AK5384 Data Sheet

ASAHI KASEI
[AK5384]
AK5384
107dB 24-Bit 96kHz 4-Channel ADC
GENERAL DESCRIPTION
The AK5384 is a 4-channel A/D Converter with wide sampling rate of 8kHz ∼ 96kHz and is suitable for
Multi-channel audio system. The AK5384 achieves high accuracy and low cost by using Enhanced dual
bit ∆Σ techniques. The AK5384 supports master mode and TDM format. Therefore, the AK5384 is
suitable for multi-channel audio system.
FEATURES
o 4-Channel ∆Σ ADC
o Differential Inputs
o Digital HPF for DC-Offset Cancel
o S/(N+D): 100dB@5V for 48kHz
107dB@5V for 48kHz
o DR:
107dB@5V for 48kHz
o S/N:
o Sampling Rate Ranging from 8kHz to 96kHz
o Master Clock:
256fs/384fs/512fs/768fs (∼ 48kHz)
256fs/384fs (∼ 96kHz)
o TTL Digital Input Level
o Output format: 24bit MSB justified, I2S or TDM
o Cascade TDM Interface
o Master & Slave Mode
o Overflow Flag
o Power Supply: 4.75 to 5.25V
o Power Supply for output buffer: 3.0 to 5.25V
o Ta = −40 ∼ 85°C
o 28pin VSOP
AVDD
LIN1+
LIN1RIN1+
RIN1LIN2+
LIN2-
AVSS
DVDD
DVSS
TVDD
∆Σ
Modulator
Decimation
Filter
LRCK
∆Σ
Modulator
Decimation
Filter
SDTO1
∆Σ
Modulator
Decimation
Filter
BICK
SDTO2
Audio
Interface
TDMIN
M/S
DIF
RIN2+
RIN2-
VCOM
∆Σ
Modulator
Decimation
Filter
Voltage Reference
OVF
TDM0
TDM1
Clock Divider
PDN
MCLK
CKS
MS0225-E-00
2003/05
-1-
ASAHI KASEI
[AK5384]
n Ordering Guide
−40 ∼ +85°C
28pin VSOP (0.65mm pitch)
Evaluation Board for AK5384
AK5384VF
AKD5384
n Pin Layout
LIN2+
1
28
LIN1+
LIN2-
2
27
LIN1-
RIN2+
3
26
RIN1+
RIN2-
4
25
RIN1-
TEST
5
24
M/S
VCOM
6
23
CKS
AVSS
7
22
PDN
AVDD
8
21
DVSS
DIF
9
20
DVDD
TDM1
10
19
TVDD
TDM0
11
18
SDTO1
TDMIN
12
17
SDTO2
MCLK
13
16
BICK
OVF
14
15
LRCK
Top View
MS0225-E-00
2003/05
-2-
ASAHI KASEI
[AK5384]
PIN/FUNCTION
No.
1
2
3
4
5
Pin Name
LIN2+
LIN2−
RIN2+
RIN2−
TEST
I/O
I
I
I
I
I
6
VCOM
O
7
8
AVSS
AVDD
-
9
DIF
I
10
TDM1
I
11
TDM0
I
12
13
TDMIN
MCLK
I
I
14
OVF
O
15
LRCK
I/O
16
BICK
I/O
17
SDTO2
O
18
SDTO1
O
19
20
21
TVDD
DVDD
DVSS
-
22
PDN
I
23
CKS
I
24
M/S
I
25
26
27
28
RIN1−
RIN1+
LIN1−
LIN1+
I
I
I
I
Function
ADC2 Lch Positive Analog Input Pin
ADC2 Lch Negative Analog Input Pin
ADC2 Rch Positive Analog Input Pin
ADC2 Rch Negative Analog Input Pin
Test Pin
(Connected to AVSS)
Common Voltage Output Pin, AVDD/2
Normally connected to AVSS with a 0.1µF ceramic capacitor in parallel with an
electrolytic capacitor less than 2.2µF.
Analog Ground Pin
Analog Power Supply Pin, 4.75 ∼ 5.25V
Audio Interface Format Pin
“L” : 24bit MSB justified, “H” : 24bit I2S Compatible
TDM I/F BICK Frequency Select Pin
“L” : 256fs, “H” : 128fs
TDM I/F Format Enable Pin
“L” : Normal Mode, “H” : TDM Mode
TDM Data Input Pin
Master Clock Input Pin
Analog Input Overflow Detect Pin
This pin goes to “H” if one of four analog inputs overflows.
Output Channel Clock Pin
“L” Output in Master Mode at Power-down mode.
Audio Serial Data Clock Pin
“L” Output in Master Mode at Power-down mode.
ADC2 Audio Serial Data Output Pin
“L” Output at Power-down mode.
ADC1 Audio Serial Data Output Pin
“L” Output at Power-down mode.
Output Buffer Power Supply Pin, 3.0 ∼ 5.25V
Digital Power Supply Pin, 4.75 ∼ 5.25V
Digital Ground Pin
Power-Down Mode Pin
When “L”, the circuit is in power-down mode.
The AK5384 should always be reset upon power-up.
Master Clock Select Pin
“L” : 256fs, “H” : 512fs
This pin is enabled in Master Mode.
Master / Slave Mode Pin
“L” : Slave Mode, “H” : Master Mode
ADC1 Rch Negative Analog Input Pin
ADC1 Rch Positive Analog Input Pin
ADC1 Lch Negative Analog Input Pin
ADC1 Lch Positive Analog Input Pin
Note: All digital input pins should not be left floating.
MS0225-E-00
2003/05
-3-
ASAHI KASEI
[AK5384]
ABSOLUTE MAXIMUM RATINGS
(AVSS, DVSS=0V; Note 1)
Parameter
Power Supplies:
Analog
Digital
Output buffer
|AVSS – DVSS|
(Note 2)
Input Current, Any Pin Except Supplies
Analog Input Voltage
Digital Input Voltage
(Except BICK, LRCK pins)
(BICK, LRCK pins)
Ambient Temperature (Powered applied)
Storage Temperature
Symbol
AVDD
DVDD
TVDD
∆GND
IIN
VINA
min
−0.3
−0.3
−0.3
−0.3
max
6.0
6.0
6.0
0.3
±10
AVDD+0.3
Units
V
V
V
V
mA
V
VIND1
VIND2
Ta
Tstg
−0.3
−0.3
−40
−65
DVDD+0.3
TVDD+0.3
85
150
V
V
°C
°C
Note 1. All voltages with respect to ground.
Note 2. AVSS and DVSS must be connected to the same analog ground plane.
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
RECOMMENDED OPERATING CONDITIONS
(AVSS, DVSS=0V; Note 1)
Parameter
Power Supplies
(Note 3)
Analog
Digital
Output buffer
Symbol
AVDD
DVDD
TVDD
min
4.75
4.75
3.0
typ
5.0
5.0
5.0
max
5.25
5.25
5.25
Units
V
V
V
Note 1. All voltages with respect to ground.
Note 3. The power up sequence between AVDD, DVDD and TVDD is not critical.
WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet.
MS0225-E-00
2003/05
-4-
ASAHI KASEI
[AK5384]
ANALOG CHARACTERISTICS
(Ta=25°C; AVDD=DVDD=TVDD=5.0V; AVSS=DVSS=0V; fs=48kHz, 96kHz; I/F format=Mode 0;
Signal Frequency=1kHz; Measurement frequency=20Hz ∼ 20kHz at fs=48kHz, 40Hz ∼ 40kHz at fs=96kHz;
unless otherwise specified)
Parameter
min
typ
max
ADC Analog Input Characteristics:
Resolution
24
S/(N+D)
(−1dBFS)
fs=48kHz
88
100
fs=96kHz
82
94
DR
(−60dBFS)
fs=48kHz, A-weighted
100
107
fs=96kHz
94
102
S/N
fs=48kHz, A-weighted
100
107
fs=96kHz
94
102
Interchannel Isolation
90
110
DC Accuracy:
Interchannel Gain Mismatch
0.1
0.5
Gain Drift
100
150
Input Voltage
(Note 4)
±2.7
±2.9
±3.1
Input Resistance
18
26
11
16
Power Supply Rejection
(Note 5)
50
-
Units
Bits
dB
dB
dB
dB
dB
dB
dB
dB
ppm/°C
Vpp
kΩ
kΩ
dB
Power Supplies
Power Supply Current (AVDD+DVDD+TVDD)
Normal Operation (PDN pin = “H”, fs=48kHz)
Normal Operation (PDN pin = “H”, fs=96kHz)
Power-down mode (PDN pin = “L”)
(Note 6)
(Note 6)
(Note 7)
43
55
10
65
83
100
mA
mA
µA
Note 4. This value is the full scale (0dB) of the input voltage. This voltage is input to LIN(RIN)+ and LIN(RIN)− pin,
and is proportional to AVDD. (Vin = 0.58 × AVDD)
Note 5. PSR is applied to AVDD, DVDD and TVDD with 1kHz, 50mVpp.
Note 6. AVDD=28mA; DVDD=15mA@48kHz&5V, DVDD=26mA@96kHz&5V(typ).
Note 7. All digital input pins are fixed to DVDD or DVSS.
MS0225-E-00
2003/05
-5-
ASAHI KASEI
[AK5384]
FILTER CHARACTERISTICS (fs=48kHz)
(Ta=25°C; AVDD, DVDD=4.75 ∼ 5.25V; TVDD=3.0 ∼ 5.25V; fs=48kHz)
Parameter
Symbol
min
ADC Digital Filter (Decimation LPF):
0
Passband
(Note 8) −0.005dB
PB
−0.02dB
−0.06dB
−6.0dB
Stopband
(Note 8)
SB
26.5
Passband Ripple
PR
Stopband Attenuation
SA
80
Group Delay
(Note 9)
GD
Group Delay Distortion
∆GD
ADC Digital Filter (HPF):
Frequency Response (Note 8) −3dB
FR
−0.5dB
−0.1dB
typ
max
Units
21.768
22.0
24.0
21.5
-
27.6
0
kHz
kHz
kHz
kHz
kHz
dB
dB
1/fs
µs
1.0
2.9
6.5
Hz
Hz
Hz
±0.005
FILTER CHARACTERISTICS (fs=96kHz)
(Ta=25°C; AVDD, DVDD=4.75 ∼ 5.25V; TVDD=3.0 ∼ 5.25V; fs=96kHz)
Parameter
Symbol
min
ADC Digital Filter (Decimation LPF):
0
PB
Passband
(Note 8) −0.005dB
−0.02dB
−0.06dB
−6.0dB
Stopband
(Note 8)
SB
53.0
Passband Ripple
PR
Stopband Attenuation
SA
80
Group Delay
(Note 9)
GD
Group Delay Distortion
∆GD
ADC Digital Filter (HPF):
FR
Frequency Response (Note 8) −3dB
−0.5dB
−0.1dB
typ
max
Units
43.536
44.0
48.0
43.0
-
27.6
0
kHz
kHz
kHz
kHz
kHz
dB
dB
1/fs
µs
2.0
5.8
13.0
Hz
Hz
Hz
±0.005
Note 8. The passband and stopband frequencies scale with fs.
Note 9. The calculated delay time induced by digital filtering. This time is from the input of an analog signal
to the setting of 24bit data both channels to the ADC output register for ADC.
DC CHARACTERISTICS
(Ta=25°C; AVDD, DVDD=4.75 ∼ 5.25V; TVDD=3.0 ∼ 5.25V)
Parameter
Symbol
High-Level Input Voltage (TVDD=3.0 ∼ 3.6V)
VIH
Low-Level Input Voltage (TVDD=3.0 ∼ 3.6V)
VIL
High-Level Input Voltage (TVDD=3.6 ∼ 5.25V)
VIH
Low-Level Input Voltage (TVDD=3.6 ∼ 5.25V)
VIL
High-Level Output Voltage
(Iout=−100µA)
VOH
Low-Level Output Voltage
(Iout=100µA)
VOL
Input Leakage Current
Iin
MS0225-E-00
min
2.2
2.7
TVDD-0.5
-
typ
-
max
0.8
0.5
0.5
±10
Units
V
V
V
V
V
V
µA
2003/05
-6-
ASAHI KASEI
[AK5384]
SWITCHING CHARACTERISTICS
(Ta=25°C; AVDD, DVDD=4.75 ∼ 5.25V; TVDD=3.0 ∼ 5.25V; CL=20pF)
min
Parameter
Symbol
Master Clock Timing
Master Clock
256fs:
fCLK
2.048
Pulse Width Low
tCLKL
16
Pulse Width High
tCLKH
16
384fs:
fCLK
3.072
Pulse Width Low
tCLKL
11
Pulse Width High
tCLKH
11
512fs:
fCLK
4.096
Pulse Width Low
tCLKL
16
Pulse Width High
tCLKH
16
768fs:
fCLK
6.144
Pulse Width Low
tCLKL
11
Pulse Width High
tCLKH
11
LRCK Timing (Slave Mode)
Normal mode (TDM1=“L”, TDM0=“L”)
LRCK Frequency
Duty Cycle
TDM256 MODE (TDM1=“L”, TDM0=“H”)
LRCK Frequency
“H” time
“L” time
TDM128 MODE (TDM1=“H”, TDM0=“H”)
LRCK Frequency
“H” time
“L” time
LRCK Timing (Master Mode)
Normal mode (TDM1=“L”, TDM0=“L”)
LRCK Frequency
Duty Cycle
TDM256 MODE (TDM1=“L”, TDM0=“H”)
LRCK Frequency
“H” time
(Note 10)
TDM128 MODE (TDM1=“H”, TDM0=“H”)
LRCK Frequency
“H” time
(Note 10)
typ
max
Units
12.288
24.576
18.432
36.864
24.576
24.576
36.864
36.864
MHz
ns
ns
MHz
ns
ns
MHz
ns
ns
MHz
ns
ns
fs
Duty
8
45
96
55
kHz
%
fs
tLRH
tLRL
8
1/256fs
1/256fs
48
kHz
ns
ns
fs
tLRH
tLRL
8
1/128fs
1/128fs
96
kHz
ns
ns
fs
Duty
8
96
kHz
%
fs
tLRH
8
48
kHz
ns
fs
tLRH
8
96
kHz
ns
50
1/8fs
1/4fs
Note 10. “L” time at I2S format.
MS0225-E-00
2003/05
-7-
ASAHI KASEI
Parameter
Audio Interface Timing (Slave mode)
Normal mode (TDM1=“L”, TDM0=“L”)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “↑”
(Note 11)
BICK “↑” to LRCK Edge
(Note 11)
LRCK to SDTO1/2 (MSB) (Except I2S mode)
BICK “↓” to SDTO1/2
TDM256 mode (TDM1=“L”, TDM0=“H”)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “↑”
(Note 11)
BICK “↑” to LRCK Edge
(Note 11)
BICK “↓” to SDTO1/2
TDM128 mode (TDM1=“H”, TDM0=“H”)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “↑”
(Note 11)
BICK “↑” to LRCK Edge
(Note 11)
BICK “↓” to SDTO1
(Note 12)
Audio Interface Timing (Master mode)
Normal mode (TDM1=“L”, TDM0=“L”)
BICK Frequency
BICK Duty
BICK “↓” to LRCK
BICK “↓” to SDTO1/2
TDM256 mode (TDM1=“L”, TDM0=“H”)
BICK Frequency
BICK Duty
(Note 13)
BICK “↓” to LRCK
BICK “↓” to SDTO1/2
TDM128 mode (TDM1=“H”, TDM0=“H”)
BICK Frequency
BICK Duty
BICK “↓” to LRCK
BICK “↓” to SDTO1
(Note 12)
Power-Down & Reset Timing
PDN Pulse Width
(Note 14)
PDN “↑” to SDTO1/2 valid
(Note 15)
[AK5384]
Symbol
min
tBCK
tBCKL
tBCKH
tLRB
tBLR
tLRS
tBSD
160
65
65
30
30
tBCK
tBCKL
tBCKH
tLRB
tBLR
tBSD
81
32
32
20
20
tBCK
tBCKL
tBCKH
tLRB
tBLR
tBSD
81
32
32
20
20
fBCK
dBCK
tMBLR
tBSD
fBCK
dBCK
tMBLR
tBSD
fBCK
dBCK
tMBLR
tBSD
tPD
tPDV
typ
max
Units
35
35
ns
ns
ns
ns
ns
ns
ns
20
ns
ns
ns
ns
ns
ns
20
ns
ns
ns
ns
ns
ns
20
40
Hz
%
ns
ns
12
20
Hz
%
ns
ns
12
20
Hz
%
ns
ns
64fs
50
−20
−40
256fs
50
−12
−20
128fs
50
−12
−20
150
516
ns
1/fs
Note 11. BICK rising edge must not occur at the same time as LRCK edge.
Note 12. SDTO2 output is fixed to “L”.
Note 13. This value is MCLK=512fs. Duty cycle is not guaranteed when MCLK=256fs/384fs.
Note 14. The AK5384 can be reset by bringing the PDN pin = “L”.
Note 15. This cycle is the number of LRCK rising edges from the PDN pin = “H”.
MS0225-E-00
2003/05
-8-
ASAHI KASEI
[AK5384]
n Timing Diagram
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
1/fs
VIH
LRCK
VIL
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Clock Timing (TDM0 pin = “L”)
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
1/fs
VIH
LRCK
VIL
tLRH
tLRL
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Clock Timing (TDM0 pin = “H”)
MS0225-E-00
2003/05
-9-
ASAHI KASEI
[AK5384]
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tBSD
tLRS
SDTO
50%TVDD
Audio Interface Timing (Slave mode, TDM0 pin = “L”)
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tBSD
SDTO
50%TVDD
Audio Interface Timing (Slave mode, TDM0 pin = “H”)
Note: SDTO shows SDTO1 and SDTO2.
MS0225-E-00
2003/05
- 10 -
ASAHI KASEI
[AK5384]
LRCK
50%TVDD
tMBLR
dBCK
BICK
50%TVDD
tBSD
SDTO
50%TVDD
Audio Interface Timing (Master mode)
VIH
PDN
VIL
tPDV
SDTO
50%TVDD
tPD
PDN
VIL
Power Down & Reset Timing
Note: SDTO shows SDTO1 and SDTO2.
MS0225-E-00
2003/05
- 11 -
ASAHI KASEI
[AK5384]
OPERATION OVERVIEW
n System Clock
The external clocks which are required to operate the AK5384 are MCLK(256fs/384fs/512fs/768fs), BICK(48fs∼),
LRCK(1fs) in slave mode (M/S pin = “L”). MCLK should be synchronized with LRCK but the phase is not critical. When
384fs, 512fs or 768fs clock is input to MCLK pin, the internal master clock becomes 256fs(=384fs x 2/3=512fs x
1/2=768fs x 1/3) automatically. Table 1 illustrates standard audio word rates and corresponding frequencies used in the
AK5384.
In master mode (M/S pin = “H”), MCLK select 256fs or 512fs by CKS pin. But 384fs and 768fs are not supported. 512fs
does not support 96kHz sampling.
All external clocks (MCLK, BICK, LRCK) should always be present whenever the AK5384 is in normal operation mode
(PDN pin = “H”). If these clocks are not provided, the AK5384 may draw excess current and may fall into unpredictable
operation. This is because the device utilizes dynamic refreshed logic internally. If the external clocks are not present, the
AK5384 should be in the power-down mode (PDN pin = “L”). After exiting reset at power-up etc., the AK5384 is in the
power-down mode until MCLK and LRCK are input. In master mode, the master clock (MCLK) must be provided unless
PDN pin = “L”.
fs
32.0kHz
44.1kHz
48.0kHz
96.0kHz
256fs
8.1920MHz
11.2896MHz
12.2880MHz
24.5760MHz
MCLK
384fs
512fs
768fs
12.2880MHz 16.3840MHz
24.576MHz
16.9344MHz 22.5792MHz
33.8688MHz
18.4320MHz 24.5760MHz
36.8640MHz
36.8640MHz
N/A
N/A
Table 1. System clock example (Slave mode)
BICK
64fs
128fs
2.0480MHz 4.0960MHz
2.8224MHz 5.6448MHz
3.0720MHz 6.1440MHz
6.1440MHz
N/A
MCLK
8kHz ≤ fs ≤ 48kHz
48kHz < fs ≤ 96kHz
L
256fs
256fs
H
512fs
N/A
Table 2. Master clock frequency select (Master mode)
CKS
n Audio Interface Format
12 types of audio data interface can be selected by the TDM1-0, M/S and DIF pins as shown in Table 3. The audio data
format can be selected by the DIF pin. In all formats the serial data is MSB-first, 2's compliment format. The SDTO1/2 is
clocked out on the falling edge of BICK.
In normal mode, Mode 0-1 are the slave mode, and BICK is available up to 128fs at fs=48kHz. BICK outputs 64fs clock in
Mode 2-3.
In TDM256 mode, the serial data of all ADC (four channels) is output from the SDTO1/2 pins. BICK should be fixed to
256fs. In the slave mode, “H” time and “L” time of LRCK should be 1/256fs at least. In the master mode, “H” time (“L”
time at I2S mode) of LRCK is 1/8fs typically. TDM256 mode does not support 96kHz sampling.
In TDM128 mode, the serial data of all ADC (four channels) is output from the SDTO1 pin. The SDTO2 output is fixed to
“L”. BICK should be fixed to 128fs. In the slave mode, “H” time and “L” time of LRCK should be 1/128fs at least. In the
master mode, “H” time (“L” time at I 2S mode) of LRCK is 1/4fs typically. TDM128 mode supports up to 96kHz sampling.
MS0225-E-00
2003/05
- 12 -
ASAHI KASEI
[AK5384]
Mode
0
1
2
3
4
5
6
7
8
9
10
11
12
TDM1
TDM0
Normal
L
L
TDM256
L
H
TDM128
H
H
N/A
H
L
M/S
DIF
LRCK
I/O
H/L
I
L/H
I
H/L
O
L/H
O
I
↑
I
↓
O
↑
O
↓
I
↑
I
↓
O
↑
O
↓
N/A
N/A
SDTO
L
24bit, MSB justified
L
H
24bit, I2S Compatible
L
24bit, MSB justified
H
H
24bit, I2S Compatible
L
24bit, MSB justified
L
H
24bit, I2S Compatible
L
24bit, MSB justified
H
H
24bit, I2S Compatible
L
24bit, MSB justified
L
H
24bit, I2S Compatible
L
24bit, MSB justified
H
H
24bit, I2S Compatible
N/A
N/A
N/A
Table 3. Audio Interface Formats
BICK
I/O
I
I
O
O
I
I
O
O
I
I
O
O
N/A
48-128fs
48-128fs
64fs
64fs
256fs
256fs
256fs
256fs
128fs
128fs
128fs
128fs
N/A
LRCK
0
1
2
12
13
14
24
25
31
0
1
2
12
13
14
24
25
31
0
1
BICK(64fs)
SDTO1/2(o)
23 22
12 11 10
23:MSB, 0:LSB
0
23 22
12
11 10
Lch Data
0
23
Rch Data
Figure 1. Mode 0, 2 Timing (Normal mode, MSB justified)
LRCK
0
1
2
3
23
24
25
26
29
30
31
0
1
2
3
23
24
25
26
29
30
31
0
1
BICK(64fs)
SDTO1/2(o)
23 22
1
2
23:MSB, 0:LSB
0
23 22
Lch Data
2
1
0
Rch Data
Figure 2. Mode 1, 3 Timing (Normal mode, I2S Compatible)
256 BICK
LRCK (Mode 6)
LRCK (Mode 4)
BICK (256fs)
SDTO1
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23 22
Figure 3. Mode 4, 6 Timing (TDM256 mode, MSB justified)
MS0225-E-00
2003/05
- 13 -
ASAHI KASEI
[AK5384]
256 BICK
LRCK (Mode 7)
LRCK (Mode5)
BICK (256fs)
SDTO1
23
0
23
0
23
0
23
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23
Figure 4. Mode 5, 7 Timing (TDM256 mode, I2S Compatible)
128 BICK
LRCK (Mode 10)
LRCK (Mode 8)
BICK (128fs)
SDTO1
23 22
0
23 22
0
23 22
0
L1
R1
L2
32 BICK
32 BICK
32 BICK
23 22
0
R2
32 BICK
23 22
Figure 5. Mode 8, 10 Timing (TDM128 mode, MSB justified)
128 BICK
LRCK (Mode 11)
LRCK (Mode 9)
BICK (128fs)
SDTO1
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23
Figure 6. Mode 9, 11 Timing (TDM128 mode, I2S Compatible)
n Master Mode and Slave Mode
The M/S pin selects either master or slave mode. M/S pin = “H” selects master mode and “L” selects slave mode. The
AK5384 outputs BICK and LRCK in master mode. In slave mode, MCLK, BICK and LRCK are input externally.
M/S pin
L
H
Mode
BICK, LRCK
BICK = Input
Slave Mode
LRCK = Input
BICK = Output
Master Mode
LRCK = Output
Table 4. Master mode/Slave mode
MS0225-E-00
2003/05
- 14 -
ASAHI KASEI
[AK5384]
n Digital High Pass Filter
The ADC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 1.0Hz(@fs=48kHz)
and scales with sampling rate (fs).
n Overflow Detection
The AK5384 has overflow detect function for analog input. OVF pin goes to “H” if one of 4-channels overflows (more
than −0.3dBFS). OVF output for overflowed analog input has the same group delay as ADC
(GD=27.6/fs=575µs@fs=48kHz). OVF is “L” for 516/fs (=10.75ms@fs=48kHz) after PDN pin = “↑”, and then overflow
detection is enabled.
n Power down
The AK5384 is placed in the power-down mode by bringing PDN pin “L” and the digital filter is also reset at the same
time. This reset should always be done after power-up. In the power-down mode, the VCOM are AVSS level. An analog
initialization cycle starts after exiting the power-down mode. Therefore, the output data SDTO1/2 becomes available after
516 cycles of LRCK clock. During initialization, the ADC digital data outputs of both channels are forced to a 2’s
complement “0”. The ADC outputs settle in the data corresponding to the input signals after the end of initialization
(Settling approximately takes the group delay time).
516/fs(10.75ms@fs=48kHz)
PDN
Internal
State
Normal Operation
Power-down
Initialize
Normal Operation
GD (1)
GD
A/D In
(Analog)
A/D Out
(Digital)
Clock In
MCLK,LRCK,BICK
(2)
“0”data
Idle Noise
“0”data
Idle Noise
(3)
Notes:
(1) Digital output corresponding to analog input has the group delay (GD).
(2) ADC output is “0” data at the power-down state.
(3) When the external clocks (MCLK, BICK, LRCK) are stopped, the AK5384 should be in the power-down state.
Figure 7. Power-down/up sequence example
n System Reset
The AK5384 should be reset once by bringing PDN pin “L” after power-up. The internal timing starts clocking by the
rising edge (falling edge at I2S mode) of LRCK upon exiting from reset.
MS0225-E-00
2003/05
- 15 -
ASAHI KASEI
[AK5384]
n Cascade TDM Mode
The AK5384 supports cascading of up to two devices in a daisy chain configuration at TDM256 mode. In this mode,
SDTO2 pin of device #1 is connected to TDMIN pin of device #2. SDTO1 pin of device #2 can output 8ch TDM data
multiplexed with 4ch TDM data of device #1 and 4ch TDM data of device #2. Figure 8 shows a connection example of a
daisy chain.
AK5384 #1
MCLK
256fs or 512fs
LRCK
48kHz
BICK
256fs
TDMIN
GND
SDTO1
SDTO2
MCLK
AK5384 #2
LRCK
BICK
TDMIN
8ch TDM
SDTO1
SDTO2
Figure 8. Cascade TDM Connection Diagram
256 BICK
LRCK
BICK(256fs)
#1 SDTO1(o)
#1 SDTO2(o)
#2 TDMIN(i)
#2 SDTO1(o)
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23 22
0
23 22
0
23 22
0
23 22
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
L1-#1
R1-#1
L2-#1
R2-#1
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23 22
Figure 9. Cascade TDM Timing
MS0225-E-00
2003/05
- 16 -
ASAHI KASEI
[AK5384]
SYSTEM DESIGN
Figure 10 shows the system connection diagram. An evaluation board is available which demonstrates application circuits,
the optimum layout, power supply arrangements and measurement results.
1 LIN2+
LIN1+ 28
2 LIN2-
LIN1- 27
3 RIN2+
RIN1+ 26
4 RIN2-
RIN1- 25
5 TEST
M/S 24
6 VCOM
CKS 23
0.1µ
2.2µ
0.1µ
7 AVSS
Analog Supply
4.75 ~ 5.25V
10µ
AK5384
PDN 22
Reset
0.1µ
8 AVDD
DVSS 21
9 DIF
DVDD 20
10 TDM1
TVDD 19
11 TDM0
SDTO1 18
12 TDMIN
SDTO2 17
10µ
13 MCLK
0.1µ
Digital Supply
4.75 ~ 5.25V
Digital Supply
3.0 ~ 5.25V
BICK 16
DSP and uP
14 OVF
LRCK 15
Note:
- AVSS and DVSS of the AK5384 should be distributed separately from the ground of external digital devices
(MPU, DSP etc.).
- All digital input pins should not be left floating.
Figure 10. Typical Connection Diagram (Normal mode)
MS0225-E-00
2003/05
- 17 -
ASAHI KASEI
[AK5384]
1. Grounding and Power Supply Decoupling
The AK5384 requires careful attention to power supply and grounding arrangements. AVDD and DVDD are usually
supplied from the analog supply in the system. Alternatively if AVDD and DVDD are supplied separately, the power up
sequence is not critical. AVSS and DVSS of the AK5384 must be connected to analog ground plane. System analog
ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit
board. Decoupling capacitors should be as near to the AK5384 as possible, with the small value ceramic capacitor being
the closest.
2. Voltage Reference Inputs
The differential voltage between AVDD and AVSS sets the analog input range. VCOM is a signal ground of this chip. An
electrolytic capacitor 2.2µF parallel with a 0.1µF ceramic capacitor attached to VCOM pin eliminates the effects of high
frequency noise. No load current may be drawn from the VCOM pin. All signals, especially clocks, should be kept away
from the VCOM pin in order to avoid unwanted coupling into the AK5384.
3. Analog Inputs
The AK5384 accepts +5V supply voltage. Any voltage which exceeds the upper limit of AVDD+0.3V and lower limit of
AVSS−0.3V and any current beyond 10mA for the analog input pins (LIN+/−, RIN+/−) should be avoided. Excessive
currents to the input pins may damage the device. Hence input pins must be protected from signals at or beyond these
limits. Use caution specially in case of using ±15V in other analog circuits.
The analog inputs are differential and internally biased to the common voltage (AVDD/2) with 26kΩ(typ). The input signal
range between LIN(RIN)+ and LIN(RIN)− scales with the supply voltage and nominally ±0.58 x AVDD. The AK5384 can
accept input voltages from AVSS to AVDD. The ADC output data format 2’s compliment. The internal HPF removes the
DC offset.
The AK5384 samples the analog inputs at 64fs. The digital filter rejects noise above the stop band except for multiples of
64fs.
MS0225-E-00
2003/05
- 18 -
ASAHI KASEI
[AK5384]
4. External Analog Inputs Circuit
Figure 11 shows an input buffer circuit example 1. The input level of this circuit is 5.7Vpp (AK5384: typ. ±2.9Vpp).
5.1kΩ
4.7kΩ
Analog In
5.7Vpp
VP+
4.7kΩ
22µ
10kΩ
2.9Vpp
AIN+
VA
10k
330Ω
Bias
VPNJM5532
NJM5532
1.5n
Bias
0.1µ 10µ
330Ω
AIN-
VA = +5V
VP+ = +15V
VP- = -15V
Bias
10k
AK5384
2.9Vpp
Figure 11. Input buffer circuit example 1 (DC coupled single-end input)
Figure 12 shows an input buffer circuit example 2. The input level of this circuit is 5.7Vpp (AK5384: typ. ±2.9Vpp).
5.1kΩ
4.7kΩ
Analog In
5.7Vpp
VP+
4.7kΩ
22µ
10kΩ
330Ω
2.9Vpp
AIN+
VP+ = +15V
VP- = -15V
10µ
VPNJM5532
NJM5532
1.5n
AK5384
330Ω
AIN2.9Vpp
10µ
Figure 12. Input buffer circuit example 2 (AC coupled single-end input)
Figure 13 shows an input buffer circuit example 3. The input level of this circuit is 2.9Vpp (AK5384: typ. 2.9Vpp).
Analog In
2.9Vpp
AIN+
10µ
330Ω
1.5n
Analog In
2.9Vpp
AK5384
AIN-
10µ
330Ω
Figure 13. Input buffer circuit example 3 (Differential input)
MS0225-E-00
2003/05
- 19 -
ASAHI KASEI
[AK5384]
PACKAGE
28pin VSOP (Unit: mm)
*9.8±0.2
1.25±0.2
0.675
28
A
7.6±0.2
*5.6±0.2
15
14
1
0.65
0.22±0.1
+0.1
0.15-0.05
0.1±0.1
0.5±0.2
Detail A
Seating Plane
| 0.10
NOTE: Dimension "*" does not include mold flash.
0-10°
n Material & Lead finish
Package molding compound:
Lead frame material:
Lead frame surface treatment:
Epoxy
Cu
Solder (Pb free) plate
MS0225-E-00
2003/05
- 20 -
ASAHI KASEI
[AK5384]
MARKING
AKM
AK5384VF
XXXBYYYYC
XXXBYYYYC
Date code identifier
XXXB : Lot number (X : Digit number, B : Alpha character)
YYYYC : Assembly date (Y : Digit number, C : Alpha character)
IMPORTANT NOTICE
• These products and their specifications are subject to change without notice. Before considering any
use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized
distributor concerning their current status.
• AKM assumes no liability for infringement of any patent, intellectual property, or other right in the
application or use of any information contained herein.
• Any export of these products, or devices or systems containing them, may require an export license or
other official approval under the law and regulations of the country of export pertaining to customs and
tariffs, currency exchange, or strategic materials.
• AKM products are neither intended nor authorized for use as critical components in any safety, life
support, or other hazard related device or system, and AKM assumes no responsibility relating to any
such use, except with the express written consent of the Representative Director of AKM. As used
here:
a. A hazard related device or system is one designed or intended for life support or maintenance of
safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its
failure to function or perform may reasonably be expected to result in loss of life or in significant
injury or damage to person or property.
b. A critical component is one whose failure to function or perform may reasonably be expected to
result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or
system containing it, and which must therefore meet very high standards of performance and
reliability.
• It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or
otherwise places the product with a third party to notify that party in advance of the above content and
conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and
hold AKM harmless from any and all claims arising from the use of said product in the absence of such
notification.
MS0225-E-00
2003/05
- 21 -