1025-E-05 2015/06 -9- [AK4614] ANALOG CHARACTERISTICS (Ta=25C; AVDD1=AVDD2=TVDD1=TVDD2=3.3V, DVDD =1.8V; VSS1=VSS2=0V; VREFH1=AVDD1, VREFH2=AVDD2; fs=48kHz; BICK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement Frequency=20Hz20kHz at 48kHz, 20Hz~40kHz at fs=96kHz, 20Hz~40kHz at fs=192kHz; unless otherwise specified) Parameter min typ max Unit ADC Analog Input Characteristics (single inputs) Resolution 24 Bits S/(N+D) fs=48kHz -1dBFS 84 92 dB BW=20kHz -60dBFS 40 fs=96kHz -1dBFS 83 91 dB BW=40kHz -60dBFS 37 fs=192kHz -1dBFS 91 BW=40kHz -60dBFS 37 DR (-60dBFS with A-weighted) 95 103 dB S/N (A-weighted) 95 103 dB Interchannel Isolation 90 110 dB Interchannel Gain Mismatch 0.1 0.5 dB Gain Drift 40 ppm/C Input Voltage AIN=0.65xVREFH1 1.94 2.15 2.37 Vpp Input Resistance 7 9 k Power Supply Rejection (Note 7) 50 dB ADC Analog Input Characteristics (differential inputs) S/(N+D) fs=48kHz -1dBFS 88 97 dB BW=20kHz -60dBFS 40 dB fs=96kHz -1dBFS 86 94 BW=40kHz -60dBFS 37 fs=192kHz -1dBFS 94 BW=40kHz -60dBFS 37 DR (-60dBFS with A-weighted) 96 104 dB S/N (A-weighted) 96 104 dB Interchannel Isolation 90 110 dB Interchannel Gain Mismatch 0.1 0.5 dB Gain Drift 40 ppm/C Input Voltage AIN=0.65xVREFH1 (Note 8) ±1.94 ±2.15 ±2.37 Vpp Input Resistance 11 13 k Power Supply Rejection (Note 7) 50 dB Common Mode Rejection Ratio (CMRR) (Note 9) 74 dB DAC Analog Output Characteristics (single outputs) Resolution 24 Bits S/(N+D) fs=48kHz 0dBFS 84 94 dB BW=20kHz -60dBFS 44 fs=96kHz 0dBFS 86 92 BW=40kHz -60dBFS 41 fs=192kHz 0dBFS 92 BW=40kHz -60dBFS 41 DR (-60dBFS with A-weighted) 97 105 dB S/N (A-weighted) 97 105 dB Interchannel Isolation 90 110 dB Interchannel Gain Mismatch 0.1 0.5 dB Gain Drift 20 ppm/C Output Voltage AOUT=0.63xVREFH2 1.87 2.08 2.29 Vpp Load Resistance (AC Load) 5 k Load Capacitance 30 pF Power Supply Rejection (Note 7) 50 dB MS1025-E-05 2015/06 - 10 - [AK4614] DAC Analog Output Characteristics (differential outputs) S/(N+D) fs=48kHz 0dBFS 90 100 dB BW=20kHz -60dBFS 45 fs=96kHz 0dBFS 88 98 BW=40kHz -60dBFS 42 fs=192kHz 0dBFS 98 BW=40kHz -60dBFS 42 DR (-60dBFS with A-weighted) 100 108 dB S/N (A-weighted) 100 108 dB Interchannel Isolation 90 110 dB Interchannel Gain Mismatch 0 0.5 dB Gain Drift 20 ppm/C Output Voltage AOUT=0.63xVREFH2 (Note 8) ±1.87 ±2.08 ±2.29 Vpp Load Resistance (Note 10) 2 k Load Capacitance 30 pF Power Supply Rejection (Note 7) 50 dB Note 7. PSR is applied to AVDD1, AVDD2, DVDD, TVDD1 and TVDD2 with 1kHz, 50mVpp. VREFH1 and VREFH2 pins are held a constant voltage +3.3V. Note 8. This value is (LIN+) – (LIN-) and (RIN+) – (RIN-). The voltage is proportional to VREFH1, VREFH2 voltage. Note 9. VREFH1 and VREFH2 are held +3.3V, the input bias voltage is set to AVDD1, 2 x 0.5. The 1kHz, 0.96Vpp signal is applied to LIN- and LIN+ with same phase (e.g. shorted) or RIN- and RIN+. The CMRR is measured as the attenuation level from 0dB = -7dBFS (since the normal 0.96Vpp = -7dBFS). This value is guaranteed but not tested. Note 10. For AC-load. In the case of DC-load is 5kΩ. Note 11. This value is Load Capacitance for output pin to GND. In differential mode, this value should be estimated to be twice, because Load Capacitance exists to GND and between the differential pin. Parameter min typ max Unit Power Supplies Power Supply Current Normal Operation (PDN pin = “H”) AVDD1+AVDD2 fs=48kHz, 96kHz, 192kHz 95.0 125.0 mA DVDD fs=48kHz 18.0 24.0 mA fs=96kHz 25.0 35.0 mA fs=192kHz 40.0 55.0 mA TVDD1+TVDD2 fs=48kHz 6.0 8.0 mA fs=96kHz 7.0 9.5 mA fs=192kHz 7.0 9.5 mA Power-down mode (PDN pin = “L”, DVMPD = “ L”) (Note 12) AVDD1+AVDD2+DVDD+TVDD1+TVDD2 300 550 µA (PDN pin = “L”, DVMPD = “ H”) (Note 12) AVDD1+AVDD2+DVDD+TVDD1+TVDD2 10 200 µA Note 12. In the power-down mode, all digital input pins including clock pins are held VSS3 (TST1, TST3, TST4, TST5, CAD0, CAD1, I2C, CSN, CCLK, CDTI pins), VSS4 (TST2, M/S, MCKI, LRCK, BICK, SDTI1, SDTI2, SDTI3, SDTI4,SDTI5, SDTI6). MS1025-E-05 2015/06 - 11 - [AK4614] FILTER CHARACTERISTICS (fs=48kHz) (Ta= -40 +105C; AVDD1=AVDD2=3.0 3.6V, DVDD=1.6 2.0V, TVDD1=TVDD2=1.6 3.6V; DEM=OFF) Parameter Symbol min typ max Unit ADC Digital Filter (Decimation LPF): Passband (Note 13) 0.1dB PB 0 18.9 kHz 0.2dB 20.0 kHz 3.0dB 23.0 kHz Stopband (Note 13) SB 28 kHz Passband Ripple PR 0.1 dB Stopband Attenuation SA 68 dB Group Delay Distortion GD 0 s Group Delay (Note 14) GD 16 1/fs ADC Digital Filter (HPF): Frequency Response (Note 13) 3dB FR 1.0 Hz 0.1dB 6.5 Hz DAC Digital Filter (LPF): Passband (Note 13) 0.06dB PB 0 21.8 kHz 6.0dB 24.0 kHz Stopband (Note 13) SB 26.2 kHz Passband Ripple PR 0.06 dB Stopband Attenuation SA 54 dB Group Delay Distortion GD 0 s Group Delay (Note 14) GD 22 1/fs DAC Digital Filter + Analog Filter: Frequency Response (Note 15) 20kHz FR -0.1 dB FILTER CHARACTERISTICS (fs=96kHz) (Ta= -40 +105C; AVDD1=AVDD2=3.0 3.6V, DVDD=1.6 2.0V, TVDD1=TVDD2=1.6 3.6V; DEM=OFF) Parameter Symbol min typ max Unit ADC Digital Filter (Decimation LPF): Passband (Note 13) 0.1dB PB 0 37.8 kHz 0.2dB 40.0 kHz 3.0dB 46.0 kHz Stopband (Note 13) SB 56 kHz Passband Ripple PR 0.1 dB Stopband Attenuation SA 68 dB Group Delay Distortion GD 0 s Group Delay (Note 14) GD 16 1/fs ADC Digital Filter (HPF): Frequency Response (Note 13) 3dB FR 2.0 Hz 0.1dB 13.0 Hz DAC Digital Filter (LPF): Passband (Note 13) 0.06dB PB 0 43.6 kHz 6.0dB 48.0 kHz Stopband (Note 13) SB 52.4 kHz Passband Ripple PR 0.06 dB Stopband Attenuation SA 54 dB Group Delay Distortion GD 0 s Group Delay (Note 14) GD 22 1/fs DAC Digital Filter + Analog Filter: Frequency Response (Note 15) 40kHz FR -0.3 dB MS1025-E-05 2015/06 - 12 - [AK4614] FILTER CHARACTERISTICS (fs=192kHz) (Ta= -40 +105C; AVDD1=AVDD2=3.0 3.6V, DVDD=1.6 2.0V, TVDD1=TVDD2=1.6 3.6V; DEM=OFF) Parameter Symbol min typ max Unit ADC Digital Filter (Decimation LPF): Passband (Note 13) 0.1dB PB 0 56.6 kHz 0.2dB 57.0 kHz 3.0dB 90.3 kHz Stopband (Note 13) SB 112 kHz Passband Ripple PR 0.1 dB Stopband Attenuation SA 70 dB Group Delay Distortion GD 0 s Group Delay (Note 14) GD 16 1/fs ADC Digital Filter (HPF): Frequency Response (Note 13) 3dB FR 4.0 Hz 0.1dB 26.0 Hz DAC Digital Filter (LPF): Passband (Note 13) 0.06dB PB 0 87.0 kHz 6.0dB 96.0 kHz Stopband (Note 13) SB 104.9 kHz Passband Ripple PR 0.06 dB Stopband Attenuation SA 54 dB Group Delay Distortion GD 0 s Group Delay (Note 14) GD 22 1/fs DAC Digital Filter + Analog Filter: Frequency Response (Note 15) 80kHz FR -1 dB Note 13. The passband and stopband frequencies scale with fs (sampling frequency). For example, ADC: Passband (0.1dB) = 0.39375 x fs (@ fs=48kHz), DAC: Passband (0.06dB) = 0.45412 x fs. Note 14. The calculated delay time is resulting from digital filtering. For the ADC, this time is from the input of an analog signal to the setting of 24bit data for both channels to the ADC output register. For the DAC, this time is from setting the 24 bit data both channels at the input register to the output of an analog signal. Note 15. The reference frequency is 1kHz. MS1025-E-05 2015/06 - 13 - [AK4614] DC CHARACTERISTICS (Ta=-40C+105C; AVDD1=AVDD2=3.03.6; DVDD=1.62.0V; TVDD1=TVDD2=1.63.6V) Parameter Symbol min typ max TVDD1,TVDD2 ≤2.2V High-Level Input Voltage (TST2, M/S, PDN, MCKI, LRCK, BICK, SDTI1, SDTI2, SDTI3, SDTI4,SDTI5, SDTI6, DVMPD pins) VIH 80%TVDD1 (TST1,TST3,TST4,TST5,CAD0,CAD1,I2C, CSN,CCLK, CDTI pins) VIH 80%TVDD2 Low-Level Input Voltage (TST2, M/S, PDN, MCKI, LRCK, BICK, SDTI1, SDTI2, SDTI3, SDTI4,SDTI5, SDTI6, DVMPD pins) VIL 20%TVDD1 (TST1,TST3,TST4,TST5,CAD0,CAD1,I2C, CSN,CCLK, CDTI pins) VIL 20%TVDD2 TVDD1,TVDD2 > 2.2V High-Level Input Voltage (TST2, M/S, PDN, MCKI, LRCK, BICK, SDTI1, SDTI2, SDTI3, SDTI4,SDTI5, SDTI6, VIH 70%TVDD1 DVMPD pins) (TST1,TST3,TST4,TST5,CAD0,CAD1,I2C, VIH 70%TVDD2 CSN,CCLK, CDTI pins) Low-Level Input Voltage (TST2, M/S, PDN, MCKI, LRCK, BICK, SDTI1, SDTI2, SDTI3, SDTI4,SDTI5, SDTI6, DVMPD pins) VIL 30%TVDD1 (TST1,TST3,TST4,TST5,CAD0,CAD1,I2C, CSN,CCLK, CDTI pins) VIL 30%TVDD2 High-Level Output Voltage (SDTO1,SDTO2,SDTO3, LRCK, BICK, MCKO pins: Iout=-100µA) VOH TVDD1-0.5 (CDTO pin: Iout=-100µA) VOH TVDD2-0.5 (DZF1/OVF1, DZF2/OVF2 pins: Iout=-100µA) AVDD2-0.5 Low-Level Output Voltage (SDTO1,SDTO2,SDTO3, LRCK, BICK, MCKO, CDTO, DZF1, DZF2/OVF pins: Iout= 100µA) VOL 0.5 (SDA pin, 2.0V≤TVDD2≤3.6V Iout= 3mA) VOL 0.4 VOL 20%TVDD2 (SDA pin, 1.6VTVDD2<2.0V Iout= 3mA) Input Leakage Current Iin 10 MS1025-E-05 Unit V V V V V V V V V V V V V V µA 2015/06 - 14 - [AK4614] SWITCHING CHARACTERISTICS (Ta=-40+105C; AVDD1=AVDD2=3.03.6; DVDD=1.62.0V; TVDD1=1.63.6V, TVDD2=1.63.6V; CL=20pF; unless otherwise specified) Parameter Symbol min typ max Unit Master Clock Timing Crystal Resonator Frequency fXTAL 11.2896 24.576 MHz MCKO Output Frequency (TVDD1 ≥3.0V) fMCK 5.6448 24.576 MHz Duty dMCK 40 50 60 % External Clock 256fsn: fCLK 8.192 12.288 MHz Pulse Width Low tCLKL 32 ns Pulse Width High tCLKH 32 ns 384fsn: fCLK 12.288 18.432 MHz Pulse Width Low tCLKL 22 ns Pulse Width High tCLKH 22 ns 512fsn, 256fsd, 128fsq: fCLK 16.384 24.576 MHz Pulse Width Low tCLKL 16 ns Pulse Width High tCLKH 16 ns MCKO Output Frequency fMCK 4.096 12.288 MHz fMCK 12.288 24.576 MHz (TVDD1 ≥3.0V) Duty (Note 16) dMCK 40 50 60 % LRCK Timing (Slave mode) Stereo mode (TDM1 bit = “0”, TDM0 bit = “0”) Normal Speed Mode fsn 32 48 kHz Double Speed Mode fsd 64 96 kHz Quad Speed Mode fsq 128 192 kHz Duty Cycle Duty 45 55 % TDM512 mode (Note 17) (TDM1 bit = “0”, TDM0 bit = “1”) LRCK frequency fsn 32 48 kHz “H” time tLRH 1/512fs ns “L” time tLRL 1/512fs ns TDM256 mode (Note 18) (TDM1 bit = “1”, TDM0 bit = “0”) LRCK frequency fsd 64 96 kHz “H” time tLRH 1/256fs ns “L” time tLRL 1/256fs ns TDM128 mode (Note 19) (TDM1 bit = “1”, TDM0 bit = “1”) LRCK frequency fsq 128 192 kHz “H” time tLRH 1/128fs ns “L” time tLRL 1/128fs ns MS1025-E-05 2015/06 - 15 - [AK4614] Parameter Symbol min typ max LRCK Timing (Master Mode) Stereo mode (TDM1 bit = “0”, TDM0 bit = “0”) Normal Speed Mode fsn 32 48 Double Speed Mode fsd 64 96 Quad Speed Mode fsq 128 192 Duty Cycle Duty 50 TDM512 mode (Note 17) (TDM1 bit = “0”, TDM0 bit = “1”) LRCK frequency fsn 32 48 “H” time (Note 20) tLRH 1/16fs TDM256 mode (Note 18) (TDM1 bit = “1”, TDM0 bit = “0”) LRCK frequency fsd 64 96 “H” time (Note 20) tLRH 1/8fs TDM128 mode (Note 19) (TDM1 bit = “1”, TDM0 bit = “1”) LRCK frequency fsq 128 192 “H” time (Note 20) tLRH 1/4fs Note 16. Except the case of DIV bit = “0”. Note 17. Please use for Normal Speed mode. Master clock should be input the 512fs in Master mode. Note 18. Please use for Double Speed mode. Note 19. Please use for Quad Speed mode. Note 20. If the format is I2S, it is “L” time. Unit MS1025-E-05 2015/06 - 16 - kHz kHz kHz % kHz ns kHz ns kHz ns [AK4614] Parameter Audio Interface Timing (Slave mode) Stereo mode (TDM1 bit = “0”, TDM0 bit = “0”) (TVDD1= 1.6V3.6V) BICK Period BICK Pulse Width Low Pulse Width High LRCK Edge to BICK “” (Note 21) BICK “” to LRCK Edge (Note 21) LRCK to SDTO(MSB) (Except I2S mode) BICK “” to SDTO SDTI Hold Time SDTI Setup Time (TVDD1= 3.0V3.6V) BICK Period BICK Pulse Width Low Pulse Width High LRCK Edge to BICK “” (Note 21) BICK “” to LRCK Edge (Note 21) LRCK to SDTO(MSB) (Except I2S mode) BICK “” to SDTO SDTI Hold Time SDTI Setup Time TDM512 mode (TDM1 bit = “0”, TDM0 bit = “1”) (TVDD1= 3.0V3.6V) (Note 17) BICK Period BICK Pulse Width Low Pulse Width High LRCK Edge to BICK “” (Note 21) BICK “” to LRCK Edge (Note 21) SDTO Setup time BICK “” SDTO Hold time BICK “” SDTI Hold Time SDTI Setup Time TDM256 mode (TDM1 bit = “1”, TDM0 bit = “0”) (TVDD1= 3.0V3.6V) (Note 18) BICK Period BICK Pulse Width Low Pulse Width High LRCK Edge to BICK “” (Note 21) BICK “” to LRCK Edge (Note 21) SDTO Setup time BICK “” SDTO Hold time BICK “” SDTI Hold Time SDTI Setup Time TDM128 mode (TDM1 bit = “1”, TDM0 bit = “1”) (TVDD1= 3.0V3.6V) (Note 19) BICK Period BICK Pulse Width Low Pulse Width High LRCK Edge to BICK “” (Note 21) BICK “” to LRCK Edge (Note 21) SDTO Setup time BICK “” SDTO Hold time BICK “” SDTI Hold Time SDTI Setup Time Symbol MS1025-E-05 min typ max Unit tBCK tBCKL tBCKH tLRB tBLR tLRS tBSD tSDH tSDS 324 130 130 20 20 tBCK tBCKL tBCKH tLRB tBLR tLRS tBSD tSDH tSDS 81 33 33 23 23 10 10 ns ns ns ns ns ns ns ns ns tBCK tBCKL tBCKH tLRB tBLR tBSS tBSH tSDH tSDS 40 16 16 10 10 6 5 10 10 ns ns ns ns ns ns ns ns ns ns tBCK tBCKL tBCKH tLRB tBLR tBSS tBSH tSDH tSDS 40 16 16 10 10 6 5 10 10 ns ns ns ns ns ns ns ns ns tBCK tBCKL tBCKH tLRB tBLR tBSS tBSH tSDH tSDS 40 16 16 10 10 6 5 10 10 ns ns ns ns ns ns ns ns ns 80 80 50 50 23 23 ns ns ns ns ns ns ns ns ns 2015/06 - 17 - [AK4614] Parameter Symbol Audio Interface Timing (Master mode) Stereo mode (TDM1 bit = “0”, TDM0 bit = “0”) (TVDD1= 1.6V3.6V) BICK Frequency fBCK BICK Duty dBCK tMBLR BICK “” to LRCK tBSD BICK “” to SDTO tSDH SDTI Hold Time tSDS SDTI Setup Time (TVDD1= 3.0V3.6V) BICK Frequency fBCK BICK Duty dBCK tMBLR BICK “” to LRCK tBSD BICK “” to SDTO tSDH SDTI Hold Time tSDS SDTI Setup Time TDM512 mode (TDM1 bit = “0”, TDM0 bit = “1”) (TVDD1= 3.0V3.6V) (Note 17) BICK Frequency fBCK BICK Duty dBCK BICK “” to LRCK tMBLR tBSS SDTO Setup time BICK “” tBSH SDTO Hold time BICK “” tSDH SDTI Hold Time tSDS SDTI Setup Time TDM256 mode (TDM1 bit = “1”, TDM0 bit = “0”) (TVDD1= 3.0V3.6V) (Note 18) BICK Frequency fBCK BICK Duty dBCK BICK “” to LRCK tMBLR tBSS SDTO Setup time BICK “” tBSH SDTO Hold time BICK “” tSDH SDTI Hold Time tSDS SDTI Setup Time TDM128 mode (TDM1 bit = “1”, TDM0 bit = “1”) (TVDD1= 3.0V3.6V) (Note 19) BICK Frequency fBCK BICK Duty dBCK BICK “” to LRCK tMBLR tBSS SDTO Setup time BICK “” tBSH SDTO Hold time BICK “” tSDH SDTI Hold Time tSDS SDTI Setup Time Note 21. BICK rising edge must not occur at the same time as LRCK edge. MS1025-E-05 min typ max Unit 40 70 50 50 64fs 50 - 40 70 - Hz % ns ns ns ns 23 23 10 10 64fs 50 - 23 23 - Hz % ns ns ns ns -10 6 5 10 10 512fs 50 - 10 - Hz % ns ns ns ns ns 10 6 5 10 10 256fs 50 - 10 - Hz % ns ns ns ns ns 10 6 5 10 10 128fs 50 - 10 - Hz % ns ns ns ns ns 2015/06 - 18 - [AK4614] Parameter Symbol min Control Interface Timing (4-wire Serial mode): CCLK Period tCCK 200 CCLK Pulse Width Low tCCKL 80 Pulse Width High tCCKH 80 CDTI Setup Time tCDS 40 CDTI Hold Time tCDH 40 CSN “H” Time tCSW 150 CSN “” to CCLK “” tCSS 50 CCLK “” to CSN “” tCSH 50 CDTO Delay tDCD CSN “” to CDTO Hi-Z tCCZ Control Interface Timing (I2C Bus mode): SCL Clock Frequency fSCL Bus Free Time Between Transmissions tBUF 1.3 Start Condition Hold Time (prior to first clock pulse) tHD:STA 0.6 Clock Low Time tLOW 1.3 Clock High Time tHIGH 0.6 Setup Time for Repeated Start Condition tSU:STA 0.6 SDA Hold Time from SCL Falling (Note 22) tHD:DAT 0 SDA Setup Time from SCL Rising tSU:DAT 0.1 Rise Time of Both SDA and SCL Lines tR Fall Time of Both SDA and SCL Lines tF Setup Time for Stop Condition tSU:STO 0.6 Pulse Width of Spike Noise Suppressed by Input Filter tSP 0 Capacitive load on bus Cb Power-down & Reset Timing PDN Pulse Width (Note 23) tPD 150 PDN “” to SDTO valid (Note 24) tPDV Note 22. Data must be held for sufficient time to bridge the 300 ns transition time of SCL. Note 23. The AK4614 can be reset by setting the PDN pin to “L” upon power-up. Note 24. These cycles are the numbers of LRCK rising from the PDN pin rising. Note 25. I2C-bus is a trademark of NXP B.V. MS1025-E-05 typ 518 max Unit 50 70 ns ns ns ns ns ns ns ns ns ns 400 1.0 0.3 50 400 kHz s s s s s s s s s s ns pF ns 1/fs 2015/06 - 19 - [AK4614] ■ Timing Diagram 1/fCLK VIH MCKI VIL tCLKH tCLKL 1/fsn, 1/fsd, 1/fsq VIH LRCK VIL tdLRKH tdLRKL Duty = tdLRKH (or tdLRKL) x fs x 100 tBCK VIH BICK VIL tBCKH tBCKL Figure 3. Clock Timing (TDM1/0 bit = “00” & Slave mode) 1/fCLK VIH MCKI VIL tCLKH tCLKL 1/fs VIH LRCK VIL tLRH tLRL tBCK VIH BICK VIL tBCKH tBCKL Figure 4. Clock Timing (Except TDM1/0 bit = “00” & Slave mode) MS1025-E-05 2015/06 - 20 - [AK4614] 1/fCLK VIH MCKI VIL tCLKH tCLKL 1/fMCK MCKO 50%TVDD1 tdMCKH tdMCKL dMCK = tdMCKH (or tdMCKL) x fMCK x 100 1/fs LRCK 50%TVDD1 tdLRKH tdLRKL dLRK = tdLRKH (or tdLRKL) x fs x 100 1/fBCK 50%TVDD1 BICK tdBCKH tdBCKL dBCK = tdBCKH (or tdBCKL) x fs x 100 Figure 5. Clock Timing (TDM1/0 bit = “00” & Master mode) 1/fCLK VIH MCKI VIL tCLKH tCLKL 1/fMCK MCKO 50%TVDD1 tdMCKH tdMCKL dMCK = tdMCKH (or tdMCKL) x fMCK x 100 1/fs LRCK 50%TVDD1 tLRH 1/fBCK 50%TVDD1 BICK tdBCKH tdBCKL dBCK = tdBCKH (or tdBCKL) x fs x 100 Figure 6. Clock Timing (Except TDM1/0 bit = “00” & Master mode) MS1025-E-05 2015/06 - 21 - [AK4614] VIH LRCK VIL tBLR tLRB VIH BICK VIL tLRS tBSD SDTO 50%TVDD1 tSDS tSDH VIH SDTI VIL Figure 7. Audio Interface Timing (TDM1/0 bit = “00” & Slave mode) VIH LRCK VIL tBLR tLRB VIH BICK VIL tBSH tBSS SDTO 50%TVDD1 tSDS tSDH VIH SDTI VIL Figure 8. Audio Interface Timing (Except TDM1/0 bit = “00” & Slave mode) MS1025-E-05 2015/06 - 22 - [AK4614] LRCK 50%TVDD1 tMBLR 50%TVDD1 BICK tBSD 50%TVDD1 SDTO tSDS tSDH VIH SDTI VIL Figure 9. Audio Interface Timing (TDM1/0 bit = “00” & Master mode) LRCK 50%TVDD1 tMBLR 50%TVDD1 BICK tBSS tBSH 50%TVDD1 SDTO tSDS tSDH VIH SDTI VIL Figure 10. Audio Interface Timing (Except TDM1/0 bit = “00” & Master mode) MS1025-E-05 2015/06 - 23 - [AK4614] VIH CSN VIL tCSH tCSS tCCKL tCCKH VIH CCLK VIL tCDS tCDH VIH CDTI C1 C0 R/W VIL Hi-Z CDTO Figure 11. WRITE Command Input Timing (4-wire Serial mode) tCSW VIH CSN VIL tCSH tCSS VIH CCLK VIL VIH CDTI D2 D1 D0 VIL CDTO Hi-Z Figure 12. WRITE Data Input Timing (4-wire Serial mode) MS1025-E-05 2015/06 - 24 - [AK4614] VIH CSN VIL VIH CCLK VIL VIH CDTI A1 A0 VIL tDCD Hi-Z CDTO D7 D6 50%TVDD2 Figure 13. Read Data Output Timing1(4-wire Serial mode) tCSW VIH CSN VIL tCSH tCSS VIH CCLK VIL VIH CDTI VIL tCCZ CDTO D2 D1 D0 Hi-Z 50%TVDD2 Figure 14. Read Data Output Timing2(4-wire Serial mode) MS1025-E-05 2015/06 - 25 - [AK4614] VIH SDA VIL tLOW tBUF tR tHIGH tF tSP VIH SCL VIL tHD:STA Stop tHD:DAT tSU:DAT tSU:STA tSU:STO Start Stop Start Figure 15. I2C Bus mode Timing tPD VIH PDN VIL tPDV SDTO 50%TVDD1 Figure 16. Power-down & Reset Timing MS1025-E-05 2015/06 - 26 - [AK4614] OPERATION OVERVIEW ■ System Clock It is possible to select the clock source either extra clock input or X’tal input for the AK4614. (Figure 17, Figure 18) The external clocks which are required to operate the AK4614 in slave mode are MCLK, LRCK and BICK. MCLK should be synchronized with LRCK but the phase is not critical. There are two methods to set MCLK frequency. In Manual Setting Mode (ACKS bit= “0”: Default), the sampling speed is set by DFS0, DFS1 (Table 1). The frequency of MCLK at each sampling speed is set automatically. (Table 3, Table 4, Table 5). In Auto Setting Mode (ACKS bit= “1”), as MCLK frequency is detected automatically (Table 6) and the internal master clock attains the appropriate frequency (Table 7), so it is not necessary to set DFS. In master mode, only MCLK is required. Master Clock Input Frequency should be set with the CKS1-0 bits, and the sampling speed should be set by the DFS1-0 bits. The frequencies and the duties of the clocks (LRCK, BICK) are not stabile immediately after setting CKS1-0 bits and DFS1-0 bits up. After exiting reset at power-up in slave mode, the AK4614 is in power-down mode until MCLK and LRCK are input. If the clock is stopped, click noise occurs when restarting the clock. Mute the digital output externally if the click noise influences system applications. DFS1 0 0 1 1 DFS0 0 1 0 1 Sampling Speed Mode (fs) (default) Normal Speed Mode 32kHz~48kHz Double Speed Mode 64kHz~96kHz Quad Speed Mode 128kHz~192kHz N/A (N/A: Not available) Table 1. Sampling Speed (Manual Setting Mode) CKS1 CKS0 0 0 1 1 0 1 0 1 Normal Speed Mode 256fs 384fs 512fs 512fs Double Speed Mode 256fs 256fs 256fs 256fs Quad Speed Mode 128fs 128fs 128fs 128fs (default) Table 2. Master Clock Input Frequency Select (Master Mode) LRCK fs 32.0kHz 44.1kHz 48.0kHz 256fs 8.1920 11.2896 12.2880 MCLK (MHz) 384fs 12.2880 16.9344 18.4320 512fs 16.3840 22.5792 24.5760 BICK (MHz) 64fs 2.0480 2.8224 3.0720 Table 3. System Clock Example (Normal Speed Mode @Manual Setting Mode) MS1025-E-05 2015/06 - 27 - [AK4614] LRCK fs 88.2kHz 96.0kHz MCLK (MHz) 256fs 22.5792 24.5760 BICK (MHz) 64fs 5.6448 6.1440 Table 4. System Clock Example (Double Speed Mode @Manual Setting Mode) LRCK fs 176.4kHz 192.0kHz MCLK (MHz) 128fs 22.5792 24.5760 BICK (MHz) 64fs 11.2896 12.2880 Table 5. System Clock Example (Quad Speed Mode @Manual Setting Mode) MCLK 512fs 256fs 128fs Sampling Speed Mode Normal Speed Mode Double Speed Mode Quad Speed Mode Table 6. Sampling Speed (Auto Setting Mode) LRCK fs 32.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz 128fs 22.5792 24.5760 MCLK (MHz) 256fs 22.5792 24.5760 - 512fs 16.3840 22.5792 24.5760 - Sampling Speed Mode Normal Speed Mode Double Speed Mode Quad Speed Mode Table 7. System Clock Example (Auto Setting Mode) MS1025-E-05 2015/06 - 28 - [AK4614] ■ Clock Source The clock for the XTI pin can be generated by the two methods. 1) External clock XTI External Clock AK4614 XTO Figure 17. External clock mode Note: Input clock must not exceed TVDD1. 2) X’tal XTI AK4614 XTO Figure 18. X’tal mode Note: External capacitance depends on the crystal oscillator (Typ. 10pF) TVDD1 should be used in the range of 3.0 ~ 3.6V in X’tal mode. MS1025-E-05 2015/06 - 29 - [AK4614] ■ Differential / Single-End Input selection The AK4614 supports the differential input (Figure 19) by setting DIE1-3 bits = “1”, supports the single-end input (Figure 20) by setting DIE1-3 bits = “0”. In differential input mode, two input pins must not be connected to a signal input in combination with a VCOM voltage. When single-end input mode, L/RIN1-/3- pins should be open, because L/RIN1-/3pins output an invert signal of the input signal. The AK4614 includes an anti-aliasing filter (RC filter) for both differential input and the single-end input. AK4614 L/RIN+ AK4614 L/RIN LPF LPF SCF L/RIN- SCF LPF L/RIN(Open) Figure 19. Differential Input (DIE1-3 bit = “1”) Figure 20. Single-end Input (DIE1-3 bit = “0”) ■ Differential / Single-End Output selection The AK4614 supports the differential output (Figure 21) by setting DOE1-6 bits = “1”, and the single-end output (Figure 22) by setting DOE1-6 bits = “0”. When single-end output mode, L/ROUT1-6- pins should be open, because of L/ROUT1-6- pins outputs VCOM voltage. The internal analog filters remove most of the noise beyond the audio passband generated by the delta-sigma modulator of a DAC in single-end input mode. There is no internal analog filter for differential output. Use external analog filters if needed to remove this noise. AK4614 AK4614 L/ROUT+ LPF SCF SCF L/ROUT- Figure 21. Differential Output (DOE1-6 bit = “1”) L/ROUT Diff to Single L/ROUT(Open) Figure 22. Single-end Output (DOE1-6 bit = “0”) MS1025-E-05 2015/06 - 30 - [AK4614] ■ De-emphasis Filter The AK4614 has a digital de-emphasis filter (tc=50/15µs) by an IIR filter. The de-emphasis filter supports only Normal Speed Mode. This filter corresponds to three sampling frequencies (32kHz, 44.1kHz, 48kHz). De-emphasis of each DAC can be set individually by registers, DAC1(SDTI1), DAC2(SDTI2), DAC3(SDTI3), DAC4(SDTI4), DAC5(SDTI5), DAC6(SDTI6). Mode Sampling Speed Mode 0 1 2 3 Normal Speed Mode Normal Speed Mode Normal Speed Mode Normal Speed Mode DEM11 (DEM61-21) 0 0 1 1 DEM10 (DEM60-20) 0 1 0 1 DEM 44.1kHz OFF 48kHz 32kHz (default) Table 8. De-emphasis control ■ Digital High Pass Filter The ADC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 1.0Hz at fs=48kHz and scales with the sampling rate (fs). ■ Master Clock Output The AK4614 has a master clock output pin. If DIV bit = “1”, the MCKO pin output the frequency divided in half. DIV 0 1 MCKO XTI x1 XTI x1/2 (default) Table 9. The select of Master clock output frequency ■ Master Mode and Slave Mode Master Mode and Slave Mode are selected by setting the M/S pin. (Master Mode= “H”, Slave Mode= “L”) LRCK and BICK pins are outputs in Master Mode (M/S pin= “H”) LRCK and BICK pins are inputs in Slave Mode (M/S pin= “L”) PDN L H M/S pin L H L H LRCK pin Input “L” Output Input Output BICK pin Input “L” Output Input Output Table 10. LRCK and BICK pins MS1025-E-05 2015/06 - 31 - [AK4614] ■ Audio Serial Interface Format (1) Stereo Mode When TDM1-0 bits = “00”, ten modes can be selected by the DIF2-0 bits as shown in Table 11. In all modes the serial data is MSB-first, 2’s compliment format. The data SDTO1-3 is clocked out on the falling edge of BICK and the SDTI1-6 is latched on the rising edge of BICK. Mode3/4/8/9/13/14/18/19/23/24/28/29/33/34/38/39 in SDTI input formats can be used for 16-20bit data by zeroing the unused LSBs. Mode M/S TDM1 TDM0 DIF2 DIF1 DIF0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 0 3 0 0 0 0 1 1 4 0 0 0 1 0 0 5 1 0 0 0 0 0 6 1 0 0 0 0 1 7 1 0 0 0 1 0 8 1 0 0 0 1 1 9 1 0 0 1 0 0 SDTO1-3 SDTI1-6 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, I2S 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, I2S 16bit, Right justified 20bit, Right justified 24bit, Right justified 24bit, Left justified 24bit, I2S 16bit, Right justified 20bit, Right justified 24bit, Right justified 24bit, Left justified 24bit, I2S LRCK I/O BICK I/O H/L I 32fs I H/L I 48fs I H/L I 48fs I H/L I 48fs I L/H I 48fs I H/L O 64fs O H/L O 64fs O H/L O 64fs O H/L O 64fs O L/H O 64fs O (default) Table 11. Audio data formats (Stereo mode) Note. TVDD1 which is the Power of I/O buffer should be kept in the range of 1.6V~3.6V at Normal Speed Mode in Stereo Mode. TVDD1 should be kept in the range of 3.0V~3.6V at Double Speed Mode and Quad Speed Mode. MS1025-E-05 2015/06 - 32 - [AK4614] (2) TDM Mode The audio serial interface format is set in TDM mode by the TDM1-0 bits = “01”. Five modes can be selected by the DIF2-0 bits as shown in Table 12. In all modes the serial data is MSB-first, 2’s compliment format. The SDTO1/2 are clocked out on the rising edge of BICK and the SDTI1/2/3 are latched on the rising edge of BICK. In the TDM512 mode (fs = 48kHz), the serial data of all ADC (six channels) is output to the SDTO1 pin. SDTO2/3 pins = “L”. And the serial data of all DAC (twelve channels) is input to the SDTI1 pin. The input data to SDTI2-6 pins are ignored. BICK should be fixed to 512fs. “H” time and “L” time of LRCK should be 1/512fs at least. TDM256 mode can be set by TDM1-0 bits as show in Table 13. In the TDM256 mode (fs = 96kHz), the serial data of all ADC (six channels) is output to the SDTO1 pin. SDTO2/3 pins = “L”. And the serial data of DAC (eight channels; L1, R1, L2, R2, L3, R3, L4, R4) is input to the SDTI1 pin. Other four data (L5, R5, L6, R6) are input to the SDTI2 pin. The input data to SDTI3-6 pins are ignored. BICK should be fixed to 256fs. “H” time and “L” time of LRCK should be 1/256fs at least. TDM128 mode can be set by TDM1-0 bits as show in Table 14. In TDM128 mode (fs=192kHz), the serial data of four ADC (four channels; L1, R1, L2, R2) is output to the SDTO1 pin. Other two data (L3, R3) output to the SDTO2. The SDTO3 pin = “L”. And the serial data of DAC (four channels; L1, R1, L2, R2) is input to the SDTI1 pin and the serial data of DAC (four channels; L3, R3, L4, R4) is input to the SDTI2 pin, the serial data of DAC (four channels; L5, R5, L6, R6) is input to the SDTI3 pin. The input data to SDTI4-6 pins are ignored. BICK should be fixed to 128fs. “H” time and “L” time of LRCK should be 1/128fs at least. Mode M/S TDM1 TDM0 DIF2 DIF1 DIF0 10 0 0 1 0 0 0 11 0 0 1 0 0 1 12 0 0 1 0 1 0 13 0 0 1 0 1 1 14 0 0 1 1 0 0 15 1 0 1 0 0 0 16 1 0 1 0 0 1 17 1 0 1 0 1 0 18 1 0 1 0 1 1 19 1 0 1 1 0 0 SDTO1-3 SDTI1-6 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, I2S 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, I2S 16bit, Right justified 20bit, Right justified 24bit, Right justified 24bit, Left justified 24bit, I2S 16bit, Right justified 20bit, Right justified 24bit, Right justified 24bit, Left justified 24bit, I2S LRCK I/O BICK I/O I 512fs I I 512fs I I 512fs I I 512fs I I 512fs I O 512fs O O 512fs O O 512fs O O 512fs O O 512fs O Table 12. Audio data formats (TDM512 mode) MS1025-E-05 2015/06 - 33 - [AK4614] Mode M/S TDM1 TDM0 DIF2 DIF1 DIF0 20 0 1 0 0 0 0 21 0 1 0 0 0 1 22 0 1 0 0 1 0 23 0 1 0 0 1 1 24 0 1 0 1 0 0 25 1 1 0 0 0 0 26 1 1 0 0 0 1 27 1 1 0 0 1 0 28 1 1 0 0 1 1 29 1 1 0 1 0 0 SDTO1-3 SDTI1-6 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, I2S 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, I2S 16bit, Right justified 20bit, Right justified 24bit, Right justified 24bit, Left justified 24bit, I2S 16bit, Right justified 20bit, Right justified 24bit, Right justified 24bit, Left justified 24bit, I2S LRCK I/O BICK I/O I 256fs I I 256fs I I 256fs I I 256fs I I 256fs I O 256fs O O 256fs O O 256fs O O 256fs O O 256fs O Table 13. Audio data formats (TDM256 mode) Mode M/S TDM1 TDM0 DIF2 DIF1 DIF0 30 0 1 1 0 0 0 31 0 1 1 0 0 1 32 0 1 1 0 1 0 33 0 1 1 0 1 1 34 0 1 1 1 0 0 35 1 1 1 0 0 0 36 1 1 1 0 0 1 37 1 1 1 0 1 0 38 1 1 1 0 1 1 39 1 1 1 1 0 0 SDTO1-3 SDTI1-6 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, I2S 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, Left justified 24bit, I2S 16bit, Right justified 20bit, Right justified 24bit, Right justified 24bit, Left justified 24bit, I2S 16bit, Right justified 20bit, Right justified 24bit, Right justified 24bit, Left justified 24bit, I2S LRCK I/O BICK I/O I 128fs I I 128fs I I 128fs I I 128fs I I 128fs I O 128fs O O 128fs O O 128fs O O 128fs O O 128fs O Table 14. Audio data formats (TDM128 mode) Note. TVDD1 should be used in the range of 3.0V~3.6V in TDM mode. MS1025-E-05 2015/06 - 34 - [AK4614] LRCK 0 1 2 16 17 18 24 25 31 0 1 2 16 17 18 24 25 31 0 1 BICK(64fs) SDTO(o) SDTI(i) 23 22 8 7 Don’t Care 6 0 15 14 8 23 22 7 1 8 7 Don’t Care 0 6 0 15 14 SDTO-23:MSB, 0:LSB; SDTI-15:MSB, 0:LSB Lch Data 23 8 7 1 0 Rch Data Figure 23. Mode 0/5 Timing (Stereo Mode) LRCK 0 1 2 12 13 14 24 25 31 0 1 2 12 13 14 24 25 31 0 1 BICK(64fs) SDTO(o) 23 22 SDTI(i) 12 11 10 0 19 18 8 Don’t Care 23 22 7 1 12 11 10 Don’t Care 0 0 19 18 SDTO-23:MSB, 0:LSB; SDTI-19:MSB, 0:LSB Lch Data 23 8 7 1 0 Rch Data Figure 24. Mode 1/6 Timing (Stereo Mode) LRCK 0 1 2 8 9 10 24 25 31 0 1 2 8 9 10 24 25 31 0 1 BICK(64fs) SDTO(o) 23 22 SDTI(i) 16 15 14 Don’t Care 0 23 22 23:MSB, 0:LSB 23 22 8 7 1 16 15 14 Don’t Care 0 0 23 22 Lch Data 23 8 7 1 0 Rch Data Figure 25. Mode 2/7 Timing (Stereo Mode) LRCK 0 1 2 21 22 23 24 28 29 30 31 0 1 2 22 23 24 28 29 30 31 0 1 BICK(64fs) SDTO(o) 23 22 2 1 0 SDTI(i) 23 22 2 1 0 23:MSB, 0:LSB Don’t Care 23 22 2 1 0 23 22 2 1 0 Lch Data 23 Don’t Care 23 Rch Data Figure 26. Mode 3/8 Timing (Stereo Mode) MS1025-E-05 2015/06 - 35 - [AK4614] LRCK 0 1 2 3 22 23 24 25 29 30 31 0 1 2 3 22 23 24 25 29 30 31 0 1 BICK(64fs) SDTO(o) SDTI(i) 23 22 2 1 0 23 22 2 1 0 23:MSB, 0:LSB Don’t Care 23 22 2 1 0 23 22 2 1 0 Lch Data Don’t Care Rch Data Figure 27. Mode 4/9 Timing (Stereo Mode) 512BICK LRCK(Mode15) LRCK(Mode10) BICK(512fs) SDTO1(o) 23 22 0 23 22 L1 0 23 22 R1 0 23 22 L2 0 23 22 R2 0 23 22 L3 0 23 22 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SDTI1(i) 15 14 0 15 14 0 R1 L1 15 14 0 15 14 0 R2 L2 15 14 0 15 14 0 R3 L3 15 14 0 15 14 0 R4 L4 15 14 0 15 14 0 R5 L5 15 14 0 15 14 0 15 R6 L6 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 28. Mode 10/15 Timing (TDM512 Mode) 512BICK LRCK(Mode16) LRCK(Mode11) BICK(512fs) SDTO1(o) 23 22 0 23 22 L1 0 23 22 R1 0 23 22 L2 0 23 22 R2 0 23 22 L3 0 23 22 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SDTI1(i) 19 18 0 19 18 0 R1 L1 19 18 0 19 18 0 R2 L2 19 18 0 19 18 0 R3 L3 19 18 0 19 18 0 R4 L4 19 18 0 19 18 0 R5 L5 19 18 0 19 18 0 19 R6 L6 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 29. Mode 11/16 Timing (TDM512 Mode) 512BICK LRCK(Mode17) LRCK(Mode12) BICK(512fs) SDTO1(o) 23 22 0 23 22 L1 0 23 22 R1 0 23 22 L2 0 23 22 R2 0 23 22 L3 0 23 22 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SDTI1(i) 23 22 L1 0 23 22 R1 0 23 22 L2 0 23 22 R2 0 23 22 L3 0 23 22 R3 0 23 22 0 L4 23 22 R4 0 23 22 L5 0 23 22 R5 0 23 22 L6 0 23 22 0 23 R6 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 30. Mode 12/17 Timing (TDM512 Mode) MS1025-E-05 2015/06 - 36 - [AK4614] 512BICK LRCK(Mode18) LRCK(Mode13) BICK(512fs) SDTO1(o) 23 22 0 L1 23 22 0 23 22 R1 0 23 22 L2 0 R2 23 22 0 23 22 L3 23 22 0 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SDTI1(i) 23 22 0 23 22 0 23 22 R1 L1 0 23 22 0 R2 L2 23 22 0 23 22 23 22 0 R3 L3 0 23 22 0 23 22 R4 L4 0 23 22 23 22 0 R5 L5 0 23 22 0 23 22 R6 L6 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 31. Mode 13/18 Timing (TDM512 Mode) 512BICK LRCK(Mode19) LRCK(Mode14) BICK(512fs) SDTO1(o) 23 0 L1 23 0 23 R1 0 23 L2 0 R2 23 0 23 L3 0 23 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK SDTI1(i) 23 0 L1 23 0 23 R1 0 23 0 R2 L2 23 0 23 0 23 R3 L3 0 23 0 23 R4 L4 0 23 0 23 R5 L5 0 23 L6 0 23 R6 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK Figure 32. Mode 14/19 Timing (TDM512 Mode) 256 BICK LRCK (Mode25) LRCK (Mode20) BICK(256fs) SDTO1(o) SDTI1(i) 23 22 0 23 22 23 22 0 23 22 23 22 0 0 23 22 0 L1 R1 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 15 14 0 4 SDTI2(i) 0 15 14 0 15 14 0 15 14 0 15 14 0 15 14 23 22 0 15 14 0 15 14 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 15 14 0 15 14 0 15 14 0 15 14 0 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 15 19 Figure 33. Mode 20/25 Timing (TDM256 Mode) MS1025-E-05 2015/06 - 37 - [AK4614] 256 BICK LRCK (Mode26) LRCK (Mode21) BICK(256fs) SDTO1(o) SDTI1(i) SDTI2(i) 23 22 0 23 22 0 23 22 0 23 22 23 22 0 0 23 22 0 L1 R1 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 19 18 0 19 18 0 19 18 0 19 18 0 19 18 0 19 18 23 22 0 19 18 0 19 18 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 19 18 0 19 18 0 19 18 0 19 18 0 0 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 19 19 Figure 34. Mode 21/26 Timing (TDM256 Mode) 256 BICK LRCK (Mode27) LRCK (Mode22) BICK(256fs) SDTO1(o) SDTI1(i) SDTI2(i) 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 L1 R1 32 BICK 32 BICK 23 22 0 23 22 0 0 23 22 0 23 22 L2 R2 32 BICK 32 BICK 23 22 0 23 22 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 23 22 0 23 22 23 22 0 23 22 0 23 22 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 0 0 23 23 Figure 35. Mode 22/27 Timing (TDM256 Mode) MS1025-E-05 2015/06 - 38 - [AK4614] 256 BICK LRCK (Mode28) LRCK (Mode23) BICK(256fs) SDTO1(o) SDTI1(i) SDTI2(i) 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 L1 R1 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 23 22 0 23 22 23 22 0 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 23 22 Figure 36. Mode 23/28 Timing (TDM256 Mode) 256 BICK LRCK (Mode29) LRCK (Mode24) BICK(256fs) SDTO1(o) SDTI1(i) SDTI2(i) 23 0 23 0 23 0 23 0 23 0 23 0 L1 R1 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 0 23 0 23 0 23 0 23 0 23 0 23 23 0 23 0 L1 R1 L2 R2 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 0 23 0 23 0 23 0 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 23 23 Figure 37. Mode 24/29 Timing (TDM256 Mode) MS1025-E-05 2015/06 - 39 - [AK4614] 128 BICK LRCK (Mode35) LRCK (Mode30) BICK(128fs) SDTO1(o) SDTO2(o) SDTI1(i) SDTI2(i) SDTI3(i) 23 22 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 23 22 0 0 L3 R3 32 BICK 32 BICK 15 14 0 0 15 14 15 14 0 15 14 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 0 15 14 0 15 14 15 14 0 15 14 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 0 15 14 23 22 0 15 14 0 15 14 0 15 14 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 15 0 15 0 15 Figure 38. Mode 30/35 Timing (TDM128 Mode) 128 BICK LRCK (Mode36) LRCK (Mode31) BICK(128fs) SDTO1(o) SDTO2(o) SDTI1(i) SDTI2(i) SDTI3(i) 23 22 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 23 22 0 0 L3 R3 32 BICK 32 BICK 19 18 0 0 19 18 19 18 0 19 18 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 0 19 18 0 19 18 19 18 0 19 18 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 0 19 18 23 22 0 19 18 0 19 18 0 19 18 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 19 0 19 0 19 Figure 39. Mode 31/36 Timing (TDM128 Mode) MS1025-E-05 2015/06 - 40 - [AK4614] 128 BICK LRCK (Mode37) LRCK (Mode32) BICK(128fs) SDTO1(o) SDTO2(o) SDTI1(i) SDTI2(i) SDTI3(i) 23 22 23 22 0 0 23 22 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 23 22 0 L3 R3 32 BICK 0 23 22 0 32 BICK 23 22 0 23 22 23 22 0 23 22 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 0 23 22 0 23 22 23 22 0 23 22 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 0 23 22 23 22 0 23 22 0 23 22 0 23 22 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 23 0 23 0 23 Figure 40. Mode 32/37 Timing (TDM128 Mode) 128 BICK LRCK (Mode38) LRCK (Mode33) BICK(128fs) SDTO1(o) SDTO2(o) SDTI1(i) SDTI2(i) SDTI3(i) 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 L3 R3 32 BICK 23 22 0 23 22 0 32 BICK 0 23 22 23 22 0 23 22 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 0 23 22 0 23 22 23 22 0 23 22 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 0 23 22 0 23 22 23 22 23 22 0 23 22 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 23 22 0 23 22 0 23 22 Figure 41. Mode 33/38 Timing (TDM128 Mode) MS1025-E-05 2015/06 - 41 - [AK4614] 128 BICK LRCK (Mode39) LRCK (Mode34) BICK(128fs) SDTO1(o) SDTO2(o) SDTI1(i) SDTI2(i) SDTI3(i) 22 0 23 0 23 0 23 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 0 23 L3 R3 32 BICK 0 23 23 0 32 BICK 0 23 0 23 23 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 0 23 0 23 0 23 23 L3 R3 L4 R4 32 BICK 32 BICK 32 BICK 32 BICK 0 23 0 23 23 0 23 23 L5 R5 L6 R6 32 BICK 32 BICK 32 BICK 32 BICK 0 23 0 23 0 23 Figure 42. Mode 34/39 Timing (TDM128 Mode) MS1025-E-05 2015/06 - 42 - [AK4614] ■ Overflow Detection The AK4614 has an overflow detect function for the analog input. The overflow detect function is enabled when the OVFE bit is set to “1”. Overflow detection is applied to the analog input of each channel, and the result is OR’d. OVF1/2 pins goes to “H” according to the group set by OVFM2-0 bits, if analog input of Lch or Rch overflows (more than -0.3dBFS). When the analog input is overflowed, the output signal of OVF1/2 pins have the same group delay as ADC (GD = 16/fs = 333s @fs=48kHz). OVF1/2 pins are “L” for 518/fs (=11.8ms @fs=48kHz) after PDN = “”, and then overflow detection is enabled. Mode 0 1 2 3 4 5 6 7 OVFM2 0 0 0 0 1 1 1 1 OVFM1 0 0 1 1 0 0 1 1 OVFM0 0 1 0 1 0 1 0 1 LIN1 or RIN1 OVF1 OVF1 OVF2 OVF2 LIN2 or RIN2 OVF1 OVF2 OVF1 OVF2 LIN3 or RIN3 OVF1 OVF2 OVF1 OVF2 disable (OVF2=OVF1= “L”) (default) Table 15. Overflow detect control (OVFE bit = “1”) ■ Zero Detection The AK4614 has two pins for zero detect flag outputs. Zero detect function is enabled when the OVFE bit is set to “0”. Channel grouping can be selected by the DZFM3-0 bits. (Table 16) The DZF1 pin corresponds to the group 1 channels and the DZF2 pin corresponds to the group 2 channels. DZF1 is AND operation of all twelve channels and DZF2 is disabled (“L”) at mode 0. When the input data of all channels in the group 1(group 2) are continuously zeros for 8192 LRCK cycles, the DZF1 (DZF2) pin goes to “H”. The DZF1 (DZF2) pin immediately returns to “L” if input data of any channels in the group 1(group 2) is not zero. Mode 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 DZFM 2 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 L1 R1 L2 R2 L3 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF2 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF2 DZF2 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF2 DZF2 DZF2 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF2 DZF2 DZF2 DZF2 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF2 DZF2 DZF2 DZF2 DZF2 AOUT R3 L4 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF1 DZF1 DZF1 DZF1 DZF1 DZF1 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 R4 L5 R5 L6 R6 DZF1 DZF1 DZF1 DZF1 DZF1 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF1 DZF1 DZF1 DZF1 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF1 DZF1 DZF1 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF1 DZF1 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF1 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 DZF2 disable (DZF1=DZF2 = “L”) (default) Table 16. Zero detect control (OVFE bit = “0”) MS1025-E-05 2015/06 - 43 - [AK4614] ■ Digital Attenuator AK4614 has a channel-independent digital attenuator (256 levels, 0.5dB steps). Attenuation level of each channel can be set by each the ATT7-0 bits (Table 17). ATT7-0 00H 01H 02H : 7DH 7EH 7FH FEH FFH Attenuation Level 0dB -0.5dB -1.0dB : -62.5dB -63.0dB -63.5dB : -127.0dB MUTE (-∞) (default) Table 17. Attenuation level of digital attenuator Transition time between set values of ATT7-0 bits can be selected by the ATS1-0 bits (Table 18). Transition between set values is the soft transition in Mode1/2/3 eliminating switching noise in the transition. Mode 0 1 2 3 ATS1 0 0 1 1 ATS0 0 1 0 1 ATT speed 4096/fs 2048/fs 512/fs 256/fs (default) Table 18. Transition time between set values of ATT7-0 bits The transition between set values is a soft transition of 4096 levels in mode 0. It takes 4096/fs (85.3ms@fs=48kHz) from 00H(0dB) to FFH(MUTE). If the PDN pin goes to “L”, the ATTs are initialized to 00H. The ATTs also become 00H when RSTN bit = “0”, and fade to their current value when RSTN bit returns to “1”. * A power-down release command must be write again (dummy write) after 5 LRCK cycles or later form the first command when releasing power-down mode by PMVR, PMDAC, RSTN, PMDA1, PMDA2, PMDA3, PMDA4, PMDA5 or PMDA6 bit in I2C mode. If this dummy write is not executed, DATT output will keep the initial value (0dB) until the next write is executed. > 5LRCK (5/fs) LRCK I2C ContIrol Power-down Release Command Power-down Release Command (Dummy) A power-down release command must be write again after 5 LRCK cycle or later from the first command. Figure 43. Power-up Sequence Example MS1025-E-05 2015/06 - 44 - [AK4614] ■ Soft Mute Operation Soft mute operation is performed in the digital domain. When the SMUTE bit becomes “1”, the output signal is attenuated to - in the cycle set by ATS bits (Table 18) from the current ATT level. When the SMUTE bit is returned to “0”, the mute is cancelled and the output attenuation gradually changes to the ATT level in the cycle set by ATS bits. If the soft mute is cancelled before attenuating to - after starting the operation, attenuation is discontinued and it is returned to ATT level by the same cycle. Soft mute is effective for changing the signal source without stopping the signal transmission. SMUTE bit ATT Level (1) (2) (4) Attenuation - GD (3) GD AOUT DZF1,2 (5) 8192/fs Notes: (1) The time for input data attenuation to - (Table 18). For example, in Normal Speed Mode, this time is 4096LRCK cycles (4096/fs) at ATT_DATA=00H. ATT transition of the soft-mute is from 00H to FFH (2) The time for input data recovery to ATT level (Table 18). For example, in Normal Speed Mode, this time is 4096LRCK cycles (4096/fs) at ATT-DATA=FFH. ATT transition of soft-mute is from FFH to 00H. (3) The analog output corresponding to the digital input has group delay, GD. (4) If the soft mute is cancelled before attenuating to -, the attenuation is discontinued and returned to ATT level by the same cycle. (5) When the input data at all the channels of the group are continuously zeros for 8192 LRCK cycles, DZF1, 2 pins of each channel goes to “H”. DZF1/2 pins immediately returns to “L” if the input data of either channel of the group are not zero after going “H”. Figure 44. Soft mute and zero detection ■ System Reset The AK4614 should be reset once by bringing the PDN pin = “L” upon power-up. The AK4614 is powered up and the internal timing starts clocking by LRCK “” after exiting the power down state of reference voltage (such as VCOM) by MCLK. The AK4614 is in power-down mode until MCLK and LRCK are input. MS1025-E-05 2015/06 - 45 - [AK4614] ■ Power-Down All ADCs and DACs of the AK4614 are placed in power-down mode by bringing the PDN pin “L” which resets both digital filters at the same time. The PDN pin “L” also resets the control registers to their default values. In power-down mode, when the DVMPD pin “L”, the analog outputs go to VCOM voltage, when the DVMPD pin =“H”, the analog outputs go to Hi-Z. The SDTO1-3, DZF1-2 pins go to “L” in the power-dwon mode. This reset should always be executed after power-up. For the ADC, an analog initialization cycle (518/fs) starts 3~4/fs after exiting power-down mode. The output data, SDTO1-3, is available after 521~522 cycles of the LRCK clock. For the DAC, an analog initialization cycle (516/fs) starts 3~4/fs after exiting power-down mode. The analog outputs are VCOM voltage when the DVMPD =pin “L”, and the analog outputs go to Hi-Z when the DVMPD pin =“H” during the initialization. Figure 45 shows the power-down and power-up sequences. Power 3~4/fs PDN (10) (12) 518/fs ADC Internal State (1) Init Cycle Normal Operation Power-down Normal Operation Power-down 516/fs (2) DAC Internal State Init Cycle GD (3) GD ADC In (Analog) ADC Out (Digital) “0”data DAC In (Digital) “0”data (6) (4) “0”data “0”data (3) GD DAC Out (Analog) (5) GD (7) (7) (7) Clock In Don’t care Don’t care MCLK,LRCK,SCLK 10~11/fs (11) (7) DZF1/DZF2 External Mute Don’t care Mute ON Mute ON (9) Notes: (1) The analog part of ADC is initialized after exiting power-down state. (2) The analog part of DAC is initialized after exiting power-down state. (3) Digital output corresponds to analog input and analog output corresponds to digital input have group delay (GD). (4) ADC output is “0” data at power-down state. (5) The analog outputs are VCOM voltage when the DVMPD pin “L”, and the analog outputs go to Hi-Z when the DVMPD pin “H” in power-down mode. (6) Click noise occurs at the end of initialization of the analog part. Mute the digital output externally if the click noise influences system applications. (7) Click noise occurs at the falling edge of PDN and at 519~520/fs after the rising edge of the PDN pin. (8) DZF1-2 pins are “L” in power-down mode (PDN pin = “L”). (9) Please mute the analog output externally if the click noise (7) influences system applications. (10) There is a delay, 3~4/fs from PDN pin “H” to the start of initial cycle. (11) DZF pin= “L” for 1011/fs after PDN pin = “”. (12) The PDN pin must be “L” when power up the AK4614 and set to “H” after all poweres are supplied. Figure 45. Pin power-down/Pin power-up sequence example MS1025-E-05 2015/06 - 46 - [AK4614] All ADCs and all DACs can be powered-down individually through the PMADC bits and PMDAC bits, when the PMVR bit “1”. ADC1-3 can be power-down individually through the PMAD3-1 bits. DAC1-6 can be power-down individually by PMDA6-1 bits. In this case, the internal register values are not initialized. When PMADC bit = “0”, SDTO1-3 goes to “L”. When PMDAC bit = “0”, the analog outputs go to VCOM voltage when the DVMPD pin is “L”, and the analog outputs go to Hi-Z when the DVMPD pin “H”. When PMDAC bit = “0”, DZF1-2 pins go to “H”. As some click noise occurs, the analog output should be muted externally if the click noise influences system applications. Figure 46 shows the power-down and power-up sequences. PMVR bit 4~5/fs (10) 3~4/fs (11) PMADC/PMDAC bit 518/fs ADC Internal State Normal Operation Power-down (1) Init Cycle Normal Operation 516/fs (2) DAC Internal State Normal Operation Power-down Init Cycle Normal Operation GD (3) GD ADC In (Analog) ADC Out (Digital) “0”data DAC In (Digital) (4) (6) “0”data GD (3) GD (7) DAC Out (Analog) Clock In (5) (7) Don’t care MCLK,LRCK,SCLK (8) 89/fs (12) DZF1/DZF2 External Mute (9) Mute ON Notes: (1) The analog section of ADC is initialized after exiting power-down state. (2) The analog section of DAC is initialized after exiting power-down state. (3) Digital output corresponding to the analog inputs and analog outputs corresponding to the digital inputs have group delay (GD). (4) ADC output is “0” data at power-down state. (5) The analog outputs are VCOM voltage when the DVMPD pin “L”, and the analog outputs go to Hi-Z when the DVMPD pin “H” in power-down mode. (6) Click noise occurs at the end of initialization of the analog part. Mute the digital output externally if the click noise influences system application. (7) Click noise occurs at 45/fs after PMDAC bit becomes “0”, and occurs at 519520/fs after PMDAC bit becomes “1”. (8) DZF1-2 pins are “H” in power-down mode (PMDAC bit = “0”). (9) Mute the analog output externally if the click noise (7) influences system application. (10) There is a delay, 4~5/fs from PMDAC bit becomes “0” to the applicable ADC power-down. There is a delay, 4~5/fs from PMDAC bit becomes “0” to the applicable DAC power-down. (11) There is a delay, 3~4/fs from PMADC and PMDAC bits become “1” to the start of initial cycle. (12) DZF pin= “L” for 89/fs after PMDAC bit becomes “1”. Figure 46. Bit power-down/Bit power-up sequence example MS1025-E-05 2015/06 - 47 - [AK4614] ■ Reset Function When RSTN bit= “0”, the analog and digital part of ADC and the digital part of DACs are powered-down, but the internal register are not initialized. The analog outputs go to VCOM voltage regardless of the DVMPD pin setting, then DZF1-2 pins go to “H” and SDTO1-3 pin goes to “L”. As some click noise occurs, the analog output should be muted externally if the click noise influences system application. Figure 47 shows the power-up sequence. RSTN bit 4~5/fs (8) 3~4/fs (9) Internal RSTN bit 518/fs (1) ADC Internal State Normal Operation Power-down DAC Internal State Normal Operation Digital Block Power-down Normal Operation Init Cycle Normal Operation GD (2) GD ADC In (Analog) ADC Out (Digital) (3) “0”data DAC In (Digital) (4) “0”data (2) GD DAC Out (Analog) Clock In MCLK,LRCK,SCLK GD (6) (5) (6) Don’t care 89/fs (7) DZF1/DZF2 Notes: (1) The analog section of the ADC is initialized after exiting reset state. (2) Digital output corresponding to the analog inputs, and analog outputs corresponding to the digital inputs have group delay (GD). (3) ADC output is “0” data at power-down state. (4) Click noise occurs when the internal RSTN bit becomes “1”. Mute the digital output externally if the click noise influences system application. (5) The analog outputs go to VCOM voltage regardless of the DVMPD pin setting when RSTN bit becomes “1”. (6) Click noise occurs at 45/fs after RSTN bit becomes “0”, and occurs at 34/fs after RSTN bit becomes “1”. (7) DZF pins go to “H” when the RSTN bit becomes “0”, and go to “L” at 8~9/fs after RSTN bit becomes “1”. (8) There is a delay, 4~5/fs from RSTN bit “0” to the internal RSTN bit “0”. (9) There is a delay, 3~4/fs from RSTN bit “1” to the start of initial cycle. Figure 47. Reset sequence example MS1025-E-05 2015/06 - 48 - [AK4614] ■ ADC Partial Power-Down Function All of the ADCs can be powered-down individually by PMAD3-1 bits. The analog section and the digital section of the ADC are in power-down mode when the PMAD3-1 bits = “0”. The analog section of ADCs are initialized after exiting the power-down state. Digital output corresponding to analog input have group delay (GD). ADC output is “0” data at the power-down state. Click noise occurs when the internal RSTN bit becomes “1”. Mute the digital output externally if the click noise influences system applications. Figure 48 shows the power-down and power-up sequences by PMAD3-1 bits. PMAD3-1 bit Power Down Channel ADCDigital Internal State 4~5/fs (1) Normal Operation 2~3/fs (2) Power-down 2~3/fs (2) 4~5/fs (1) Normal Operation Power-down 518/fs (3) ADC Analog Internal State Normal Operation Power-down Init Cycle Normal Operation 518/fs (3) Normal Operation Power-down Init Cycle Normal Operation (4) GD GD (4) ADC In (Analog) (5) “0”data ADC Out (Digital) Normal Operation Channel (6) GD (4) (6) GD (4) ADC In (Analog) ADC Out (Digital) (5) “0”data Clock In MCLK,LRCK,SCLK Notes. (1) There is a delay, 4~5/fs from PMAD3-1 bits become “0” to the applicable ADC power-down. (2) There is a delay, 2~3/fs from PMAD3-1 bit “1” to the start of initial cycle. (3) The analog section of the ADC is initialized after exiting reset state. (4) Analog output corresponding to the digital inputs have group delay (GD). (5) ADC output is “0” data at power-down state. (6) Click noise occurs when the internal RSTN bit becomes “1”. Mute the digital output externally if the click noise influences system application. Figure 48. ADC partial power-down example MS1025-E-05 2015/06 - 49 - [AK4614] ■ DAC Partial Power-Down Function All of the DACs can be powered-down individually by PMDA6-1 bits. The analog section and the digital section of the DAC are placed in power-down mode when the PMDA6-1 bits = “0”. The analog output of the powered-down channels, which is by PMDA6-1 bits, go to the voltage of VCOM when the DVMPD pin is “L”, and go to Hi-Z when the DVMPD pin “H”. Although DZF detection is in operation, the AK4614 stops reflecting the result of DZF detection to DZF1-2 pins. Some click noise occurs in both set-up and release of power-down. Mute the analog output externally or set PMDA1-6 bits when PMDAC bit = “0” or RSTN bit = “0”, if click noise aversely affects system performance. Figure 49 shows the sequence of the power-down and the power-up by PMDA6-1 bits. PMDA6-1 bit Power Down Channel 4~5/fs (4) 2~3/fs (5) DAC Digital Internal State Normal Operation Power-down DAC Analog Internal State Normal Operation Power-down 2~3/fs (5) 4~5/fs (4) Normal Operation Power-down 516/fs (6) DAC In (Digital) Init Cycle Normal Operation 516/fs (6) Normal Operation Power-down Init Cycle Normal Operation “0”data (1) GD GD (3) DAC Out (Analog) (2) (3) (3) (2) (3) 8192/fs DZF Detect Internal State (7) (7) Normal Operation Channel DAC In (Digital) “0”data GD GD DAC Out (Analog) 8192/fs DZF Detect Internal State Clock In MCLK,LRCK,SCLK (8) (9) DZF1/DZF2 Notes: (1) Digital output corresponding to the analog inputs, and analog outputs corresponding to the digital inputs have group delay (GD). (2) Analog output of the DAC powered down by PMDA6-1 = “0” and goes to VCOM voltage when the DVMPD pin =“L”, and the analog outputs go to Hi-Z when the DVMPD pin =“H”. (3) Click noise occurs at 45/fs after RSTN bit becomes “0”, and occurs at 34/fs after RSTN bit becomes “1”. after PMDA6-1 bits are changed, some click noise occurs immediately at output of the channel changed by the own PD bits. (4) The DACs will be powered-down 4~5fs after PMDA6-1 bits = “0” (5) The initiation stars 2~3fs after PMDA6-1 bits are set to “1”. (6) The analog parts of DACs are initilised after exiting power down mode. (7) Although DZF detection is active at a certain channel set up though PMDA6-1 = “0”, the AK4614 stops reflecting the result of DZF detection to DZF1-2 pins. (8) DZF detection of the DAC which is set up by the power-down setting is ignored, and DZF1-2 pins go to “H”. (9) When signal is input to a DAC, even if the partical power down is applied, DZF1-2 pins will not become “H”. Figure 49. DAC partial power-down example MS1025-E-05 2015/06 - 50 - [AK4614] ■ Serial Control Interface The AK4614’s functions are controlled through registers. The registers may be written by two types of control modes. The chip address is determined by the state of the CAD0 and CAD1 inputs. The PDN pin = “L” initializes the registers to their default values. Writing “0” to the RSTN bit can initialize the internal timing circuit, but the register data will not be initialized. (1) 4-wire Serial Control Mode (I2C pin = “L”) The internal registers may be written through the 4-wire µP interface pins (CSN, CCLK, CDTI and CDTO). The data on this interface consists of a 2-bit Chip address, Read/Write, Register address (MSB first, 5bits) and Control data (MSB first, 8bits). The chip address high bit is fixed to “1” and the lower bit is set by the CAD0 pin. Address and data are clocked in on the rising edge of CCLK and data is clocked out on the falling edge. After a low-to-high transition of CSN, data is latched for write operations and CDTO bit outputs Hi-Z. The clock speed of CCLK is 5MHz (max). The value of internal registers is initialized when the PDN pin = “L”. CSN 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CCLK “H” or “L” “H” or “L” CDTI “H” or “L” C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 “H” or “L” WRITE Hi-Z CDTO CDTI READ CDTO “H” or “L” “H” or “L” C1 C0 R/W A4 A3 A2 A1 A0 Hi-Z D7 D6 D5 D4 D3 D2 D1 D0 Hi-Z C1 – C0: Chip Address (C1=CAD1, C0=CA0) R/W: READ / WRITE (“1”: WRITE, “0”: READ) A4 - A0: Register Address D7 – D0: Control Data Figure 50. Serial Control I/F Timing MS1025-E-05 2015/06 - 51 - [AK4614] (2) I2C-bus Control Mode (I2C pin = “H”) The AK4614 supports the fast-mode I2C-bus (max: 400kHz). (2)-1. WRITE Operations Figure 51 shows the data transfer sequence of the I2C-bus mode. All commands are preceded by START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates START condition (Figure 57). After the START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W). The most significant five bits of the slave address are fixed as “00100”. The next bits are CAD1 and CAD0 (device address bit). This bit identifies the specific device on the bus. The hard-wired input pins (CAD1/0 pins) set these device address bits (Figure 52). If the slave address matches that of the AK4614, the AK4614 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 58). R/W bit = “1” indicates that the read operation is to be executed. “0” indicates that the write operation is to be executed. The second byte consists of the control register address of the AK4614. The format is MSB first, and those most significant 3-bits are fixed to zeros (Figure 53). The data after the second byte contains control data. The format is MSB first, 8bits (Figure 54). The AK4614 generates an acknowledge after each byte is received. Data transfer is always terminated by STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines STOP condition (Figure 57). The AK4614 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4614 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds 16H prior to generating a stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (Figure 59) except for the START and STOP conditions. S T A R T SDA S T O P R/W="0" Slave S Address Sub Address(n) Data(n) A C K A C K Data(n+1) A C K Data(n+x) A C K A C K P A C K Figure 51. Data Transfer Sequence at the I2C-Bus Mode 0 0 1 0 0 CAD1 CAD0 R/W (Those CAD1/0 should match with CAD1/0 pins) Figure 52. The First Byte 0 0 0 A4 A3 A2 A1 A0 D2 D1 D0 Figure 53. The Second Byte D7 D6 D5 D4 D3 Figure 54. Byte Structure after the second byte MS1025-E-05 2015/06 - 52 - [AK4614] (2)-2. READ Operations Set the R/W bit = “1” for the READ operation of the AK4614. After transmission of data, the master can read the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds 16H prior to generating stop condition, the address counter will “roll over” to 00H and the data of 00H will be read out. The AK4614 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ. (2)-2-1. CURRENT ADDRESS READ The AK4614 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) was to address “n”, the next CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with R/W bit “1”, the AK4614 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4614 ceases transmission. S T A R T SDA S T O P R/W="1" Slave S Address Data(n) Data(n+1) Data(n+2) MA AC SK T E R A C K MA AC SK T E R Data(n+x) MA AC SK T E R MA AC SK T E R P MN AA SC T EK R Figure 55. CURRENT ADDRESS READ (2)-2-2. RANDOM ADDRESS READ The random read operation allows the master to access any memory location at random. Prior to issuing a slave address with the R/W bit =“1”, the master must execute a “dummy” write operation first. The master issues a start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit =“1”. The AK4614 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4614 ceases transmission. S T A R T SDA S T A R T R/W="0" Slave S Address Sub Address(n) A C K Slave S Address A C K S T O P R/W="1" Data(n) A C K Data(n+1) MA AC S K T E R Data(n+x) MA AC S T K E R MA AC S T K E R P MN A A S T C E K R Figure 56. RANDOM ADDRESS READ MS1025-E-05 2015/06 - 53 - [AK4614] SDA SCL S P start condition stop condition Figure 57. START and STOP Conditions DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 2 1 8 9 S clock pulse for acknowledgement START CONDITION Figure 58. Acknowledge on the I2C-Bus SDA SCL data line stable; data valid change of data allowed Figure 59. Bit Transfer on the I2C-Bus MS1025-E-05 2015/06 - 54 - [AK4614] ■ Register Map Addr Register Name 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H Power Management 1 Power Management 2 Power Management 3 Control 1 Control 2 De-emphasis1 De-emphasis2 Overflow Detect Zero Detect Input Control Output Control LOUT1 Volume Control ROUT1 Volume Control LOUT2 Volume Control ROUT2 Volume Control LOUT3 Volume Control ROUT3 Volume Control LOUT4 Volume Control ROUT4 Volume Control LOUT5 Volume Control ROUT5 Volume Control LOUT6 Volume Control ROUT6 Volume Control D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 TDM1 0 DEM41 0 0 LOOP1 0 0 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 0 0 0 TDM0 MCKO DEM40 0 0 LOOP0 0 0 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 0 0 PMDA6 DIF2 CKS1 DEM31 0 0 0 0 DOE6 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 0 0 PMDA5 DIF1 CKS0 DEM30 0 0 0 0 DOE5 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 PMVR 0 PMDA4 DIF0 DFS1 DEM21 DEM61 OVFE DZFM3 0 DOE4 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 PMADC PMAD3 PMDA3 ATS1 DFS0 DEM20 DEM60 OVFM2 DZFM2 DIE3 DOE3 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 PMDAC PMAD2 PMDA2 ATS0 ACKS DEM11 DEM51 OVFM1 DZFM1 DIE2 DOE2 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 RSTN PMAD1 PMDA1 SMUTE DIV DEM10 DEM50 OVFM0 DZFM0 DIE1 DOE1 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 Note: For addresses from 17H to 1FH, data is not written. When the PDN pin goes to “L”, the registers are initialized to their default values. When RSTN bit goes to “0”, the internal timing is reset and the DZF1-2 pins go to “H”, but registers are not initialized to their default values. MS1025-E-05 2015/06 - 55 - [AK4614] ■ Register Definitions Addr 00H Register Name Power Management 1 R/W Default D7 D6 D5 D4 D3 D2 D1 D0 0 RD 0 0 RD 0 0 RD 0 0 RD 0 PMVR PMADC PMDAC RSTN R/W R/W R/W R/W 1 1 1 1 RSTN: Internal timing reset 0: Reset. DZF1-2 pins go to “H”, but registers are not initialized. 1: Normal operation PMDAC: Power management of DAC1-6 0: Power-down 1: Normal operation PMADC: Power management of ADC1-3 0: Power-down 1: Normal operation PWVR: Power management of reference voltage 0: Power-down 1: Normal operation When any blocks are powered-up, the PMVR bit must be set to “1”. PMVR bit can be set to “0” only when PMADAL=PMADAR= bits = “0”. Addr 01H Register Name Power Management 2 R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 0 RD 0 D2 PMAD3 D1 PMAD2 D0 PMAD1 R/W R/W R/W 1 1 1 PMAD3-1: Power management of ADC1-3 (0: Power-down, 1: Normal operation) PMAD1: Power management control of ADC1 PMAD2: Power management control of ADC2 PMAD3: Power management control of ADC3 Addr 02H Register Name Power Management 3 R/W Default D7 D6 D5 D4 D3 D2 D1 D0 0 RD 0 RD PMDA6 PMDA5 PMDA4 PMDA3 PMDA2 PMDA1 R/W R/W R/W R/W R/W R/W 0 0 1 1 1 1 1 1 PMDA6-1: Power management of DAC1-6 (0: Power-down, 1: Normal operation) PMDA1: Power management control of DAC1 PMDA2: Power management control of DAC2 PMDA3: Power management control of DAC3 PMDA4: Power management control of DAC4 PMDA5: Power management control of DAC5 PMDA6: Power management control of DAC6 MS1025-E-05 2015/06 - 56 - [AK4614] Addr 03H Register Name Control 1 R/W Default D7 TDM1 R/W 0 D6 TDM0 R/W 0 D5 DIF2 R/W 1 D4 DIF1 R/W 0 D3 DIF0 R/W 0 D2 ATS1 R/W 0 D1 ATS0 R/W 0 D0 SMUTE R/W 0 SMUTE: Soft Mute Enable 0: Normal operation 1: All DAC outputs soft-muted ATS1-0: Digital attenuator transition time setting (Table 18) Initial: “00”, mode 0 DIF2-0: Audio Data Interface Modes (Table 11, Table 12, Table 13, Table 14) Initial: “100”, mode 4 TDM1-0: TDM Format Select (Table 11, Table 12, Table 13, Table 14) Mode TDM1 TDM0 0 0 0 1 0 1 2 1 0 3 1 1 Addr 04H SDTI 1-6 1 1-2 1-3 Sampling Speed Stereo mode (Normal, Double, Quad Speed Mode) TDM512 mode (Normal Speed Mode) TDM256 mode (Double Speed Mode) TDM128 mode (Quad Speed Mode) Register Name Control 2 D7 0 D6 MCKO D5 CKS1 D4 CKS0 D3 DFS1 D2 DFS0 D1 ACKS D0 DIV R/W RD R/W R/W R/W R/W R/W R/W R/W Default 0 0 1 0 0 0 0 0 DIV: Output of Master clock frequency 0: x 1 1: x 1/2 ACKS: Master Clock Frequency Auto Setting Mode Enable 0: Disable, Manual Setting Mode 1: Enable, Auto Setting Mode Master clock frequency is detected automatically at ACKS bit “1”. In this case, the setting of DFS are ignored. When this bit is “0”, DFS0, 1 set the sampling speed mode. DFS1-0: Sampling speed mode (Table 1) The setting of DFS is ignored at ACKS bit =“1”. CKS1-0: Master Clock Input Frequency Select (Table 2) MCKO: Master clock output enable 0: Output “L” 1: Output “MCKO” MS1025-E-05 2015/06 - 57 - [AK4614] Addr 05H Register Name De-emphasis1 R/W Default D7 DEM41 R/W 0 D6 DEM40 R/W 1 D5 DEM31 R/W 0 D4 DEM30 R/W 1 D3 DEM21 R/W 0 D2 DEM20 R/W 1 D1 DEM11 R/W 0 D0 DEM10 R/W 1 D1 DEM51 R/W 0 D0 DEM50 R/W 1 DEMA11-10: De-emphasis response control for DAC1 data on SDTI1 (Table 8) Initial: “01”, OFF DEMA21-20: De-emphasis response control for DAC2 data on SDTI1 (Table 8) Initial: “01”, OFF DEMA31-30: De-emphasis response control for DAC3 data on SDTI1 (Table 8) Initial: “01”, OFF DEMA41-40: De-emphasis response control for DAC4 data on SDTI1 (Table 8) Initial: “01”, OFF Addr 06H Register Name De-emphasis2 R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 DEM61 R/W 0 D2 DEM60 R/W 1 DEMA51-50: De-emphasis response control for DAC5 data on SDTI1 (Table 8) Initial: “01”, OFF DEMA61-60: De-emphasis response control for DAC6 data on SDTI1 (Table 8) Initial: “01”, OFF Addr 07H Register Name Overflow Detect R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 OVFE R/W 0 D2 OVFM2 R/W 1 D1 OVFM1 R/W 1 D0 OVFM0 R/W 1 OVFM2-0: Overflow detect mode select (Table 15) Initial: “111”, disable OVFE: Overflow detection enable (Table 15) 0: Disable, pin#33 becomes DZF2 pin. 1: Enable, pin#33 becomes OVF pin. MS1025-E-05 2015/06 - 58 - [AK4614] Addr 08H Register Name Zero Detect D7 LOOP1 D6 LOOP0 R/W R/W R/W Default 0 0 D5 0 RD 0 D4 0 RD 0 D3 DZFM3 D2 DZFM2 D1 DZFM1 D0 DZFM0 R/W R/W R/W R/W 1 1 1 1 DZFM3-0: Zero detect mode select (Table 16) Initial: “1111”, disable LOOP1-0: Loopback mode enable 00: Normal (No loop back) 01: LIN1 LOUT1, LOUT2 RIN1 ROUT1, ROUT2 LIN2 LOUT3, LOUT4 RIN2 ROUT3, ROUT4 LIN3 LOUT5, LOUT6 RIN3 ROUT5, ROUT6 The digital ADC output is connected to the digital DAC input. In this mode, the input DAC data to SDTI1-6 is ignored. The audio format of SDTO at loopback mode becomes mode 3 at mode 0 or 1, and mode 5 at mode 2, respectively. 10: SDTI1(L) SDTI2(L), SDTI3(L), SDTI4(L), SDTI5(L), SDTI6(L) SDTI1(R) SDTI2(R), SDTI3(R), SDTI4(R), SDTI5(R), SDTI6(R) In this mode, the input DAC data to SDTI2-6 is ignored. 11: Not Available LOOP1-0 should be set to “00” at TDM mode. Addr 09H Register Name Output Control R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 0 RD 0 D2 DIE3 R/W 1 D1 DIE2 R/W 1 D0 DIE1 R/W 1 D1 DOE2 R/W 1 D0 DOE1 R/W 1 DIE3-1: ADC1-3 Differential Input Enable (0: Single-End Input, 1: Differential Input) DIE1: ADC1 Differential Input Enable DIE2: ADC2 Differential Input Enable DIE3: ADC3 Differential Input Enable Addr 0AH Register Name Output Control R/W Default D7 0 RD 0 D6 0 RD 0 D5 DOE6 R/W 1 D4 DOE5 R/W 1 D3 DOE4 R/W 1 D2 DOE3 R/W 1 DOE6-1: DAC1-6 Differential Output Enable (0: Single-End Input, 1: Differential Input) DOE1: DAC1 Differential Output Enable DOE2: DAC2 Differential Output Enable DOE3: DAC3 Differential Output Enable DOE4: DAC4 Differential Output Enable DOE5: DAC5 Differential Output Enable DOE6: DAC6 Differential Output Enable MS1025-E-05 2015/06 - 59 - [AK4614] Addr 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H Register Name LOUT1 Volume Control ROUT1 Volume Control LOUT2 Volume Control ROUT2 Volume Control LOUT3 Volume Control ROUT3 Volume Control LOUT4 Volume Control ROUT4 Volume Control LOUT5 Volume Control ROUT5 Volume Control LOUT6 Volume Control ROUT6 Volume Control R/W Default D7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 ATT7 R/W D6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 ATT6 R/W D5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 ATT5 R/W D4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 ATT4 R/W D3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 ATT3 R/W D2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 ATT2 R/W D1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 ATT1 R/W D0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 ATT0 R/W 0 0 0 0 0 0 0 0 ATT7-0: Attenuation Level (Table 17) * A power-down release command must be write again (dummy write) after 5 LRCK cycles or later form the first command when releasing power-down mode by PMVR, PMDAC, RSTN, PMDA1, PMDA2, PMDA3, PMDA4, PMDA5 or PMDA6 bit in I2C mode. If this dummy write is not executed, DATT output will keep the initial value (0dB) until the next write is executed. (Figure 43) MS1025-E-05 2015/06 - 60 - [AK4614] SYSTEM DESIGN Condition: Differential Input (DIE3-1 bit = “111”), Differential Output (DOE6-1 bit = “111111”) 4-wire Serial Control Interface (I2C pin = “L”) Master mode (M/S pin = “H”) MUTE MUTE LPF LPF LPF MUTE MUTE LPF MUTE MUTE LPF MUTE MUTE Analog 3.3V The AK4614 has the analog Anti-Alias Filter for Differential Input. The AK4614 does not have the analog Smoothing Filter for Differential Output. LPF LPF LPF LPF ROUT1+- 38 64 OVF2 / DZF2 LOUT1- 37 65 LIN1+ LOUT1+ 36 66 LIN1- DVMPD 35 67 RIN1+ SDTI6 34 68 RIN1- SDTI5 33 69 LIN2+ SDTI4 32 70 LIN2- SDTI3 31 SDTI2 30 72 RIN2- SDTI1 29 73 LIN3+ BICK 28 74 LIN3- LRCK 27 AK4614 10u 0.1u 75 VSS1 + 76 AVDD1 SDTO3 26 SDTO2 25 SDTO1 24 78 VCOM VSS4 23 79 RIN3+ TVDD1 22 XTI / MCLK 21 DVDD NC TST2 M/S MCKO PDN XTO 14 15 16 17 18 19 20 MUTE LPF MUTE LPF MUTE DSP 0.1u 10u + 1.6V to 3.6V Digital C1 C1 1.8V Digital Core + 10u 0.1u 10u µP + 1.6V to 3.6V Digital Digital Ground LPF 0.1u VSS3 13 8 TVDD2 CCLK / SCL 7 CDTO I2C 6 12 CAD1 5 11 CAD0 4 CDTI / SDA TST5 3 CSN TST4 2 9 TST3 77 VREFH1 80 RIN3- Analog Ground 1 39 63 OVF1 / DZF1 TST1 + VSS2 48 1 ROUT3- 47 1 ROUT3+ 46 1 LOUT3- 45 1 LOUT3+ 44 1 ROUT2- 43 1 ROUT2+ 42 LOUT2- 41 1 40 ROUT1- 1 2.2u 0.1u VREFH2 50 0.1u 10u AVDD2 49 LOUT2+ 62 ROUT6- 71 RIN2+ Analog 3.3V 1 61 ROUT6+ 10 MUTE 1 LOUT6- 60 LOUT6+ 59 1 ROUT5- 58 1 ROUT5+ 57 1 LOUT5- 56 1 LOUT5+ 55 1 ROUT4- 54 1 ROUT4+ 53 1 LOUT4-1 52 + LOUT4+ 51 + Figure 60. Typical Connection Diagram1 MS1025-E-05 2015/06 - 61 - [AK4614] MUTE 1 1 LOUT2- 41 ROUT2 42 1 ROUT2- 43 LOUT3 44 1 ROUT3 46 LOUT3- 45 1 1 VSS2 48 ROUT3- 47 1 1 AVDD2 49 1 LOUT4 51 VREFH2 50 1 ROUT4 53 LOUT4- 52 1 1 LOUT5 55 ROUT4- 54 0.1u 10u + LOUT2 40 ROUT1- 39 63 OVF1 / DZF1 ROUT1 38 64 OVF2 / DZF2 LOUT1- 37 65 LIN1 LOUT1 36 66 LIN1- DVMPD 35 67 RIN1 SDTI6 34 68 RIN1- SDTI5 33 69 LIN2 SDTI4 32 70 LIN2- SDTI3 31 SDTI2 30 72 RIN2- SDTI1 29 73 LIN3 BICK 28 74 LIN3- LRCK 27 61 ROUT6 1 LOUT6 59 1 ROUT5- 58 1 ROUT5 57 1 LOUT5- 56 1 LOUT6- 60 MUTE MUTE MUTE MUTE MUTE MUTE MUTE MUTE Analog 3.3V Condition: Single-end Input (DIE3-1 bit = “000”), Single-end Output (DOE6-1 bit = “000000”) I2C Bus Control Interface (I2C pin = “H”) Slave mode (M/S pin = “L”) The AK4614 has the analog Anti-Alias Filter for Single-Ended Input. The AK4614 has the analog Smoothing Filter for Single-Ended Output. 62 ROUT6- AK4614 71 RIN2 Analog 3.3V 2.2u 0.1u + 10u 0.1u 75 VSS1 + 76 AVDD1 SDTO3 26 SDTO2 25 SDTO1 24 VSS4 23 TVDD1 22 XTI / MCLK 21 77 VREFH1 78 VCOM PDN XTO 20 VSS3 13 19 TVDD2 12 MCKO CDTO 11 M/S CDTI / SDA 10 18 CSN 9 17 CCLK / SCL 8 TST2 I2C 7 NC CAD1 6 16 CAD0 5 15 TST5 4 MUTE DSP 0.1u 10u + 1.6V to 3.6V Digital C1 1.8V Digital Core µP + 10u 0.1u 10u Digital Ground + 1.6V to 3.6V Digital Analog Ground MUTE 0.1u TST4 3 DVDD TST3 2 80 RIN3- 14 TST1 1 79 RIN3 MUTE Figure 61. Typical Connection Diagram2 MS1025-E-05 2015/06 - 62 - [AK4614] 1. Grounding and Power Supply Decoupling The AK4614 requires careful attention to power supply and grounding arrangements. AVDD1, AVDD2, TVDD1 and TVDD2 are usually supplied from analog supply in system. Alternatively if AVDD1, AVDD2, TVDD1 and TVDD2 are supplied separately, the power up sequence is not critical. VSS1, VSS2, VSS3 and VSS4 of the AK4614 must be connected to analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4614 as possible, with the small value ceramic capacitor being the nearest. 2. Voltage Reference Inputs The voltage of VREFH1, VREFH2 set the analog input/output range. The VREFH1 pin is normally connected to AVDD1 with a 0.1µF ceramic capacitor. The VREFH2 pin is normally connected to AVDD2 with a 0.1µF ceramic capacitor. VCOM is a signal ground of this chip and output the voltage AVDD1x1/2. An electrolytic capacitor 2.2µF parallel with a 0.1µF ceramic capacitor attached to the VCOM pin eliminates the effects of high frequency noise. Ceramic capacitors should be as near to the pin as possible. No load current may be drawn from the VCOM pin. All signals, especially clocks, should be kept away from the VREFH1, VREFH2 and VCOM pins in order to avoid unwanted coupling into the AK4614. 3. Analog Inputs The ADC inputs correspond to single-ended and differential are able to select by DIE3-1 bits. When the inputs are single-ended, internally biased to the common voltage (AVDD1x1/2) with 9k(typ) resistance. The input signal range scales with the supply voltage and nominally 0.65xVREFH1 Vpp (typ) @fs=48kHz. When the inputs are differential, internally biased to the common voltage (AVDD2x1/2) with 13k(typ) resistance. The input signal range between LIN(RIN)+ and LIN(RIN) scales with the supply voltage and nominally ±0.65xVREFH1 Vpp (typ) @fs=48kHz The ADC output data format is 2’s complement. The internal HPF removes the DC offset. The AK4614 samples the analog inputs at 128fs (@ fs=48kHz). The digital filter rejects noise above the stop band except for multiples of the sampling frequency of analog inputs. The AK4614 includes an anti-aliasing filter (RC filter) to attenuate a noise around the sampling frequency of analog inputs. 4. Analog Outputs The DAC outputs correspond to single-ended and differential are able to select by DOE6-1 bits. When the outputs are single-ended, the output signal range is centered around the VCOM voltage and nominally 0.63 x VREFH2 Vpp. When the outputs are differential, the output signal ranges are ±0.63 x VREFH2 Vpp (typ) centered around the VCOM voltage. The differential outputs are summed externally, VAOUT = [L(R)OUT+]-[L(R)OUT-] between L(R)OUT+ and L(R)OUT-. If the summing gain is 1, the output range is 4.16Vpp (typ@AVDD2=3.3V). The bias voltage of the external summing circuit is supplied externally. The DAC input data format is 2’s complement. The output voltage is a positive full scale for 7FFFFFH(@24bit) and a negative full scale for 800000H(@24bit). The ideal output is VCOM voltage for 000000H(@24bit). The internal analog filters remove most of the noise generated by the delta-sigma modulator of DAC beyond the audio passband, when the single-end input mode. The differential output mode does not have the internal analog filters, therefore this noise should be remove by the external analog filters. DC offsets on analog outputs are eliminated by AC coupling since DAC outputs have DC offsets of a few mV. MS1025-E-05 2015/06 - 63 - [AK4614] 5. External Analog Inputs Circuit Figure 62 shows the input buffer circuit example 1. The input level of this circuit is 4.3Vpp (AK4614: typ. 2.15Vpp). 5.1k 4.7k Analog In 4.3Vpp VP+ 4.7k 22 10k 2.15Vpp AIN+ VA 10k Bias VPNJM5532 AK4614 NJM5532 Bias 0.1 10 Bias 10k AIN- VA = +3.3V VP+ = +12V VP- = -12V Figure 62. Input buffer circuit example 1 (DC coupled single-end input) Figure 63 shows the input buffer circuit example 2. The input level of this circuit is 4.3Vpp (AK4614: typ. 2.15Vpp). 5.1k 4.7k Analog In 4.3Vpp VP+ 4.7k 22 10k VP+ = +12V VP- = -12V 2.15Vpp AIN+ VPNJM5532 10 AK4614 NJM5532 AIN2.15Vpp 10 Figure 63. Input buffer circuit example 2 (AC coupled single-end input) Figure 64 shows the input buffer circuit example 3. The input level of this circuit is 2.15Vpp (AK4614: typ. 2.15Vpp). Analog In 2.15Vpp AIN+ 10 AK4614 Analog In 2.15Vpp AIN10 Figure 64. Input buffer circuit example 3 (AC coupled differential input) MS1025-E-05 2015/06 - 64 - [AK4614] Figure 65 shows the input buffer circuit example 4. The input level of this circuit is 2.15Vpp (AK4614: typ. 2.15Vpp). Analog In 2.15Vpp AIN+ 10 AK4614 AIN- Open Figure 65. Input buffer circuit example 4 (AC coupled single-end input) 6. External Analog Outputs Circuit Figure 66 shows the output buffer circuit example 1. The output level of this circuit is 4.16Vpp (AK4614: typ. 2.08Vpp). 2.08Vpp 20 A 4.7k 4.7k AOUT470p R1 2200p AK4614 VP+ 3900p 20 4.7k R1 Analog Out 4.16Vpp AOUT+ B 2.08Vpp VPVP+ = +12V NJM5532 VP- = -12V When R1=200 fc=93.2kHz, Q=0.712, g=-0.1B at 40kHz When R1=180 fc=98.2kHz, Q=0.681, g=-0.2dB at 40kHz 470p 4.7k Figure 66. Output buffer circuit example 1 (DC coupled differential output) Figure 67 shows the output buffer circuit example 2. The output level of this circuit is 4.16Vpp (AK4614: typ. 2.08Vpp). 2.08Vpp 20 4.7k A 4.7k AOUT22 R1 470p 2200p AK4614 3900p 4.7k 20 VP+ R1 AOUT+ 2.08Vpp B 22 4.7k 470p Analog Out 4.16Vpp VP- VP+ = +12V NJM5532 VP- = -12V When R1=180 fc=90.1kHz, Q=0.735, g=-0.04B at 40kHz When R1=150 fc=99.0kHz, Q=0.680, g=-0.23dB at 40kHz Figure 67. Output buffer circuit example 2 (AC coupled differential output) MS1025-E-05 2015/06 - 65 - [AK4614] Figure 68 shows the output buffer circuit example 3. The output level of this circuit is 4.16Vpp (AK4614: typ. 2.08Vpp). 470p AOUT- OPEN 4.7k 4.7k AK4614 VP+ 2.08Vpp 4.7k 4.7k Analog Out AOUT+ 22 10k 470p VPNJM5532 4.16Vpp VP+ = +12V VP- = -12V Figure 68. Output buffer circuit example 3 (AC coupled single-end output) Figure 69 shows the output buffer circuit example 4. The output level of this circuit is 2.08Vpp (AK4614: typ. 2.08Vpp). AOUT- OPEN AK4614 2.08Vpp AOUT+ Analog Out 22 10k 2.08Vpp Figure 69. Output buffer circuit example 4 (AC coupled single-end output) MS1025-E-05 2015/06 - 66 - [AK4614] PACKAGE 80-pin LQFP ( Unit: mm ) 14.0±0.2 12.0±0.2 41 61 40 80 21 12.0±0.2 1 20 0.08 0.125+0.10 -0.05 0.50±0.2 0.10 M +0.15 0.10 -0.10 0.50 1.25TYP 1.85MAX 0° ~ 10° 0.20±0.1 1.40±0.2 14.0±0.2 60 ■ Package & Lead frame material Package molding compound: Lead frame material: Lead frame surface treatment: Epoxy resin, Halogen (bromine, chlorine) free Cu Solder (Pb free) plate MS1025-E-05 2015/06 - 67 - [AK4614] MARKING AK4614VQ XXXXXXX 1) Pin #1 indication 2) Date Code: XXXXXXX(7 digits) 3) Marking Code: AK4614VQ 4) Asahi Kasei Logo MS1025-E-05 2015/06 - 68 - [AK4614] REVISION HISTORY Date (Y/M/D) 08/10/21 09/03/27 Revision 00 01 Reason First Edition Error Correct Page Contents 10 11 ANALOG CHARACTERISTICS DAC Analog Output Characteristics (single/differential) Output Voltage, AOUT=0.65xVREFH2 →AOUT=0.63xVREFH2 ■ Zero Detection Mode numbers were corrected. ■ ADC Partial Power-Down Function (1) PMDAC bit → PMAD1-3 bits ■ DAC Partial Power-Down Function In the line 2, PD6-1 bits → PMDA6-1 bits Figure 52 was changed. 09H D2, D1, D0 were corrected. DOE3 → DIE3, DOE2 → DIE2, DOE1 → DIE1 4. Analog Outputs “±0.65 x VREFH2 Vpp” → “±0.63 x VREFH2 Vpp” “4.29Vpp” → “4.16Vpp” ANALOG CHARACTERISTICS ADC Analog Input Characteristics (differential) S/(N+D) fs=48kHz, -1dBFS: 89 → 88 (min) ■ Register Definitions TDM format table Mode 2: TDM1-0 bits = “11” → “10” Mode 3: TDM1-0 bits = “01” → “11” ■ Digital Attenuator A description was added. Figure 43 was added. ■ Register Definitions A description was added. ■ Differential / Single-End Input selection 43 49 50 52 59 63 Specification Change 10 12/11/19 02 Error Correction 57 13/07/03 03 Description Addition 44 60 04/09/29 04 Error Correction 30 15/06/11 05 Error Correction 15-18 33 “L/RIN1-3- pins” → “L/RIN1-/3- pins” SWITCHING CHARACTERISTICS TDM512 mode: TDM0 bit = “0”, TDM1 bit = “1” →TDM1 bit = “0”, TDM0 bit = “1” TDM256 mode: TDM0 bit = “1”, TDM1 bit = “0” →TDM1 bit = “1”, TDM0 bit = “0” ■ Audio Serial Interface Format (2) TDM Mode TDM256 mode (fs = 48kHz) → (fs= 96kHz) MS1025-E-05 2015/06 - 69 - [AK4614] IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. MS1025-E-05 2015/06 - 70 -