72Mb SigmaQuad-II+ Burst of 2 SRAM

GS8662QT07/10/19/37BD-357/333/300/250/200
72Mb SigmaQuad-II+TM
Burst of 2 SRAM
165-Bump BGA
Commercial Temp
Industrial Temp
Features
• 2.0 Clock Latency
• Simultaneous Read and Write SigmaQuad™ Interface
• JEDEC-standard pinout and package
• Dual Double Data Rate interface
• Byte Write controls sampled at data-in time
• Dual-Range On-Die Termination (ODT) on Data (D), Byte
Write (BW), and Clock (K, K) inputs
• Burst of 2 Read and Write
• 1.8 V +100/–100 mV core power supply
• 1.5 V or 1.8 V HSTL Interface
• Pipelined read operation
• Fully coherent read and write pipelines
• ZQ pin for programmable output drive strength
• Data Valid Pin (QVLD) Support
• IEEE 1149.1 JTAG-compliant Boundary Scan
• 165-bump, 13 mm x 15 mm, 1 mm bump pitch BGA package
• RoHS-compliant 165-bump BGA package available
SigmaQuad™ Family Overview
The GS8662QT07/10/19/37BD are built in compliance with
the SigmaQuad-II+ SRAM pinout standard for Separate I/O
synchronous SRAMs. They are 75,497,472-bit (72Mb)
SRAMs. The GS8662QT07/10/19/37BD SigmaQuad SRAMs
357 MHz–200 MHz
1.8 V VDD
1.8 V and 1.5 V I/O
are just one element in a family of low power, low voltage
HSTL I/O SRAMs designed to operate at the speeds needed to
implement economical high performance networking systems.
Clocking and Addressing Schemes
The GS8662QT07/10/19/37BD SigmaQuad-II+ SRAMs are
synchronous devices. They employ two input register clock
inputs, K and K. K and K are independent single-ended clock
inputs, not differential inputs to a single differential clock input
buffer.
Each internal read and write operation in a SigmaQuad-II+ B2
RAM is two times wider than the device I/O bus. An input data
bus de-multiplexer is used to accumulate incoming data before
it is simultaneously written to the memory array. An output
data multiplexer is used to capture the data produced from a
single memory array read and then route it to the appropriate
output drivers as needed. Therefore the address field of a
SigmaQuad-II+ B2 RAM is always one address pin less than
the advertised index depth (e.g., the 8M x 8 has an 4M
addressable index).
Parameter Synopsis
-357
-333
-300
-250
-200
tKHKH
2.8 ns
3.0 ns
3.3 ns
4.0 ns
5.0 ns
tKHQV
0.45 ns
0.45 ns
0.45 ns
0.45 ns
0.45 ns
Rev: 1.00a 11/2011
1/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
8M x 8 SigmaQuad-II SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
SA
SA
W
NW1
K
NC/SA
(144Mb)
R
SA
SA
CQ
B
NC
NC
NC
SA
NC/SA
(288Mb)
K
NW0
SA
NC
NC
Q3
C
NC
NC
NC
VSS
SA
SA
SA
VSS
NC
NC
D3
D
NC
D4
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
NC
E
NC
NC
Q4
VDDQ
VSS
VSS
VSS
VDDQ
NC
D2
Q2
F
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
G
NC
D5
Q5
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
Q1
D1
K
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
L
NC
Q6
D6
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
Q0
M
NC
NC
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
D0
N
NC
D7
NC
VSS
SA
SA
SA
VSS
NC
NC
NC
P
NC
NC
Q7
SA
SA
QVLD
SA
SA
NC
NC
NC
R
TDO
TCK
SA
SA
SA
ODT
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch
Notes:
1. NW0 controls writes to D0:D3. NW1 controls writes to D4:D7.
2. Pins A7 and B5 are the expansion addresses.
Rev: 1.00a 11/2011
2/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
8M x 9 SigmaQuad-II SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
SA
SA
W
NC
K
NC/SA
(144Mb)
R
SA
SA
CQ
B
NC
NC
NC
SA
NC/SA
(288Mb)
K
BW0
SA
NC
NC
Q4
C
NC
NC
NC
VSS
SA
SA
SA
VSS
NC
NC
D4
D
NC
D5
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
NC
E
NC
NC
Q5
VDDQ
VSS
VSS
VSS
VDDQ
NC
D3
Q3
F
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
G
NC
D6
Q6
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
Q2
D2
K
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
L
NC
Q7
D7
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
Q1
M
NC
NC
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
D1
N
NC
D8
NC
VSS
SA
SA
SA
VSS
NC
NC
NC
P
NC
NC
Q8
SA
SA
QVLD
SA
SA
NC
D0
Q0
R
TDO
TCK
SA
SA
SA
ODT
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch
Notes:
1. BW0 controls writes to D0:D8.
2. Pins A7 and B5 are the expansion addresses.
Rev: 1.00a 11/2011
3/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
4M x 18 SigmaQuad-II+ SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
NC/SA
(144Mb)
SA
W
BW1
K
NC/SA
(288Mb )
R
SA
SA
CQ
B
NC
Q9
D9
SA
NC
K
BW0
SA
NC
NC
Q8
C
NC
NC
D10
VSS
SA
SA
SA
VSS
NC
Q7
D8
D
NC
D11
Q10
VSS
VSS
VSS
VSS
VSS
NC
NC
D7
E
NC
NC
Q11
VDDQ
VSS
VSS
VSS
VDDQ
NC
D6
Q6
F
NC
Q12
D12
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
Q5
G
NC
D13
Q13
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
D5
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
D14
VDDQ
VDD
VSS
VDD
VDDQ
NC
Q4
D4
K
NC
NC
Q14
VDDQ
VDD
VSS
VDD
VDDQ
NC
D3
Q3
L
NC
Q15
D15
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
Q2
M
NC
NC
D16
VSS
VSS
VSS
VSS
VSS
NC
Q1
D2
N
NC
D17
Q16
VSS
SA
SA
SA
VSS
NC
NC
D1
P
NC
NC
Q17
SA
SA
QVLD
SA
SA
NC
D0
Q0
R
TDO
TCK
SA
SA
SA
ODT
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch
Notes:
1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.
2. Pins A2 and A7 are the expansion addresses.
Rev: 1.00a 11/2011
4/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
2M x 36 SigmaQuad-II+ SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
NC/SA
(288Mb )
SA
W
BW2
K
BW1
R
SA
NC/SA
(144Mb)
CQ
B
Q27
Q18
D18
SA
BW3
K
BW0
SA
D17
Q17
Q8
C
D27
Q28
D19
VSS
SA
SA
SA
VSS
D16
Q7
D8
D
D28
D20
Q19
VSS
VSS
VSS
VSS
VSS
Q16
D15
D7
E
Q29
D29
Q20
VDDQ
VSS
VSS
VSS
VDDQ
Q15
D6
Q6
F
Q30
Q21
D21
VDDQ
VDD
VSS
VDD
VDDQ
D14
Q14
Q5
G
D30
D22
Q22
VDDQ
VDD
VSS
VDD
VDDQ
Q13
D13
D5
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
D31
Q31
D23
VDDQ
VDD
VSS
VDD
VDDQ
D12
Q4
D4
K
Q32
D32
Q23
VDDQ
VDD
VSS
VDD
VDDQ
Q12
D3
Q3
L
Q33
Q24
D24
VDDQ
VSS
VSS
VSS
VDDQ
D11
Q11
Q2
M
D33
Q34
D25
VSS
VSS
VSS
VSS
VSS
D10
Q1
D2
N
D34
D26
Q25
VSS
SA
SA
SA
VSS
Q10
D9
D1
P
Q35
D35
Q26
SA
SA
QVLD
SA
SA
Q9
D0
Q0
R
TDO
TCK
SA
SA
SA
ODT
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch
Notes:
3. BW0 controls writes to D0:D8; BW1 controls writes to D9:D17; BW2 controls writes to D18:D26; BW3 controls writes to D27:D35
4. Pins A2 and A10 are the expansion addresses.
Rev: 1.00a 11/2011
5/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Pin Description Table
Symbol
Description
Type
Comments
SA
Synchronous Address Inputs
Input
—
R
Synchronous Read
Input
Active Low
W
Synchronous Write
Input
Active Low
BW0–BW3
Synchronous Byte Writes
Input
Active Low
NW0–NW1
Synchronous Nybble Writes
Input
Active Low
(x8 only)
K
Input Clock
Input
Active High
K
Input Clock
Input
Active Low
TMS
Test Mode Select
Input
—
TDI
Test Data Input
Input
—
TCK
Test Clock Input
Input
—
TDO
Test Data Output
Output
—
VREF
HSTL Input Reference Voltage
Input
—
ZQ
Output Impedance Matching Input
Input
—
Qn
Synchronous Data Outputs
Output
—
Dn
Synchronous Data Inputs
Input
—
Doff
Disable DLL when low
Input
Active Low
CQ
Output Echo Clock
Output
—
CQ
Output Echo Clock
Output
—
VDD
Power Supply
Supply
1.8 V Nominal
VDDQ
Isolated Output Buffer Supply
Supply
1.8 V or 1.5 V Nominal
VSS
Power Supply: Ground
Supply
—
QVLD
Q Valid Output
Output
—
ODT
On-Die Termination
Input
Low = Low Impedance Range
High/Float = High Impedance Range
NC
No Connect
—
—
Notes:
1. NC = Not Connected to die or any other pin
2. When ZQ pin is directly connected to VDDQ, output impedance is set to minimum value and it cannot be connected to ground or left
unconnected.
3. K and K cannot be set to VREF voltage.
Rev: 1.00a 11/2011
6/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Background
Separate I/O SRAMs, from a system architecture point of view, are attractive in applications where alternating reads and writes are
needed. Therefore, the SigmaQuad-II+ SRAM interface and truth table are optimized for alternating reads and writes. Separate I/O
SRAMs are unpopular in applications where multiple reads or multiple writes are needed because burst read or write transfers from
Separate I/O SRAMs can cut the RAM’s bandwidth in half.
SigmaQuad-II B2 SRAM DDR Read
The read port samples the status of the Address Input and R pins at each rising edge of K. A low on the Read Enable-bar pin, R,
begins a read cycle. Clocking in a high on the Read Enable-bar pin, R, begins a read port deselect cycle.
SigmaQuad-II B2 SRAM DDR Write
The write port samples the status of the W pin at each rising edge of K and the Address Input pins on the following rising edge of
K. A low on the Write Enable-bar pin, W, begins a write cycle. The first of the data-in pairs associated with the write command is
clocked in with the same rising edge of K used to capture the write command. The second of the two data in transfers is captured on
the rising edge of K along with the write address. Clocking in a high on W causes a write port deselect cycle.
Special Functions
Byte Write and Nybble Write Control
Byte Write Enable pins are sampled at the same time that Data In is sampled. A High on the Byte Write Enable pin associated with
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven High or Low
during the data in sample times in a write sequence.
Each write enable command and write address loaded into the RAM provides the base address for a 2beat data transfer. The x18
version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-bit byte may be masked in any
write sequence.
Nybble Write (4-bit) control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble
Write Enable” and “NWx” may be substituted in all the discussion above.
Example x18 RAM Write Sequence using Byte Write Enables
Data In Sample Time
BW0
BW1
D0–D8
D9–D17
Beat 1
0
1
Data In
Don’t Care
Beat 2
1
0
Don’t Care
Data In
Resulting Write Operation
Byte 1
D0–D8
Byte 2
D9–D17
Byte 3
D0–D8
Byte 4
D9–D17
Written
Unchanged
Unchanged
Written
Beat 1
Rev: 1.00a 11/2011
Beat 2
7/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
FLXDrive-II Output Driver Impedance Control
HSTL I/O SigmaQuad-II+ SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to
VSS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be
5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is
between 175Ω and 350Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts
in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and
temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance
evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is
implemented with discrete binary weighted impedance steps.
Input Termination Impedance Control
These SigmaQuad-II+ SRAMs are supplied with programmable input termination on Data (D), Byte Write (BW), and Clock (K,K)
input receivers. The input termination is always enabled, and the impedance is programmed via the same RQ resistor (connected
between the ZQ pin and VSS) used to program output driver impedance, in conjuction with the ODT pin (6R). When the ODT pin
is tied Low, input termination is "strong" (i.e., low impedance), and is nominally equal to RQ*0.3 Thevenin-equivalent when RQ is
between 175Ω and 350Ω. When the ODT pin is tied High (or left floating—the pin has a small pull-up resistor), input termination
is "weak" (i.e., high impedance), and is nominally equal to RQ*0.6 Thevenin-equivalent when RQ is between 175Ω and 250Ω.
Periodic readjustment of the termination impedance occurs to compensate for drifts in supply voltage and temperature, in the same
manner as for driver impedance (see above).
Note:
D, BW, K, K inputs should always be driven High or Low; they should never be tri-stated (i.e., in a High-Z state). If the inputs are
tri-stated, the input termination will pull the signal to VDDQ/2 (i.e., to the switch point of the diff-amp receiver), which could cause
the receiver to enter a meta-stable state, resulting in the receiver consuming more power than it normally would. This could result
in the device’s operating currents being higher.
Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Read Truth Table
A
R
Output Next State
Q
Q
K↑
(tn)
K↑
(tn)
K↑
(tn)
K↑
(tn+2)
K↑
(tn+2½)
X
1
Deselect
Hi-Z
Hi-Z
V
0
Read
Q0
Q1
Notes:
1. X = Don’t Care, 1 = High, 0 = Low, V = Valid.
2. R is evaluated on the rising edge of K.
3. Q0 and Q1 are the first and second data output transfers in a read.
Rev: 1.00a 11/2011
8/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Write Truth Table
A
W
BWn/NWn BWn/NWn
Input Next State
D
D
K↑
(tn + ½)
K↑
(tn)
K↑
(tn)
K↑
(tn + ½)
(tn), (tn + ½)
K ↑, K ↑
K↑
(tn)
K↑
(tn + ½)
V
0
0
0
Write Byte Dx0, Write Byte Dx1
D0
D1
V
0
0
1
Write Byte Dx0, Write Abort Byte Dx1
D0
X
V
0
1
0
Write Abort Byte Dx0, Write Byte Dx1
X
D1
X
0
1
1
Write Abort Byte Dx0, Write Abort Byte Dx1
X
X
X
1
X
X
Deselect
X
X
Notes:
1. X = Don’t Care, H = High, L = Low, V = Valid.
2. W is evaluated on the rising edge of K.
3. D0 and D1 are the first and second data input transfers in a write.
4. BWn represents any of the Byte Write Enable inputs (BW0, BW1, etc.). NWn represents any of the Nybble Write Enable inputs (NW0,
NW1).
x36 Byte Write Enable (BWn) Truth Table
BW0
BW1
BW2
BW3
D0–D8
D9–D17
D18–D26
D27–D35
1
1
1
1
Don’t Care
Don’t Care
Don’t Care
Don’t Care
0
1
1
1
Data In
Don’t Care
Don’t Care
Don’t Care
1
0
1
1
Don’t Care
Data In
Don’t Care
Don’t Care
0
0
1
1
Data In
Data In
Don’t Care
Don’t Care
1
1
0
1
Don’t Care
Don’t Care
Data In
Don’t Care
0
1
0
1
Data In
Don’t Care
Data In
Don’t Care
1
0
0
1
Don’t Care
Data In
Data In
Don’t Care
0
0
0
1
Data In
Data In
Data In
Don’t Care
1
1
1
0
Don’t Care
Don’t Care
Don’t Care
Data In
0
1
1
0
Data In
Don’t Care
Don’t Care
Data In
1
0
1
0
Don’t Care
Data In
Don’t Care
Data In
0
0
1
0
Data In
Data In
Don’t Care
Data In
1
1
0
0
Don’t Care
Don’t Care
Data In
Data In
0
1
0
0
Data In
Don’t Care
Data In
Data In
1
0
0
0
Don’t Care
Data In
Data In
Data In
0
0
0
0
Data In
Data In
Data In
Data In
Rev: 1.00a 11/2011
9/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
x18 Byte Write Enable (BWn) Truth Table
BW0
BW1
D0–D8
D9–D17
1
1
Don’t Care
Don’t Care
0
1
Data In
Don’t Care
1
0
Don’t Care
Data In
0
0
Data In
Data In
x9 Byte Write Enable (BWn) Truth Table
BW0
D0–D8
1
Don’t Care
0
Data In
1
Don’t Care
0
Data In
x8 Nybble Write Enable (NWn) Truth Table
NW0
NW1
D0–D3
D4–D7
1
1
Don’t Care
Don’t Care
0
1
Data In
Don’t Care
1
0
Don’t Care
Data In
0
0
Data In
Data In
Rev: 1.00a 11/2011
10/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Absolute Maximum Ratings
(All voltages reference to VSS)
Symbol
Description
Value
Unit
VDD
Voltage on VDD Pins
–0.5 to 2.9
V
VDDQ
Voltage in VDDQ Pins
–0.5 to VDD
V
VREF
Voltage in VREF Pins
–0.5 to VDDQ
V
VI/O
Voltage on I/O Pins
–0.5 to VDDQ +0.5 (≤ 2.9 V max.)
V
VIN
Input Voltage (Address, Control, Data, Clock)
–0.5 to VDDQ +0.5 (≤ 2.9 V max.)
V
VTIN
Input Voltage (TCK, TMS, TDI)
–0.5 to VDDQ +0.5 (≤ 2.9 V max.)
V
IIN
Input Current on Any Pin
+/–100
mA dc
IOUT
Output Current on Any I/O Pin
+/–100
mA dc
TJ
Maximum Junction Temperature
125
oC
TSTG
Storage Temperature
–55 to 125
oC
Note:
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect
reliability of this component.
Recommended Operating Conditions
Power Supplies
Parameter
Symbol
Min.
Typ.
Max.
Unit
Supply Voltage
VDD
1.7
1.8
1.9
V
I/O Supply Voltage
VDDQ
1.4
—
VDD
V
Reference Voltage
VREF
VDDQ/2 – 0.05
—
VDDQ/2 + 0.05
V
Note:
The power supplies need to be powered up simultaneously or in the following sequence: VDD, VDDQ, VREF, followed by signal inputs. The power
down sequence must be the reverse. VDDQ must not exceed VDD. For more information, read AN1021 SigmaQuad and SigmaDDR Power-Up.
Operating Temperature
Parameter
Symbol
Min.
Typ.
Max.
Unit
Junction Temperature
(Commercial Range Versions)
TJ
0
25
85
°C
Junction Temperature
(Industrial Range Versions)*
TJ
–40
25
100
°C
Note:
* The part numbers of Industrial Temperature Range versions end with the character “I”. Unless otherwise noted, all performance specifications
quoted are evaluated for worst case in the temperature range marked on the device.
Rev: 1.00a 11/2011
11/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Thermal Impedance
Package
Test PCB
Substrate
θ JA (C°/W)
Airflow = 0 m/s
θ JA (C°/W)
Airflow = 1 m/s
θ JA (C°/W)
Airflow = 2 m/s
θ JB (C°/W)
θ JC (C°/W)
165 BGA
4-layer
22.300
18.572
17.349
9.292
2.310
Notes:
1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number.
2. Please refer to JEDEC standard JESD51-6.
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to
the PCB can result in cooling or heating of the RAM depending on PCB temperature.
HSTL I/O DC Input Characteristics
Parameter
Symbol
Min
Max
Units
Notes
Input Reference Voltage
VREF
VDDQ /2 – 0.05
VDDQ /2 + 0.05
V
—
Input High Voltage
VIH1
VREF + 0.1
VDDQ + 0.3
V
1
Input Low Voltage
VIL1
–0.3
VREF – 0.1
V
1
Input High Voltage
VIH2
0.7 * VDDQ
VDDQ + 0.3
V
2,3
Input Low Voltage
VIL2
–0.3
0.3 * VDDQ
V
2,3
Notes:
1. Parameters apply to K, K, SA, D, R, W, BW during normal operation and JTAG boundary scan testing.
2. Parameters apply to Doff, ODT during normal operation and JTAG boundary scan testing.
3. Parameters apply to ZQ during JTAG boundary scan testing only.
HSTL I/O AC Input Characteristics
Parameter
Symbol
Min
Max
Units
Notes
Input Reference Voltage
VREF
VDDQ /2 – 0.08
VDDQ /2 + 0.08
V
—
Input High Voltage
VIH1
VREF + 0.2
VDDQ + 0.5
V
1,2,3
Input Low Voltage
VIL1
–0.5
VREF – 0.2
V
1,2,3
Input High Voltage
VIH2
VDDQ – 0.2
VDDQ + 0.5
V
4,5
Input Low Voltage
VIL2
–0.5
0.2
V
4,5
Notes:
1. VIH(MAX) and VIL(MIN) apply for pulse widths less than one-quarter of the cycle time.
2. Input rise and fall times must be a minimum of 1 V/ns, and within 10% of each other.
3. Parameters apply to K, K, SA, D, R, W, BW during normal operation and JTAG boundary scan testing.
4. Parameters apply to Doff, ODT during normal operation and JTAG boundary scan testing.
5. Parameters apply to ZQ during JTAG boundary scan testing only.
Rev: 1.00a 11/2011
12/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Capacitance
(TA = 25oC, f = 1 MHZ, VDD = 1.8 V)
Parameter
Symbol
Test conditions
Typ.
Max.
Unit
Input Capacitance
CIN
VIN = 0 V
4
5
pF
Output Capacitance
COUT
VOUT = 0 V
6
7
pF
Clock Capacitance
CCLK
VIN = 0 V
5
6
pF
Note:
This parameter is sample tested.
AC Test Conditions
Parameter
Conditions
Input high level
1.25
Input low level
0.25 V
Max. input slew rate
2 V/ns
Input reference level
0.75
Output reference level
VDDQ/2
Note:
Test conditions as specified with output loading as shown unless otherwise noted.
AC Test Load Diagram
DQ
50Ω
RQ = 250 Ω (HSTL I/O)
VREF = 0.75 V
VT == 0.75 V
Input and Output Leakage Characteristics
Parameter
Symbol
Test Conditions
Min.
Max
Input Leakage Current
(except mode pins)
IIL
VIN = 0 to VDD
–2 uA
2 uA
Doff
IILDOFF
VIN = 0 to VDD
–20 uA
2 uA
ODT
IIL ODT
VIN = 0 to VDD
–2 uA
20 uA
Output Leakage Current
IOL
Output Disable,
VOUT = 0 to VDDQ
–2 uA
2 uA
Rev: 1.00a 11/2011
13/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Programmable Impedance HSTL Output Driver DC Electrical Characteristics
Parameter
Symbol
Min.
Max.
Units
Notes
Output High Voltage
VOH1
VDDQ/2 – 0.12
VDDQ/2 + 0.12
V
1, 3
Output Low Voltage
VOL1
VDDQ/2 – 0.12
VDDQ/2 + 0.12
V
2, 3
Output High Voltage
VOH2
VDDQ – 0.2
VDDQ
V
4, 5
Output Low Voltage
VOL2
Vss
0.2
V
4, 6
-250
-200
Notes:
1. IOH = (VDDQ/2) / (RQ/5) +/– 15% @ VOH = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω).
2. IOL = (VDDQ/2) / (RQ/5) +/– 15% @ VOL = VDDQ/2 (for: 175Ω ≤ RQ ≤350Ω).
3. Parameter tested with RQ = 250Ω and VDDQ = 1.5 V
4. 0Ω ≤ RQ ≤ ∞Ω
5. IOH = –1.0 mA
6. IOL = 1.0 mA
Operating Currents
-357
Parameter
Symbol
Test Conditions
Operating Current
(x36): DDR
IDD
Operating Current
(x18): DDR
-333
-300
Notes
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
1195
mA
1205
mA
1100
mA
1110
mA
1060
mA
1070
mA
895
mA
905
mA
740
mA
750
mA
2, 3
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
985
mA
995
mA
920
mA
930
mA
850
mA
860
mA
720
mA
730
mA
600
mA
610
mA
2, 3
Operating Current
(x9): DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
985
mA
995
mA
920
mA
930
mA
850
mA
860
mA
720
mA
730
mA
600
mA
610
mA
2, 3
Operating Current
(x8): DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
985
mA
995
mA
920
mA
930
mA
850
mA
860
mA
720
mA
730
mA
600
mA
610
mA
2, 3
Standby Current
(NOP): DDR
ISB1
275
mA
285
mA
270
mA
280
mA
255
mA
265
mA
240
mA
250
mA
220
mA
230
mA
2, 4
Device deselected,
IOUT = 0 mA, f = Max,
All Inputs ≤ 0.2 V or ≥ VDD – 0.2 V
Notes:
1.
2.
3.
4.
Power measured with output pins floating.
Minimum cycle, IOUT = 0 mA
Operating current is calculated with 50% read cycles and 50% write cycles.
Standby Current is only after all pending read and write burst operations are completed.
Rev: 1.00a 11/2011
14/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
AC Electrical Characteristics
Parameter
Symbol
-357
-333
-300
-250
-200
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Units
Notes
Clock
K, K Clock Cycle Time
tKHKH
2.8
8.4
3.0
8.4
3.3
8.4
4.0
8.4
5.0
8.4
ns
tK Variable
tKVar
—
0.2
—
0.2
—
0.2
—
0.2
—
0.2
ns
K, K Clock High Pulse Width
tKHKL
1.12
—
1.2
—
1.32
—
1.6
—
2.0
—
ns
K, K Clock Low Pulse Width
tKLKH
1.12
—
1.2
—
1.32
—
1.6
—
2.0
—
ns
K to K High
tKHKH
1.26
—
1.28
—
1.49
—
1.8
—
2.2
—
ns
K to K High
tKHKH
1.26
—
1.28
—
1.49
—
1.8
—
2.2
—
ns
DLL Lock Time
tKCLock
2048
—
2048
—
2048
—
2048
—
2048
—
cycle
K Static to DLL reset
tKCReset
30
—
30
—
30
—
30
—
30
—
ns
K, K Clock High to Data Output Valid
tKHQV
—
0.45
—
0.45
—
0.45
—
0.45
—
0.45
ns
K, K Clock High to Data Output Hold
tKHQX
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.45
—
ns
K, K Clock High to Echo Clock Valid
tKHCQV
—
0.45
—
0.45
—
0.45
—
0.45
—
0.45
ns
K, K Clock High to Echo Clock Hold
tKHCQX
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.45
—
ns
CQ, CQ High Output Valid
tCQHQV
—
0.23
—
0.25
—
0.27
—
0.30
—
0.35
ns
CQ, CQ High Output Hold
tCQHQX
–0.23
—
–0.25
—
–0.27
—
–0.30
—
–0.35
—
ns
tQVLD
–0.23
0.23
–0.25
0.25
–0.27
0.27
–0.30
0.30
–0.35
0.35
ns
tCQHCQH
tCQHCQH
1.00
—
1.10
—
1.24
—
1.55
—
1.95
—
ns
K Clock High to Data Output High-Z
tKHQZ
—
0.45
—
0.45
—
0.45
—
0.45
—
0.45
ns
K Clock High to Data Output Low-Z
tKHQX1
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.45
—
ns
Address Input Setup Time
tAVKH
0.28
—
0.28
—
0.30
—
0.35
—
0.4
—
ns
1
Control Input Setup Time (R, W)
tIVKH
0.28
—
0.28
—
0.30
—
0.35
—
0.4
—
ns
2
Control Input Setup Time (BWX) (BWX)
tIVKH
0.28
—
0.28
—
0.30
—
0.35
—
0.4
—
ns
3
Data Input Setup Time
tDVKH
0.28
—
0.28
—
0.30
—
0.35
—
0.4
—
ns
Address Input Hold Time
tKHAX
0.28
—
0.28
—
0.30
—
0.35
—
0.4
—
ns
1
Control Input Hold Time (R, W)
tKHIX
0.28
—
0.28
—
0.30
—
0.35
—
0.4
—
ns
2
Control Input Hold Time (BWX) (BWX)
tKHIX
0.28
—
0.28
—
0.30
—
0.35
—
0.4
—
ns
3
Data Input Hold Time
tKHDX
0.28
—
0.28
—
0.30
—
0.35
—
0.4
—
ns
4
5
Output Times
CQ, CQ High to QVLD
CQ Phase Distortion
Setup Times
Hold Times
Notes:
1.
2.
3.
4.
5.
All Address inputs must meet the specified setup and hold times for all latching clock edges.
Control signals are R, W
Control signals are BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36).
Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable.
Rev: 1.00a 11/2011
15/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
Rev: 1.00a 11/2011
CQ
CQ
Q
QVLD
W
R
Addr
K
K
A0
tKHIX
tIVKH
tKHAX
tAVKH
Read A0 / Write NOP
A1
tKHIX
tIVKH
tQVLD
A2
tCQLQV
tCQHQV
Q0
tCQHQV
tCQLQV
Q1
NOOP
tCQHQX
tCQLQX
Q1+1
Read A3 / Write NOP
A3
Q0+1
Read A2 / Write NOP
Read NOP CQ-Based Timing Diagram
Read A1 / Write NOP
Q2
Q2+1
Q3
tCQLQX
tCQHQX
NOOP
tQVLD
Q3+1
NOOP
GS8662QT07/10/19/37BD-357/333/300/250/200
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
16/28
© 2011, GSI Technology
Rev: 1.00a 11/2011
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
17/28
CQ
CQ
Q
QVLD
D
BWx
W
R
Addr
K
K
D8
A0
D8+1
tIVKH
tKHIX
A8
tAVKH
tKHAX
Read A0/ Write A8
D7
A1
D7+1
tIVKH
tKHIX
A7
tQVLD
D6
A2
tKHAX
tAVKH
tCQLQV
Q0+1
D5
tCQLQX
tCQHQX
Q1
D5+1
A5
NOOP
tCQHQV
tCQLQV
Q1+1
tDVKH
tKHDX
Read A3/ Write A5
A3
tKHIX
tIVKH
tCQHQV
Q0
D6+1
tDVKH
tKHDX
tIVKH
tKHIX
A6
Read A2/ Write A6
Read-Write CQ-Based Timing Diagram
Read A1/ Write A7
Q2
tCQHQX
tCQLQX
Q2+1
NOOP
Q3
tQVLD
Q3+1
NOOP
GS8662QT07/10/19/37BD-357/333/300/250/200
© 2011, GSI Technology
Rev: 1.00a 11/2011
D
BWx
W
R
Addr
K
K
D0
D1+1
tKHIX
tIVKH
A1
Read No-op / Write A1
D1
tKHDX
tDVKH
tKHIX
tIVKH
D0+1
tKHDX
tDVKH
tIVKH
tKHIX
tKHIX
tIVKH
A0
tKHAX
tAVKH
Read No-op / Write A0
D2
D2+1
A2
Read No-op / Write A2
D3
D3+1
A3
Read No-op / Write A3
Write NOP Timing Diagram
NO-OP
NO-OP
NO-OP
GS8662QT07/10/19/37BD-357/333/300/250/200
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
18/28
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
JTAG Port Operation
Overview
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output
drivers are powered by VDD.
Disabling the JTAG Port
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG
Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected.
JTAG Pin Descriptions
Pin
Pin Name
I/O
Description
TCK
Test Clock
In
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the
falling edge of TCK.
TMS
Test Mode Select
In
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state
machine. An undriven TMS input will produce the same result as a logic one input level.
TDI
Test Data In
In
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed
between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP
Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to
the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input
level.
TDO
Test Data Out
Out
Output that is active depending on the state of the TAP state machine. Output changes in response to the
falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.
Note:
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.
JTAG Port Registers
Overview
The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the
TDI and TDO pins.
Instruction Register
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the
controller is placed in Test-Logic-Reset state.
Bypass Register
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.
Boundary Scan Register
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan
Rev: 1.00a 11/2011
19/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.
JTAG TAP Block Diagram
·
·
·
·
·
·
·
·
Boundary Scan Register
·
·
1
·
108
0
0
Bypass Register
2 1 0
Instruction Register
TDI
TDO
ID Code Register
31 30 29
·
· ··
2 1 0
Control Signals
TMS
Test Access Port (TAP) Controller
TCK
Identification (ID) Register
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.
GSI Technology
JEDEC Vendor
ID Code
See BSDL Model
Bit #
Presence Register
ID Register Contents
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0
X
1
X
X
Rev: 1.00a 11/2011
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
20/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
0
0 1 1 0 1 1 0 0 1
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Tap Controller Instruction Set
Overview
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load
address, data or control signals into the RAM or to preload the I/O buffers.
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this
device is listed in the following table.
JTAG Tap Controller State Diagram
1
0
Test Logic Reset
0
Run Test Idle
1
Select DR
1
Select IR
0
0
1
1
Capture DR
Capture IR
0
0
Shift DR
1
1
Shift IR
0
1
1
Exit1 DR
0
Exit1 IR
0
0
Pause DR
1
Exit2 DR
1
Update DR
1
1
0
0
Pause IR
1
Exit2 IR
0
1
0
0
Update IR
1
0
Instruction Descriptions
BYPASS
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is
Rev: 1.00a 11/2011
21/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then
places the boundary scan register between the TDI and TDO pins.
EXTEST
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is
still determined by its input pins.
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output
drivers on the falling edge of TCK when the controller is in the Update-IR state.
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associated.
IDCODE
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.
SAMPLE-Z
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (highZ) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR
state.
JTAG TAP Instruction Set Summary
Instruction
Code
Description
Notes
EXTEST
000
Places the Boundary Scan Register between TDI and TDO.
1
IDCODE
001
Preloads ID Register and places it between TDI and TDO.
1, 2
SAMPLE-Z
010
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.
Forces all RAM output drivers to High-Z.
1
GSI
011
GSI private instruction.
1
SAMPLE/PRELOAD
100
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.
1
GSI
101
GSI private instruction.
1
GSI
110
GSI private instruction.
1
BYPASS
111
Places Bypass Register between TDI and TDO.
1
Notes:
1. Instruction codes expressed in binary, MSB on left, LSB on right.
2. Default instruction automatically loaded at power-up and in test-logic-reset state.
Rev: 1.00a 11/2011
22/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
JTAG Port Recommended Operating Conditions and DC Characteristics
Parameter
Symbol
Min.
Max.
Unit
Notes
Test Port Input Low Voltage
VILJ
–0.3
0.3 * VDD
V
1
Test Port Input High Voltage
VIHJ
0.7 * VDD
VDD +0.3
V
1
TMS, TCK and TDI Input Leakage Current
IINHJ
–300
1
uA
2
TMS, TCK and TDI Input Leakage Current
IINLJ
–1
100
uA
3
TDO Output Leakage Current
IOLJ
–1
1
uA
4
Test Port Output High Voltage
VOHJ
VDD – 0.2
—
V
5, 6
Test Port Output Low Voltage
VOLJ
—
0.2
V
5, 7
Test Port Output CMOS High
VOHJC
VDD – 0.1
—
V
5, 8
Test Port Output CMOS Low
VOLJC
—
0.1
V
5, 9
Notes:
1. Input Under/overshoot voltage must be –1 V < Vi < VDDn +1 V not to exceed V maximum, with a pulse width not to exceed 20% tTKC.
2. VILJ ≤ VIN ≤ VDDn
3. 0 V ≤ VIN ≤ VILJn
4. Output Disable, VOUT = 0 to VDDn
5. The TDO output driver is served by the VDD supply.
6. IOHJ = –2 mA
7. IOLJ = + 2 mA
8. IOHJC = –100 uA
9. IOLJC = +100 uA
JTAG Port AC Test Conditions
Parameter
Conditions
Input high level
VDD – 0.2 V
Input low level
0.2 V
Input slew rate
1 V/ns
Input reference level
VDD/2
Output reference level
VDD/2
JTAG Port AC Test Load
TDO
50Ω
VDD/2
* Distributed Test Jig Capacitance
Notes:
1. Include scope and jig capacitance.
2. Test conditions as shown unless otherwise noted.
Rev: 1.00a 11/2011
30pF*
23/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
JTAG Port Timing Diagram
tTKC
tTKH
tTKL
TCK
tTH
tTS
TDI
tTH
tTS
TMS
tTKQ
TDO
tTH
tTS
Parallel SRAM input
JTAG Port AC Electrical Characteristics
Parameter
Symbol
Min
Max
Unit
TCK Cycle Time
tTKC
50
—
ns
TCK Low to TDO Valid
tTKQ
—
20
ns
TCK High Pulse Width
tTKH
20
—
ns
TCK Low Pulse Width
tTKL
20
—
ns
TDI & TMS Set Up Time
tTS
10
—
ns
TDI & TMS Hold Time
tTH
10
—
ns
Rev: 1.00a 11/2011
24/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Package Dimensions—165-Bump FPBGA (Package D)
A1 CORNER
TOP VIEW
BOTTOM VIEW
Ø0.10 M C
Ø0.25 M C A B
Ø0.40~0.60 (165x)
1 2 3 4 5 6 7 8 9 10 11
A1 CORNER
11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
1.0
14.0
15±0.05
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
A
1.0
1.0
10.0
0.15 C
B
Rev: 1.00a 11/2011
SEATING PLANE
0.20(4x)
0.36~0.46
1.40 MAX.
C
13±0.05
25/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Ordering Information—GSI SigmaQuad-II+ SRAM
Org
Part Number1
Type
Package
Speed
(MHz)
TJ2
8M x 8
GS8662QT07BD-357
SigmaQuad-II+ B2 SRAM
165-bump BGA
357
C
8M x 8
GS8662QT07BD-333
SigmaQuad-II+ B2 SRAM
165-bump BGA
333
C
8M x 8
GS8662QT07BD-300
SigmaQuad-II+ B2 SRAM
165-bump BGA
300
C
8M x 8
GS8662QT07BD-250
SigmaQuad-II+ B2 SRAM
165-bump BGA
250
C
8M x 8
GS8662QT07BD-200
SigmaQuad-II+ B2 SRAM
165-bump BGA
200
C
8M x 8
GS8662QT07BD-357I
SigmaQuad-II+ B2 SRAM
165-bump BGA
357
I
8M x 8
GS8662QT07BD-333I
SigmaQuad-II+ B2 SRAM
165-bump BGA
333
I
8M x 8
GS8662QT07BD-300I
SigmaQuad-II+ B2 SRAM
165-bump BGA
300
I
8M x 8
GS8662QT07BD-250I
SigmaQuad-II+ B2 SRAM
165-bump BGA
250
I
8M x 8
GS8662QT07BD-200I
SigmaQuad-II+ B2 SRAM
165-bump BGA
200
I
8M x 8
GS8662QT07BGD-357
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
357
C
8M x 8
GS8662QT07BGD-333
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
333
C
8M x 8
GS8662QT07BGD-300
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
300
C
8M x 8
GS8662QT07BGD-250
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
250
C
8M x 8
GS8662QT07BGD-200
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
200
C
8M x 8
GS8662QT07BGD-357I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
357
I
8M x 8
GS8662QT07BGD-333I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
333
I
8M x 8
GS8662QT07BGD-300I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
300
I
8M x 8
GS8662QT07BGD-250I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
250
I
8M x 8
GS8662QT07BGD-200I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
200
I
8M x 9
GS8662QT10BD-357
SigmaQuad-II+ B2 SRAM
165-bump BGA
357
C
8M x 9
GS8662QT10BD-333
SigmaQuad-II+ B2 SRAM
165-bump BGA
333
C
8M x 9
GS8662QT10BD-300
SigmaQuad-II+ B2 SRAM
165-bump BGA
300
C
8M x 9
GS8662QT10BD-250
SigmaQuad-II+ B2 SRAM
165-bump BGA
250
C
8M x 9
GS8662QT10BD-200
SigmaQuad-II+ B2 SRAM
165-bump BGA
200
C
8M x 9
GS8662QT10BD-357I
SigmaQuad-II+ B2 SRAM
165-bump BGA
357
I
8M x 9
GS8662QT10BD-333I
SigmaQuad-II+ B2 SRAM
165-bump BGA
333
I
8M x 9
GS8662QT10BD-300I
SigmaQuad-II+ B2 SRAM
165-bump BGA
300
I
8M x 9
GS8662QT10BD-250I
SigmaQuad-II+ B2 SRAM
165-bump BGA
250
I
8M x 9
GS8662QT10BD-200I
SigmaQuad-II+ B2 SRAM
165-bump BGA
200
I
8M x 9
GS8662QT10BGD-357
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
357
C
8M x 9
GS8662QT10BGD-333
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
333
C
Notes:
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS8662QTxxBD-300T.
2. C = Commercial Temperature Range. I = Industrial Temperature Range.
Rev: 1.00a 11/2011
26/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Ordering Information—GSI SigmaQuad-II+ SRAM (Continued)
Org
Part Number1
Type
Package
Speed
(MHz)
TJ2
8M x 9
GS8662QT10BGD-300
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
300
C
8M x 9
GS8662QT10BGD-250
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
250
C
8M x 9
GS8662QT10BGD-200
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
200
C
8M x 9
GS8662QT10BGD-357I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
357
I
8M x 9
GS8662QT10BGD-333I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
333
I
8M x 9
GS8662QT10BGD-300I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
300
I
8M x 9
GS8662QT10BGD-250I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
250
I
8M x 9
GS8662QT10BGD-200I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
200
I
4M x 18
GS8662QT19BD-357
SigmaQuad-II+ B2 SRAM
165-bump BGA
357
C
4M x 18
GS8662QT19BD-333
SigmaQuad-II+ B2 SRAM
165-bump BGA
333
C
4M x 18
GS8662QT19BD-300
SigmaQuad-II+ B2 SRAM
165-bump BGA
300
C
4M x 18
GS8662QT19BD-250
SigmaQuad-II+ B2 SRAM
165-bump BGA
250
C
4M x 18
GS8662QT19BD-200
SigmaQuad-II+ B2 SRAM
165-bump BGA
200
C
4M x 18
GS8662QT19BD-357I
SigmaQuad-II+ B2 SRAM
165-bump BGA
357
I
4M x 18
GS8662QT19BD-333I
SigmaQuad-II+ B2 SRAM
165-bump BGA
333
I
4M x 18
GS8662QT19BD-300I
SigmaQuad-II+ B2 SRAM
165-bump BGA
300
I
4M x 18
GS8662QT19BD-250I
SigmaQuad-II+ B2 SRAM
165-bump BGA
250
I
4M x 18
GS8662QT19BD-200I
SigmaQuad-II+ B2 SRAM
165-bump BGA
200
I
4M x 18
GS8662QT19BGD-357
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
357
C
4M x 18
GS8662QT19BGD-333
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
333
C
4M x 18
GS8662QT19BGD-300
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
300
C
4M x 18
GS8662QT19BGD-250
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
250
C
4M x 18
GS8662QT19BGD-200
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
200
C
4M x 18
GS8662QT19BGD-357I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
357
I
4M x 18
GS8662QT19BGD-333I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
333
I
4M x 18
GS8662QT19BGD-300I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
300
I
4M x 18
GS8662QT19BGD-250I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
250
I
4M x 18
GS8662QT19BGD-200I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
200
I
2M x 36
GS8662QT37BD-357
SigmaQuad-II+ B2 SRAM
165-bump BGA
357
C
2M x 36
GS8662QT37BD-333
SigmaQuad-II+ B2 SRAM
165-bump BGA
333
C
2M x 36
GS8662QT37BD-300
SigmaQuad-II+ B2 SRAM
165-bump BGA
300
C
2M x 36
GS8662QT37BD-250
SigmaQuad-II+ B2 SRAM
165-bump BGA
250
C
Notes:
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS8662QTxxBD-300T.
2. C = Commercial Temperature Range. I = Industrial Temperature Range.
Rev: 1.00a 11/2011
27/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS8662QT07/10/19/37BD-357/333/300/250/200
Ordering Information—GSI SigmaQuad-II+ SRAM (Continued)
Org
Part Number1
Type
Package
Speed
(MHz)
TJ2
2M x 36
GS8662QT37BD-200
SigmaQuad-II+ B2 SRAM
165-bump BGA
200
C
2M x 36
GS8662QT37BD-357I
SigmaQuad-II+ B2 SRAM
165-bump BGA
357
I
2M x 36
GS8662QT37BD-333I
SigmaQuad-II+ B2 SRAM
165-bump BGA
333
I
2M x 36
GS8662QT37BD-300I
SigmaQuad-II+ B2 SRAM
165-bump BGA
300
I
2M x 36
GS8662QT37BD-250I
SigmaQuad-II+ B2 SRAM
165-bump BGA
250
I
2M x 36
GS8662QT37BD-200I
SigmaQuad-II+ B2 SRAM
165-bump BGA
200
I
2M x 36
GS8662QT37BGD-357
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
357
C
2M x 36
GS8662QT37BGD-333
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
333
C
2M x 36
GS8662QT37BGD-300
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
300
C
2M x 36
GS8662QT37BGD-250
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
250
C
2M x 36
GS8662QT37BGD-200
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
200
C
2M x 36
GS8662QT37BGD-357I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
357
I
2M x 36
GS8662QT37BGD-333I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
333
I
2M x 36
GS8662QT37BGD-300I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
300
I
2M x 36
GS8662QT37BGD-250I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
250
I
2M x 36
GS8662QT37BGD-200I
SigmaQuad-II+ B2 SRAM
RoHS-compliant 165-bump BGA
200
I
Notes:
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS8662QTxxBD-300T.
2. C = Commercial Temperature Range. I = Industrial Temperature Range.
SigmaQuad-II+ SRAM Revision History
File Name
Format/Content
Creation of datasheet
(Rev1.00a: Editorial updates)
8662QT1937B_r1
Rev: 1.00a 11/2011
Description of changes
28/28
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology