GS8662Q08/09/18/36E-278/250/200/167 165-Bump BGA Commercial Temp Industrial Temp 278 MHz–167 MHz 1.8 V VDD 1.8 V and 1.5 V I/O 72Mb SigmaQuad-II Burst of 2 SRAM Clocking and Addressing Schemes • Simultaneous Read and Write SigmaQuad™ Interface • JEDEC-standard pinout and package • Dual Double Data Rate interface • Byte Write controls sampled at data-in time • Burst of 2 Read and Write • 1.8 V +100/–100 mV core power supply • 1.5 V or 1.8 V HSTL Interface • Pipelined read operation • Fully coherent read and write pipelines • ZQ pin for programmable output drive strength • IEEE 1149.1 JTAG-compliant Boundary Scan • Pin-compatible with present 9Mb, 18Mb, and 36Mb and future 144Mb devices • 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package • RoHS-compliant 165-bump BGA package available The GSQ8662Q08/09/18/36E SigmaQuad-II SRAMs are synchronous devices. They employ two input register clock inputs, K and K. K and K are independent single-ended clock inputs, not differential inputs to a single differential clock input buffer. The device also allows the user to manipulate the output register clock inputs quasi independently with the C and C clock inputs. C and C are also independent single-ended clock inputs, not differential inputs. If the C clocks are tied high, the K clocks are routed internally to fire the output registers instead. Each internal read and write operation in a SigmaQuad-II B2 RAM is two times wider than the device I/O bus. An input data bus de-multiplexer is used to accumulate incoming data before it is simultaneously written to the memory array. An output data multiplexer is used to capture the data produced from a single memory array read and then route it to the appropriate output drivers as needed. Therefore the address field of a SigmaQuad-II B2 RAM is always one address pin less than the advertised index depth (e.g., the 8M x 8 has an 4M addressable index). me nd ed for Ne w De sig The GSQ8662Q08/09/18/36E are built in compliance with the SigmaQuad-II SRAM pinout standard for Separate I/O synchronous SRAMs. They are 75,497,472-bit (72Mb) SRAMs. The GSQ8662Q08/09/18/36E SigmaQuad SRAMs are just one element in a family of low power, low voltage HSTL I/O SRAMs designed to operate at the speeds needed to implement economical high performance networking systems. n— Di sco nt inu ed Pr od u SigmaQuad™ Family Overview ct Features Parameter Synopsis -250 -200 -167 tKHKH 3.6 ns 4.0 ns 5.0 ns 6.0 ns tKHQV 0.45 ns 0.45 ns 0.45 ns 0.5 ns No t Re co m . -278 Rev: 1.09a 11/2011 1/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 2M x 36 SigmaQuad-II SRAM—Top View 2 3 4 5 6 7 8 9 10 11 A CQ MCL/SA (288Mb) SA W BW2 K BW1 R SA MCL/SA (144Mb) CQ B Q27 Q18 D18 SA BW3 C D27 Q28 D19 VSS SA D D28 D20 Q19 VSS VSS E Q29 D29 Q20 VDDQ VSS F Q30 Q21 D21 VDDQ VDD G D30 D22 Q22 VDDQ VDD H Doff VREF VDDQ VDDQ VDD J D31 Q31 D23 VDDQ VDD K Q32 D32 Q23 VDDQ VDD L Q33 Q24 D24 VDDQ VSS M D33 Q34 D25 VSS N D34 D26 Q25 P Q35 D35 R TDO TCK n— Di sco nt inu ed Pr od u ct 1 BW0 SA D17 Q17 Q8 SA SA VSS D16 Q7 D8 VSS VSS VSS Q16 D15 D7 VSS VSS VDDQ Q15 D6 Q6 VSS VDD VDDQ D14 Q14 Q5 VSS VDD VDDQ Q13 D13 D5 VSS VDD VDDQ VDDQ VREF ZQ VSS VDD VDDQ D12 Q4 D4 VSS VDD VDDQ Q12 D3 Q3 VSS VSS VDDQ D11 Q11 Q2 VSS VSS VSS VSS D10 Q1 D2 VSS SA SA SA VSS Q10 D9 D1 Q26 SA SA C SA SA Q9 D0 Q0 SA SA SA C SA SA SA TMS TDI me nd ed for Ne w De sig K 11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch No t Re co m Notes: 1. BW0 controls writes to D0:D8; BW1 controls writes to D9:D17; BW2 controls writes to D18:D26; BW3 controls writes to D27:D35. 2. MCL = Must Connect Low Rev: 1.09a 11/2011 2/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 3 4 5 6 7 8 9 10 11 A CQ MCL/SA (144Mb) SA W BW1 K NC R SA SA CQ B NC Q9 D9 SA NC K BW0 SA NC NC Q8 C NC NC D10 VSS SA SA SA VSS NC Q7 D8 D NC D11 Q10 VSS VSS VSS VSS VSS NC NC D7 E NC NC Q11 VDDQ VSS VSS VSS VDDQ NC D6 Q6 F NC Q12 D12 VDDQ VDD VSS VDD VDDQ NC NC Q5 G NC D13 Q13 VDDQ VDD VSS VDD VDDQ NC NC D5 H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ J NC NC D14 VDDQ VDD VSS VDD VDDQ NC Q4 D4 K NC NC Q14 VDDQ VDD VSS VDD VDDQ NC D3 Q3 L NC Q15 D15 VDDQ VSS VSS VSS VDDQ NC NC Q2 M NC NC D16 VSS VSS VSS VSS VSS NC Q1 D2 N NC D17 Q16 VSS SA SA SA VSS NC NC D1 P NC NC R TDO TCK De sig n— Di sco nt inu ed Pr od u ct 2 me nd ed for 1 Ne w 4M x 18 SigmaQuad-II SRAM—Top View Q17 SA SA C SA SA NC D0 Q0 SA SA SA C SA SA SA TMS TDI 11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch No t Re co m Notes: 1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17. 2. MCL = Must Connect Low Rev: 1.09a 11/2011 3/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 3 4 5 6 7 8 9 10 11 A CQ SA SA W NW1 K NC R SA SA CQ B NC NC NC SA NC K NW0 SA NC NC Q3 C NC NC NC VSS SA SA SA VSS NC NC D3 D NC D4 NC VSS VSS VSS VSS VSS NC NC NC E NC NC Q4 VDDQ VSS VSS VSS VDDQ NC D2 Q2 F NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC G NC D5 Q5 VDDQ VDD VSS VDD VDDQ NC NC NC H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ J NC NC NC VDDQ VDD VSS VDD VDDQ NC Q1 D1 K NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC L NC Q6 D6 VDDQ VSS VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS SA SA SA VSS NC NC NC P NC NC R TDO TCK me nd ed for n— Di sco nt inu ed Pr od u ct 2 Ne w 1 De sig 8M x 8 SigmaQuad-II SRAM—Top View Q7 SA SA C SA SA NC NC NC SA SA SA C SA SA SA TMS TDI 11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch No t Re co m Notes: 1. NW0 controls writes to D0:D3. NW1 controls writes to D4:D7. 2. MCL = Must Connect Low Rev: 1.09a 11/2011 4/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 3 4 5 6 7 8 9 10 11 A CQ SA SA W NC K NC R SA SA CQ B NC NC NC SA NC K BW SA NC NC Q4 C NC NC NC VSS SA SA SA VSS NC NC D4 D NC D5 NC VSS VSS VSS VSS VSS NC NC NC E NC NC Q5 VDDQ VSS VSS VSS VDDQ NC D3 Q3 F NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC G NC D6 Q6 VDDQ VDD VSS VDD VDDQ NC NC NC H Doff VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ J NC NC NC VDDQ VDD VSS VDD VDDQ NC Q2 D2 K NC NC NC VDDQ VDD VSS VDD VDDQ NC NC NC L NC Q7 D7 VDDQ VSS VSS VSS VDDQ NC NC Q1 M NC NC NC VSS VSS VSS VSS VSS NC NC D1 N NC D8 NC VSS SA SA SA VSS NC NC NC P NC NC R TDO TCK me nd ed for n— Di sco nt inu ed Pr od u ct 2 Ne w 1 De sig 8M x 9 SigmaQuad-II SRAM — Top View Q8 SA SA C SA SA NC D0 Q0 SA SA SA C SA SA SA TMS TDI 11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch No t Re co m Note: MCL = Must Connect Low Rev: 1.09a 11/2011 5/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Pin Description Table Description Type Comments SA Synchronous Address Inputs Input — NC No Connect — — R Synchronous Read Input W Synchronous Write BW Synchronous Byte Write BW0–BW3 Synchronous Byte Writes NW0–NW1 Nybble Write Control Pin K Input Clock K Input Clock C Output Clock C Output Clock TMS Test Mode Select TDI Test Data Input TCK Test Clock Input TDO Test Data Output VREF HSTL Input Reference Voltage ZQ n— Di sco nt inu ed Pr od u ct Symbol Active Low Active Low Input Active Low x9 only Input Active Low x18/x36 only Input Active Low x8 only Input Active High Input Active Low Input Active High Input Active Low Input — Input — Input — Output — Input — Output Impedance Matching Input Input — Qn Synchronous Data Outputs Output Dn Synchronous Data Inputs Input Disable DLL when low Input Active Low Output Echo Clock Output — Output Echo Clock Output — Power Supply Supply 1.8 V Nominal Isolated Output Buffer Supply Supply 1.5 or 1.8 V Nominal Power Supply: Ground Supply — me nd ed for Ne w De sig Input Doff CQ CQ VDD VDDQ Re co m VSS No t Notes: 1. NC = Not Connected to die or any other pin. 2. C, C, K, or K cannot be set to VREF voltage. Rev: 1.09a 11/2011 6/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Background Separate I/O SRAMs, from a system architecture point of view, are attractive in applications where alternating reads and writes are needed. Therefore, the SigmaQuad-II SRAM interface and truth table are optimized for alternating reads and writes. Separate I/O SRAMs are unpopular in applications where multiple reads or multiple writes are needed because burst read or write transfers from Separate I/O SRAMs can cut the RAM’s bandwidth in half. n— Di sco nt inu ed Pr od u ct SigmaQuad-II B2 SRAM DDR Read The read port samples the status of the Address Input and R pins at each rising edge of K. A low on the Read Enable-bar pin, R, begins a read cycle. Data can be clocked out after the next rising edge of K with a rising edge of C (or by K if C and C are tied high), and after the following rising edge of K with a rising edge of C (or by K if C and C are tied high). Clocking in a high on the Read Enable-bar pin, R, begins a read port deselect cycle. SigmaQuad-II B2 Double Data Rate SRAM Read First Read A NOP Write B K K A Address Read C Write D B De sig R W BWx C me nd ed for C Q CQ C D E F G H B+1 D D+1 F F+1 H H+1 B B+1 D D+1 F F+1 H H+1 A A+1 C C+1 E No t Re co m CQ Read G Write H B Ne w D Read E Write F Rev: 1.09a 11/2011 7/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 ct SigmaQuad-II B2 SRAM DDR Write The write port samples the status of the W pin at each rising edge of K and the Address Input pins on the following rising edge of K. A low on the Write Enable-bar pin, W, begins a write cycle. The first of the data-in pairs associated with the write command is clocked in with the same rising edge of K used to capture the write command. The second of the two data in transfers is captured on the rising edge of K along with the write address. Clocking in a high on W causes a write port deselect cycle. Read B Read C Write D K K A Address n— Di sco nt inu ed Pr od u SigmaQuad-II B2 Double Data Rate SRAM Write First Write A B C D R W NOP Read E Write F Read G Write H E F G H BWx A A+1 D D+1 F F+1 H H+1 D A A+1 D D+1 F F+1 H H+1 De sig C C Ne w Q CQ B+1 C C+1 E E+1 me nd ed for CQ B NOP Special Functions Re co m Byte Write and Nybble Write Control Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low during the data in sample times in a write sequence. No t Each write enable command and write address loaded into the RAM provides the base address for a 2 beat data transfer. The x18 version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-bit byte may be masked in any write sequence. Nybble Write (4-bit) control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble Write Enable” and “NBx” may be substituted in all the discussion above. Rev: 1.09a 11/2011 8/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Example x18 RAM Write Sequence using Byte Write Enables BW0 BW1 D0–D8 D9–D17 Beat 1 0 1 Data In Don’t Care Beat 2 1 0 Don’t Care Data In n— Di sco nt inu ed Pr od u Resulting Write Operation Byte 1 D0–D8 Byte 2 D9–D17 Written Unchanged ct Data In Sample Time Beat 1 Byte 3 D0–D8 Byte 4 D9–D17 Unchanged Written Beat 2 No t Re co m me nd ed for Ne w De sig Output Register Control SigmaQuad-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K and K clocks. If the C and C clock inputs are tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to function as a conventional pipelined read SRAM. Rev: 1.09a 11/2011 9/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Example Four Bank Depth Expansion Schematic R3 W3 W2 R1 W1 R0 W0 A0–An K Bank 1 A A W W R R K D CQ K D Q C CQ Q C Bank 2 Bank 3 A A W W R R K D CQ K CQ Q D Q C C me nd ed for C De sig Bank 0 Ne w D1–Dn n— Di sco nt inu ed Pr od u ct R2 Q1–Qn CQ0 CQ1 Re co m CQ2 No t CQ3 Note: For simplicity BWn, NWn, K, and C are not shown. Rev: 1.09a 11/2011 10/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology Rev: 1.09a 11/2011 B B+1 B D(Bank2) Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. 11/34 CQ(Bank2) CQ(Bank2) Q(Bank2) C(Bank2) C(Bank2) CQ(Bank1) CQ(Bank1) Q(Bank1) C(Bank1) C(Bank1) B+1 B BWx(Bank2) D(Bank1) BWx(Bank1) W(Bank2) W(Bank1) R(Bank2) R(Bank1) A C D D D+1 D+1 A F F E A+1 F+1 H+1 H+1 H Read G Write H J J I J+1 J+1 J Read I Write J L K L+1 L Read K Write L I C+1 E E+1 G L G+1 L+1 I+1 ct NOP n— Di sco nt inu ed Pr od u H H G C De sig F+1 F Read E Write F Ne w D Read C Write D me nd ed for Re co m K Address No t K Read A Write B Burst of 2 SigmaQuad-II SRAM Depth Expansion GS8662Q08/09/18/36E-278/250/200/167 © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 n— Di sco nt inu ed Pr od u ct FLXDrive-II Output Driver Impedance Control HSTL I/O SigmaQuad-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to VSS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be 5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is between 175Ω and 350Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is implemented with discrete binary weighted impedance steps. SigmaQuad-II B2 Coherency and Pass Through Functions Because the SigmaQuad-II B2 read and write commands are loaded at the same time, there may be some confusion over what constitutes “coherent” operation. Normally, one would expect a RAM to produce the just-written data when it is read immediately after a write. This is true of the SigmaQuad-II B2 except in one case, as is illustrated in the following diagram. If the user holds the same address value in a given K clock cycle, loading the same address as a read address and then as a matching write address, the SigmaQuad-II B2 will read or “Pass-thru” the latest data input, rather than the data from the previously completed write operation. No t Re co m me nd ed for Ne w De sig SigmaQuad-II B2 Coherency and Pass Through Functions Rev: 1.09a 11/2011 12/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Read Truth Table R Output Next State Q Q K↑ (tn) K↑ (tn) K↑ (tn) K↑ (tn+1) K↑ (tn+1½) X 1 Deselect Hi-Z Hi-Z V 0 Read Q0 Q1 n— Di sco nt inu ed Pr od u ct A Notes: 1. X = Don’t Care, 1 = High, 0 = Low, V = Valid. 2. R is evaluated on the rising edge of K. 3. Q0 and Q1 are the first and second data output transfers in a read. Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Write Truth Table BWn K↑ (tn + ½) K↑ (tn) K↑ (tn) K↑ (tn + ½) V 0 0 0 V 0 0 1 V 0 1 0 X 0 1 X 1 X Input Next State D D (tn), (tn + ½) K ↑, K ↑ K↑ (tn) K↑ (tn + ½) Write Byte Dx0, Write Byte Dx1 D0 D1 Write Byte Dx0, Write Abort Byte Dx1 D0 X Write Abort Byte Dx0, Write Byte Dx1 X D1 1 Write Abort Byte Dx0, Write Abort Byte Dx1 X X X Deselect X X De sig BWn Ne w W me nd ed for A No t Re co m Notes: 1. X = Don’t Care, H = High, L = Low, V = Valid. 2. W is evaluated on the rising edge of K. 3. D0 and D1 are the first and second data input transfers in a write. 4. BWn represents any of the Byte Write Enable inputs (BW0, BW1, etc.). Rev: 1.09a 11/2011 13/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 x36 Byte Write Enable (BWn) Truth Table BW1 BW2 BW3 D0–D8 D9–D17 D18–D26 D27–D35 1 1 1 1 Don’t Care Don’t Care Don’t Care Don’t Care 0 1 1 1 Data In Don’t Care Don’t Care Don’t Care 1 0 1 1 Don’t Care Data In Don’t Care Don’t Care 0 0 1 1 Data In Data In Don’t Care Don’t Care 1 1 0 1 Don’t Care Don’t Care Data In Don’t Care 0 1 0 1 Data In Don’t Care Data In Don’t Care 1 0 0 1 Don’t Care Data In Data In Don’t Care 0 0 0 1 Data In Data In Data In Don’t Care 1 1 1 0 Don’t Care Don’t Care Don’t Care Data In 0 1 1 0 Data In Don’t Care Don’t Care Data In 1 0 1 0 Don’t Care Data In Don’t Care Data In 0 0 1 0 Data In Data In Don’t Care Data In 1 1 0 0 Don’t Care Don’t Care Data In Data In 0 1 0 0 Data In Don’t Care Data In Data In 1 0 0 0 Don’t Care Data In Data In Data In 0 0 0 0 Data In Data In Data In Data In BW1 1 1 0 1 1 0 0 0 n— Di sco nt inu ed Pr od u De sig D0–D8 D9–D17 Don’t Care Don’t Care Data In Don’t Care Don’t Care Data In Data In Data In NW1 D0–D3 D4–D7 1 Don’t Care Don’t Care 1 Data In Don’t Care 0 Don’t Care Data In 0 Data In Data In me nd ed for BW0 Ne w x18 Byte Write Enable (BWn) Truth Table ct BW0 Re co m x8 Nybble Write Enable (NWn) Truth Table NW0 1 1 0 No t 0 Rev: 1.09a 11/2011 14/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Absolute Maximum Ratings (All voltages reference to VSS) Description Value Unit VDD Voltage on VDD Pins –0.5 to 2.9 V VDDQ Voltage in VDDQ Pins –0.5 to VDD VREF Voltage in VREF Pins VI/O Voltage on I/O Pins VIN Voltage on Other Input Pins IIN Input Current on Any Pin IOUT Output Current on Any I/O Pin TJ Maximum Junction Temperature TSTG Storage Temperature n— Di sco nt inu ed Pr od u ct Symbol V –0.5 to VDDQ V –0.5 to VDDQ +0.5 (≤ 2.9 V max.) V –0.5 to VDDQ +0.5 (≤ 2.9 V max.) V +/–100 mA dc +/–100 mA dc 125 oC –55 to 125 oC Note: Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect reliability of this component. De sig Recommended Operating Conditions Power Supplies Reference Voltage Min. Typ. Max. Unit VDD 1.7 1.8 1.9 V VDDQ 1.4 — 1.9 V VREF 0.68 — 0.95 V me nd ed for Supply Voltage I/O Supply Voltage Symbol Ne w Parameter Note: The power supplies need to be powered up simultaneously or in the following sequence: VDD, VDDQ, VREF, followed by signal inputs. The power down sequence must be the reverse. VDDQ must not exceed VDD. For more information, read AN1021 SigmaQuad and SigmaDDR PowerUp. Re co m Operating Temperature Symbol Min. Typ. Max. Unit Ambient Temperature (Commercial Range Versions) TA 0 25 70 °C Ambient Temperature (Industrial Range Versions) TA –40 25 85 °C No t Parameter Rev: 1.09a 11/2011 15/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Thermal Impedance Test PCB Substrate θ JA (C°/W) Airflow = 0 m/s θ JA (C°/W) Airflow = 1 m/s θ JA (C°/W) Airflow = 2 m/s θ JB (C°/W) θ JC (C°/W) 165 BGA 4-layer 16.3 13.4 12.4 6.2 1.5 n— Di sco nt inu ed Pr od u ct Package Notes: 1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number. 2. Please refer to JEDEC standard JESD51-6. 3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to the PCB can result in cooling or heating of the RAM depending on PCB temperature. HSTL I/O DC Input Characteristics Parameter Symbol DC Input Logic High VIH (dc) DC Input Logic Low VIL (dc) Min Max Units Notes VREF + 0.1 VDDQ + 0.3 V 1 –0.3 VREF – 0.1 V 1 HSTL I/O AC Input Characteristics AC Input Logic High AC Input Logic Low VREF Peak-to-Peak AC Voltage Symbol Min Max Units Notes VIH (ac) VREF + 200 — mV 2,3 VIL (ac) — VREF – 200 mV 2,3 VREF (ac) — 5% VREF (DC) mV 1 me nd ed for Parameter Ne w De sig Notes: 1. Compatible with both 1.8 V and 1.5 V I/O drivers. 2. These are DC test criteria. DC design criteria is VREF ± 50 mV. The AC VIH/VIL levels are defined separately for measuring timing parameters. 3. VIL (Min)DC = –0.3 V, VIL(Min)AC = –1.5 V (pulse width ≤ 3 ns). 4. VIH (Max)DC = VDDQ + 0.3 V, VIH(Max)AC = VDDQ + 0.85 V (pulse width ≤ 3 ns). No t Re co m Notes: 1. The peak-to-peak AC component superimposed on VREF may not exceed 5% of the DC component of VREF. 2. To guarantee AC characteristics, VIH,VIL, Trise, and Tfall of inputs and clocks must be within 10% of each other. 3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers. Rev: 1.09a 11/2011 16/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Undershoot Measurement and Timing Overshoot Measurement and Timing VIH 20% tKHKH VDD + 1.0 V VSS n— Di sco nt inu ed Pr od u ct 50% 50% VDD VSS – 1.0 V 20% tKHKH VIL Capacitance (TA = 25oC, f = 1 MHZ, VDD = 1.8 V) Parameter Symbol Input Capacitance CIN Output Capacitance COUT Clock Capacitance CCLK Typ. Max. Unit VIN = 0 V 4 5 pF VOUT = 0 V 6 7 pF VIN = 0 V 5 6 pF De sig Note: This parameter is sample tested. Test conditions Parameter Input high level 1.25 V 0.25 V me nd ed for Input low level Conditions Ne w AC Test Conditions Max. input slew rate 2 V/ns Input reference level 0.75 V Output reference level VDDQ/2 Re co m Note: Test conditions as specified with output loading as shown unless otherwise noted. AC Test Load Diagram No t DQ Rev: 1.09a 11/2011 50Ω RQ = 250 Ω (HSTL I/O) VREF = 0.75 V VT = VDDQ/2 17/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Symbol Test Conditions Min. Max Input Leakage Current (except mode pins) IIL VIN = 0 to VDD –2 uA 2 uA Doff IINDOFF VDD ≥ VIN ≥ VIL 0 V ≤ VIN ≤ VIL –2 uA –2 uA 2 uA 2 uA Output Leakage Current IOL –2 uA 2 uA n— Di sco nt inu ed Pr od u Parameter ct Input and Output Leakage Characteristics Output Disable, VOUT = 0 to VDDQ Programmable Impedance HSTL Output Driver DC Electrical Characteristics Parameter Output High Voltage Output Low Voltage Output High Voltage Output Low Voltage Symbol Min. Max. Units Notes VOH1 VDDQ/2 – 0.12 VDDQ/2 + 0.12 V 1, 3 VOL1 VDDQ/2 – 0.12 VDDQ/2 + 0.12 V 2, 3 VOH2 VDDQ – 0.2 VDDQ V 4, 5 VOL2 Vss 0.2 V 4, 6 No t Re co m me nd ed for Ne w De sig Notes: 1. IOH = (VDDQ/2) / (RQ/5) +/– 15% @ VOH = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω). 2. IOL = (VDDQ/2) / (RQ/5) +/– 15% @ VOL = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω). 3. Parameter tested with RQ = 250Ω and VDDQ = 1.5 V or 1.8 V. 4. 0Ω ≤ RQ ≤ ∞Ω 5. IOH = –1.0 mA 6. IOL = 1.0 mA Rev: 1.09a 11/2011 18/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Operating Currents -278 Test Conditions -167 0 to 70°C –40 to 85°C 0 to 70°C –40 to 85°C 0 to 70°C ct Symbol -200 –40 to 85°C 0 to 70°C –40 to 85°C n— Di sco nt inu ed Pr od u Parameter -250 Notes Operating Current (x36): DDR IDD VDD = Max, IOUT = 0 mA Cycle Time ≥ tKHKH Min 1050 mA 1075 mA 950 mA 975 mA 900 mA 925 mA 800 mA 825 mA 2, 3 Operating Current (x18): DDR IDD VDD = Max, IOUT = 0 mA Cycle Time ≥ tKHKH Min 1000 mA 1025 mA 900 mA 925 mA 800 mA 825 mA 750 mA 775 mA 2, 3 Operating Current (x9): DDR IDD VDD = Max, IOUT = 0 mA Cycle Time ≥ tKHKH Min 950 mA 975 mA 850 mA 875 mA 750 mA 775 mA 700 mA 725 mA 2, 3 Operating Current (x8): DDR IDD VDD = Max, IOUT = 0 mA Cycle Time ≥ tKHKH Min 950 mA 975 mA 850 mA 875 mA 750 mA 775 mA 700 mA 725 mA 2, 3 Standby Current (NOP): DDR ISB1 315 mA 325 mA 305 mA 315 mA 285 mA 295 mA 270 mA 280 mA 2, 4 Device deselected, IOUT = 0 mA, f = Max, All Inputs ≤ 0.2 V or ≥ VDD – 0.2 V Notes: De sig Power measured with output pins floating. Minimum cycle, IOUT = 0 mA Operating current is calculated with 50% read cycles and 50% write cycles. Standby Current is only after all pending read and write burst operations are completed. No t Re co m me nd ed for Ne w 1. 2. 3. 4. Rev: 1.09a 11/2011 19/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 AC Electrical Characteristics Parameter Symbol -278 -250 -200 -167 Min Max Min Max Min Max Min 4.0 8.4 5.0 8.4 6.0 Max Units Notes tKHKH tCHCH 3.6 8.4 tKC Variable tKCVar — 0.2 K, K Clock High Pulse Width C, C Clock High Pulse Width tKHKL tCHCL 1.32 — K, K Clock Low Pulse Width C, C Clock Low Pulse Width tKLKH tCLCH 1.32 — K to K High C to C High tKHKH tCHCH 1.49 — K to K High C to C High tKHKH tCHCH 1.49 — K, K Clock High to C, C Clock High tKHCH 0 1.45 DLL Lock Time tKCLock 1024 — K Static to DLL reset tKCReset 30 — K, K Clock High to Data Output Valid C, C Clock High to Data Output Valid tKHQV tCHQV — K, K Clock High to Data Output Hold C, C Clock High to Data Output Hold tKHQX tCHQX –0.45 K, K Clock High to Echo Clock Valid C, C Clock High to Echo Clock Valid tKHCQV tCHCQV — K, K Clock High to Echo Clock Hold C, C Clock High to Echo Clock Hold tKHCQX tCHCQX 8.4 ns — 0.2 — 0.2 — 0.2 ns 1.6 — 2.0 — 2.4 — ns 1.6 — 2.0 — 2.4 — ns 1.8 — 2.2 — 2.7 — ns 1.8 — 2.2 — 2.7 — ns 0 1.8 0 2.3 0 2.8 ns 1024 — 1024 — 1024 — cycle 30 — 30 — 30 — ns De sig Output Times n— Di sco nt inu ed Pr od u K, K Clock Cycle Time C, C Clock Cycle Time ct Clock 5 6 — 0.45 — 0.45 — 0.5 ns 3 — –0.45 — –0.45 — –0.5 — ns 3 0.45 — 0.45 — 0.45 — 0.5 ns –0.45 — –0.45 — –0.45 — –0.5 — ns tCQHQV — 0.27 — 0.30 — 0.35 — 0.40 ns 7 tCQHQX –0.27 — –0.30 — –0.35 — –0.40 — ns 7 tCQHCQH tCQHCQH 1.24 — 1.55 — 1.95 — 2.45 — ns tKHQZ tCHQZ — 0.45 — 0.45 — 0.45 — 0.5 ns 3 tKHQX1 tCHQX1 –0.45 — –0.45 — –0.45 — –0.5 — ns 3 tAVKH 0.3 — 0.35 — 0.4 — 0.5 — ns Control Input Setup Time tIVKH 0.3 — 0.35 — 0.4 — 0.5 — ns Data Input Setup Time tDVKH 0.3 — 0.35 — 0.4 — 0.5 — ns CQ, CQ High Output Hold CQ Phase Distortion Re co m K Clock High to Data Output High-Z C Clock High to Data Output High-Z K Clock High to Data Output Low-Z C Clock High to Data Output Low-Z Setup Times No t Address Input Setup Time Rev: 1.09a 11/2011 me nd ed for CQ, CQ High Output Valid Ne w 0.45 20/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. 2 © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 AC Electrical Characteristics (Continued) Parameter Symbol -278 -250 -200 -167 Min Max Min Max Min Max Min Max — Units Notes tKHAX 0.3 — 0.35 — 0.4 — 0.5 Control Input Hold Time tKHIX 0.3 — 0.35 — 0.4 — 0.5 Data Input Hold Time tKHDX 0.3 — Notes: 1. 2. 3. 4. — 0.4 — 0.5 ns — ns — ns All Address inputs must meet the specified setup and hold times for all latching clock edges. Control singles are R, W, BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36). If C, C are tied high, K, K become the references for C, C timing parameters To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus contention because tCHQX1 is a MIN parameter that is worst case at totally different test conditions (0°C, 1.9 V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7 V). It is not possible for two SRAMs on the same board to be at such different voltages and temperatures. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable. Echo clock is very tightly controlled to data valid/data hold. By design, there is a ±0.1 ns variation from echo clock to data. The datasheet parameters reflect tester guard bands and test setup variations. No t Re co m me nd ed for Ne w De sig 5. 6. 7. 0.35 ct Address Input Hold Time n— Di sco nt inu ed Pr od u Hold Times Rev: 1.09a 11/2011 21/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology Rev: 1.09a 11/2011 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. 22/34 Q CQ CQ D BWx W R Address K No t K B A B B+1 KHCQX KHCQV DVKH IVKH IVKH IVKH AVKH KHIX KHKL NOP KHIX KHCQX KHCQV KHDX KHQX1 A C Read C A+1 CQHQX KHKHbar E D KHQX E+1 F Write F C CQHQV C+1 KHQV F+1 F D H G D+1 H+1 H Read G Write H KHQZ NOP n— Di sco nt inu ed Pr od u E Read D Write E De sig KHIX KHAX Ne w KLKH me nd ed for Re co m KHKH Read A Write B K and K Controlled Read-Write-Read Timing Diagram ct G GS8662Q08/09/18/36E-278/250/200/167 © 2005, GSI Technology Rev: 1.09a 11/2011 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. 23/34 CQ CQ Q C C D BWx W R Address K No t K CHCQX CHCQV KHKH KHKL NOP CHCQX KHKL DVKH IVKH B+1 KHIX IVKH B KLKH IVKH Write C A CHQX1 KHKHbar C C KHKHbar D CQHQX A+1 C+1 KHDX CHQZ E E+1 G F G+1 G Read F Write G D CHQV H Read H D+1 CHQX NOP CQHQV F ct F+1 n— Di sco nt inu ed Pr od u E Read D Write E De sig KHIX KHIX Ne w KLKH me nd ed for KHAX AVKH CHCQV B A Re co m KHKH Read A Write B C and C Controlled Read-Write-Read Timing Diagram H GS8662Q08/09/18/36E-278/250/200/167 © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 JTAG Port Operation Overview The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output drivers are powered by VDD. n— Di sco nt inu ed Pr od u ct Disabling the JTAG Port It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected. JTAG Pin Descriptions Pin Name I/O TCK Test Clock In Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK. TMS Test Mode Select In The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level. In The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level. Test Data In TDO Test Data Out Output that is active depending on the state of the TAP state machine. Output changes in Out response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO. Ne w TDI Description De sig Pin JTAG Port Registers me nd ed for Note: This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up. Re co m Overview The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins. No t Instruction Register The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state. Bypass Register The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM’s JTAG Port to another device in the scan chain with as little delay as possible. Rev: 1.09a 11/2011 24/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 n— Di sco nt inu ed Pr od u ct Boundary Scan Register The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register. JTAG TAP Block Diagram · · · · · · · · Boundary Scan Register · · 0 De sig Bypass Register 0 108 1 · 2 1 0 Ne w Instruction Register TDI TDO ID Code Register me nd ed for 31 30 29 · · ·· 2 1 0 Control Signals TMS Test Access Port (TAP) Controller Re co m TCK No t Identification (ID) Register The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM. It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins. Rev: 1.09a 11/2011 25/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 GSI Technology JEDEC Vendor ID Code n— Di sco nt inu ed Pr od u Bit # ct Not Used Presence Register ID Register Contents 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X 1 X X X X X X X X X X X X Tap Controller Instruction Set X X X X X X X 0 0 0 1 1 0 1 1 0 0 1 Overview There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific (Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load address, data or control signals into the RAM or to preload the I/O buffers. No t Re co m me nd ed for Ne w De sig When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01. When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this device is listed in the following table. Rev: 1.09a 11/2011 26/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 JTAG Tap Controller State Diagram Test Logic Reset 1 0 Run Test Idle 1 Select DR 1 0 ct 0 1 1 Capture DR 0 Capture IR 0 Shift DR 1 1 Shift IR 0 1 1 Exit1 DR 0 Exit1 IR 0 0 Pause DR 1 Exit2 DR De sig 1 Update DR 0 0 Pause IR 1 Exit2 IR 0 1 0 0 Update IR 1 0 Ne w 1 1 Select IR n— Di sco nt inu ed Pr od u 0 me nd ed for Instruction Descriptions BYPASS When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path. No t Re co m SAMPLE/PRELOAD SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the boundary scan register between the TDI and TDO pins. EXTEST EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is still determined by its input pins. Rev: 1.09a 11/2011 27/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output drivers on the falling edge of TCK when the controller is in the Update-IR state. n— Di sco nt inu ed Pr od u ct Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associated. IDCODE The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the Test-Logic-Reset state. SAMPLE-Z If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (highZ) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state. RFU These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction. Notes EXTEST 000 Places the Boundary Scan Register between TDI and TDO. 1 IDCODE 001 Preloads ID Register and places it between TDI and TDO. 1, 2 SAMPLE-Z 010 Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. Forces all RAM output drivers to High-Z except CQ. 1 RFU 011 Do not use this instruction; Reserved for Future Use. Replicates BYPASS instruction. Places Bypass Register between TDI and TDO. 1 SAMPLE/PRELOAD 100 Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. 1 GSI 101 GSI private instruction. 1 RFU 110 Do not use this instruction; Reserved for Future Use. Replicates BYPASS instruction. Places Bypass Register between TDI and TDO. 1 Places Bypass Register between TDI and TDO. 1 Ne w Description me nd ed for Code Re co m Instruction De sig JTAG TAP Instruction Set Summary BYPASS 111 No t Notes: 1. Instruction codes expressed in binary, MSB on left, LSB on right. 2. Default instruction automatically loaded at power-up and in test-logic-reset state. Rev: 1.09a 11/2011 28/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Symbol Min. Max. Unit Notes Test Port Input Low Voltage VILJ –0.3 0.3 * VDD V 1 Test Port Input High Voltage VIHJ 0.6 * VDD VDD +0.3 V 1 IINHJ –300 1 uA 2 IINLJ –1 100 uA 3 IOLJ –1 1 uA 4 VOHJ VDD – 200 mV — V 5, 6 VOLJ — 0.4 V 5, 7 VOHJC VDD – 100 mV — V 5, 8 VOLJC — 100 mV V 5, 9 n— Di sco nt inu ed Pr od u Parameter ct JTAG Port Recommended Operating Conditions and DC Characteristics TMS, TCK and TDI Input Leakage Current TMS, TCK and TDI Input Leakage Current TDO Output Leakage Current Test Port Output High Voltage Test Port Output Low Voltage Test Port Output CMOS High Test Port Output CMOS Low me nd ed for Ne w De sig Notes: 1. Input Under/overshoot voltage must be –1 V < Vi < VDDn +1 V not to exceed 2.9 V maximum, with a pulse width not to exceed 20% tTKC. 2. VILJ ≤ VIN ≤ VDDn 3. 0 V ≤ VIN ≤ VILJn 4. Output Disable, VOUT = 0 to VDDn 5. The TDO output driver is served by the VDD supply. 6. IOHJ = –2 mA 7. IOLJ = + 2 mA 8. IOHJC = –100 uA 9. IOLJC = +100 uA JTAG Port AC Test Conditions Parameter Input high level Re co m Input low level Conditions VDD – 0.2 V TDO 0.2 V Input slew rate 1 V/ns Input reference level VDD/2 Output reference level VDD/2 No t JTAG Port AC Test Load 50Ω 30pF* VDDQ/2 * Distributed Test Jig Capacitance Notes: 1. Include scope and jig capacitance. 2. Test conditions as shown unless otherwise noted. Rev: 1.09a 11/2011 29/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 JTAG Port Timing Diagram tTKC tTKH tTKL TCK tTH tTS TMS tTKQ TDO tTH tTS Parallel SRAM input JTAG Port AC Electrical Characteristics Symbol Min Max TCK Cycle Time tTKC 50 — TCK Low to TDO Valid tTKQ — TCK High Pulse Width tTKH 20 TCK Low Pulse Width tTKL 20 TDI & TMS Set Up Time tTS TDI & TMS Hold Time tTH Unit ns De sig Parameter n— Di sco nt inu ed Pr od u tTH tTS ct TDI ns — ns — ns 10 — ns 10 — ns No t Re co m me nd ed for Ne w 20 Rev: 1.09a 11/2011 30/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Package Dimensions—165-Bump FPBGA (Package E) BOTTOM VIEW Ø0.10 M C Ø0.25 M C A B Ø0.40~0.60 (165x) 1 2 3 4 5 6 7 8 9 10 11 A1 CORNER ct TOP VIEW n— Di sco nt inu ed Pr od u A1 CORNER 11 10 9 8 7 6 5 4 3 2 1 1.0 10.0 B 15±0.05 0.20(4x) No t Re co m C 1.0 A B C D E F G H J K L M N P R 0.36~0.46 1.50 MAX. SEATING PLANE 1.0 14.0 0.20 C me nd ed for Ne w A De sig 17±0.05 1.0 A B C D E F G H J K L M N P R Rev: 1.09a 11/2011 31/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Part Number1 Type Package Speed (MHz) TA3 2M x 36 GS8662Q36E-278 SigmaQuad-II SRAM 165-bump BGA 278 C 2M x 36 GS8662Q36E-250 SigmaQuad-II SRAM 165-bump BGA 250 C 2M x 36 GS8662Q36E-200 SigmaQuad-II SRAM 165-bump BGA 200 C 2M x 36 GS8662Q36E-167 SigmaQuad-II SRAM 165-bump BGA 167 C 2M x 36 GS8662Q36E-278I SigmaQuad-II SRAM 165-bump BGA 278 I 2M x 36 GS8662Q36E-250I SigmaQuad-II SRAM 165-bump BGA 250 I 2M x 36 GS8662Q36E-200I SigmaQuad-II SRAM 165-bump BGA 200 I 2M x 36 GS8662Q36E-167I SigmaQuad-II SRAM 165-bump BGA 167 I 4M x 18 GS8662Q18E-278 SigmaQuad-II SRAM 165-bump BGA 278 C 4M x 18 GS8662Q18E-250 SigmaQuad-II SRAM 165-bump BGA 250 C 4M x 18 GS8662Q18E-200 SigmaQuad-II SRAM 165-bump BGA 200 C 4M x 18 GS8662Q18E-167 SigmaQuad-II SRAM 165-bump BGA 167 C 4M x 18 GS8662Q18E-278I SigmaQuad-II SRAM 165-bump BGA 278 I 4M x 18 GS8662Q18E-250I SigmaQuad-II SRAM 165-bump BGA 250 I 4M x 18 GS8662Q18E-200I SigmaQuad-II SRAM 165-bump BGA 200 I 4M x 18 GS8662Q18E-167I SigmaQuad-II SRAM 165-bump BGA 167 I 8M x 9 GS8662Q09E-278 SigmaQuad-II SRAM 165-bump BGA 278 C 8M x 9 GS8662Q09E-250 SigmaQuad-II SRAM 165-bump BGA 250 C 8M x 9 GS8662Q09E-200 SigmaQuad-II SRAM 165-bump BGA 200 C 8M x 9 GS8662Q09E-167 SigmaQuad-II SRAM 165-bump BGA 167 C 8M x 9 GS8662Q09E-278I SigmaQuad-II SRAM 165-bump BGA 278 I 8M x 9 GS8662Q09E-250I SigmaQuad-II SRAM 165-bump BGA 250 I 8M x 9 GS8662Q09E-200I SigmaQuad-II SRAM 165-bump BGA 200 I 8M x 9 GS8662Q09E-167I SigmaQuad-II SRAM 165-bump BGA 167 I 8M x 8 GS8662Q08E-278 SigmaQuad-II SRAM 165-bump BGA 278 C 8M x 8 GS8662Q08E-250 SigmaQuad-II SRAM 165-bump BGA 250 C 8M x 8 GS8662Q08E-200 SigmaQuad-II SRAM 165-bump BGA 200 C 8M x 8 GS8662Q08E-167 SigmaQuad-II SRAM 165-bump BGA 167 C GS8662Q08E-278I SigmaQuad-II SRAM 165-bump BGA 278 I GS8662Q08E-250I SigmaQuad-II SRAM 165-bump BGA 250 I GS8662Q08E-200I SigmaQuad-II SRAM 165-bump BGA 200 I 8M x 8 8M x 8 n— Di sco nt inu ed Pr od u De sig me nd ed for Re co m No t 8M x 8 ct Org Ne w Ordering Information—GSI SigmaQuad-II SRAM Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662x36E-200T. 2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range. Rev: 1.09a 11/2011 32/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Part Number1 Type Package Speed (MHz) TA3 8M x 8 GS8662Q08E-167I SigmaQuad-II SRAM 165-bump BGA 167 I 2M x 36 GS8662Q36GE-278 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 278 C 2M x 36 GS8662Q36GE-250 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 C 2M x 36 GS8662Q36GE-200 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 C 2M x 36 GS8662Q36GE-167 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 167 C 2M x 36 GS8662Q36GE-278I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 278 I 2M x 36 GS8662Q36GE-250I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 I 2M x 36 GS8662Q36GE-200I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 I 2M x 36 GS8662Q36GE-167I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 167 I 4M x 18 GS8662Q18GE-278 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 278 C 4M x 18 GS8662Q18GE-250 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 C 4M x 18 GS8662Q18GE-200 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 C 4M x 18 GS8662Q18GE-167 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 167 C 4M x 18 GS8662Q18GE-278I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 278 I 4M x 18 GS8662Q18GE-250I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 I 4M x 18 GS8662Q18GE-200I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 I 4M x 18 GS8662Q18GE-167I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 167 I 8M x 9 GS8662Q09GE-278 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 278 C 8M x 9 GS8662Q09GE-250 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 C 8M x 9 GS8662Q09GE-200 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 C 8M x 9 GS8662Q09GE-167 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 167 C 8M x 9 GS8662Q09GE-278I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 278 I 8M x 9 GS8662Q09GE-250I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 I 8M x 9 GS8662Q09GE-200I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 I 8M x 9 GS8662Q09GE-167I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 167 I 8M x 8 GS8662Q08GE-278 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 278 C 8M x 8 GS8662Q08GE-250 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 C 8M x 8 GS8662Q08GE-200 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 C 8M x 8 GS8662Q08GE-167 SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 167 C GS8662Q08GE-278I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 278 I GS8662Q08GE-250I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 250 I GS8662Q08GE-200I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 200 I 8M x 8 8M x 8 n— Di sco nt inu ed Pr od u De sig Ne w me nd ed for No t 8M x 8 ct Org Re co m Ordering Information—GSI SigmaQuad-II SRAM Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662x36E-200T. 2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range. Rev: 1.09a 11/2011 33/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology GS8662Q08/09/18/36E-278/250/200/167 Ordering Information—GSI SigmaQuad-II SRAM Org Part Number1 Type Package Speed (MHz) TA3 8M x 8 GS8662Q08GE-167I SigmaQuad-II SRAM RoHS-compliant 165-bump BGA 167 I SigmaQuad-II Revision History File Name Format/Content n— Di sco nt inu ed Pr od u ct Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662x36E-200T. 2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range. Description of changes Creation of datasheet Added RoHS-compliant package information 8662Qxx_r1; 8662Qxx_r1_01 Content 8662Qxx_r1_01; 8662Qxx_r1_02 Content 8662Qxx_r1_02; 8662Qxx_r1_03 Content 8662Qxx_r1_03; 8662Qxx_r1_04 Content 8662Qxx_r1_05 Content • Removed 300 MHz (Q) • Updated to PQ 8662Qxx_r1_06 Content • Removed status from ordering information 8662Qxx_r1_07 Ne w 8662Qxx_r1 • Updated tKHKH, tKHCH in AC Char table • Added tKHKH and CQ Phase Distortion to AC Char table De sig • Added CZ data • Updated I/O supply voltage data • Updated power-up sequence information Content • Added 278 MHz (Q) Content • Added VREF note to Pin Description table • Updated FLXDrive-II Output Driver Impedance Control section • Removed Preliminary banner due to production status me nd ed for 8662Qxx_r1_08 Content • Updated AC Electrical Characteristics table • Updated 165-BGA Mechanical drawing • Revised Power-up Sequence and Truth Tables • Removed Status column from Ordering Information table • (Rev1.09a: Editorial updates) No t Re co m 8662Qxx_r1_09 Updated MAX tKHKH Rev: 1.09a 11/2011 34/34 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2005, GSI Technology