N ot R ecom m ended for N ew D esign—D

GS8662S08/09/18/36E-250/200/167
250 MHz–167 MHz
1.8 V VDD
1.8 V and 1.5 V I/O
72Mb Burst of 2
SigmaSIO™ DDR-II SRAM
165-Bump BGA
Commercial Temp
Industrial Temp
A Burst of 2 SigmaSIO DDR-II SRAM is a synchronous
device. It employs dual input register clock inputs, K and K.
The device also allows the user to manipulate the output
register clock input quasi independently with dual output
register clock inputs, C and C. If the C clocks are tied high, the
K clocks are routed internally to fire the output registers
instead. Each Burst of 2 SigmaSIO DDR-II SRAM also
supplies Echo Clock outputs, CQ and CQ, which are
synchronized with read data output. When used in a source
synchronous clocking scheme, the Echo Clock outputs can be
used to fire input registers at the data’s destination.
Each internal read and write operation in a SigmaSIO DDR-II
B2 RAM is two times wider than the device I/O bus. An input
data bus de-multiplexer is used to accumulate incoming data
before it is simultaneously written to the memory array. An
output data multiplexer is used to capture the data produced
from a single memory array read and then route it to the
appropriate output drivers as needed. Therefore, the address
field of a SigmaSIO DDR-II B2 is always one address pin less
than the advertised index depth (e.g., the 8M x 8 has a 4M
addressable index).
De
sig
SigmaSIO™ DDR-II Family Overview
Clocking and Addressing Schemes
n—
Di
sco
nt
inu
ed
Pr
od
u
• Simultaneous Read and Write SigmaSIO™ DDR-II Interface
• JEDEC-standard pinout and package
• Dual Double Data Rate interface
• Byte Write controls sampled at data-in time
• DLL circuitry for wide output data valid window and future
frequency scaling
• Burst of 2 Read and Write
• 1.8 V +100/–100 mV core power supply
• 1.5 V or 1.8 V HSTL Interface
• Pipelined read operation
• Fully coherent read and write pipelines
• ZQ mode pin for programmable output drive strength
• IEEE 1149.1 JTAG-compliant Boundary Scan
• Pin-compatible with future 144Mb devices
• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package
• RoHS-compliant 165-bump BGA package available
ct
Features
me
nd
ed
for
Ne
w
GS8662S08/09/18/36 are built in compliance with the
SigmaSIO DDR-II SRAM pinout standard for Separate I/O
synchronous SRAMs. They are 75,497,472-bit (72Mb)
SRAMs. These are the first in a family of wide, very low
voltage HSTL I/O SRAMs designed to operate at the speeds
needed to implement economical high performance
networking systems.
Parameter Synopsis
-200
-167
tKHKH
4.0 ns
5.0 ns
6.0 ns
tKHQV
0.45 ns
0.45 ns
0.5 ns
No
t
Re
co
m
-250
Rev: 1.07 8/2012
1/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
8M x 8 SigmaQuad SRAM—Top View
2
3
4
5
6
7
8
9
10
11
A
CQ
SA
SA
R/W
NW1
K
NC
LD
SA
SA
CQ
B
NC
NC
NC
SA
NC
K
NW0
SA
NC
Q3
C
NC
NC
NC
VSS
SA
D
NC
D4
NC
VSS
VSS
E
NC
NC
Q4
VDDQ
VSS
F
NC
NC
NC
VDDQ
VDD
G
NC
D5
Q5
VDDQ
VDD
H
DOFF
VREF
VDDQ
VDDQ
VDD
J
NC
NC
NC
VDDQ
VDD
K
NC
NC
NC
VDDQ
VDD
L
NC
Q6
D6
VDDQ
M
NC
NC
NC
N
NC
D7
NC
P
NC
NC
R
TDO
TCK
ct
1
n—
Di
sco
nt
inu
ed
Pr
od
u
NC
SA
VSS
NC
NC
D3
VSS
VSS
VSS
NC
NC
NC
VSS
VSS
VDDQ
NC
D2
Q2
VSS
VDD
VDDQ
NC
NC
NC
VSS
VDD
VDDQ
NC
NC
NC
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
VSS
VDD
VDDQ
NC
Q1
D1
VSS
VDD
VDDQ
NC
NC
NC
VSS
VSS
VSS
VDDQ
NC
NC
Q0
VSS
VSS
VSS
VSS
VSS
NC
NC
D0
VSS
SA
SA
SA
VSS
NC
NC
NC
me
nd
ed
for
Ne
w
De
sig
SA
Q7
SA
SA
C
SA
SA
NC
NC
NC
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch
No
t
Re
co
m
Note:
NW0 controls writes to D0:D3. NW1 controls writes to D4:D7.
Rev: 1.07 8/2012
2/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
8M x 9 SigmaQuad SRAM—Top View
2
3
4
5
6
7
8
9
10
11
A
CQ
SA
SA
R/W
NC
K
NC
LD
SA
SA
CQ
B
NC
NC
NC
SA
NC
K
BW
SA
NC
Q4
C
NC
NC
NC
VSS
SA
D
NC
D5
NC
VSS
VSS
E
NC
NC
Q5
VDDQ
VSS
F
NC
NC
NC
VDDQ
VDD
G
NC
D6
Q6
VDDQ
VDD
H
Doff
VREF
VDDQ
VDDQ
VDD
J
NC
NC
NC
VDDQ
VDD
K
NC
NC
NC
VDDQ
VDD
L
NC
Q7
D7
VDDQ
M
NC
NC
NC
N
NC
D8
NC
P
NC
NC
R
TDO
TCK
ct
1
n—
Di
sco
nt
inu
ed
Pr
od
u
NC
SA
VSS
NC
NC
D4
VSS
VSS
VSS
NC
NC
NC
VSS
VSS
VDDQ
NC
D3
Q3
VSS
VDD
VDDQ
NC
NC
NC
VSS
VDD
VDDQ
NC
NC
NC
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
VSS
VDD
VDDQ
NC
Q2
D2
VSS
VDD
VDDQ
NC
NC
NC
VSS
VSS
VSS
VDDQ
NC
NC
Q1
VSS
VSS
VSS
VSS
VSS
NC
NC
D1
VSS
SA
SA
SA
VSS
NC
NC
NC
me
nd
ed
for
Ne
w
De
sig
SA
Q8
SA
SA
C
SA
SA
NC
D0
Q0
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch
No
t
Re
co
m
Note:
BW controls writes to D0:D7
Rev: 1.07 8/2012
3/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
4M x 18 SigmaQuad SRAM—Top View
2
3
4
5
6
7
8
9
10
11
A
CQ
VSS/SA
(144Mb)
SA
R/W
BW1
K
NC
LD
SA
SA
CQ
B
NC
Q9
D9
SA
NC
C
NC
NC
D10
VSS
SA
D
NC
D11
Q10
VSS
VSS
E
NC
NC
Q11
VDDQ
VSS
F
NC
Q12
D12
VDDQ
VDD
G
NC
D13
Q13
VDDQ
VDD
H
DOFF
VREF
VDDQ
VDDQ
VDD
J
NC
NC
D14
VDDQ
VDD
K
NC
NC
Q14
VDDQ
L
NC
Q15
D15
M
NC
NC
N
NC
D17
P
NC
NC
R
TDO
TCK
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
1
BW0
SA
NC
NC
Q8
SA
SA
VSS
NC
Q7
D8
VSS
VSS
VSS
NC
NC
D7
VSS
VSS
VDDQ
NC
D6
Q6
VSS
VDD
VDDQ
NC
NC
Q5
VSS
VDD
VDDQ
NC
NC
D5
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
VSS
VDD
VDDQ
NC
Q4
D4
VDD
VSS
VDD
VDDQ
NC
D3
Q3
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
Q2
D16
VSS
VSS
VSS
VSS
VSS
NC
Q1
D2
Q16
VSS
SA
SA
SA
VSS
NC
NC
D1
Q17
SA
SA
C
SA
SA
NC
D0
Q0
SA
SA
SA
C
SA
SA
SA
TMS
TDI
me
nd
ed
for
Ne
w
De
sig
K
11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch
No
t
Re
co
m
Note:
BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.
Rev: 1.07 8/2012
4/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
2M x 36 SigmaQuad SRAM—Top View
2
3
4
5
6
7
8
9
10
11
A
CQ
VSS/SA
(288Mb)
SA
R/W
BW2
K
BW1
LD
SA
VSS/SA
(144Mb)
CQ
B
Q27
Q18
D18
SA
BW3
C
D27
Q28
D19
VSS
SA
D
D28
D20
Q19
VSS
VSS
E
Q29
D29
Q20
VDDQ
VSS
F
Q30
Q21
D21
VDDQ
VDD
G
D30
D22
Q22
VDDQ
VDD
H
DOFF
VREF
VDDQ
VDDQ
VDD
J
D31
Q31
D23
VDDQ
VDD
K
Q32
D32
Q23
VDDQ
L
Q33
Q24
D24
M
D33
Q34
N
D34
D26
P
Q35
D35
R
TDO
TCK
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
1
BW0
SA
D17
Q17
Q8
SA
SA
VSS
D16
Q7
D8
VSS
VSS
VSS
Q16
D15
D7
VSS
VSS
VDDQ
Q15
D6
Q6
VSS
VDD
VDDQ
D14
Q14
Q5
VSS
VDD
VDDQ
Q13
D13
D5
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
VSS
VDD
VDDQ
D12
Q4
D4
VDD
VSS
VDD
VDDQ
Q12
D3
Q3
VDDQ
VSS
VSS
VSS
VDDQ
D11
Q11
Q2
D25
VSS
VSS
VSS
VSS
VSS
D10
Q1
D2
Q25
VSS
SA
SA
SA
VSS
Q10
D9
D1
Q26
SA
SA
C
SA
SA
Q9
D0
Q0
SA
SA
SA
C
SA
SA
SA
TMS
TDI
me
nd
ed
for
Ne
w
De
sig
K
11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch
No
t
Re
co
m
Notes:
1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.
2. BW2 controls writes to D18:D26. BW3 controls writes to D27:D35.
Rev: 1.07 8/2012
5/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Pin Description Table
Description
Type
Comments
SA
Synchronous Address Inputs
Input
—
NC
No Connect
—
—
R/W
Read/Write Contol Pin
Input
Write Active Low; Read Active High
NW0–NW1
Synchronous Nybble Writes
BW0–BW1
Synchronous Byte Writes
BW0–BW3
Synchronous Byte Writes
K
Input Clock
C
Output Clock
TMS
Test Mode Select
TDI
Test Data Input
TCK
Test Clock Input
TDO
Test Data Output
VREF
HSTL Input Reference Voltage
ZQ
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Symbol
Active Low
x08 Version
Input
Active Low
x18 Version
Input
Active Low
x36 Version
Input
Active High
Input
Active High
Input
—
Input
—
Input
—
Output
—
Input
—
Output Impedance Matching Input
Input
—
K
Input Clock
Input
Active Low
C
Output Clock
Output
Active Low
DOFF
DLL Disable
—
Active Low
LD
Synchronous Load Pin
—
Active Low
CQ
Output Echo Clock
Output
Active Low
Output Echo Clock
Output
Active High
Synchronous Data Inputs
Input
Synchronous Data Outputs
Output
Power Supply
Supply
1.8 V Nominal
Isolated Output Buffer Supply
Supply
1.8 or 1.5 V Nominal
Power Supply: Ground
Supply
—
me
nd
ed
for
Ne
w
De
sig
Input
CQ
Dn
Qn
VDD
VDDQ
Re
co
m
VSS
No
t
Notes:
1. C, C, K, or K cannot be set to VREF voltage.
2. NC = Not Connected to die or any other pin
Rev: 1.07 8/2012
6/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Background
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Separate I/O SRAMs, like SigmaQuad SRAMs, are attractive in applications where alternating reads and writes are needed. On the
other hand, Common I/O SRAMs like the SigmaCIO family are popular in applications where bursts of read or write traffic are
needed. The SigmaSIO SRAM is a hybrid of these two devices. Like the SigmaQuad family devices, the SigmaSIO features a
separate I/O data path, offering the user independent Data In and Data Out pins. However, the SigmaSIO devices offer a control
protocol like that offered on the SigmaCIO devices. Therefore, while SigmaQuad SRAMs allow a user to operate both data ports at
the same time, they force alternating loads of read and write addresses. SigmaSIO SRAMs allow continuous loads of read or write
addresses like SigmaCIO SRAMs, but in a separate I/O configuration.
Like a SigmaQuad SRAM, a SigmaSIO DDR-II SRAM can execute an alternating sequence of reads and writes. However, doing
so results in the Data In port and the Data Out port stalling with nothing to do on alternate transfers. A SigmaQuad device would
keep both ports running at capacity full time. On the other hand, the SigmaSIO device can accept a continuous stream of read
commands and read data or a continuous stream of write commands and write data. The SigmaQuad device, by contrast, restricts
the user from loading a continuous stream of read or write addresses. The advantage of the SigmaSIO device is that it allows twice
the random address bandwidth for either reads or writes than could be acheived with a SigmaQuad version of the device.
SigmaCIO SRAMs offer this same advantage, but do not have the separate Data In and Data Out pins offered on the SigmaSIO
SRAMs. Therefore, SigmaSIO devices are useful in psuedo dual port SRAM applications where communication of burst traffic
between two electrically independent busses is desired.
De
sig
Each of the three SigmaQuad Family SRAMs—SigmaQuad, SigmaCIO, and SigmaSIO—supports similar address rates because
random address rate is determined by the internal performance of the RAM. In addition, all three SigmaQuad Family SRAMs are
based on the same internal circuits. Differences between the truth tables of the different devices proceed from differences in how
the RAM’s interface is contrived to interact with the rest of the system. Each mode of operation has its own advantages and
disadvantages. The user should consider the nature of the work to be done by the RAM to evaluate which version is best suited to
the application at hand.
me
nd
ed
for
Ne
w
Burst of 2 SigmaSIO DDR-II SRAM DDR Read
The status of the Address Input, R/W, and LD pins are sampled at each rising edge of K. LD high causes chip disable. A high on
the R/W pin begins a read cycle. The two resulting data output transfers begin after the next rising edge of the K clock. Data is
clocked out by the next rising edge of the C if it is active. Otherwise, data is clocked out at the next rising edge of K. The next data
chunk is clocked out on the rising edge of C, if active. Otherwise, data is clocked out on the rising edge of K.
No
t
Re
co
m
Burst of 2 SigmaSIO DDR-II SRAM DDR Write
The status of the Address Input, R/W, and LD pins are sampled at each rising edge of K. LD high causes chip disable. A low on the
R/W pin, begins a write cycle. Data is clocked in by the next rising edge of K and then the rising edge of K.
Rev: 1.07 8/2012
7/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Special Functions
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Byte Write and Nybble Write Control
Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low
during the data in sample times in a write sequence.
Each write enable command and write address loaded into the RAM provides the base address for a 2 beat data transfer. The x18
version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-bit byte may be masked in any
write sequence.
Nybble Write (4-bit) control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble
Write Enable” and “NWx” may be substituted in all the discussion above.
Example x18 RAM Write Sequence using Byte Write Enables
Data In Sample Time
BW0
BW1
Beat 1
0
1
Beat 2
1
0
Beat 1
D9–D17
Written
Unchanged
Ne
w
D0–D8
De
sig
Resulting Write Operation
D0–D8
D9–D17
Data In
Don’t Care
Don’t Care
Data In
Beat 2
D0–D8
D9–D17
Unchanged
Written
No
t
Re
co
m
me
nd
ed
for
Output Register Control
SigmaSIO DDR-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the
Output Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing
of the output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of
the K and K clocks. If the C and C clock inputs are tied high, the RAM reverts to K and K control of the outputs.
Rev: 1.07 8/2012
8/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Example Four Bank Depth Expansion Schematic
R/W3
LD3
LD2
R/W1
LD1
R/W0
LD0
A0–An
K
Bank 1
A
A
R/W
R/W
LD
LD
K
D
K
D
Q
Q1–Qn
C
Bank 3
A
A
R/W
R/W
LD
LD
K
D
K
Q
C
D
Q
C
No
t
Re
co
m
Note:
For simplicity BWn is not shown.
Q
Bank 2
me
nd
ed
for
C
C
De
sig
Bank 0
Ne
w
D1–Dn
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
R/W2
Rev: 1.07 8/2012
9/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Burst of 2 SigmaSIO DDR-II SRAM Depth Expansion
Write B
Read C
Write D
Read E
Write F
Read G
Read H
Read J
NOP
K
B
C
D
E
F
LD Bank 1
LD Bank 2
R/W Bank 1
R/W Bank 2
BWx Bank 1
BWx Bank 2
B+1
H
J
F+1
B
D Bank 1
G
n—
Di
sco
nt
inu
ed
Pr
od
u
Address
ct
K
F
D+1
D
D Bank 2
C Bank 1
C Bank 1
De
sig
Q Bank 1
CQ Bank 1
E+1
H
H+1
Ne
w
CQ Bank 1
E
C Bank 2
C Bank 2
me
nd
ed
for
Q Bank 2
CQ Bank 2
C+1
G
G+1
No
t
Re
co
m
CQ Bank 2
C
Rev: 1.07 8/2012
10/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
J
GS8662S08/09/18/36E-250/200/167
FLXDrive-II Output Driver Impedance Control
Separate I/O Burst of 2 Sigma SIO-II SRAM Truth Table
LD
R/W
Current
Operation
K↑
(tn)
K↑
(tn)
K↑
(tn)
K↑
(tn)
X
1
X
Deselect
V
0
1
Read
V
0
0
Write
D
D
Q
Q
K↑
(tn+1)
K↑
(tn+1)
K↑
(tn+1)
K↑
(tn+1)
X
—
Hi-Z
—
X
—
Q0
Q1
D0
D1
Hi-Z
—
De
sig
A
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
HSTL I/O SigmaQuad-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to
VSS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be
5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is
between 175Ω and 350Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts
in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and
temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance
evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is
implemented with discrete binary weighted impedance steps.
No
t
Re
co
m
me
nd
ed
for
Ne
w
Notes:
1. “1” = input “high”; “0” = input “low”; “V” = input “valid”; “X” = input “don’t care”
2. “—” indicates that the input requirement or output state is determined by the next operation.
3. Q0 and Q1 indicate the first and second pieces of output data transferred during Read operations.
4. D0 and D1 indicate the first and second pieces of input data transferred during Write operations.
5. Qs are tristated for one cycle in response to Deselect and Write commands, one cycle after the command is sampled, except when preceded by a Read command.
6. CQ is never tristated.
7. Users should not clock in metastable addresses.
Rev: 1.07 8/2012
11/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
x18 Byte Write Clock Truth Table
BW
Current Operation
D
D
K↑
(tn+1)
K↑
(tn+2)
K↑
(tn)
K↑
(tn+1)
K↑
(tn+2)
T
T
Write
Dx stored if BWn = 0 in both data transfers
D1
D2
T
F
Write
Dx stored if BWn = 0 in 1st data transfer only
D1
X
F
T
Write
Dx stored if BWn = 0 in 2nd data transfer only
X
D2
F
F
Write Abort
No Dx stored in either data transfer
X
X
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
BW
x36 Byte Write Enable (BWn) Truth Table
BW2
BW1
BW0
D27–D35
D18–D26
D9–D17
D0–D8
1
1
1
1
Don’t Care
Don’t Care
Don’t Care
Don’t Care
0
1
1
1
Don’t Care
Don’t Care
Don’t Care
Data In
1
0
1
1
Don’t Care
Don’t Care
Data In
Don’t Care
0
0
1
1
Don’t Care
Don’t Care
Data In
Data In
1
1
0
1
Don’t Care
Data In
Don’t Care
Don’t Care
0
1
0
1
Don’t Care
Data In
Don’t Care
Data In
1
0
0
1
Don’t Care
Data In
Data In
Don’t Care
0
0
0
1
Don’t Care
Data In
Data In
Data In
1
1
0
1
1
0
0
0
1
1
0
1
1
0
Re
co
m
me
nd
ed
for
Ne
w
BW3
De
sig
Notes:
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.
2. If one or more BWn = 0, then BW = “T”, else BW = “F”.
0
Data In
Don’t Care
Don’t Care
Don’t Care
1
0
Data In
Don’t Care
Don’t Care
Data In
1
0
Data In
Don’t Care
Data In
Don’t Care
1
0
Data In
Don’t Care
Data In
Data In
0
0
Data In
Data In
Don’t Care
Don’t Care
0
0
Data In
Data In
Don’t Care
Data In
0
0
0
Data In
Data In
Data In
Don’t Care
0
0
0
Data In
Data In
Data In
Data In
No
t
1
Rev: 1.07 8/2012
12/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
x8 Nybble Write Enable (NWn) Truth Table
NW0
D9–D17
D0–D8
1
1
Don’t Care
Don’t Care
0
1
Don’t Care
Data In
1
0
Data In
0
0
Data In
ct
NW1
n—
Di
sco
nt
inu
ed
Pr
od
u
Don’t Care
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
Data In
Rev: 1.07 8/2012
13/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Absolute Maximum Ratings
(All voltages reference to VSS)
Description
Value
Unit
VDD
Voltage on VDD Pins
–0.5 to 2.9
V
VDDQ
Voltage in VDDQ Pins
–0.5 to VDD
VREF
Voltage in VREF Pins
VI/O
Voltage on I/O Pins
VIN
Voltage on Other Input Pins
IIN
Input Current on Any Pin
IOUT
Output Current on Any I/O Pin
TJ
Maximum Junction Temperature
TSTG
Storage Temperature
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Symbol
V
–0.5 to VDDQ
V
–0.5 to VDDQ +0.3 (≤ 2.9 V max.)
V
–0.5 to VDDQ +0.3 (≤ 2.9 V max.)
V
+/–100
mA dc
+/–100
mA dc
o
125
C
oC
–55 to 125
Note:
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect
reliability of this component.
De
sig
Recommended Operating Conditions
Power Supplies
Supply Voltage
Min.
Typ.
Max.
Unit
VDD
1.7
1.8
1.9
V
VDDQ
1.4
—
1.9
V
0.68
—
0.95
V
me
nd
ed
for
I/O Supply Voltage
Reference Voltage
Symbol
Ne
w
Parameter
VREF
Note:
The power supplies need to be powered up simultaneously or in the following sequence: VDD, VDDQ, VREF, followed by signal inputs. The power
down sequence must be the reverse. VDDQ must not exceed VDD. For more information, read AN1021 SigmaQuad and SigmaDDR Power-Up.
Re
co
m
Operating Temperature
Symbol
Min.
Typ.
Max.
Unit
Ambient Temperature
(Commercial Range Versions)
TA
0
25
70
°C
Ambient Temperature
(Industrial Range Versions)
TA
–40
25
85
°C
No
t
Parameter
Rev: 1.07 8/2012
14/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Thermal Impedance
Test PCB
Substrate
θ JA (C°/W)
Airflow = 0 m/s
θ JA (C°/W)
Airflow = 1 m/s
θ JA (C°/W)
Airflow = 2 m/s
θ JB (C°/W)
θ JC (C°/W)
165 BGA
4-layer
16.3
13.4
12.4
6.2
1.5
ct
Package
HSTL I/O DC Input Characteristics
Parameter
Symbol
DC Input Logic High
VIH (dc)
DC Input Logic Low
VIL (dc)
Note:
Compatible with both 1.8 V and 1.5 V I/O drivers
Min
Max
Units
Notes
VREF + 0.1
VDDQ + 0.3
mV
1
–0.3
VREF – 0.1
mV
1
De
sig
HSTL I/O AC Input Characteristics
n—
Di
sco
nt
inu
ed
Pr
od
u
Notes:
1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number.
2. Please refer to JEDEC standard JESD51-6.
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to
the PCB can result in cooling or heating of the RAM depending on PCB temperature.
Symbol
Min
Max
Units
Notes
AC Input Logic High
VIH (ac)
VREF + 0.2
—
mV
3,4
AC Input Logic Low
VIL (ac)
—
VREF – 0.2
mV
3,4
VREF (ac)
—
5% VREF (DC)
mV
1
Ne
w
Parameter
VREF Peak to Peak AC Voltage
me
nd
ed
for
Notes:
1. The peak to peak AC component superimposed on VREF may not exceed 5% of the DC component of VREF.
2. To guarantee AC characteristics, VIH,VIL, Trise, and Tfall of inputs and clocks must be within 10% of each other.
3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.
4. See AC Input Definition drawing below.
Re
co
m
HSTL I/O AC Input Definitions
VREF
VIL (ac)
No
t
VIH (ac)
Rev: 1.07 8/2012
15/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Undershoot Measurement and Timing
Overshoot Measurement and Timing
VIH
20% tKHKH
VDD + 1.0 V
VSS
n—
Di
sco
nt
inu
ed
Pr
od
u
50%
ct
50%
VDD
VSS – 1.0 V
20% tKHKH
VIL
Capacitance
(TA = 25oC, f = 1 MHZ, VDD = 3.3 V)
Parameter
Symbol
Input Capacitance
CIN
Output Capacitance
COUT
Note: This parameter is sample tested.
Parameter
Max. input slew rate
Unit
VIN = 0 V
4
5
pF
VOUT = 0 V
6
7
pF
Conditions
VDDQ
0V
2 V/ns
VDDQ/2
me
nd
ed
for
Input reference level
Max.
Ne
w
Input high level
Input low level
Typ.
De
sig
AC Test Conditions
Test conditions
VDDQ/2
Output reference level
Note:
Test conditions as specified with output loading as shown unless otherwise noted.
Re
co
m
AC Test Load Diagram
No
t
DQ
Rev: 1.07 8/2012
50Ω
RQ = 250 Ω (HSTL I/O)
VREF = 0.75 V
VT = VDDQ/2
16/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Input and Output Leakage Characteristics
Symbol
Test Conditions
Min.
Max
Input Leakage Current
(except mode pins)
IIL
VIN = 0 to VDD
–2 uA
2 uA
Doff
IINDOFF
VDD ≥ VIN ≥ VIL
0 V ≤ VIN ≤ VIL
–100 uA
–2 uA
Output Leakage Current
IOL
Output Disable,
VOUT = 0 to VDDQ
–2 uA
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Parameter
Notes
2 uA
2 uA
2 uA
Programmable Impedance HSTL Output Driver DC Electrical Characteristics
Parameter
Output High Voltage
Output Low Voltage
Output High Voltage
Output Low Voltage
Symbol
Min.
Max.
Units
Notes
VOH1
VDDQ/2 – 0.12
VDDQ/2 + 0.12
V
1, 3
VOL1
VDDQ/2 – 0.12
VDDQ/2 + 0.12
V
2, 3
VOH2
VDDQ – 0.2
VDDQ
V
4, 5
VOL2
Vss
0.2
V
4, 6
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
Notes:
1. IOH = (VDDQ/2) / (RQ/5) +/– 15% @ VOH = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω).
2. IOL = (VDDQ/2) / (RQ/5) +/– 15% @ VOL = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω).
3. Parameter tested with RQ = 250Ω and VDDQ = 1.5 V or 1.8 V
4. 0Ω ≤ RQ ≤ ∞Ω
5. IOH = –1.0 mA
6. IOL = 1.0 mA
Rev: 1.07 8/2012
17/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Operating Currents
Parameter
Symbol
Test Conditions
Operating Current (x36): DDR
IDD
Operating Current (x18): DDR
-167
Notes
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
750
mA
775 mA
650
mA
675 mA
550
mA
575 mA
2, 3
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
700
mA
725 mA
600
mA
625 mA
525
mA
550 mA
2, 3
Operating Current (x9): DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
700
mA
725 mA
575
mA
600 mA
525
mA
550 mA
2, 3
Operating Current (x8): DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
700
mA
725 mA
575
mA
600 mA
525
mA
550 mA
2, 3
Standby Current (NOP): DDR
ISB1
270
mA
280 mA
255
mA
265 mA
245
mA
255 mA
2, 4
n—
Di
sco
nt
inu
ed
Pr
od
u
0
to
70°C
Device deselected,
IOUT = 0 mA, f = Max,
All Inputs ≤ 0.2 V or ≥ VDD – 0.2 V
Notes:
De
sig
Power measured with output pins floating.
Minimum cycle, IOUT = 0 mA
Operating current is calculated with 50% read cycles and 50% write cycles.
Standby Current is only after all pending read and write burst operations are completed.
No
t
Re
co
m
me
nd
ed
for
Ne
w
1.
2.
3.
4.
-200
ct
-250
Rev: 1.07 8/2012
18/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
-250
Symbol
-200
-167
Min
Max
Min
Max
8.4
5.0
8.4
0.2
—
—
Clock
tKHKH
tCHCH
4.0
tTKC Variable
tKCVar
—
K, K Clock High Pulse Width
C, C Clock High Pulse Width
tKHKL
tCHCL
1.6
K, K Clock Low Pulse Width
C, C Clock Low Pulse Width
tKLKH
tCLCH
1.6
K to K High
C to C High
tKHKH
tCHCH
1.8
K to K High
C to C High
tKHKH
tCHCH
1.8
K, K Clock High to C, C Clock High
tKHCH
0
DLL Lock Time
tKCLock
K Static to DLL reset
Max
Units
8.4
ns
0.2
—
0.2
ns
2.0
—
2.4
—
ns
—
2.0
—
2.4
—
ns
—
2.2
—
2.7
—
ns
—
2.2
—
2.7
—
ns
1.8
0
2.3
0
2.8
ns
1024
—
1024
—
1024
—
cycle
tKCReset
30
—
30
—
30
—
ns
K, K Clock High to Data Output Valid
C, C Clock High to Data Output Valid
tKHQV
tCHQV
—
0.45
—
0.45
—
0.5
ns
3
K, K Clock High to Data Output Hold
C, C Clock High to Data Output Hold
tKHQX
tCHQX
–0.45
—
–0.45
—
–0.5
—
ns
3
K, K Clock High to Echo Clock Valid
C, C Clock High to Echo Clock Valid
tKHCQV
tCHCQV
—
0.45
—
0.45
—
0.5
ns
tKHCQX
tCHCQX
–0.45
—
–0.45
—
–0.5
—
ns
tCQHQV
—
0.30
—
0.35
—
0.40
ns
7
tCQHQX
–0.30
—
–0.35
—
–0.40
—
ns
7
tCQHCQH
tCQHCQH
1.55
—
1.95
—
2.45
—
ns
tKHQZ
tCHQZ
—
0.45
—
0.45
—
0.5
ns
3
tKHQX1
tCHQX1
–0.45
—
–0.45
—
–0.5
—
ns
3
Address Input Setup Time
tAVKH
0.5
—
0.6
—
0.7
—
ns
Control Input Setup Time
tIVKH
0.5
—
0.6
—
0.7
—
ns
Data Input Setup Time
tDVKH
0.35
—
0.4
—
0.5
—
ns
CQ, CQ High Output Valid
CQ, CQ High Output Hold
CQ Phase Distortion
Re
co
m
K Clock High to Data Output High-Z
C Clock High to Data Output High-Z
me
nd
ed
for
K, K Clock High to Echo Clock Hold
C, C Clock High to Echo Clock Hold
Ne
w
Output Times
K Clock High to Data Output Low-Z
C Clock High to Data Output Low-Z
No
t
Setup Times
Rev: 1.07 8/2012
n—
Di
sco
nt
inu
ed
Pr
od
u
6.0
De
sig
K, K Clock Cycle Time
C, C Clock Cycle Time
Min
ct
Parameter
Notes
AC Electrical Characteristics
19/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
5
6
2
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Parameter
-250
Symbol
-200
-167
Min
Max
Min
Max
Min
Max
Units
Notes
AC Electrical Characteristics (Continued)
Hold Times
tKHAX
0.5
—
0.6
—
0.7
—
ns
Control Input Hold Time
tKHIX
0.5
—
0.6
—
0.7
—
ns
Data Input Hold Time
tKHDX
0.35
—
0.4
—
0.5
—
ns
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Address Input Hold Time
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
Notes:
1. All Address inputs must meet the specified setup and hold times for all latching clock edges.
2. Control signals are R, W, BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36).
3. If C, C are tied high, K, K become the references for C, C timing parameters
4. To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus contention because tCHQX1 is a MIN parameter that is worst case at totally different test conditions (0°C, 1.9 V) than tCHQZ, which is a MAX
parameter (worst case at 70°C, 1.7 V). It is not possible for two SRAMs on the same board to be at such different voltages and temperatures.
5. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
6. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable.
7. Echo clock is very tightly controlled to data valid/data hold. By design, there is a ±0.1 ns variation from echo clock to data. The datasheet
parameters reflect tester guard bands and test setup variations.
Rev: 1.07 8/2012
20/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
K Controlled Read-First Timing Diagram
Read A
Write B
Read C
Read E
Deselect
Deselect
KHKL
KHKH
KLKH
K
ct
KH#KH
AVKH
KHAX
A
Address
B
C
IVKH
KHIX
IVKH
KHIX
LD
R/W
n—
Di
sco
nt
inu
ed
Pr
od
u
K
D
E
IVKH
KHIX
B
BWx
B+1
DVKH
KHDX
B
D
A
Q
CQ
CQHQV
KHQV
C
C+1
KHQX
D
D+1
CQHQX
No
t
Re
co
m
me
nd
ed
for
CQ
A+1
Ne
w
KHCQV
KHCQX
KHQZ
De
sig
KHQX1
B+1
Rev: 1.07 8/2012
21/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
K Controlled Write-First Timing Diagram
NOP
Write A
Read B
Read C
Write D
Write E
Deselect
KHKL
KHKH
KLKH
K
ct
KH#KH
AVKH
KHAX
A
Address
IVKH
B
C
KHIX
LD
IVKH
n—
Di
sco
nt
inu
ed
Pr
od
u
K
KHIX
R/W
D
E
KHIX
IVKH
A
BWx
A+1
D
D+1
E
E+1
D
D+1
E
E+1
KHDX
DVKH
A
A+1
De
sig
D
Q
KHCQX
Ne
w
KHCQV
B
B+1
KHCQX
KHCQV
KHQV
KHQX
C
KHQZ
C+1
CQHQX
CQHQV
me
nd
ed
for
CQ
KHQX1
No
t
Re
co
m
CQ
Rev: 1.07 8/2012
22/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
C Controlled Read-First Timing Diagram
Read A
Write B
Read C
Read D
Deselect
Deselect
KHKL
KHKH
KLKH
K
AVKH
KHAX
A
Address
B
C
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
KHKH#
K
D
IVKH
KHIX
LD
IVKH
KHIX
R/W
KHIX
IVKH
B
BWx
B+1
KHDX
DVKH
CLCH
KHCH
CHCL
CHCH
Ne
w
C
B+1
De
sig
B
D
CHCH#
C
me
nd
ed
for
CHQX1
Q
CQ
A
CHQZ
A+1
CHQV
C
CHQX
C+1
D
D+1
CHCQX
CHCQV
CQHCV
CQHQX
No
t
Re
co
m
CQ
Rev: 1.07 8/2012
23/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
C Controlled Write-First Timing Diagram
NOP
Write A
Read B
Write C
Write D
Read E
Deselect
KHKL
KHKH
KLKH
K
ct
KH#KH
KHAX
AVKH
A
Addr
IVKH
B
C
KHIX
LD
IVKH
n—
Di
sco
nt
inu
ed
Pr
od
u
K
KHIX
R/W
D
E
KHIX
IVKH
A
BWx
A+1
C
C+1
D
D+1
C
C+1
D
D+1
KHDX
DVKH
A
D
A+1
C
KLKH
Q
CQ
CQ
JTAG Port Operation
me
nd
ed
for
Ne
w
C
De
sig
KHKL
KHKH
KH#KH
CHQX1
CHQZ
CHQX
CHQV
B
B+1
CQHQV
CQHQX
Re
co
m
Overview
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output
drivers are powered by VDDQ.
No
t
Disabling the JTAG Port
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG
Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected.
Rev: 1.07 8/2012
24/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
JTAG Pin Descriptions
Pin Name
I/O
Description
TCK
Test Clock
In
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the
falling edge of TCK.
TMS
Test Mode Select
In
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state
machine. An undriven TMS input will produce the same result as a logic one input level.
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Pin
TDI
Test Data In
In
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed
between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP
Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to
the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input
level.
TDO
Test Data Out
Out
Output that is active depending on the state of the TAP state machine. Output changes in response to the
falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.
Note:
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.
JTAG Port Registers
De
sig
Overview
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the
TDI and TDO pins.
me
nd
ed
for
Ne
w
Instruction Register
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the
controller is placed in Test-Logic-Reset state.
Bypass Register
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.
No
t
Re
co
m
Boundary Scan Register
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.
Rev: 1.07 8/2012
25/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
·
·
·
·
·
·
·
n—
Di
sco
nt
inu
ed
Pr
od
u
·
ct
JTAG TAP Block Diagram
Boundary Scan Register
·
·
1
·
2 1 0
0
108
0
Bypass Register
Instruction Register
TDI
TDO
ID Code Register
·
· ··
2 1 0
De
sig
31 30 29
Control Signals
TMS
Test Access Port (TAP) Controller
Ne
w
TCK
GSI Technology
JEDEC Vendor
ID Code
Not Used
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0
X
1
X
No
t
Bit #
Re
co
m
ID Register Contents
Presence Register
me
nd
ed
for
Identification (ID) Register
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.
Rev: 1.07 8/2012
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
26/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
0
0 1 1 0 1 1 0 0 1
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Tap Controller Instruction Set
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Overview
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load
address, data or control signals into the RAM or to preload the I/O buffers.
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this
device is listed in the following table.
JTAG Tap Controller State Diagram
Test Logic Reset
1
0
0
Run Test Idle
1
Select DR
1
Select IR
0
0
1
De
sig
Shift DR
Ne
w
1
me
nd
ed
for
1
0
Shift IR
0
1
1
Exit1 DR
0
Exit1 IR
0
0
Pause DR
1
Exit2 DR
1
Update DR
1
Capture IR
0
0
Pause IR
1
Exit2 IR
0
1
0
0
Update IR
1
0
No
t
Re
co
m
1
Capture DR
0
1
Instruction Descriptions
BYPASS
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
Rev: 1.07 8/2012
27/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then
places the boundary scan register between the TDI and TDO pins.
EXTEST
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is
still determined by its input pins.
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output
drivers on the falling edge of TCK when the controller is in the Update-IR state.
De
sig
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associated.
Ne
w
IDCODE
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.
me
nd
ed
for
SAMPLE-Z
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (highZ) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR
state.
RFU
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.
Re
co
m
JTAG TAP Instruction Set Summary
Instruction
Code
EXTEST
SAMPLE-Z
RFU
Rev: 1.07 8/2012
Notes
000
Places the Boundary Scan Register between TDI and TDO.
1
001
Preloads ID Register and places it between TDI and TDO.
1, 2
No
t
IDCODE
Description
010
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
Forces all RAM output drivers to High-Z except CQ.
1
011
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
1
28/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
JTAG TAP Instruction Set Summary
100
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
1
GSI
101
GSI private instruction.
1
RFU
110
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
1
BYPASS
111
Places Bypass Register between TDI and TDO.
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
SAMPLE/
PRELOAD
1
Notes:
1. Instruction codes expressed in binary, MSB on left, LSB on right.
2. Default instruction automatically loaded at power-up and in test-logic-reset state.
JTAG Port Recommended Operating Conditions and DC Characteristics
Parameter
Test Port Input Low Voltage
Test Port Input High Voltage
TMS, TCK and TDI Input Leakage Current
TDO Output Leakage Current
Test Port Output High Voltage
Test Port Output CMOS Low
Ne
w
Test Port Output Low Voltage
Test Port Output CMOS High
Min.
Max.
Unit
Notes
VILJ
–0.3
0.3 * VDD
V
1
VIHJ
0.6 * VDD
VDD +0.3
V
1
IINHJ
–300
1
uA
2
IINLJ
–1
100
uA
3
IOLJ
–1
1
uA
4
VOHJ
VDD – 200 mV
—
V
5, 6
VOLJ
—
0.4
V
5, 7
VOHJC
VDD – 100 mV
—
V
5, 8
VOLJC
—
100 mV
V
5, 9
De
sig
TMS, TCK and TDI Input Leakage Current
Symbol
No
t
Re
co
m
me
nd
ed
for
Notes:
1. Input Under/overshoot voltage must be –1 V < Vi < VDDn +1 V not to exceed V maximum, with a pulse width not to exceed 20% tTKC.
2. VILJ ≤ VIN ≤ VDDn
3. 0 V ≤ VIN ≤ VILJn
4. Output Disable, VOUT = 0 to VDDn
5. The TDO output driver is served by the VDD supply.
6. IOHJ = –2 mA
7. IOLJ = + 2 mA
8. IOHJC = –100 uA
9. IOLJC = +100 uA
Rev: 1.07 8/2012
29/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
JTAG Port AC Test Conditions
Input high level
VDD – 0.2 V
Input low level
0.2 V
Input slew rate
1 V/ns
Input reference level
VDDQ/2
Output reference level
VDDQ/2
JTAG Port AC Test Load
DQ
ct
Conditions
n—
Di
sco
nt
inu
ed
Pr
od
u
Parameter
50Ω
30pF*
VDDQ/2
* Distributed Test Jig Capacitance
Notes:
1. Include scope and jig capacitance.
2. Test conditions as shown unless otherwise noted.
JTAG Port Timing Diagram
tTKC
tTKH
TCK
TDI
De
sig
tTH
tTS
tTKL
tTH
TMS
tTKQ
me
nd
ed
for
TDO
Ne
w
tTS
tTH
tTS
Parallel SRAM input
Parameter
Re
co
m
JTAG Port AC Electrical Characteristics
Symbol
Min
Max
Unit
tTKC
50
—
ns
TCK Low to TDO Valid
tTKQ
—
20
ns
TCK High Pulse Width
tTKH
20
—
ns
TCK Low Pulse Width
tTKL
20
—
ns
TDI & TMS Set Up Time
tTS
10
—
ns
TDI & TMS Hold Time
tTH
10
—
ns
No
t
TCK Cycle Time
Rev: 1.07 8/2012
30/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
JTAG Port AC Electrical Characteristics
Symbol
Max
TCK Cycle Time
tCHCH
50
—
ns
TCK High Pulse Width
tCHCL
20
—
ns
TCK Low Pulse Width
tCLCH
20
—
ns
TMS Input Setup Time
tMVCH
5
—
ns
TMS Input Hold Time
tCHMX
5
—
ns
TDI Input Setup Time
tDVCH
5
—
ns
TDI Input Hold Time
tCHDX
5
—
ns
SRAM Input Setup Time
tSVCH
5
—
ns
SRAM Input Hold Time
tCHSX
5
—
ns
Clock Low to Output Valid
tCLQV
0
10
ns
Unit
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
n—
Di
sco
nt
inu
ed
Pr
od
u
Min.
ct
Parameter
Rev: 1.07 8/2012
31/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Package Dimensions—165-Bump FPBGA (Package E)
A1 CORNER
TOP VIEW
BOTTOM VIEW
Ø0.10 M C
Ø0.25 M C A B
Ø0.40~0.60 (165x)
ct
1 2 3 4 5 6 7 8 9 10 11
A1 CORNER
1.0
14.0
Ne
w
10.0
15±0.05
0.20(4x)
No
t
Re
co
m
C
1.0
0.36~0.46
1.50 MAX.
SEATING PLANE
B
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
me
nd
ed
for
0.20 C
A
De
sig
17±0.05
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
n—
Di
sco
nt
inu
ed
Pr
od
u
11 10 9 8 7 6 5 4 3 2 1
Rev: 1.07 8/2012
32/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Part Number1
Type
Package
Speed
(MHz)
TA2
2M x 36
GS8662S36E-250
SigmaSIO DDR-II SRAM
165-bump BGA
250
C
2M x 36
GS8662S36E-200
SigmaSIO DDR-II SRAM
165-bump BGA
200
C
2M x 36
GS8662S36E-167
SigmaSIO DDR-II SRAM
165-bump BGA
167
C
2M x 36
GS8662S36E-250I
SigmaSIO DDR-II SRAM
165-bump BGA
250
I
2M x 36
GS8662S36E-200I
SigmaSIO DDR-II SRAM
165-bump BGA
200
I
2M x 36
GS8662S36E-167I
SigmaSIO DDR-II SRAM
165-bump BGA
167
I
4M x 18
GS8662S18E-250
SigmaSIO DDR-II SRAM
165-bump BGA
250
C
4M x 18
GS8662S18E-200
SigmaSIO DDR-II SRAM
165-bump BGA
200
C
4M x 18
GS8662S18E-167
SigmaSIO DDR-II SRAM
165-bump BGA
167
C
4M x 18
GS8662S18E-250I
SigmaSIO DDR-II SRAM
165-bump BGA
250
I
4M x 18
GS8662S18E-200I
SigmaSIO DDR-II SRAM
165-bump BGA
200
I
4M x 18
GS8662S18E-167I
SigmaSIO DDR-II SRAM
165-bump BGA
167
I
8M x 9
GS8662S09E-250
SigmaSIO DDR-II SRAM
165-bump BGA
250
C
8M x 9
GS8662S09E-200
SigmaSIO DDR-II SRAM
165-bump BGA
200
C
8M x 9
GS8662S09E-167
SigmaSIO DDR-II SRAM
165-bump BGA
167
C
8M x 9
GS8662S09E-250I
SigmaSIO DDR-II SRAM
165-bump BGA
250
I
8M x 9
GS8662S09E-200I
SigmaSIO DDR-II SRAM
165-bump BGA
200
I
8M x 9
GS8662S09E-167I
SigmaSIO DDR-II SRAM
165-bump BGA
167
I
8M x 8
GS8662S08E-250
SigmaSIO DDR-II SRAM
165-bump BGA
250
C
8M x 8
GS8662S08E-200
SigmaSIO DDR-II SRAM
165-bump BGA
200
C
8M x 8
GS8662S08E-167
SigmaSIO DDR-II SRAM
165-bump BGA
167
C
8M x 8
GS8662S08E-250I
SigmaSIO DDR-II SRAM
165-bump BGA
250
I
8M x 8
GS8662S08E-200I
SigmaSIO DDR-II SRAM
165-bump BGA
200
I
8M x 8
GS8662S08E-167I
SigmaSIO DDR-II SRAM
165-bump BGA
167
I
2M x 36
GS8662S36GE-250
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
250
C
2M x 36
GS8662S36GE-200
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
200
C
2M x 36
GS8662S36GE-167
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
167
C
2M x 36
GS8662S36GE-250I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
250
I
GS8662S36GE-200I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
200
I
GS8662S36GE-167I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
167
I
GS8662S18GE-250
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
250
C
2M x 36
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
Ne
w
me
nd
ed
for
No
t
2M x 36
4M x 18
ct
Org
Re
co
m
Ordering Information—GSI SigmaSIO DDR-II SRAM
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662S36E-200T.
2. C = Commercial Temperature Range. I = Industrial Temperature Range.
Rev: 1.07 8/2012
33/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
Ordering Information—GSI SigmaSIO DDR-II SRAM
Part Number1
Type
Package
Speed
(MHz)
TA2
4M x 18
GS8662S18GE-200
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
200
C
4M x 18
GS8662S18GE-167
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
167
C
4M x 18
GS8662S18GE-250I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
250
I
4M x 18
GS8662S18GE-200I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
200
I
4M x 18
GS8662S18GE-167I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
167
I
8M x 9
GS8662S09GE-250
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
250
C
8M x 9
GS8662S09GE-200
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
200
C
8M x 9
GS8662S09GE-167
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
167
C
8M x 9
GS8662S09GE-250I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
250
I
8M x 9
GS8662S09GE-200I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
200
I
8M x 9
GS8662S09GE-167I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
167
I
8M x 8
GS8662S08GE-250
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
250
C
8M x 8
GS8662S08GE-200
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
200
C
8M x 8
GS8662S08GE-167
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
167
C
8M x 8
GS8662S08GE-250I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
250
I
8M x 8
GS8662S08GE-200I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
200
I
8M x 8
GS8662S08GE-167I
SigmaSIO DDR-II SRAM
RoHS-compliant 165-bump BGA
167
I
De
sig
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Org
No
t
Re
co
m
me
nd
ed
for
Ne
w
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662S36E-200T.
2. C = Commercial Temperature Range. I = Industrial Temperature Range.
Rev: 1.07 8/2012
34/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662S08/09/18/36E-250/200/167
SigmaSIO DDR-II Revision History
File Name
Format/Content
Description of changes
Content
8662Sxx_r1_01; 8662Sxx_r1_02
Content
8662Sxx_r1_02; 8662Sxx_r1_03
Content
8662Sxx_r1_03; 8662Sxx_r1_04
Content
8662Sxx_r1_04; 8662Sxx_r1_05
Content
Content
8662Sxx_r1_06; 8662Sxx_r1_07
Content
Updated MAX tKHKH
• Updated tKHKH, tKHCH in AC Char table
• Added tKHKH and CQ Phase Distortion to AC Char table
• Added CZ data
• Updated I/O supply voltage data
• Updated power-up sequence information
• (Rev1.04a: Pin P11 on x9 changed from NC to Q0 (typo))
• Changed status to PQ
• Added VREF note to Pin Description table
• Updated FLXDrive-II Output Driver Impedance Control section
• Removed Preliminary banner due to production status
• (Rev1.06a: Editorial updates)
• Removed 333 & 300 MHz bins
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
8662Sxx_r1_05; 8662Sxx_r1_06
Added RoHS-compliant package information
n—
Di
sco
nt
inu
ed
Pr
od
u
8662Sxx_r1; 8662Sxx_r1_01
ct
Creation of datasheet
8662Sxx_r1
Rev: 1.07 8/2012
35/35
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology