GS8662Q08/09/18/36BD-357/333/300/250/200 357 MHz–200 MHz 1.8 V VDD 1.8 V and 1.5 V I/O 72Mb SigmaQuad-IITM Burst of 2 SRAM 165-Bump BGA Commercial Temp Industrial Temp Features Clocking and Addressing Schemes • Simultaneous Read and Write SigmaQuad™ Interface • JEDEC-standard pinout and package • Dual Double Data Rate interface • Byte Write controls sampled at data-in time • Burst of 2 Read and Write • 1.8 V +100/–100 mV core power supply • 1.5 V or 1.8 V HSTL Interface • Pipelined read operation • Fully coherent read and write pipelines • ZQ pin for programmable output drive strength • IEEE 1149.1 JTAG-compliant Boundary Scan • Pin-compatible with present 144 Mb devices • 165-bump, 13 mm x 15 mm, 1 mm bump pitch BGA package • RoHS-compliant 165-bump BGA package available The GS8662Q08/09/18/36BD SigmaQuad-II SRAMs are synchronous devices. They employ two input register clock inputs, K and K. K and K are independent single-ended clock inputs, not differential inputs to a single differential clock input buffer. The device also allows the user to manipulate the output register clock inputs quasi independently with the C and C clock inputs. C and C are also independent single-ended clock inputs, not differential inputs. If the C clocks are tied high, the K clocks are routed internally to fire the output registers instead. SigmaQuad™ Family Overview The GS8662Q08/09/18/36BD are built in compliance with the SigmaQuad-II SRAM pinout standard for Separate I/O synchronous SRAMs. They are 75,497,472-bit (72Mb) SRAMs. The GS8662Q08/09/18/36BD SigmaQuad SRAMs are just one element in a family of low power, low voltage HSTL I/O SRAMs designed to operate at the speeds needed to implement economical high performance networking systems. Each internal read and write operation in a SigmaQuad-II B2 RAM is two times wider than the device I/O bus. An input data bus de-multiplexer is used to accumulate incoming data before it is simultaneously written to the memory array. An output data multiplexer is used to capture the data produced from a single memory array read and then route it to the appropriate output drivers as needed. Therefore the address field of a SigmaQuad-II B2 RAM is always one address pin less than the advertised index depth (e.g., the 8M x 8 has an 4M addressable index). Parameter Synopsis Rev: 1.02c 12/2011 -357 -333 -300 -250 -200 tKHKH 2.8 ns 3.0 ns 3.3 ns 4.0 ns 5.0 ns tKHQV 0.45 ns 0.45 ns 0.45 ns 0.45 ns 0.45 ns 1/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 2M x 36 SigmaQuad-II SRAM—Top View 1 2 3 4 5 6 7 8 9 10 11 A CQ NA/SA (288Mb) SA W BW2 K BW1 R SA NC/SA (144Mb) CQ B Q27 Q18 D18 SA BW3 K BW0 SA D17 Q17 Q8 C D27 Q28 D19 VSS SA SA SA VSS D16 Q7 D8 D D28 D20 Q19 VSS VSS VSS VSS VSS Q16 D15 D7 E Q29 D29 Q20 VDDQ VSS VSS VSS VDDQ Q15 D6 Q6 F Q30 Q21 D21 VDDQ VDD VSS VDD VDDQ D14 Q14 Q5 G D30 D22 Q22 VDDQ VDD VSS VDD VDDQ Q13 D13 D5 H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ J D31 Q31 D23 VDDQ VDD VSS VDD VDDQ D12 Q4 D4 K Q32 D32 Q23 VDDQ VDD VSS VDD VDDQ Q12 D3 Q3 L Q33 Q24 D24 VDDQ VSS VSS VSS VDDQ D11 Q11 Q2 M D33 Q34 D25 VSS VSS VSS VSS VSS D10 Q1 D2 N D34 D26 Q25 VSS SA SA SA VSS Q10 D9 D1 P Q35 D35 Q26 SA SA C SA SA Q9 D0 Q0 R TDO TCK SA SA SA C SA SA SA TMS TDI 11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch Notes: 1. BW0 controls writes to D0:D8; BW1 controls writes to D9:D17; BW2 controls writes to D18:D26; BW3 controls writes to D27:D35. 2. A2 and A10 are the expansion addresses. Rev: 1.02c 12/2011 2/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 4M x 18 SigmaQuad-II SRAM—Top View 1 2 3 4 5 6 7 8 9 10 11 A CQ NC/SA (144Mb) SA W BW1 K NC/SA (288Mb) R SA SA CQ B NC Q9 D9 SA NC K BW0 SA NC NC Q8 C NC NC D10 VSS SA SA SA VSS NC Q7 D8 D NC D11 Q10 VSS VSS VSS VSS VSS NC NC D7 E NC NC Q11 VDDQ VSS VSS VSS VDDQ NC D6 Q6 F NC Q12 D12 VDDQ VDD VSS VDD VDDQ NC NC Q5 G NC D13 Q13 VDDQ VDD VSS VDD VDDQ NC NC D5 H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ J NC NC D14 VDDQ VDD VSS VDD VDDQ NC Q4 D4 K NC NC Q14 VDDQ VDD VSS VDD VDDQ NC D3 Q3 L NC Q15 D15 VDDQ VSS VSS VSS VDDQ NC NC Q2 M NC NC D16 VSS VSS VSS VSS VSS NC Q1 D2 N NC D17 Q16 VSS SA SA SA VSS NC NC D1 P NC NC Q17 SA SA C SA SA NC D0 Q0 R TDO TCK SA SA SA C SA SA SA TMS TDI 11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch Notes: 1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17. 2. A2 and A7 are the expansion addresses. Rev: 1.02c 12/2011 3/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 8M x 8 SigmaQuad-II SRAM—Top View 1 2 3 4 5 6 7 8 9 10 11 A CQ SA SA W NW1 K NC/SA (144Mb) R SA SA CQ B NC NC NC SA NC/SA (288Mb) K NW0 SA NC NC Q3 C NC NC NC VSS SA SA SA VSS NC NC D3 D NC D4 NC VSS VSS VSS VSS VSS NC NC NC E NC NC Q4 VDDQ VSS VSS VSS VDDQ NC D2 Q2 F NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC G NC D5 Q5 VDDQ VDD VSS VDD VDDQ NC NC NC H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ J NC NC NC VDDQ VDD VSS VDD VDDQ NC Q1 D1 K NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC L NC Q6 D6 VDDQ VSS VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS SA SA SA VSS NC NC NC P NC NC Q7 SA SA C SA SA NC NC NC R TDO TCK SA SA SA C SA SA SA TMS TDI 11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch Notes: 1. NW0 controls writes to D0:D3. NW1 controls writes to D4:D7. 2. A7 and B5 are the expansion addresses. Rev: 1.02c 12/2011 4/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 8M x 9 SigmaQuad-II SRAM — Top View 1 2 3 4 5 6 7 8 9 10 11 A CQ SA SA W NC K NC/SA (144Mb) R SA SA CQ B NC NC NC SA NC/SA (288Mb) K BW0 SA NC NC Q4 C NC NC NC VSS SA SA SA VSS NC NC D4 D NC D5 NC VSS VSS VSS VSS VSS NC NC NC E NC NC Q5 VDDQ VSS VSS VSS VDDQ NC D3 Q3 F NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC G NC D6 Q6 VDDQ VDD VSS VDD VDDQ NC NC NC H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ J NC NC NC VDDQ VDD VSS VDD VDDQ NC Q2 D2 K NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC L NC Q7 D7 VDDQ VSS VSS VSS VDDQ NC NC Q1 M NC NC NC VSS VSS VSS VSS VSS NC NC D1 N NC D8 NC VSS SA SA SA VSS NC NC NC P NC NC Q8 SA SA C SA SA NC D0 Q0 R TDO TCK SA SA SA C SA SA SA TMS TDI 11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch Notes: 1. BW0 controls writes to DQ:D8. 2. A7 and B5 are the expansion addresses. Rev: 1.02c 12/2011 5/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Pin Description Table Symbol Description Type Comments SA Synchronous Address Inputs Input — R Synchronous Read Input Active Low W Synchronous Write Input Active Low BW0–BW3 Synchronous Byte Writes Input Active Low x18/x36 only NW0–NW1 Nybble Write Control Pin Input Active Low x8 only K Input Clock Input Active High K Input Clock Input Active Low C Output Clock Input Active High C Output Clock Input Active Low TMS Test Mode Select Input — TDI Test Data Input Input — TCK Test Clock Input Input — TDO Test Data Output Output — VREF HSTL Input Reference Voltage Input — ZQ Output Impedance Matching Input Input — Qn Synchronous Data Outputs Output — Dn Synchronous Data Inputs Input — Doff Disable DLL when low Input Active Low CQ Output Echo Clock Output — CQ Output Echo Clock Output — VDD Power Supply Supply 1.8 V Nominal VDDQ Isolated Output Buffer Supply Supply 1.5 or 1.8 V Nominal VSS Power Supply: Ground Supply — NC No Connect — — Notes: 1. NC = Not Connected to die or any other pin 2. When ZQ pin is directly connected to VDDQ, output impedance is set to minimum value and it cannot be connected to ground or left unconnected. 3. C, C, K, K cannot be set to VREF voltage. Rev: 1.02c 12/2011 6/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Background Separate I/O SRAMs, from a system architecture point of view, are attractive in applications where alternating reads and writes are needed. Therefore, the SigmaQuad-II SRAM interface and truth table are optimized for alternating reads and writes. Separate I/O SRAMs are unpopular in applications where multiple reads or multiple writes are needed because burst read or write transfers from Separate I/O SRAMs can cut the RAM’s bandwidth in half. SigmaQuad-II B2 SRAM DDR Read The read port samples the status of the Address Input and R pins at each rising edge of K. A low on the Read Enable-bar pin, R, begins a read cycle. Data can be clocked out after the next rising edge of K with a rising edge of C (or by K if C and C are tied high), and after the following rising edge of K with a rising edge of C (or by K if C and C are tied high). Clocking in a high on the Read Enable-bar pin, R, begins a read port deselect cycle. SigmaQuad-II B2 Double Data Rate SRAM Read First Read A NOP Write B Read C Write D Read E Write F Read G Write H K K Address A B C D E F G H R W BWx B B+1 D D+1 F F+1 H H+1 D B B+1 D D+1 F F+1 H H+1 C C Q A A+1 C C+1 E CQ CQ Rev: 1.02c 12/2011 7/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 SigmaQuad-II B2 SRAM DDR Write The write port samples the status of the W pin at each rising edge of K and the Address Input pins on the following rising edge of K. A low on the Write Enable-bar pin, W, begins a write cycle. The first of the data-in pairs associated with the write command is clocked in with the same rising edge of K used to capture the write command. The second of the two data in transfers is captured on the rising edge of K along with the write address. Clocking in a high on W causes a write port deselect cycle. SigmaQuad-II B2 Double Data Rate SRAM Write First Write A Read B Read C Write D NOP Read E Write F Read G Write H NOP K K A Address B C D E F G H R W BWx A A+1 D D+1 F F+1 H H+1 D A A+1 D D+1 F F+1 H H+1 C C B Q B+1 C C+1 E E+1 CQ CQ Special Functions Byte Write and Nybble Write Control Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low during the data in sample times in a write sequence. Each write enable command and write address loaded into the RAM provides the base address for a 2 beat data transfer. The x18 version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-bit byte may be masked in any write sequence. Nybble Write (4-bit) control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble Write Enable” and “NBx” may be substituted in all the discussion above. Rev: 1.02c 12/2011 8/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Example x18 RAM Write Sequence using Byte Write Enables Data In Sample Time BW0 BW1 D0–D8 D9–D17 Beat 1 0 1 Data In Don’t Care Beat 2 1 0 Don’t Care Data In Resulting Write Operation Byte 1 Byte 2 Byte 3 Byte 4 D0–D8 D9–D17 D0–D8 D9–D17 Written Unchanged Unchanged Written Beat 1 Beat 2 Output Register Control SigmaQuad-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K and K clocks. If the C and C clock inputs are tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to function as a conventional pipelined read SRAM. Rev: 1.02c 12/2011 9/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Example Four Bank Depth Expansion Schematic R3 W3 R2 W2 R1 W1 R0 W0 A0–An K D1–Dn Bank 0 Bank 1 Bank 2 Bank 3 A A A A W W W W R R R R K D CQ Q C K D CQ Q C K D CQ K CQ Q D Q C C C Q1–Qn CQ0 CQ1 CQ2 CQ3 Note: For simplicity BWn, NWn, K, and C are not shown. Rev: 1.02c 12/2011 10/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology Rev: 1.02c 12/2011 B+1 B D(Bank2) Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. 11/34 CQ(Bank2) CQ(Bank2) Q(Bank2) C(Bank2) C(Bank2) CQ(Bank1) CQ(Bank1) Q(Bank1) C(Bank1) C(Bank1) B+1 B B A BWx(Bank2) D(Bank1) BWx(Bank1) W(Bank2) W(Bank1) R(Bank2) R(Bank1) Address K K Read A Write B D D C D+1 D+1 D Read C Write D A F F E A+1 F+1 F+1 F Read E Write F C H H G C+1 H+1 H+1 H Read G Write H E J J I E+1 J+1 J+1 J Read I Write J Burst of 2 SigmaQuad-II SRAM Depth Expansion G L L K G+1 L+1 L+1 L Read K Write L I NOP I+1 GS8662Q08/09/18/36BD-357/333/300/250/200 © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 FLXDrive-II Output Driver Impedance Control HSTL I/O SigmaQuad-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to VSS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be 5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is between 175Ω and 350Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is implemented with discrete binary weighted impedance steps. SigmaQuad-II B2 Coherency and Pass Through Functions Because the SigmaQuad-II B2 read and write commands are loaded at the same time, there may be some confusion over what constitutes “coherent” operation. Normally, one would expect a RAM to produce the just-written data when it is read immediately after a write. This is true of the SigmaQuad-II B2 except in one case, as is illustrated in the following diagram. If the user holds the same address value in a given K clock cycle, loading the same address as a read address and then as a matching write address, the SigmaQuad-II B2 will read or “Pass-thru” the latest data input, rather than the data from the previously completed write operation. SigmaQuad-II B2 Coherency and Pass Through Functions Rev: 1.02c 12/2011 12/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Read Truth Table A R Output Next State Q Q K↑ (tn) K↑ (tn) K↑ (tn) K↑ (tn+1½) K↑ (tn+2) X 1 Deselect Hi-Z Hi-Z V 0 Read Q0 Q1 Notes: 1. X = Don’t Care, 1 = High, 0 = Low, V = Valid. 2. R is evaluated on the rising edge of K. 3. Q0 and Q1 are the first and second data output transfers in a read. Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Write Truth Table A W BWn BWn Input Next State D D K↑ (tn + ½) K↑ (tn) K↑ (tn) K↑ (tn + ½) (tn), (tn + ½) K ↑, K ↑ K↑ (tn) K↑ (tn + ½) V 0 0 0 Write Byte Dx0, Write Byte Dx1 D0 D1 V 0 0 1 Write Byte Dx0, Write Abort Byte Dx1 D0 X V 0 1 0 Write Abort Byte Dx0, Write Byte Dx1 X D1 X 0 1 1 Write Abort Byte Dx0, Write Abort Byte Dx1 X X X 1 X X Deselect X X Notes: 1. X = Don’t Care, H = High, L = Low, V = Valid. 2. W is evaluated on the rising edge of K. 3. D0 and D1 are the first and second data input transfers in a write. 4. BWn represents any of the Byte Write Enable inputs (BW0, BW1, etc.). x36 Byte Write Enable (BWn) Truth Table BW0 BW1 BW2 BW3 D0–D8 D9–D17 D18–D26 D27–D35 1 1 1 1 Don’t Care Don’t Care Don’t Care Don’t Care 0 1 1 1 Data In Don’t Care Don’t Care Don’t Care 1 0 1 1 Don’t Care Data In Don’t Care Don’t Care 0 0 1 1 Data In Data In Don’t Care Don’t Care 1 1 0 1 Don’t Care Don’t Care Data In Don’t Care Rev: 1.02c 12/2011 13/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 x36 Byte Write Enable (BWn) Truth Table BW0 BW1 BW2 BW3 D0–D8 D9–D17 D18–D26 D27–D35 0 1 0 1 Data In Don’t Care Data In Don’t Care 1 0 0 1 Don’t Care Data In Data In Don’t Care 0 0 0 1 Data In Data In Data In Don’t Care 1 1 1 0 Don’t Care Don’t Care Don’t Care Data In 0 1 1 0 Data In Don’t Care Don’t Care Data In 1 0 1 0 Don’t Care Data In Don’t Care Data In 0 0 1 0 Data In Data In Don’t Care Data In 1 1 0 0 Don’t Care Don’t Care Data In Data In 0 1 0 0 Data In Don’t Care Data In Data In 1 0 0 0 Don’t Care Data In Data In Data In 0 0 0 0 Data In Data In Data In Data In x18 Byte Write Enable (BWn) Truth Table BW0 BW1 D0–D8 D9–D17 1 1 Don’t Care Don’t Care 0 1 Data In Don’t Care 1 0 Don’t Care Data In 0 0 Data In Data In x8 Nybble Write Enable (NWn) Truth Table NW0 NW1 D0–D3 D4–D7 1 1 Don’t Care Don’t Care 0 1 Data In Don’t Care 1 0 Don’t Care Data In 0 0 Data In Data In Rev: 1.02c 12/2011 14/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Absolute Maximum Ratings (All voltages reference to VSS) Symbol Description Value Unit VDD Voltage on VDD Pins –0.5 to 2.9 V VDDQ Voltage in VDDQ Pins –0.5 to VDD V VREF Voltage in VREF Pins –0.5 to VDDQ V VI/O Voltage on I/O Pins –0.5 to VDDQ +0.5 (≤ 2.9 V max.) V VIN Voltage on Other Input Pins –0.5 to VDDQ +0.5 (≤ 2.9 V max.) V IIN Input Current on Any Pin +/–100 mA dc IOUT Output Current on Any I/O Pin +/–100 mA dc TJ Maximum Junction Temperature 125 oC TSTG Storage Temperature –55 to 125 oC Note: Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect reliability of this component. Recommended Operating Conditions Power Supplies Parameter Symbol Min. Typ. Max. Unit Supply Voltage VDD 1.7 1.8 1.9 V I/O Supply Voltage VDDQ 1.4 — VDD V Reference Voltage VREF 0.68 — 0.95 V Note: The power supplies need to be powered up simultaneously or in the following sequence: VDD, VDDQ, VREF, followed by signal inputs. The power down sequence must be the reverse. VDDQ must not exceed VDD. For more information, read AN1021 SigmaQuad and SigmaDDR Power-Up. Operating Temperature Parameter Symbol Min. Typ. Max. Unit Junction Temperature (Commercial Range Versions) TJ 0 25 85 °C Junction Temperature (Industrial Range Versions)* TJ –40 25 100 °C Note: * The part numbers of Industrial Temperature Range versions end with the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device. Rev: 1.02c 12/2011 15/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Thermal Impedance Package Test PCB Substrate θ JA (C°/W) Airflow = 0 m/s θ JA (C°/W) Airflow = 1 m/s θ JA (C°/W) Airflow = 2 m/s θ JB (C°/W) θ JC (C°/W) 165 BGA 4-layer 22.300 18.572 17.349 9.292 2.310 Notes: 1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number. 2. Please refer to JEDEC standard JESD51-6. 3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to the PCB can result in cooling or heating of the RAM depending on PCB temperature. HSTL I/O DC Input Characteristics Parameter Symbol Min Max Units Notes DC Input Logic High VIH (dc) VREF + 0.1 VDDQ + 0.3 V 1 DC Input Logic Low VIL (dc) –0.3 VREF – 0.1 V 1 Notes: 1. Compatible with both 1.8 V and 1.5 V I/O drivers. 2. These are DC test criteria. DC design criteria is VREF ± 50 mV. The AC VIH/VIL levels are defined separately for measuring timing parameters. 3. VIL (Min)DC = –0.3 V, VIL(Min)AC = –1.5 V (pulse width ≤ 3 ns). 4. VIH (Max)DC = VDDQ + 0.3 V, VIH(Max)AC = VDDQ + 0.85 V (pulse width ≤ 3 ns). HSTL I/O AC Input Characteristics Parameter Symbol Min Max Units Notes AC Input Logic High VIH (ac) VREF + 200 — mV 2,3 AC Input Logic Low VIL (ac) — VREF – 200 mV 2,3 VREF (ac) — 5% VREF (DC) mV 1 VREF Peak-to-Peak AC Voltage Notes: 1. The peak-to-peak AC component superimposed on VREF may not exceed 5% of the DC component of VREF. 2. To guarantee AC characteristics, VIH,VIL, Trise, and Tfall of inputs and clocks must be within 10% of each other. 3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers. Rev: 1.02c 12/2011 16/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Undershoot Measurement and Timing Overshoot Measurement and Timing VIH 20% tKHKH VDD + 1.0 V VSS 50% 50% VDD VSS – 1.0 V 20% tKHKH VIL Note: Input Undershoot/Overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC. Capacitance (TA = 25oC, f = 1 MHZ, VDD = 1.8 V) Parameter Symbol Test conditions Typ. Max. Unit Input Capacitance CIN VIN = 0 V 4 5 pF Output Capacitance COUT VOUT = 0 V 6 7 pF Clock Capacitance CCLK VIN = 0 V 5 6 pF Note: This parameter is sample tested. AC Test Conditions Parameter Conditions Input high level 1.25 V Input low level 0.25 V Max. input slew rate 2 V/ns Input reference level 0.75 V Output reference level VDDQ/2 Note: Test conditions as specified with output loading as shown unless otherwise noted. AC Test Load Diagram DQ 50Ω RQ = 250 Ω (HSTL I/O) VREF = 0.75 V VT = VDDQ/2 Rev: 1.02c 12/2011 17/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Input and Output Leakage Characteristics Parameter Symbol Test Conditions Min. Max Input Leakage Current (except mode pins) IIL VIN = 0 to VDD –2 uA 2 uA Doff IILDOFF VIN = 0 to VDD –20 uA 2 uA Output Leakage Current IOL Output Disable, VOUT = 0 to VDDQ –2 uA 2 uA Programmable Impedance HSTL Output Driver DC Electrical Characteristics Parameter Symbol Min. Max. Units Notes Output High Voltage VOH1 VDDQ/2 – 0.12 VDDQ/2 + 0.12 V 1, 3 Output Low Voltage VOL1 VDDQ/2 – 0.12 VDDQ/2 + 0.12 V 2, 3 Output High Voltage VOH2 VDDQ – 0.2 VDDQ V 4, 5 Output Low Voltage VOL2 Vss 0.2 V 4, 6 Notes: 1. IOH = (VDDQ/2) / (RQ/5) +/– 15% @ VOH = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω). 2. IOL = (VDDQ/2) / (RQ/5) +/– 15% @ VOL = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω). 3. Parameter tested with RQ = 250Ω and VDDQ = 1.5 V or 1.8 V 4. 0Ω ≤ RQ ≤ ∞Ω 5. IOH = –1.0 mA 6. IOL = 1.0 mA Rev: 1.02c 12/2011 18/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Operating Currents -357 Parameter Symbol Test Conditions Operating Current (x36): DDR IDD Operating Current (x18): DDR -333 -300 -250 -200 Notes 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C VDD = Max, IOUT = 0 mA Cycle Time ≥ tKHKH Min 1195 mA 1205 mA 1100 mA 1110 mA 1060 mA 1070 mA 895 mA 905 mA 740 mA 750 mA 2, 3 IDD VDD = Max, IOUT = 0 mA Cycle Time ≥ tKHKH Min 985 mA 995 mA 920 mA 930 mA 850 mA 860 mA 720 mA 730 mA 600 mA 610 mA 2, 3 Operating Current (x9): DDR IDD VDD = Max, IOUT = 0 mA Cycle Time ≥ tKHKH Min 985 mA 995 mA 920 mA 930 mA 850 mA 860 mA 720 mA 730 mA 600 mA 610 mA 2, 3 Operating Current (x8): DDR IDD VDD = Max, IOUT = 0 mA Cycle Time ≥ tKHKH Min 985 mA 995 mA 920 mA 930 mA 850 mA 860 mA 720 mA 730 mA 600 mA 610 mA 2, 3 275 mA 285 mA 270 mA 280 mA 255 mA 265 mA 240 mA 250 mA 220 mA 230 mA 2, 4 Standby Current (NOP): DDR ISB1 Device deselected, IOUT = 0 mA, f = Max, All Inputs ≤ 0.2 V or ≥ VDD – 0.2 V Notes: 1. 2. 3. 4. Power measured with output pins floating. Minimum cycle, IOUT = 0 mA Operating current is calculated with 50% read cycles and 50% write cycles. Standby Current is only after all pending read and write burst operations are completed. Rev: 1.02c 12/2011 19/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 AC Electrical Characteristics Parameter Symbol -357 -333 -300 -250 -200 Min Max Min Max Min Max Min Max Min Max Units Notes Clock K, K Clock Cycle Time C, C Clock Cycle Time tKHKH tCHCH 2.8 8.4 3.0 8.4 3.3 8.4 4.0 8.4 5.0 8.4 ns tKC Variable tKCVar — 0.2 — 0.2 — 0.2 — 0.2 — 0.2 ns K, K Clock High Pulse Width C, C Clock High Pulse Width tKHKL tCHCL 1.12 — 1.2 — 1.32 — 1.6 — 2.0 — ns K, K Clock Low Pulse Width C, C Clock Low Pulse Width tKLKH tCLCH 1.12 — 1.2 — 1.32 — 1.6 — 2.0 — ns K to K High C to C High tKHKH tCHCH 1.26 — 1.35 — 1.49 — 1.8 — 2.2 — ns K to K High C to C High tKHKH tCHCH 1.26 — 1.35 — 1.49 — 1.8 — 2.2 — ns K, K Clock High to C, C Clock High tKHCH 0 1.26 0 1.35 0 1.49 0 1.8 0 2.3 ns DLL Lock Time tKCLock 1024 — 1024 — 1024 — 1024 — 1024 — cycle K Static to DLL reset tKCReset 30 — 30 — 30 — 30 — 30 — ns K, K Clock High to Data Output Valid C, C Clock High to Data Output Valid tKHQV tCHQV — 0.45 — 0.45 — 0.45 — 0.45 — 0.45 ns 4 K, K Clock High to Data Output Hold C, C Clock High to Data Output Hold tKHQX tCHQX –0.45 — –0.45 — –0.45 — –0.45 — –0.45 — ns 4 K, K Clock High to Echo Clock Valid C, C Clock High to Echo Clock Valid tKHCQV tCHCQV — 0.45 — 0.45 — 0.45 — 0.45 — 0.45 ns K, K Clock High to Echo Clock Hold C, C Clock High to Echo Clock Hold tKHCQX tCHCQX –0.45 — –0.45 — –0.45 — –0.45 — –0.45 — ns CQ, CQ High Output Valid tCQHQV — 0.23 — 0.25 — 0.27 — 0.30 — 0.35 ns 8 CQ, CQ High Output Hold tCQHQX –0.23 — –0.25 — –0.27 — –0.30 — –0.35 — ns 8 CQ Phase Distortion tCQHCQH tCQHCQH 1.00 — 1.10 — 1.24 — 1.55 — 1.95 — ns K Clock High to Data Output High-Z C Clock High to Data Output High-Z tKHQZ tCHQZ — 0.45 — 0.45 — 0.45 — 0.45 — 0.45 ns 4 K Clock High to Data Output Low-Z C Clock High to Data Output Low-Z tKHQX1 tCHQX1 –0.45 — –0.45 — –0.45 — –0.45 — –0.45 — ns 4 Address Input Setup Time tAVKH 0.28 — 0.28 — 0.30 — 0.35 — 0.4 — ns 1 Control Input Setup Time (R, W) tIVKH 0.28 — 0.28 — 0.30 — 0.35 — 0.4 — ns 2 Control Input Setup Time (BWX) (BWX) tIVKH 0.28 — 0.28 — 0.30 — 0.35 — 0.4 — ns 3 Data Input Setup Time tDVKH 0.28 — 0.28 — 0.30 — 0.35 — 0.4 — ns 6 7 Output Times Setup Times Rev: 1.02c 12/2011 20/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 AC Electrical Characteristics (Continued) Parameter Symbol -357 -333 -300 -250 -200 Min Max Min Max Min Max Min Max Min Max Units Notes Hold Times Address Input Hold Time tKHAX 0.28 — 0.28 — 0.30 — 0.35 — 0.4 — ns 1 Control Input Hold Time (R, W) tKHIX 0.28 — 0.28 — 0.30 — 0.35 — 0.4 — ns 2 Control Input Hold Time (BWX) (BWX) tKHIX 0.28 — 0.28 — 0.30 — 0.35 — 0.4 — ns 3 Data Input Hold Time tKHDX 0.28 — 0.28 — 0.30 — 0.35 — 0.4 — ns Notes: 1. 2. 3. 4. 5. 6. 7. 8. All Address inputs must meet the specified setup and hold times for all latching clock edges. Control signals are R, W Control signals are BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36). If C, C are tied high, K, K become the references for C, C timing parameters To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus contention because tCHQX1 is a MIN parameter that is worst case at totally different test conditions (0°C, 1.9 V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7 V). It is not possible for two SRAMs on the same board to be at such different voltages and temperatures. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable. Echo clock is very tightly controlled to data valid/data hold. By design, there is a ±0.1 ns variation from echo clock to data. The datasheet parameters reflect tester guard bands and test setup variations. Rev: 1.02c 12/2011 21/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology Rev: 1.02c 12/2011 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. 22/34 Q CQ CQ D BWx W R Address K K B A B+1 B KHCQX KHCQV DVKH IVKH IVKH IVKH AVKH KHKH Read A Write B KHCQX KHCQV KHDX KHIX KHKL NOP KHIX A KHQX1 KLKH C KHIX KHAX A+1 CQHQX Read C KHQX KHKHbar E D E+1 E Read D Write E C CQHQV F C+1 F F+1 KHQV Write F D H G D+1 H+1 H Read G Write H K and K Controlled Read-Write-Read Timing Diagram KHQZ NOP G GS8662Q08/09/18/36BD-357/333/300/250/200 © 2011, GSI Technology Rev: 1.02c 12/2011 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. 23/34 CQ CQ Q C C D BWx W R Address K K CHCQX CHCQV KHKH CHCQX KHKL DVKH IVKH B+1 KHIX B KHAX IVKH CHCQV B A AVKH KHKH Read A Write B KLKH KHKL NOP C A CHQX1 KHKHbar KLKH C CQHQX A+1 KHKHbar C+1 KHDX KHIX KHIX IVKH Write C CHQZ E D E+1 E Read D Write E G F G+1 G Read F Write G D CHQV H Read H C and C Controlled Read-Write-Read Timing Diagram CQHQV D+1 F CHQX NOP F+1 H GS8662Q08/09/18/36BD-357/333/300/250/200 © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 JTAG Port Operation Overview The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output drivers are powered by VDD. Disabling the JTAG Port It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected. JTAG Pin Descriptions Pin Pin Name I/O Description TCK Test Clock In Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK. TMS Test Mode Select In The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level. In The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level. TDI Test Data In TDO Test Data Out Output that is active depending on the state of the TAP state machine. Output changes in Out response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO. Note: This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up. JTAG Port Registers Overview The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins. Instruction Register The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state. Bypass Register The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM’s JTAG Port to another device in the scan chain with as little delay as possible. Rev: 1.02c 12/2011 24/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Boundary Scan Register The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register. JTAG TAP Block Diagram · · · · · · Boundary Scan Register · · 0 Bypass Register 0 108 · 1 · · 2 1 0 Instruction Register TDI TDO ID Code Register 31 30 29 · · ·· 2 1 0 Control Signals TMS TCK Test Access Port (TAP) Controller Identification (ID) Register The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM. It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins. Rev: 1.02c 12/2011 25/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 GSI Technology JEDEC Vendor ID Code See BSDL Model Bit # Presence Register ID Register Contents 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X 1 X X X X X X X X X X X X X X X X X X X 0 0 0 1 1 0 1 1 0 0 1 Tap Controller Instruction Set Overview There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific (Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load address, data or control signals into the RAM or to preload the I/O buffers. When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01. When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this device is listed in the following table. Rev: 1.02c 12/2011 26/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 JTAG Tap Controller State Diagram 1 0 Test Logic Reset 0 Run Test Idle 1 Select DR 1 Select IR 0 0 1 1 Capture DR Capture IR 0 0 Shift DR 1 1 Shift IR 0 1 1 Exit1 DR 0 Exit1 IR 0 0 Pause DR 1 Exit2 DR 1 Update DR 1 1 0 0 Pause IR 1 Exit2 IR 0 1 0 0 Update IR 1 0 Instruction Descriptions BYPASS When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path. SAMPLE/PRELOAD SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the boundary scan register between the TDI and TDO pins. EXTEST EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is still determined by its input pins. Rev: 1.02c 12/2011 27/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output drivers on the falling edge of TCK when the controller is in the Update-IR state. Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associated. IDCODE The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the Test-Logic-Reset state. SAMPLE-Z If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (highZ) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state. JTAG TAP Instruction Set Summary Instruction Code Description Notes EXTEST 000 Places the Boundary Scan Register between TDI and TDO. 1 IDCODE 001 Preloads ID Register and places it between TDI and TDO. 1, 2 SAMPLE-Z 010 Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. Forces all RAM output drivers to High-Z. 1 GSI 011 GSI private instruction. 1 SAMPLE/PRELOAD 100 Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. 1 GSI 101 GSI private instruction. 1 GSI 110 GSI private instruction. 1 BYPASS 111 Places Bypass Register between TDI and TDO. 1 Notes: 1. Instruction codes expressed in binary, MSB on left, LSB on right. 2. Default instruction automatically loaded at power-up and in test-logic-reset state. Rev: 1.02c 12/2011 28/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 JTAG Port Recommended Operating Conditions and DC Characteristics Parameter Symbol Min. Max. Unit Notes Test Port Input Low Voltage VILJ –0.3 0.3 * VDD V 1 Test Port Input High Voltage VIHJ 0.7 * VDD VDD +0.3 V 1 TMS, TCK and TDI Input Leakage Current IINHJ –300 1 uA 2 TMS, TCK and TDI Input Leakage Current IINLJ –1 100 uA 3 TDO Output Leakage Current IOLJ –1 1 uA 4 Test Port Output High Voltage VOHJ VDD – 0.2 — V 5, 6 Test Port Output Low Voltage VOLJ — 0.2 V 5, 7 Test Port Output CMOS High VOHJC VDD – 0.1 — V 5, 8 Test Port Output CMOS Low VOLJC — 0.1 V 5, 9 Notes: 1. Input Under/overshoot voltage must be –1 V < Vi < VDDn +1 V not to exceed V maximum, with a pulse width not to exceed 20% tTKC. 2. VILJ ≤ VIN ≤ VDDn 3. 0 V ≤ VIN ≤ VILJn 4. Output Disable, VOUT = 0 to VDDn 5. The TDO output driver is served by the VDD supply. 6. IOHJ = –2 mA 7. IOLJ = + 2 mA 8. IOHJC = –100 uA 9. IOLJC = +100 uA JTAG Port AC Test Conditions Parameter Conditions Input high level VDD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level VDD/2 Output reference level VDD/2 JTAG Port AC Test Load TDO 50Ω 30pF* VDD/2 * Distributed Test Jig Capacitance Notes: 1. Include scope and jig capacitance. 2. Test conditions as shown unless otherwise noted. Rev: 1.02c 12/2011 29/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 JTAG Port Timing Diagram tTKC tTKH tTKL TCK tTH tTS TDI tTH tTS TMS tTKQ TDO tTH tTS Parallel SRAM input JTAG Port AC Electrical Characteristics Parameter Symbol Min Max Unit TCK Cycle Time tTKC 50 — ns TCK Low to TDO Valid tTKQ — 20 ns TCK High Pulse Width tTKH 20 — ns TCK Low Pulse Width tTKL 20 — ns TDI & TMS Set Up Time tTS 10 — ns TDI & TMS Hold Time tTH 10 — ns Rev: 1.02c 12/2011 30/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Package Dimensions—165-Bump FPBGA (Package D) A1 CORNER TOP VIEW BOTTOM VIEW Ø0.10 M C Ø0.25 M C A B Ø0.40~0.60 (165x) 1 2 3 4 5 6 7 8 9 10 11 A1 CORNER 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R 1.0 14.0 15±0.05 1.0 A B C D E F G H J K L M N P R A 1.0 1.0 10.0 0.15 C B Rev: 1.02c 12/2011 SEATING PLANE 0.20(4x) 0.36~0.46 1.40 MAX. C 13±0.05 31/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Ordering Information—GSI SigmaQuad-II SRAM Org Part Number1 Type Package Speed (MHz) TJ2 2M x 36 GS8662Q36BD-357 SigmaQuad-II SRAM 165-bump BGA 357 C 2M x 36 GS8662Q36BD-333 SigmaQuad-II SRAM 165-bump BGA 333 C 2M x 36 GS8662Q36BD-300 SigmaQuad-II SRAM 165-bump BGA 300 C 2M x 36 GS8662Q36BD-250 SigmaQuad-II SRAM 165-bump BGA 250 C 2M x 36 GS8662Q36BD-200 SigmaQuad-II SRAM 165-bump BGA 200 C 2M x 36 GS8662Q36BD-357I SigmaQuad-II SRAM 165-bump BGA 357 I 2M x 36 GS8662Q36BD-333I SigmaQuad-II SRAM 165-bump BGA 333 I 2M x 36 GS8662Q36BD-300I SigmaQuad-II SRAM 165-bump BGA 300 I 2M x 36 GS8662Q36BD-250I SigmaQuad-II SRAM 165-bump BGA 250 I 2M x 36 GS8662Q36BD-200I SigmaQuad-II SRAM 165-bump BGA 200 I 4M x 18 GS8662Q18BD-357 SigmaQuad-II SRAM 165-bump BGA 357 C 4M x 18 GS8662Q18BD-333 SigmaQuad-II SRAM 165-bump BGA 333 C 4M x 18 GS8662Q18BD-300 SigmaQuad-II SRAM 165-bump BGA 300 C 4M x 18 GS8662Q18BD-250 SigmaQuad-II SRAM 165-bump BGA 250 C 4M x 18 GS8662Q18BD-200 SigmaQuad-II SRAM 165-bump BGA 200 C 4M x 18 GS8662Q18BD-357I SigmaQuad-II SRAM 165-bump BGA 357 I 4M x 18 GS8662Q18BD-333I SigmaQuad-II SRAM 165-bump BGA 333 I 4M x 18 GS8662Q18BD-300I SigmaQuad-II SRAM 165-bump BGA 300 I 4M x 18 GS8662Q18BD-250I SigmaQuad-II SRAM 165-bump BGA 250 I 4M x 18 GS8662Q18BD-200I SigmaQuad-II SRAM 165-bump BGA 200 I 8M x 9 GS8662Q09BD-357 SigmaQuad-II SRAM 165-bump BGA 357 C 8M x 9 GS8662Q09BD-333 SigmaQuad-II SRAM 165-bump BGA 333 C 8M x 9 GS8662Q09BD-300 SigmaQuad-II SRAM 165-bump BGA 300 C 8M x 9 GS8662Q09BD-250 SigmaQuad-II SRAM 165-bump BGA 250 C 8M x 9 GS8662Q09BD-200 SigmaQuad-II SRAM 165-bump BGA 200 C 8M x 9 GS8662Q09BD-357I SigmaQuad-II SRAM 165-bump BGA 357 I 8M x 9 GS8662Q09BD-333I SigmaQuad-II SRAM 165-bump BGA 333 I 8M x 9 GS8662Q09BD-300I SigmaQuad-II SRAM 165-bump BGA 300 I 8M x 9 GS8662Q09BD-250I SigmaQuad-II SRAM 165-bump BGA 250 I 8M x 9 GS8662Q09BD-200I SigmaQuad-II SRAM 165-bump BGA 200 I 8M x 8 GS8662Q08BD-357 SigmaQuad-II SRAM 165-bump BGA 357 C Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662Q36BD-300T. 2. C = Commercial Temperature Range. I = Industrial Temperature Range. Rev: 1.02c 12/2011 32/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Ordering Information—GSI SigmaQuad-II SRAM Org Part Number1 Type Package Speed (MHz) TJ2 8M x 8 GS8662Q08BD-333 SigmaQuad-II SRAM 165-bump BGA 333 C 8M x 8 GS8662Q08BD-300 SigmaQuad-II SRAM 165-bump BGA 300 C 8M x 8 GS8662Q08BD-250 SigmaQuad-II SRAM 165-bump BGA 250 C 8M x 8 GS8662Q08BD-200 SigmaQuad-II SRAM 165-bump BGA 200 C 8M x 8 GS8662Q08BD-357I SigmaQuad-II SRAM 165-bump BGA 357 I 8M x 8 GS8662Q08BD-333I SigmaQuad-II SRAM 165-bump BGA 333 I 8M x 8 GS8662Q08BD-300I SigmaQuad-II SRAM 165-bump BGA 300 I 8M x 8 GS8662Q08BD-250I SigmaQuad-II SRAM 165-bump BGA 250 I 8M x 8 GS8662Q08BD-200I SigmaQuad-II SRAM 165-bump BGA 200 I 2M x 36 GS8662Q36BGD-357 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 357 C 2M x 36 GS8662Q36BGD-333 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 333 C 2M x 36 GS8662Q36BGD-300 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 300 C 2M x 36 GS8662Q36BGD-250 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 C 2M x 36 GS8662Q36BGD-200 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 C 2M x 36 GS8662Q36BGD-357I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 357 I 2M x 36 GS8662Q36BGD-333I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 333 I 2M x 36 GS8662Q36BGD-300I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 300 I 2M x 36 GS8662Q36BGD-250I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 I 2M x 36 GS8662Q36BGD-200I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 I 4M x 18 GS8662Q18BGD-357 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 357 C 4M x 18 GS8662Q18BGD-333 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 333 C 4M x 18 GS8662Q18BGD-300 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 300 C 4M x 18 GS8662Q18BGD-250 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 C 4M x 18 GS8662Q18BGD-200 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 C 4M x 18 GS8662Q18BGD-357I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 357 I 4M x 18 GS8662Q18BGD-333I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 333 I 4M x 18 GS8662Q18BGD-300I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 300 I 4M x 18 GS8662Q18BGD-250I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 I 4M x 18 GS8662Q18BGD-200I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 I 8M x 9 GS8662Q09BGD-357 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 357 C 8M x 9 GS8662Q09BGD-333 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 333 C 8M x 9 GS8662Q09BGD-300 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 300 C Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662Q36BD-300T. 2. C = Commercial Temperature Range. I = Industrial Temperature Range. Rev: 1.02c 12/2011 33/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8662Q08/09/18/36BD-357/333/300/250/200 Ordering Information—GSI SigmaQuad-II SRAM Org Part Number1 Type Package Speed (MHz) TJ2 8M x 9 GS8662Q09BGD-250 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 C 8M x 9 GS8662Q09BGD-200 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 C 8M x 9 GS8662Q09BGD-357I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 357 I 8M x 9 GS8662Q09BGD-333I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 333 I 8M x 9 GS8662Q09BGD-300I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 300 I 8M x 9 GS8662Q09BGD-250I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 I 8M x 9 GS8662Q09BGD-200I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 I 8M x 8 GS8662Q08BGD-357 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 357 C 8M x 8 GS8662Q08BGD-333 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 333 C 8M x 8 GS8662Q08BGD-300 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 300 C 8M x 8 GS8662Q08BGD-250 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 C 8M x 8 GS8662Q08BGD-200 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 C 8M x 8 GS8662Q08BGD-357I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 357 I 8M x 8 GS8662Q08BGD-333I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 333 I 8M x 8 GS8662Q08BGD-300I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 300 I 8M x 8 GS8662Q08BGD-250I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 I 8M x 8 GS8662Q08BGD-200I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 I Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662Q36BD-300T. 2. C = Commercial Temperature Range. I = Industrial Temperature Range. SigmaQuad-II Revision History File Name Format/Content Creation of datasheet (Rev1.00a: Updated DLL Lock time to 2048 cycles) 8662QxxB_r1 8662QxxB_r1_01 8662QxxB_r1_02 Rev: 1.02c 12/2011 Description of changes Content • Removal of 200 MHz and 167 MHz speed bins • Addition of 400 MHz and 350 MHz speed bins • (Rev1.01a: Removed TA references) Content • Update to MP status • (Rev1.02a: Removed Power-up section and added AN1021 link to Power Supplies table) • (Rev1.02b: Editorial updates) • (Rev1.02c: Updated DLL lock time in AC Char table) 34/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology