N ot R ecom m ended for N ew D esign—D

GS832218/36/72(B/E/C)-xxxV
2M x 18, 1M x 36, 512K x 72
36Mb S/DCD Sync Burst SRAMs
119-, 165-, & 209-Pin BGA
Commercial Temp
Industrial Temp
Features
Functional Description
ct
SCD and DCD Pipelined Reads
The GS832218/36/72-xxxV is a SCD (Single Cycle Deselect) and
DCD (Dual Cycle Deselect) pipelined synchronous SRAM. DCD
SRAMs pipeline disable commands to the same degree as read
commands. SCD SRAMs pipeline deselect commands one stage
less than read commands. SCD RAMs begin turning off their
outputs immediately after the deselect command has been
captured in the input registers. DCD RAMs hold the deselect
command for one full cycle and then begin turning off their
outputs just after the second rising edge of clock. The user may
configure this SRAM for either mode of operation using the SCD
mode input.
De
sig
Applications
The GS832218/36/72-xxxV is a 37,748,736-bit high performance
synchronous SRAM with a 2-bit burst address counter. Although
of a type originally developed for Level 2 Cache applications
supporting high performance CPUs, the device now finds
application in synchronous SRAM applications, ranging from
DSP main store to networking chip set support.
Flow Through/Pipeline Reads
The function of the Data Output register can be controlled by the
user via the FT mode . Holding the FT mode pin low places the
RAM in Flow Through mode, causing output data to bypass the
Data Output Register. Holding FT high places the RAM in
Pipeline mode, activating the rising-edge-triggered Data Output
Register.
n—
Di
sco
nt
inu
ed
Pr
od
u
• FT pin for user-configurable flow through or pipeline operation
• Single/Dual Cycle Deselect selectable
• IEEE 1149.1 JTAG-compatible Boundary Scan
• ZQ mode pin for user-selectable high/low output drive
• 1.8 V or 2.5 V core power supply
• 1.8 V or 2.5 V I/O supply
• LBO pin for Linear or Interleaved Burst mode
• Internal input resistors on mode pins allow floating mode pins
• Default to SCD x18/x36 Interleaved Pipeline mode
• Byte Write (BW) and/or Global Write (GW) operation
• Internal self-timed write cycle
• Automatic power-down for portable applications
• JEDEC-standard 119-, 165-, and 209-bump BGA package
• RoHS-compliant packages available
250 MHz–133 MHz
1.8 V or 2.5 V VDD
1.8 V or 2.5 V I/O
Ne
w
Byte Write and Global Write
Byte write operation is performed by using Byte Write enable
(BW) input combined with one or more individual byte write
signals (Bx). In addition, Global Write (GW) is available for
writing all bytes at one time, regardless of the Byte Write control
inputs.
Controls
Addresses, data I/Os, chip enable (E1), address burst control
inputs (ADSP, ADSC, ADV), and write control inputs (Bx, BW,
GW) are synchronous and are controlled by a positive-edgetriggered clock input (CK). Output enable (G) and power down
control (ZZ) are asynchronous inputs. Burst cycles can be initiated
with either ADSP or ADSC inputs. In Burst mode, subsequent
burst addresses are generated internally and are controlled by
ADV. The burst address counter may be configured to count in
either linear or interleave order with the Linear Burst Order (LBO)
input. The Burst function need not be used. New addresses can be
loaded on every cycle with no degradation of chip performance.
No
t
Re
co
m
me
nd
ed
for
FLXDrive™
The ZQ pin allows selection between high drive strength (ZQ low)
for multi-drop bus applications and normal drive strength (ZQ
floating or high) point-to-point applications. See the Output Driver
Characteristics chart for details.
Pipeline
3-1-1-1
Flow
Through
2-1-1-1
Rev: 1.07 9/2008
Core and Interface Voltages
The GS832218/36/72-xxxV operates on a 1.8 V or 2.5 V power
supply. All inputs are 1.8 V or 2.5 V compatible. Separate output
power (VDDQ) pins are used to decouple output noise from the
internal circuits and are 1.8 V or 2.5 V compatible.
Parameter Synopsis
-250
-225 -200 -166 -150 -133 Unit
tKQ
tCycle
3.0
4.0
3.0
4.4
3.0
5.0
3.5
6.0
3.8
6.7
4.0
7.5
ns
ns
Curr (x18)
Curr (x36)
Curr (x72)
285
350
440
265
320
410
245
295
370
220
260
320
210
240
300
185
215
265
mA
mA
mA
tKQ
tCycle
6.5
6.5
7.0
7.0
7.5
7.5
8.0
8.0
8.5
8.5
8.5
8.5
ns
ns
Curr (x18)
Curr (x36)
Curr (x72)
205
235
315
195
225
295
185
210
265
175
200
255
165
190
240
155
175
230
mA
mA
mA
1/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
209-Bump BGA—x72 Common I/O—Top View (Package C)
2
3
4
5
6
7
8
9
10
11
A
DQG
DQG
A
E2
ADSP
ADSC
ADV
E3
A
DQB
DQB
A
B
DQG
DQG
BC
BG
NC
BW
A
BB
BF
DQB
DQB
B
C
DQG
DQG
BH
BD
NC
E1
NC
BE
BA
DQB
DQB
C
D
DQG
DQG
VSS
NC
NC
G
GW
NC
VSS
DQB
DQB
D
E
DQPG
DQPC
VDDQ
VDDQ
VDD
VDD
VDD
VDDQ
VDDQ
DQPF
DQPB
E
F
DQC
DQC
VSS
VSS
VSS
ZQ
VSS
VSS
VSS
DQF
DQF
F
G
DQC
DQC
VDDQ
VDDQ
VDD
MCH
VDD
VDDQ
VDDQ
DQF
DQF
G
H
DQC
DQC
VSS
VSS
VSS
MCL
VSS
VSS
VSS
DQF
DQF
H
J
DQC
DQC
VDDQ
VDDQ
VDD
MCL
VDD
VDDQ
VDDQ
DQF
DQF
J
K
NC
NC
CK
NC
VSS
MCL
VSS
NC
NC
NC
NC
K
L
DQH
DQH
VDDQ
VDDQ
VDD
FT
VDD
VDDQ
VDDQ
DQA
DQA
L
M
DQH
DQH
VSS
VSS
VSS
MCL
VSS
VSS
VSS
DQA
DQA
M
N
DQH
DQH
VDDQ
VDDQ
VDD
SCD
VDD
VDDQ
VDDQ
DQA
DQA
N
P
DQH
DQH
VSS
VSS
VSS
ZZ
VSS
VSS
VSS
DQA
DQA
P
R
DQPD
DQPH
VDDQ
VDDQ
VDD
VDD
VDD
VDDQ
VDDQ
DQPA
DQPE
R
T
DQD
DQD
VSS
NC
NC
LBO
NC
NC
VSS
DQE
DQE
T
U
DQD
DQD
NC
A
A
A
A
A
A
DQE
DQE
U
V
DQD
DQD
A
A
A
A1
A
A
A
DQE
DQE
V
W
DQD
DQD
TMS
TDI
A
A0
A
TDO
TCK
DQE
DQE
W
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
Ne
w
me
nd
ed
for
ct
1
No
t
Re
co
m
11 x 19 Bump BGA—14 x 22 mm2 Body—1 mm Bump Pitch
Rev: 1.07 9/2008
2/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
GS832272C-xxxV 209-Bump BGA Pin Description
Type
Description
A 0, A 1
I
Address field LSBs and Address Counter Preset Inputs.
An
I
Address Inputs
DQA
DQB
DQC
DQD
DQE
DQF
DQG
DQH
I/O
BA, BB
I
Byte Write Enable for DQA, DQB I/Os; active low
BC,BD
I
Byte Write Enable for DQC, DQD I/Os; active low
BE, BF, BG,BH
I
Byte Write Enable for DQE, DQF, DQG, DQH I/Os; active low
NC
—
No Connect
CK
I
GW
I
E1
I
E3
I
E2
I
G
I
ADV
I
ADSP, ADSC
I
ZZ
I
FT
I
LBO
I
SCD
I
MCH
I
n—
Di
sco
nt
inu
ed
Pr
od
u
Data Input and Output pins
Clock Input Signal; active high
Ne
w
De
sig
Global Write Enable—Writes all bytes; active low
Chip Enable; active low
Chip Enable; active low
Chip Enable; active high
Output Enable; active low
me
nd
ed
for
Burst address counter advance enable; active low
Re
co
m
MCL
ct
Symbol
Address Strobe (Processor, Cache Controller); active low
Sleep Mode control; active high
Flow Through or Pipeline mode; active low
Linear Burst Order mode; active low
Single Cycle Deselect/Dual Cycle Deselect Mode Control
Must Connect High
Must Connect Low
I
Byte Enable; active low
I
FLXDrive Output Impedance Control
(Low = Low Impedance [High Drive], High = High Impedance [Low Drive])
I
Scan Test Mode Select
I
Scan Test Data In
TDO
O
Scan Test Data Out
TCK
I
Scan Test Clock
BW
TMS
TDI
No
t
ZQ
Rev: 1.07 9/2008
3/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Type
Description
VDD
I
Core power supply
VSS
I
I/O and Core Ground
VDDQ
I
Output driver power supply
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
n—
Di
sco
nt
inu
ed
Pr
od
u
Symbol
ct
GS832272C-xxxV 209-Bump BGA Pin Description (Continued)
Rev: 1.07 9/2008
4/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
2
3
4
5
6
7
8
9
10
11
A
NC
A
E1
BB
NC
E3
BW
ADSC
ADV
A
A
A
B
NC
A
E2
NC
BA
CK
GW
G
ADSP
A
NC
B
C
NC
NC
VDDQ
VSS
VSS
VSS
VSS
VSS
VDDQ
NC
DQPA
C
D
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
D
E
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
E
F
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
F
G
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
G
H
FT
MCL
NC
VDD
VSS
VSS
VSS
VDD
NC
ZQ
ZZ
H
J
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
J
K
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
K
L
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
L
M
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
M
N
DQPB
SCD
P
NC
NC
R
LBO
A
me
nd
ed
for
Ne
w
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
1
De
sig
165-Bump BGA—x18 Commom I/O—Top View (Package E)
VSS
NC
A
NC
VSS
VDDQ
NC
NC
N
A
A
TDI
A1
TDO
A
A
A
A
P
A
A
TMS
A0
TCK
A
A
A
A
R
Re
co
m
VDDQ
No
t
11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch
Rev: 1.07 9/2008
5/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
165-Bump BGA—x36 Common I/O—Top View (Package E)
2
3
4
5
6
7
8
9
10
11
A
NC
A
E1
BC
BB
E3
BW
ADSC
ADV
A
NC
B
NC
A
E2
BD
BA
CK
GW
G
ADSP
A
C
DQPC
NC
VDDQ
VSS
VSS
VSS
VSS
VSS
VDDQ
D
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
VDD
E
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
F
DQC
DQC
VDDQ
VDD
VSS
VSS
G
DQC
DQC
VDDQ
VDD
VSS
H
FT
MCL
NC
VDD
J
DQD
DQD
VDDQ
K
DQD
DQD
L
DQD
M
A
B
NC
DQPB
C
VDDQ
DQB
DQB
D
VDD
VDDQ
DQB
DQB
E
VSS
VDD
VDDQ
DQB
DQB
F
VSS
VSS
VDD
VDDQ
DQB
DQB
G
VSS
VSS
VSS
VDD
NC
ZQ
ZZ
H
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
J
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
K
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
L
DQD
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
M
N
DQPD
SCD
P
NC
NC
R
LBO
A
me
nd
ed
for
Ne
w
n—
Di
sco
nt
inu
ed
Pr
od
u
NC
De
sig
ct
1
VSS
NC
A
NC
VSS
VDDQ
NC
DQPA
N
A
A
TDI
A1
TDO
A
A
A
A
P
A
A
TMS
A0
TCK
A
A
A
A
R
Re
co
m
VDDQ
No
t
11 x 15 Bump BGA—15 mm x 17 mm Body—1.0 mm Bump Pitch
Rev: 1.07 9/2008
6/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
GS832218/36E-xxxV 165-Bump BGA Pin Description
Type
Description
A 0, A 1
I
Address field LSBs and Address Counter Preset Inputs
An
I
Address Inputs
DQA
DQB
DQC
DQD
I/O
BA , BB , BC , BD
I
Byte Write Enable for DQA, DQB, DQC, DQD I/Os; active low (x36 Version)
NC
—
No Connect
CK
I
BW
I
Byte Write—Writes all enabled bytes; active low
GW
I
Global Write Enable—Writes all bytes; active low
E1
I
Chip Enable; active low
E3
I
E2
I
G
I
ADV
I
ADSC, ADSP
I
Address Strobe (Processor, Cache Controller); active low
ZZ
I
Sleep mode control; active high
FT
I
LBO
I
ZQ
I
TMS
I
TDI
I
TDO
O
TCK
I
MCL
—
VDD
n—
Di
sco
nt
inu
ed
Pr
od
u
Clock Input Signal; active high
Chip Enable; active low
Chip Enable; active high
Output Enable; active low
Ne
w
De
sig
Burst address counter advance enable; active l0w
Rev: 1.07 9/2008
Flow Through or Pipeline mode; active low
Linear Burst Order mode; active low
me
nd
ed
for
FLXDrive Output Impedance Control (Low = Low Impedance [High Drive], High = High Impedance [Low
Drive])
Scan Test Mode Select
Scan Test Data In
Scan Test Data Out
Scan Test Clock
Must Connect Low
—
Single Cycle Deselect/Dual Cyle Deselect Mode Control
I
Core power supply
I
I/O and Core Ground
I
Output driver power supply
No
t
VSS
VDDQ
Data Input and Output pins
Re
co
m
SCD
ct
Symbol
7/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
119-Bump BGA—x36 Common I/O—Top View
1
2
3
4
5
6
7
A
VDDQ
A
A
ADSP
A
A
VDDQ
B
NC
A
A
ADSC
A
A
NC
C
NC
A
A
VDD
A
A
NC
C
D
DQC
DQPC
VSS
ZQ
VSS
DQPB
DQB
D
E
DQC
DQC
VSS
E1
VSS
DQB
DQB
E
F
VDDQ
DQC
VSS
G
VSS
DQB
VDDQ
F
G
DQC2
DQC
BC
ADV
BB
DQB
DQB
G
H
DQC
DQC
VSS
GW
VSS
DQB
DQB
H
J
VDDQ
VDD
NC
VDD
NC
VDD
VDDQ
J
K
DQD
DQD
VSS
CK
VSS
DQA
DQA
K
L
DQD
DQD
BD
SCD
BA
DQA
DQA
L
M
VDDQ
DQD
VSS
BW
VSS
DQA
VDDQ
M
N
DQD
DQD
A1
VSS
DQA
DQA
N
P
DQD
DQPD
VSS
A0
VSS
DQPA
DQA
P
R
NC
A
LBO
VDD
FT
A
NC
R
T
NC
NC
A
A
A
A
ZZ
T
U
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
U
ct
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
Ne
w
B
7 x 17 Bump BGA—14 x 22 mm2 Body—1.27 mm Bump Pitch
No
t
Re
co
m
me
nd
ed
for
VSS
A
Rev: 1.07 9/2008
8/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
119-Bump BGA—x18 Common I/O—Top View
1
2
3
4
5
6
7
A
VDDQ
A
A
ADSP
A
A
VDDQ
B
NC
A
A
ADSC
A
A
NC
C
NC
A
A
VDD
A
A
NC
C
D
DQB
NC
VSS
ZQ
VSS
DQPA
NC
D
E
NC
DQB
VSS
E1
VSS
NC
DQA
E
F
VDDQ
NC
VSS
G
VSS
DQA
VDDQ
F
G
NC
DQB
BB
ADV
NC
NC
DQA
G
H
DQB
NC
VSS
GW
VSS
DQA
NC
H
J
VDDQ
VDD
NC
VDD
NC
VDD
VDDQ
J
K
NC
DQB
VSS
CK
VSS
NC
DQA
K
L
DQB
NC
NC
SCD
BA
DQA
NC
L
M
VDDQ
DQB
VSS
BW
VSS
NC
VDDQ
M
N
DQB
NC
A1
VSS
DQA
NC
N
P
NC
DQPB
VSS
A0
VSS
NC
DQA
P
R
NC
A
LBO
VDD
FT
A
NC
R
T
NC
A
A
A
A
A
ZZ
T
U
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
U
ct
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
Ne
w
B
7 x 17 Bump BGA—14 x 22 mm2 Body—1.27 mm Bump Pitch
No
t
Re
co
m
me
nd
ed
for
VSS
A
Rev: 1.07 9/2008
9/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
GS832218/36B-xxxV 119-Bump BGA Pin Description
Type
Description
A 0, A 1
I
Address field LSBs and Address Counter Preset Inputs
An
I
Address Inputs
DQA
DQB
DQC
DQD
I/O
BA , BB , BC , BD
I
Byte Write Enable for DQA, DQB, DQC, DQD I/Os; active low
NC
—
No Connect
CK
I
BW
I
Byte Write—Writes all enabled bytes; active low
GW
I
Global Write Enable—Writes all bytes; active low
E1
I
Chip Enable; active low
G
I
ADV
I
ADSP, ADSC
I
Address Strobe (Processor, Cache Controller); active low
ZZ
I
Sleep mode control; active high
FT
I
LBO
I
ZQ
I
SCD
I
TMS
I
TDI
I
TDO
O
TCK
I
VSS
n—
Di
sco
nt
inu
ed
Pr
od
u
Clock Input Signal; active high
Output Enable; active low
Ne
w
De
sig
Burst address counter advance enable; active low
Rev: 1.07 9/2008
Flow Through or Pipeline mode; active low
Linear Burst Order mode; active low
me
nd
ed
for
FLXDrive Output Impedance Control (Low = Low Impedance [High Drive], High = High Impedance [Low
Drive])
Single Cycle Deselect/Dual Cyle Deselect Mode Control
Scan Test Mode Select
Scan Test Data In
Scan Test Data Out
Scan Test Clock
I
Core power supply
I
I/O and Core Ground
I
I/O and Core Ground
No
t
VSS
VDDQ
Data Input and Output pins
Re
co
m
VDD
ct
Symbol
I
Output driver power supply
10/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
GS832218/36/72-xxxV Block Diagram
Register
D
Q
A0
A0
D0
Q0
A1
ct
A0–An
A1
n—
Di
sco
nt
inu
ed
Pr
od
u
D1
Q1
Counter
Load
A
LBO
ADV
Memory
Array
CK
ADSC
ADSP
Q
Register
GW
BW
BA
D
Q
36
Register
D
D
Q
BB
36
D
Ne
w
D
Q
Register
Q
36
36
me
nd
ed
for
D
Register
BD
Q
Register
D
Q
Q
De
sig
D
BC
Register
4
Register
Register
E1
D
Q
36
Register
Re
co
m
D
FT
G
Power Down
No
t
ZZ
Control
Q
36
DCD=S
CD
DQx1–DQx9
Note: Only x36 version shown for simplicity.
Rev: 1.07 9/2008
11/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Mode Pin Functions
Burst Order Control
LBO
Output Register Control
FT
Power Down Control
ZZ
Single/Dual Cycle Deselect Control
SCD
FLXDrive Output Impedance Control
ZQ
State
Function
L
Linear Burst
H
Interleaved Burst
L
Flow Through
ct
Pin Name
n—
Di
sco
nt
inu
ed
Pr
od
u
Mode Name
H or NC
Pipeline
L or NC
Active
H
Standby, IDD = ISB
L
Dual Cycle Deselect
H or NC
Single Cycle Deselect
L
High Drive (Low Impedance)
H or NC
Low Drive (High Impedance)
De
sig
Note:
There is a pull-down device on the ZZ pin, so this input pin can be unconnected and the chip will operate in the default states as specified in the
above table.
There are pull-up devices on the ZQ, SCD, and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected and the
chip will operate in the default states as specified in the above tables.
Burst Counter Sequences
Ne
w
Linear Burst Sequence
Interleaved Burst Sequence
1st address
00
01
2nd address
01
10
3rd address
10
11
4th address
11
00
me
nd
ed
for
A[1:0] A[1:0] A[1:0] A[1:0]
A[1:0] A[1:0] A[1:0] A[1:0]
10
11
1st address
00
01
10
11
11
00
2nd address
01
00
11
10
00
01
3rd address
10
11
00
01
01
10
4th address
11
10
01
00
Note:
The burst counter wraps to initial state on the 5th clock.
Re
co
m
Note:
The burst counter wraps to initial state on the 5th clock.
No
t
BPR 1999.05.18
Rev: 1.07 9/2008
12/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
GW
BW
BA
BB
BC
BD
Notes
Read
H
H
X
X
X
X
1
Write No Bytes
H
L
H
H
H
H
1
Write byte a
H
L
L
Write byte b
H
L
H
Write byte c
H
L
H
Write byte d
H
L
H
Write all bytes
H
L
L
ct
Function
n—
Di
sco
nt
inu
ed
Pr
od
u
Byte Write Truth Table
H
H
H
2, 3
L
H
H
2, 3
H
L
H
2, 3, 4
H
H
L
2, 3, 4
L
L
L
2, 3, 4
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
Write all bytes
L
X
X
X
X
X
Notes:
1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs, BA, BB, BC and/or BD.
2. Byte Write Enable inputs BA, BB, BC and/or BD may be used in any combination with BW to write single or multiple bytes.
3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.
4. Bytes “C” and “D” are only available on the x32 and x36 versions.
Rev: 1.07 9/2008
13/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Synchronous Truth Table
E1
None
X
L
Deselect Cycle, Power Down
None
X
L
Deselect Cycle, Power Down
None
X
L
Deselect Cycle, Power Down
None
X
L
Deselect Cycle, Power Down
None
X
H
Read Cycle, Begin Burst
External
R
L
Read Cycle, Begin Burst
External
R
L
Write Cycle, Begin Burst
External
W
L
Read Cycle, Continue Burst
Next
CR
X
Read Cycle, Continue Burst
Next
CR
H
Write Cycle, Continue Burst
Next
CW
Write Cycle, Continue Burst
Next
CW
Read Cycle, Suspend Burst
Current
Read Cycle, Suspend Burst
Current
Write Cycle, Suspend Burst
Current
Current
ADSP ADSC
ADV
W
DQ3
H
X
L
X
X
High-Z
L
X
X
L
X
X
High-Z
X
H
L
X
X
X
High-Z
L
X
L
X
X
X
High-Z
X
X
X
L
X
X
High-Z
H
L
L
X
X
X
Q
H
L
H
L
X
F
Q
H
L
H
L
X
T
D
X
X
H
H
L
F
Q
X
X
X
H
L
F
Q
X
X
X
H
H
L
T
D
H
X
X
X
H
L
T
D
X
X
X
H
H
H
F
Q
H
X
X
X
H
H
F
Q
X
X
X
H
H
H
T
D
H
X
X
X
H
H
T
D
Ne
w
me
nd
ed
for
Write Cycle, Suspend Burst
E3
X
De
sig
Deselect Cycle, Power Down
E2
ct
Operation
n—
Di
sco
nt
inu
ed
Pr
od
u
State
Address Diagram
Used
Key
No
t
Re
co
m
Notes:
1. X = Don’t Care, H = High, L = Low
2. E = T (True) if E2 = 1 and E1 = E3 = 0; E = F (False) if E2 = 0 or E1 = 1 or E3 = 1
3. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.
4. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown
as “Q” in the Truth Table above).
5. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish
basic synchronous or synchronous burst operations and may be avoided for simplicity.
6. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.
7. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.
Rev: 1.07 9/2008
14/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Simplified State Diagram
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
X
Deselect
W
R
X
R
R
First Write
CR
X
CR
Ne
w
De
sig
CW
First Read
me
nd
ed
for
W
X
R
R
Burst Write
Burst Read
X
CR
CW
CR
Re
co
m
Simple Burst Synchronous Operation
Simple Synchronous Operation
W
No
t
Notes:
1. The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.
2. The upper portion of the diagram assumes active use of only the Enable (E1) and Write (BA, BB, BC, BD, BW, and GW) control inputs, and
that ADSP is tied high and ADSC is tied low.
3. The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs and
assumes ADSP is tied high and ADV is tied low.
Rev: 1.07 9/2008
15/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Simplified State Diagram with G
ct
X
W
R
W
X
n—
Di
sco
nt
inu
ed
Pr
od
u
Deselect
R
R
First Write
CR
First Read
CW
X
CR
W
Burst Write
me
nd
ed
for
X
Ne
w
De
sig
CW
W
R
CR
CW
R
W
Burst Read
X
CW
CR
No
t
Re
co
m
Notes:
1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.
2. Use of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from read cycles to write cycles without passing
through a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles.
3. Transitions shown in grey tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meet
Data Input Set Up Time.
Rev: 1.07 9/2008
16/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Absolute Maximum Ratings
(All voltages reference to VSS)
Description
Value
Unit
VDD
Voltage on VDD Pins
–0.5 to 4.6
V
VDDQ
Voltage on VDDQ Pins
–0.5 to VDD
VI/O
Voltage on I/O Pins
VIN
Voltage on Other Input Pins
IIN
Input Current on Any Pin
IOUT
Output Current on Any I/O Pin
PD
Package Power Dissipation
TSTG
Storage Temperature
TBIAS
Temperature Under Bias
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Symbol
V
–0.5 to VDDQ +0.5 (≤ 4.6 V max.)
V
–0.5 to VDD +0.5 (≤ 4.6 V max.)
V
+/–20
mA
+/–20
mA
1.5
W
–55 to 125
o
–55 to 125
o
C
C
De
sig
Note:
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of
this component.
Power Supply Voltage Ranges (1.8 V/2.5 V Version)
Symbol
Min.
Typ.
Max.
Unit
VDD1
1.7
1.8
2.0
V
VDD2
2.3
2.5
2.7
V
1.8 V VDDQ I/O Supply Voltage
VDDQ1
1.7
1.8
VDD
V
2.5 V VDDQ I/O Supply Voltage
VDDQ2
2.3
2.5
VDD
V
1.8 V Supply Voltage
me
nd
ed
for
2.5 V Supply Voltage
Ne
w
Parameter
Notes
No
t
Re
co
m
Notes:
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
Rev: 1.07 9/2008
17/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Symbol
Min.
Typ.
Max.
Unit
Notes
VDD Input High Voltage
VIH
0.6*VDD
—
VDD + 0.3
V
1
VDD Input Low Voltage
VIL
–0.3
—
0.3*VDD
1
n—
Di
sco
nt
inu
ed
Pr
od
u
Parameter
ct
VDDQ2 & VDDQ1 Range Logic Levels
V
Notes:
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
Recommended Operating Temperatures
Parameter
Symbol
Ambient Temperature (Commercial Range Versions)
TA
Ambient Temperature (Industrial Range Versions)
TA
Min.
Typ.
Max.
Unit
Notes
0
25
70
°C
2
–40
25
85
°C
2
De
sig
Notes:
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
2. Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
VSS
50%
VSS – 2.0 V
Re
co
m
20% tKC
Capacitance
20% tKC
VDD + 2.0 V
me
nd
ed
for
VIH
Overshoot Measurement and Timing
Ne
w
Undershoot Measurement and Timing
50%
VDD
VIL
(TA = 25oC, f = 1 MHZ, VDD = 2.5 V)
Symbol
Test conditions
Typ.
Max.
Unit
Input Capacitance
CIN
VIN = 0 V
8
10
pF
Input/Output Capacitance
CI/O
VOUT = 0 V
12
14
pF
No
t
Parameter
Note:
These parameters are sample tested.
Rev: 1.07 9/2008
18/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
AC Test Conditions
Parameter
Conditions
Input high level
VDD – 0.2 V
Input low level
0.2 V
Input slew rate
1 V/ns
Input reference level
VDD/2
Output reference level
VDDQ/2
Output load
Fig. 1
DQ
DC Electrical Characteristics
IIL
FT, SCD, ZQ, ZZ Input Current
IIN
Output Leakage Current
IOL
* Distributed Test Jig Capacitance
Test Conditions
Min
Max
VIN = 0 to VDD
–1 uA
1 uA
VDD ≥ VIN ≥ 0 V
–100 uA
100 uA
Output Disable, VOUT = 0 to VDD
–1 uA
1 uA
Symbol
Test Conditions
Min
Max
VOH1
IOH = –4 mA, VDDQ = 1.7 V
VDDQ – 0.4 V
—
VOH2
IOH = –8 mA, VDDQ = 2.375 V
1.7 V
—
VOL1
IOL = 4 mA
—
0.4 V
VOL2
IOL = 8 mA
—
0.4 V
De
sig
Input Leakage Current
(except mode pins)
VDDQ/2
Ne
w
Symbol
30pF*
50Ω
Notes:
1. Include scope and jig capacitance.
2. Test conditions as specified with output loading as shown in Fig. 1
unless otherwise noted.
3. Device is deselected as defined by the Truth Table.
Parameter
n—
Di
sco
nt
inu
ed
Pr
od
u
Output Load 1
ct
Figure 1
Parameter
1.8 V Output High Voltage
2.5 V Output High Voltage
1.8 V Output Low Voltage
No
t
Re
co
m
2.5 V Output Low Voltage
me
nd
ed
for
DC Output Characteristics (1.8 V/2.5 V Version)
Rev: 1.07 9/2008
19/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
Rev: 1.07 9/2008
IDD
85
100
IDD
Pipeline
Flow
Through
60
60
ISB
ISB
Pipeline
-
100
115
80
80
85
95
60
60
170
15
225
20
190
20
255
40
235
30
320
50
0
to
70°C
-
180
15
245
20
200
20
275
40
245
30
340
50
–40
to
85°C
160
15
200
20
180
20
225
35
225
30
280
40
0
to
70°C
-
170
15
220
20
190
20
245
35
235
30
300
40
–40
to
85°C
150
15
190
20
170
20
210
30
210
30
260
40
0
to
70°C
-
160
15
210
20
180
20
230
30
220
30
280
40
–40
to
85°C
140
15
170
15
160
15
190
25
210
20
235
30
0
to
70°C
-
n—
60
80
60
80
60
80
60
Di80 60 80 60 80 60
80
60
sco
110
90
105
85
nt 100 85 100 80
in95u 75 90 70
100
80
95
80
ed
Pr
od
uc
t
80
210
25
295
45
265
40
370
60
–40
to
85°C
N280
e25w 24025 26025
D
190
200
180e 190
15
15
15 si15
g
260
25
Flow
Through
IDDQ
IDD
IDDQ
IDD
Flow
Through
Pipeline
DDQ
DD
Notes:
1. IDD and IDDQ apply to any combination of VDD1, VDD2, VDDQ1, and VDDQ2 operation.
2. All parameters listed are worst case scenario.
—
Device Deselected;
All other inputs
≥ VIH or ≤ VIL
Deselect
Current
(x18)
—
IL
ZZ ≥ VDD – 0.2 V
IH
DDQ
200
25
275
45
320
50
DD
DDQ
220
25
255
40
285
40
DD
DDQ
380
350
60
No
t
IDD
400
60
0
to
70°C
60
Re (x72) Pipeline I
co Flow I 275
mThrough
me II 30040
Device Selected;
Pipelinen
50
deI
All other inputs
(x36)
≥V or ≤ V
Id
Flow
fo21025r
Output open
I
Through
Symbol
–40
to
85°C
Mode
0
to
70°C
Test Conditions
Standby
Current
Operating
Current
Parameter
Operating Currents
85
95
80
80
150
15
190
15
170
15
210
25
220
20
255
30
–40
to
85°C
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
Unit
Preliminary
GS832218/36/72(B/E/C)-xxxV
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
20/42
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
AC Electrical Characteristics
Clock Cycle Time
-250
-225
-200
-166
-150
-133
Unit
Max
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
tKC
4.0
—
4.4
—
5.0
—
6.0
—
6.7
—
7.5
—
ns
Clock to Output Valid
tKQ
—
3.0
—
3.0
—
3.0
—
3.5
—
3.8
—
4.0
ns
Clock to Output Invalid
tKQX
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
ns
Clock to Output in Low-Z
tLZ1
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
ns
Setup time
tS
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
ns
Hold time
tH
0.2
—
0.3
—
0.4
—
0.5
—
0.5
—
0.5
—
ns
Clock Cycle Time
tKC
6.5
—
7.0
—
7.5
—
8.0
—
8.5
—
8.5
—
ns
Clock to Output Valid
tKQ
—
6.5
—
7.0
—
7.5
—
8.0
—
8.5
—
8.5
ns
Clock to Output Invalid
tKQX
3.0
—
3.0
—
3.0
—
3.0
—
3.0
—
3.0
—
ns
Clock to Output in Low-Z
tLZ1
3.0
—
3.0
—
3.0
—
3.0
—
3.0
—
3.0
—
ns
Setup time
tS
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
ns
Hold time
tH
0.5
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
—
ns
Clock HIGH Time
tKH
1.3
—
Clock LOW Time
tKL
1.7
—
Clock to Output in
High-Z (x18/x36)
tHZ1
1.5
Clock to Output in
High-Z (x72)
tHZ1
1.5
G to Output Valid
(x18/x36)
De
sig
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Min
1.3
—
1.3
—
1.3
—
1.5
—
1.7
—
ns
1.7
—
1.7
—
1.7
—
1.7
—
2
—
ns
2.5
1.5
2.7
1.5
3.0
1.5
3.0
1.5
3.0
1.5
3.0
ns
3.0
1.5
3.0
1.5
3.0
1.5
3.0
1.5
3.0
1.5
3.0
ns
Ne
w
Flow
Through
Symbol
me
nd
ed
for
Pipeline
Parameter
tOE
—
2.5
—
2.7
—
3.0
—
3.5
—
3.8
—
4.0
ns
tOE
—
3.0
—
3.0
—
3.0
—
3.5
—
3.8
—
4.0
ns
tOLZ1
0
—
0
—
0
—
0
—
0
—
0
—
ns
tOHZ1
—
2.5
—
2.7
—
3.0
—
3.0
—
3.0
—
3.0
ns
G to output in High-Z (x72)
tOHZ1
—
3.0
—
3.0
—
3.0
—
3.0
—
3.0
—
3.0
ns
ZZ setup time
tZZS2
5
—
5
—
5
—
5
—
5
—
5
—
ns
ZZ hold time
tZZH2
1
—
1
—
1
—
1
—
1
—
1
—
ns
tZZR
20
—
20
—
20
—
20
—
20
—
20
—
ns
G to Output Valid
(x72)
G to output in Low-Z
No
t
Re
co
m
G to output in High-Z (x18/x36)
ZZ recovery
Notes:
1. These parameters are sampled and are not 100% tested.
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold
times as specified above.
Rev: 1.07 9/2008
21/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Pipeline Mode Timing (SCD)
Cont
Cont
Deselect Write B
Single Read
Read C+1 Read C+2 Read C+3 Cont
Single Write
tKL
tKH
tKC
CK
ADSP
tS
tH
Deselect
Burst Read
ADSC initiated read
ADSC
tS
tH
ADV
tS
tH
A0–An
Read C
ct
Read A
n—
Di
sco
nt
inu
ed
Pr
od
u
Begin
A
B
tS
GW
tS
C
tH
De
sig
BW
tH
tS
tS
tH
E1
tH
E2
tS
tH
E3
Re
co
m
G
me
nd
ed
for
tS
E1 masks ADSP
E2 and E3 only sampled with ADSP and ADSC
tOE
tS
tOHZ
Q(A)
tKQ
tH
D(B)
tKQX
tLZ
tHZ
Q(C)
Q(C+1)
Q(C+2)
Q(C+3)
No
t
DQa–DQd
Deselected with E1
Ne
w
Ba–Bd
Rev: 1.07 9/2008
22/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Flow Through Mode Timing (SCD)
Begin
Read A
Cont
Cont
Write B
Read C
Read C+1 Read C+2 Read C+3 Read C
Cont
Deselect
tKL
tKC
ct
tKH
n—
Di
sco
nt
inu
ed
Pr
od
u
CK
ADSP
Fixed High
tS
tH
tS
tH initiated read
ADSC
ADSC
tS
tH
ADV
tS
tH
A0–An
A
B
C
tS
tH
tS
tH
BW
Ba–Bd
tS
E1
tS
tH
E2
tS
tH
E3
E2 and E3 only sampled with ADSC
Re
co
m
G
tH
tS
tOE
tOHZ
Q(A)
D(B)
tKQ
tLZ
tHZ
tKQX
Q(C)
Q(C+1)
Q(C+2)
Q(C+3)
Q(C)
No
t
DQa–DQd
Deselected with E1
me
nd
ed
for
tH
Ne
w
tS
tH
De
sig
GW
Rev: 1.07 9/2008
23/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Pipeline Mode Timing (DCD)
Read A
Cont
Deselect Deselect Write B
Read C
Read C+1 Read C+2 Read C+3 Cont
tKC
CK
ADSP
tS
ADSC initiated read
tH
ADSC
tS
tH
ADV
tS
tH
Ao–An
A
B
C
tS
GW
tS
tH
BW
Ba–Bd
tS
tH
Deselected with E1
Ne
w
E1
De
sig
tH
tS
tS
E2 and E3 only sampled with ADSC
tH
tS
tH
E3
G
me
nd
ed
for
E2
tS
tOE
Hi-Z
tOHZ
Q(A)
tKQ
tH
D(B)
tHZ
tLZ
tKQX
Q(C)
Q(C+1)
Q(C+2)
Q(C+3)
No
t
Re
co
m
DQa–DQd
n—
Di
sco
nt
inu
ed
Pr
od
u
tKL
tKH
Deselect Deselect
ct
Begin
Rev: 1.07 9/2008
24/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Flow Through Mode Timing (DCD)
Read A
Cont
Deselect Write B
Read C
tKH
tKC
CK
ADSP
tS
tH
ADSC
initiated read
ADSC
tH
tS
tS
ADV
tS
tH
A
B
C
tS
tH
tS
tH
BW
Ba–Bd
tS
tH
tS
tH
E2
tS
tH
E3
E2 and E3 only sampled with ADSP and ADSC
Re
co
m
G
Deselected with E1
E1 masks ADSP
me
nd
ed
for
E1
Ne
w
tH
tS
tH
De
sig
GW
E1 masks ADSP
tH
tS
tOE
tKQ
tOHZ
Q(A)
tKQX
tHZ
tLZ
D(B)
Q(C)
Q(C+1)
Q(C+2)
Q(C+3)
Q(C)
No
t
DQa–DQd
Deselect
Fixed High
tS
tH
Ao–An
Read C+1 Read C+2 Read C+3 Read C
n—
Di
sco
nt
inu
ed
Pr
od
u
tKL
ct
Begin
Rev: 1.07 9/2008
25/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Sleep Mode
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high,
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to
low, the SRAM operates normally after ZZ recovery time.
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of
Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.
When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands
may be applied while the SRAM is recovering from Sleep mode.
Sleep Mode Timing
tKH
tKC
tKL
CK
Setup
Hold
ADSP
De
sig
ADSC
tZZS
Ne
w
ZZ
tZZR
tZZH
me
nd
ed
for
Application Tips
Re
co
m
Single and Dual Cycle Deselect
SCD devices (like this one) force the use of “dummy read cycles” (read cycles that are launched normally, but that are ended with
the output drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance, but their use usually
assures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste
bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at
bank address boundary crossings), but greater care must be exercised to avoid excessive bus contention.
JTAG Port Operation
No
t
Overview
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output
drivers are powered by VDDQ.
Disabling the JTAG Port
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG
Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected.
Rev: 1.07 9/2008
26/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
JTAG Pin Descriptions
Pin Name
I/O
Description
TCK
Test Clock
In
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate
from the falling edge of TCK.
TMS
Test Mode Select
In
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP
controller state machine. An undriven TMS input will produce the same result as a logic one input
level.
In
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers
placed between TDI and TDO. The register placed between TDI and TDO is determined by the
state of the TAP Controller state machine and the instruction that is currently loaded in the TAP
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce
the same result as a logic one input level.
Test Data In
TDO
Test Data Out
n—
Di
sco
nt
inu
ed
Pr
od
u
TDI
ct
Pin
Output that is active depending on the state of the TAP state machine. Output changes in
Out response to the falling edge of TCK. This is the output side of the serial registers placed between
TDI and TDO.
Note:
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.
JTAG Port Registers
Ne
w
De
sig
Overview
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the
TDI and TDO pins.
me
nd
ed
for
Instruction Register
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the
controller is placed in Test-Logic-Reset state.
Bypass Register
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.
No
t
Re
co
m
Boundary Scan Register
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.
Rev: 1.07 9/2008
27/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
·
·
·
·
·
·
·
n—
Di
sco
nt
inu
ed
Pr
od
u
·
ct
JTAG TAP Block Diagram
Boundary Scan Register
·
·
1
·
2 1 0
0
M*
0
Bypass Register
Instruction Register
TDI
TDO
ID Code Register
·
· · ·
2 1 0
De
sig
31 30 29
Control Signals
TMS
Test Access Port (TAP) Controller
Ne
w
TCK
* For the value of M, see the BSDL file, which is available at by contacting us at [email protected].
Bit #
No
t
Re
co
m
ID Register Contents
GSI Technology
JEDEC Vendor
ID Code
Not Used
Presence Register
me
nd
ed
for
Identification (ID) Register
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0
X
1
X
Rev: 1.07 9/2008
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
28/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
0 0 1 1 0 1 1 0 0 1
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Tap Controller Instruction Set
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Overview
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load
address, data or control signals into the RAM or to preload the I/O buffers.
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this
device is listed in the following table.
JTAG Tap Controller State Diagram
Test Logic Reset
1
0
0
Run Test Idle
1
Select DR
1
Select IR
0
0
1
De
sig
Shift DR
Ne
w
1
me
nd
ed
for
1
0
Shift IR
0
1
1
Exit1 DR
0
Exit1 IR
0
0
Pause DR
1
Exit2 DR
1
Update DR
1
Capture IR
0
0
Pause IR
1
Exit2 IR
0
1
0
0
Update IR
1
0
No
t
Re
co
m
1
Capture DR
0
1
Instruction Descriptions
BYPASS
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
Rev: 1.07 9/2008
29/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then
places the boundary scan register between the TDI and TDO pins.
EXTEST
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is
still determined by its input pins.
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output
drivers on the falling edge of TCK when the controller is in the Update-IR state.
De
sig
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associated.
Ne
w
IDCODE
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.
me
nd
ed
for
SAMPLE-Z
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (highZ) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR
state.
RFU
No
t
Re
co
m
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.
Rev: 1.07 9/2008
30/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
JTAG TAP Instruction Set Summary
Code
Description
Notes
EXTEST
000
Places the Boundary Scan Register between TDI and TDO.
1
IDCODE
001
Preloads ID Register and places it between TDI and TDO.
1, 2
SAMPLE-Z
010
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
Forces all RAM output drivers to High-Z.
1
RFU
011
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
1
SAMPLE/
PRELOAD
100
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
1
GSI
101
GSI private instruction.
1
RFU
110
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Instruction
1
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
BYPASS
111
Places Bypass Register between TDI and TDO.
Notes:
1. Instruction codes expressed in binary, MSB on left, LSB on right.
2. Default instruction automatically loaded at power-up and in test-logic-reset state.
1
Rev: 1.07 9/2008
31/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
JTAG Port Recommended Operating Conditions and DC Characteristics (1.8/2.5 V Version)
Symbol
Min.
Max.
Unit Notes
1.8 V Test Port Input Low Voltage
VILJ1
–0.3
0.3 * VDD1
V
1
2.5 V Test Port Input Low Voltage
VILJ2
–0.3
0.3 * VDD2
V
1
1.8 V Test Port Input High Voltage
VIHJ1
0.6 * VDD1
VDD1 +0.3
V
1
VIHJ2
0.6 * VDD2
VDD2 +0.3
V
1
IINHJ
–300
1
uA
2
IINLJ
–1
100
uA
3
IOLJ
–1
1
uA
4
VOHJ
1.7
—
V
5, 6
VOLJ
—
0.4
V
5, 7
VOHJC
VDDQ – 100 mV
—
V
5, 8
VOLJC
—
100 mV
V
5, 9
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Parameter
2.5 V Test Port Input High Voltage
TMS, TCK and TDI Input Leakage Current
TMS, TCK and TDI Input Leakage Current
TDO Output Leakage Current
Test Port Output High Voltage
Test Port Output Low Voltage
Test Port Output CMOS High
Test Port Output CMOS Low
me
nd
ed
for
Ne
w
De
sig
Notes:
1. Input Under/overshoot voltage must be –2 V < Vi < VDDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC.
2. VILJ ≤ VIN ≤ VDDn
3. 0 V ≤ VIN ≤ VILJn
4. Output Disable, VOUT = 0 to VDDn
5. The TDO output driver is served by the VDDQ supply.
6. IOHJ = –4 mA
7. IOLJ = + 4 mA
8. IOHJC = –100 uA
9. IOLJC = +100 uA
JTAG Port AC Test Conditions
Parameter
Input high level
Input low level
Re
co
m
Input slew rate
Conditions
VDD – 0.2 V
JTAG Port AC Test Load
DQ
0.2 V
50Ω
1 V/ns
Input reference level
VDDQ/2
Output reference level
VDDQ/2
30pF*
VDDQ/2
* Distributed Test Jig Capacitance
No
t
Notes:
1. Include scope and jig capacitance.
2. Test conditions as shown unless otherwise noted.
Rev: 1.07 9/2008
32/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
JTAG Port Timing Diagram
tTKC
tTKH
tTKL
TCK
tTH
tTS
TMS
tTKQ
TDO
tTH
tTS
Parallel SRAM input
JTAG Port AC Electrical Characteristics
Symbol
Min
Max
TCK Cycle Time
tTKC
50
—
TCK Low to TDO Valid
tTKQ
—
TCK High Pulse Width
tTKH
20
TCK Low Pulse Width
tTKL
20
TDI & TMS Set Up Time
tTS
10
ns
—
ns
Ne
w
tTH
ns
20
—
ns
—
ns
—
ns
me
nd
ed
for
TDI & TMS Hold Time
Unit
De
sig
Parameter
n—
Di
sco
nt
inu
ed
Pr
od
u
tTH
tTS
ct
TDI
10
No
t
Re
co
m
Boundary Scan (BSDL Files)
For information regarding the Boundary Scan Chain, or to obtain BSDL files for this part, please contact our Applications
Engineering Department at: [email protected].
Rev: 1.07 9/2008
33/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Package Dimensions—209-Bump BGA (Package C)
14 mm x 22 mm Body, 1.0 mm Bump Pitch, 11 x 19 Bump Array
1
2
TOP VIEW
3
4
5
6
7
11
8
9 10 11
Ø0.50~0.70 (209x)
9
8
7
6
5
18.0
Ne
w
De
sig
22.0
1.0
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
10
n—
Di
sco
nt
inu
ed
Pr
od
u
A1 CORNER
BOTTOM VIEW
ct
Ø0.10 M C
Ø0.30 M C A B
me
nd
ed
for
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
1.0
10.0
A
14.0
0.15 C
0.20(4x)
SEATING PLANE
No
t
C
Rev: 1.07 9/2008
3
0.40~0.60
1.70 MAX.
Re
co
m
1.0
B
4
34/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Package Dimensions—119-Bump FPBGA (Package B, Variation 2)
TOP VIEW
2
3
4
5
6
7
7 6 5 4 3 2 1
20.32
De
sig
22±0.10
1.27
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
ct
1
BOTTOM VIEW
A1
Ø0.10S C
Ø0.30S C AS B S
Ø0.60~0.90 (119x)
n—
Di
sco
nt
inu
ed
Pr
od
u
A1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
1.27
7.62
A
0.20(4x)
14±0.10
SEATING PLANE
No
t
Re
co
m
C
0.50~0.70
1.86.±0.13
me
nd
ed
for
0.15 C
Ne
w
B
Rev: 1.07 9/2008
35/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Package Dimensions—165-Bump FPBGA (Package D)
A1 CORNER
TOP VIEW
BOTTOM VIEW
Ø0.10 M C
Ø0.25 M C A B
Ø0.40~0.60 (165x)
1 2 3 4 5 6 7 8 9 10 11
A1 CORNER
14.0
1.0
1.0
10.0
13±0.05
0.20(4x)
No
t
Re
co
m
0.36~0.46
1.40 MAX.
SEATING PLANE
C
B
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
me
nd
ed
for
0.15 C
Ne
w
A
De
sig
15±0.05
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
11 10 9 8 7 6 5 4 3 2 1
Rev: 1.07 9/2008
36/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Ordering Information for GSI Synchronous Burst RAMs
TA3
250/6.5
C
119 BGA (var.2)
225/7
C
1.8 V or 2.5 V
119 BGA (var.2)
200/7.5
C
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
166/8
C
GS832218B-150V
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
150/8.5
C
2M x 18
GS832218B-133V
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
133/8.5
C
2M x 18
GS832218E-250V
SCD/DCD
1.8 V or 2.5 V
165 BGA
250/6.5
C
2M x 18
GS832218E-225V
SCD/DCD
1.8 V or 2.5 V
165 BGA
225/7
C
2M x 18
GS832218E-200V
SCD/DCD
1.8 V or 2.5 V
165 BGA
200/7.5
C
2M x 18
GS832218E-166V
SCD/DCD
1.8 V or 2.5 V
165 BGA
166/8
C
2M x 18
GS832218E-150V
SCD/DCD
1.8 V or 2.5 V
165 BGA
150/8.5
C
2M x 18
GS832218E-133V
SCD/DCD
1.8 V or 2.5 V
165 BGA
133/8.5
C
1M x 36
GS832236B-250V
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
250/6.5
C
1M x 36
GS832236B-225V
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
225/7
C
1M x 36
GS832236B-200V
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
200/7.5
C
1M x 36
GS832236B-166V
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
166/8
C
1M x 36
GS832236B-150V
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
150/8.5
C
1M x 36
GS832236B-133V
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
133/8.5
C
1M x 36
GS832236E-250V
SCD/DCD
1.8 V or 2.5 V
165 BGA
250/6.5
C
1M x 36
GS832236E-225V
SCD/DCD
1.8 V or 2.5 V
165 BGA
225/7
C
1M x 36
GS832236E-200V
SCD/DCD
1.8 V or 2.5 V
165 BGA
200/7.5
C
1M x 36
GS832236E-166V
SCD/DCD
1.8 V or 2.5 V
165 BGA
166/8
C
1M x 36
GS832236E-150V
SCD/DCD
1.8 V or 2.5 V
165 BGA
150/8.5
C
Type
Voltage
Option
Package
2M x 18
GS832218B-250V
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
2M x 18
GS832218B-225V
SCD/DCD
1.8 V or 2.5 V
2M x 18
GS832218B-200V
SCD/DCD
2M x 18
GS832218B-166V
2M x 18
De
sig
Ne
w
me
nd
ed
for
No
t
Re
co
m
n—
Di
sco
nt
inu
ed
Pr
od
u
Part Number1
ct
Speed2
(MHz/ns)
Org
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS832218B-150IVT.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow Through mode-selectable by the user.
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.07 9/2008
37/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Part Number1
Type
Voltage
Option
Package
Speed2
(MHz/ns)
TA3
1M x 36
GS832236E-133V
SCD/DCD
1.8 V or 2.5 V
165 BGA
133/8.5
C
512K x 72
GS832272C-250V
SCD/DCD
1.8 V or 2.5 V
209 BGA
250/6.5
C
512K x 72
GS832272C-225V
SCD/DCD
1.8 V or 2.5 V
209 BGA
225/7
C
512K x 72
GS832272C-200V
SCD/DCD
1.8 V or 2.5 V
209 BGA
200/7.5
C
512K x 72
GS832272C-166V
SCD/DCD
1.8 V or 2.5 V
209 BGA
166/8
C
512K x 72
GS832272C-150V
SCD/DCD
1.8 V or 2.5 V
209 BGA
150/8.5
C
512K x 72
GS832272C-133V
SCD/DCD
1.8 V or 2.5 V
209 BGA
133/8.5
C
2M x 18
GS832218B-250IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
250/6.5
I
2M x 18
GS832218B-225IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
225/7
I
2M x 18
GS832218B-200IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
200/7.5
I
2M x 18
GS832218B-166IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
166/8
I
2M x 18
GS832218B-150IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
150/8.5
I
2M x 18
GS832218B-133IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
133/8.5
I
2M x 18
GS832218E-250IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
250/6.5
I
2M x 18
GS832218E-225IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
225/7
I
2M x 18
GS832218E-200IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
200/7.5
I
2M x 18
GS832218E-166IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
166/8
I
2M x 18
GS832218E-150IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
150/8.5
I
2M x 18
GS832218E-133IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
133/8.5
I
1M x 36
GS832236B-250IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
250/6.5
I
1M x 36
GS832236B-225IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
225/7
I
1M x 36
GS832236B-200IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
200/7.5
I
1M x 36
GS832236B-166IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
166/8
I
1M x 36
GS832236B-150IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
150/8.5
I
1M x 36
GS832236B-133IV
SCD/DCD
1.8 V or 2.5 V
119 BGA (var.2)
133/8.5
I
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
Ne
w
me
nd
ed
for
No
t
ct
Org
Re
co
m
Ordering Information for GSI Synchronous Burst RAMs (Continued)
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS832218B-150IVT.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow Through mode-selectable by the user.
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.07 9/2008
38/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Ordering Information for GSI Synchronous Burst RAMs (Continued)
Part Number1
Type
Voltage
Option
Package
Speed2
(MHz/ns)
TA3
1M x 36
GS832236E-250IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
250/6.5
I
1M x 36
GS832236E-225IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
225/7
I
1M x 36
GS832236E-200IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
200/7.5
I
1M x 36
GS832236E-166IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
166/8
I
1M x 36
GS832236E-150IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
150/8.5
I
1M x 36
GS832236E-133IV
SCD/DCD
1.8 V or 2.5 V
165 BGA
133/8.5
I
512K x 72
GS832272C-250IV
SCD/DCD
1.8 V or 2.5 V
209 BGA
250/6.5
I
512K x 72
GS832272C-225IV
SCD/DCD
1.8 V or 2.5 V
209 BGA
225/7
I
512K x 72
GS832272C-200IV
SCD/DCD
1.8 V or 2.5 V
209 BGA
200/7.5
I
512K x 72
GS832272C-166IV
SCD/DCD
1.8 V or 2.5 V
209 BGA
166/8
I
512K x 72
GS832272C-150IV
SCD/DCD
1.8 V or 2.5 V
209 BGA
150/8.5
I
512K x 72
GS832272C-133IV
SCD/DCD
1.8 V or 2.5 V
209 BGA
133/8.5
I
2M x 18
GS832218GB-250V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
250/6.5
C
2M x 18
GS832218GB-225V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
225/7
C
2M x 18
GS832218GB-200V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
200/7.5
C
2M x 18
GS832218GB-166V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
166/8
C
2M x 18
GS832218GB-150V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
150/8.5
C
2M x 18
GS832218GB-133V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
133/8.5
C
2M x 18
GS832218GE-250V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
250/6.5
C
2M x 18
GS832218GE-225V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
225/7
C
2M x 18
GS832218GE-200V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
200/7.5
C
2M x 18
GS832218GE-166V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
166/8
C
2M x 18
GS832218GE-150V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
150/8.5
C
2M x 18
GS832218GE-133V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
133/8.5
C
1M x 36
GS832236GB-250V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
250/6.5
C
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
Ne
w
me
nd
ed
for
Re
co
m
No
t
ct
Org
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS832218B-150IVT.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow Through mode-selectable by the user.
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.07 9/2008
39/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Ordering Information for GSI Synchronous Burst RAMs (Continued)
Part Number1
Type
Voltage
Option
Package
Speed2
(MHz/ns)
TA3
1M x 36
GS832236GB-225V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
225/7
C
1M x 36
GS832236GB-200V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
200/7.5
C
1M x 36
GS832236GB-166V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
166/8
C
1M x 36
GS832236GB-150V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
150/8.5
C
1M x 36
GS832236GB-133V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
133/8.5
C
1M x 36
GS832236GE-250V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
250/6.5
C
1M x 36
GS832236GE-225V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
225/7
C
1M x 36
GS832236GE-200V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
200/7.5
C
1M x 36
GS832236GE-166V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
166/8
C
1M x 36
GS832236GE-150V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
150/8.5
C
1M x 36
GS832236GE-133V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
133/8.5
C
512K x 72
GS832272GC-250V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
250/6.5
C
512K x 72
GS832272GC-225V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
225/7
C
512K x 72
GS832272GC-200V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
200/7.5
C
512K x 72
GS832272GC-166V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
166/8
C
512K x 72
GS832272GC-150V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
150/8.5
C
512K x 72
GS832272GC-133V
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
133/8.5
C
2M x 18
GS832218GB-250IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
250/6.5
I
2M x 18
GS832218GB-225IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
225/7
I
2M x 18
GS832218GB-200IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
200/7.5
I
2M x 18
GS832218GB-166IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
166/8
I
2M x 18
GS832218GB-150IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
150/8.5
I
2M x 18
GS832218GB-133IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
133/8.5
I
2M x 18
GS832218GE-250IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
250/6.5
I
2M x 18
GS832218GE-225IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
225/7
I
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
Ne
w
me
nd
ed
for
Re
co
m
No
t
ct
Org
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS832218B-150IVT.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow Through mode-selectable by the user.
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.07 9/2008
40/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
Ordering Information for GSI Synchronous Burst RAMs (Continued)
Part Number1
Type
Voltage
Option
Package
Speed2
(MHz/ns)
TA3
2M x 18
GS832218GE-200IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
200/7.5
I
2M x 18
GS832218GE-166IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
166/8
I
2M x 18
GS832218GE-150IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
150/8.5
I
2M x 18
GS832218GE-133IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
133/8.5
I
1M x 36
GS832236GB-250IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
250/6.5
I
1M x 36
GS832236GB-225IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
225/7
I
1M x 36
GS832236GB-200IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
200/7.5
I
1M x 36
GS832236GB-166IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
166/8
I
1M x 36
GS832236GB-150IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
150/8.5
I
1M x 36
GS832236GB-133IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 119 BGA (var.2)
133/8.5
I
1M x 36
GS832236GE-250IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
250/6.5
I
1M x 36
GS832236GE-225IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
225/7
I
1M x 36
GS832236GE-200IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
200/7.5
I
1M x 36
GS832236GE-166IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
166/8
I
1M x 36
GS832236GE-150IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
150/8.5
I
1M x 36
GS832236GE-133IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 165 BGA
133/8.5
I
512K x 72
GS832272GC-250IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
250/6.5
I
512K x 72
GS832272GC-225IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
225/7
I
512K x 72
GS832272GC-200IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
200/7.5
I
512K x 72
GS832272GC-166IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
166/8
I
512K x 72
GS832272GC-150IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
150/8.5
I
512K x 72
GS832272GC-133IV
SCD/DCD
1.8 V or 2.5 V
RoHS-compliant 209 BGA
133/8.5
I
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
Ne
w
me
nd
ed
for
Re
co
m
ct
Org
No
t
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS832218B-150IVT.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow Through mode-selectable by the user.
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.07 9/2008
41/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology
GS832218/36/72(B/E/C)-xxxV
36Mb Sync SRAM Data Sheet Revision History
Types of Changes
Format or Content
Page;Revisions;Reason
• Creation of new datasheet
• Updated AC Characteristics table with +1 numbers
• Removed address pin numbers (except 0 and 1)
• Corrected “E” package mechanical drawing thickness to 1.4
mm
n—
Di
sco
nt
inu
ed
Pr
od
u
8322Vxx_r1
ct
DS/DateRev. Code: Old;
New
8322Vxx_r1; 8322Vxx_r1_01
Content
8322Vxx_r1_01;
8322Vxx_r1_02
Content/Format
• Updated Thermal Characteristics table
• Basic format updates
8322Vxx_r1_02;
8322Vxx_r1_03
Content/Format
• Updated format
• Updated mechanicals
8322Vxx_r1_03;
8322Vxx_r1_04
Content
8322Vxx_r1_04;
8322xx_V_r1_05
Content
• Updated entire document to reflect change in part
nomenclature
8322Vxx_r1_05;
8322xx_V_r1_06
Content
• Updated Truth Tables (pg. 13, 14)
• Rev1.06a: updated coplanarity for 119, 165 and 209 BGA
mechanical, removed Status column from Ordering
Information table.
8322Vxx_r1_06;
8322xx_V_r1_07
Content
De
sig
• Pb-free information added
No
t
Re
co
m
me
nd
ed
for
Ne
w
• Changed VDD3 and VDDQ3 to VDD1 and VDDQ1 in footnote on
Operating Currents table
Rev: 1.07 9/2008
42/42
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2003, GSI Technology