N ot R ecom m ended for N ew D esign—D

GS8662Q08/09/18/36E-278/250/200/167
165-Bump BGA
Commercial Temp
Industrial Temp
278 MHz–167 MHz
1.8 V VDD
1.8 V and 1.5 V I/O
72Mb SigmaQuad-II
Burst of 2 SRAM
Clocking and Addressing Schemes
• Simultaneous Read and Write SigmaQuad™ Interface
• JEDEC-standard pinout and package
• Dual Double Data Rate interface
• Byte Write controls sampled at data-in time
• Burst of 2 Read and Write
• 1.8 V +100/–100 mV core power supply
• 1.5 V or 1.8 V HSTL Interface
• Pipelined read operation
• Fully coherent read and write pipelines
• ZQ pin for programmable output drive strength
• IEEE 1149.1 JTAG-compliant Boundary Scan
• Pin-compatible with present 9Mb, 18Mb, and 36Mb and
future 144Mb devices
• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package
• RoHS-compliant 165-bump BGA package available
The GSQ8662Q08/09/18/36E SigmaQuad-II SRAMs are
synchronous devices. They employ two input register clock
inputs, K and K. K and K are independent single-ended clock
inputs, not differential inputs to a single differential clock input
buffer. The device also allows the user to manipulate the
output register clock inputs quasi independently with the C and
C clock inputs. C and C are also independent single-ended
clock inputs, not differential inputs. If the C clocks are tied
high, the K clocks are routed internally to fire the output
registers instead.
Each internal read and write operation in a SigmaQuad-II B2
RAM is two times wider than the device I/O bus. An input data
bus de-multiplexer is used to accumulate incoming data before
it is simultaneously written to the memory array. An output
data multiplexer is used to capture the data produced from a
single memory array read and then route it to the appropriate
output drivers as needed. Therefore the address field of a
SigmaQuad-II B2 RAM is always one address pin less than the
advertised index depth (e.g., the 8M x 8 has an 4M addressable
index).
me
nd
ed
for
Ne
w
De
sig
The GSQ8662Q08/09/18/36E are built in compliance with
the SigmaQuad-II SRAM pinout standard for Separate I/O
synchronous SRAMs. They are 75,497,472-bit (72Mb)
SRAMs. The GSQ8662Q08/09/18/36E SigmaQuad SRAMs
are just one element in a family of low power, low voltage
HSTL I/O SRAMs designed to operate at the speeds needed to
implement economical high performance networking systems.
n—
Di
sco
nt
inu
ed
Pr
od
u
SigmaQuad™ Family Overview
ct
Features
Parameter Synopsis
-250
-200
-167
tKHKH
3.6 ns
4.0 ns
5.0 ns
6.0 ns
tKHQV
0.45 ns
0.45 ns
0.45 ns
0.5 ns
No
t
Re
co
m
.
-278
Rev: 1.09a 11/2011
1/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
2M x 36 SigmaQuad-II SRAM—Top View
2
3
4
5
6
7
8
9
10
11
A
CQ
MCL/SA
(288Mb)
SA
W
BW2
K
BW1
R
SA
MCL/SA
(144Mb)
CQ
B
Q27
Q18
D18
SA
BW3
C
D27
Q28
D19
VSS
SA
D
D28
D20
Q19
VSS
VSS
E
Q29
D29
Q20
VDDQ
VSS
F
Q30
Q21
D21
VDDQ
VDD
G
D30
D22
Q22
VDDQ
VDD
H
Doff
VREF
VDDQ
VDDQ
VDD
J
D31
Q31
D23
VDDQ
VDD
K
Q32
D32
Q23
VDDQ
VDD
L
Q33
Q24
D24
VDDQ
VSS
M
D33
Q34
D25
VSS
N
D34
D26
Q25
P
Q35
D35
R
TDO
TCK
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
1
BW0
SA
D17
Q17
Q8
SA
SA
VSS
D16
Q7
D8
VSS
VSS
VSS
Q16
D15
D7
VSS
VSS
VDDQ
Q15
D6
Q6
VSS
VDD
VDDQ
D14
Q14
Q5
VSS
VDD
VDDQ
Q13
D13
D5
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
VSS
VDD
VDDQ
D12
Q4
D4
VSS
VDD
VDDQ
Q12
D3
Q3
VSS
VSS
VDDQ
D11
Q11
Q2
VSS
VSS
VSS
VSS
D10
Q1
D2
VSS
SA
SA
SA
VSS
Q10
D9
D1
Q26
SA
SA
C
SA
SA
Q9
D0
Q0
SA
SA
SA
C
SA
SA
SA
TMS
TDI
me
nd
ed
for
Ne
w
De
sig
K
11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch
No
t
Re
co
m
Notes:
1. BW0 controls writes to D0:D8; BW1 controls writes to D9:D17; BW2 controls writes to D18:D26; BW3 controls writes to D27:D35.
2. MCL = Must Connect Low
Rev: 1.09a 11/2011
2/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
3
4
5
6
7
8
9
10
11
A
CQ
MCL/SA
(144Mb)
SA
W
BW1
K
NC
R
SA
SA
CQ
B
NC
Q9
D9
SA
NC
K
BW0
SA
NC
NC
Q8
C
NC
NC
D10
VSS
SA
SA
SA
VSS
NC
Q7
D8
D
NC
D11
Q10
VSS
VSS
VSS
VSS
VSS
NC
NC
D7
E
NC
NC
Q11
VDDQ
VSS
VSS
VSS
VDDQ
NC
D6
Q6
F
NC
Q12
D12
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
Q5
G
NC
D13
Q13
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
D5
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
D14
VDDQ
VDD
VSS
VDD
VDDQ
NC
Q4
D4
K
NC
NC
Q14
VDDQ
VDD
VSS
VDD
VDDQ
NC
D3
Q3
L
NC
Q15
D15
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
Q2
M
NC
NC
D16
VSS
VSS
VSS
VSS
VSS
NC
Q1
D2
N
NC
D17
Q16
VSS
SA
SA
SA
VSS
NC
NC
D1
P
NC
NC
R
TDO
TCK
De
sig
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
2
me
nd
ed
for
1
Ne
w
4M x 18 SigmaQuad-II SRAM—Top View
Q17
SA
SA
C
SA
SA
NC
D0
Q0
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch
No
t
Re
co
m
Notes:
1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.
2. MCL = Must Connect Low
Rev: 1.09a 11/2011
3/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
3
4
5
6
7
8
9
10
11
A
CQ
SA
SA
W
NW1
K
NC
R
SA
SA
CQ
B
NC
NC
NC
SA
NC
K
NW0
SA
NC
NC
Q3
C
NC
NC
NC
VSS
SA
SA
SA
VSS
NC
NC
D3
D
NC
D4
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
NC
E
NC
NC
Q4
VDDQ
VSS
VSS
VSS
VDDQ
NC
D2
Q2
F
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
G
NC
D5
Q5
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
Q1
D1
K
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
L
NC
Q6
D6
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
Q0
M
NC
NC
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
D0
N
NC
D7
NC
VSS
SA
SA
SA
VSS
NC
NC
NC
P
NC
NC
R
TDO
TCK
me
nd
ed
for
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
2
Ne
w
1
De
sig
8M x 8 SigmaQuad-II SRAM—Top View
Q7
SA
SA
C
SA
SA
NC
NC
NC
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch
No
t
Re
co
m
Notes:
1. NW0 controls writes to D0:D3. NW1 controls writes to D4:D7.
2. MCL = Must Connect Low
Rev: 1.09a 11/2011
4/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
3
4
5
6
7
8
9
10
11
A
CQ
SA
SA
W
NC
K
NC
R
SA
SA
CQ
B
NC
NC
NC
SA
NC
K
BW
SA
NC
NC
Q4
C
NC
NC
NC
VSS
SA
SA
SA
VSS
NC
NC
D4
D
NC
D5
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
NC
E
NC
NC
Q5
VDDQ
VSS
VSS
VSS
VDDQ
NC
D3
Q3
F
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
G
NC
D6
Q6
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
Q2
D2
K
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
L
NC
Q7
D7
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
Q1
M
NC
NC
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
D1
N
NC
D8
NC
VSS
SA
SA
SA
VSS
NC
NC
NC
P
NC
NC
R
TDO
TCK
me
nd
ed
for
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
2
Ne
w
1
De
sig
8M x 9 SigmaQuad-II SRAM — Top View
Q8
SA
SA
C
SA
SA
NC
D0
Q0
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch
No
t
Re
co
m
Note: MCL = Must Connect Low
Rev: 1.09a 11/2011
5/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Pin Description Table
Description
Type
Comments
SA
Synchronous Address Inputs
Input
—
NC
No Connect
—
—
R
Synchronous Read
Input
W
Synchronous Write
BW
Synchronous Byte Write
BW0–BW3
Synchronous Byte Writes
NW0–NW1
Nybble Write Control Pin
K
Input Clock
K
Input Clock
C
Output Clock
C
Output Clock
TMS
Test Mode Select
TDI
Test Data Input
TCK
Test Clock Input
TDO
Test Data Output
VREF
HSTL Input Reference Voltage
ZQ
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Symbol
Active Low
Active Low
Input
Active Low
x9 only
Input
Active Low
x18/x36 only
Input
Active Low
x8 only
Input
Active High
Input
Active Low
Input
Active High
Input
Active Low
Input
—
Input
—
Input
—
Output
—
Input
—
Output Impedance Matching Input
Input
—
Qn
Synchronous Data Outputs
Output
Dn
Synchronous Data Inputs
Input
Disable DLL when low
Input
Active Low
Output Echo Clock
Output
—
Output Echo Clock
Output
—
Power Supply
Supply
1.8 V Nominal
Isolated Output Buffer Supply
Supply
1.5 or 1.8 V Nominal
Power Supply: Ground
Supply
—
me
nd
ed
for
Ne
w
De
sig
Input
Doff
CQ
CQ
VDD
VDDQ
Re
co
m
VSS
No
t
Notes:
1. NC = Not Connected to die or any other pin.
2. C, C, K, or K cannot be set to VREF voltage.
Rev: 1.09a 11/2011
6/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Background
Separate I/O SRAMs, from a system architecture point of view, are attractive in applications where alternating reads and writes are
needed. Therefore, the SigmaQuad-II SRAM interface and truth table are optimized for alternating reads and writes. Separate I/O
SRAMs are unpopular in applications where multiple reads or multiple writes are needed because burst read or write transfers from
Separate I/O SRAMs can cut the RAM’s bandwidth in half.
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
SigmaQuad-II B2 SRAM DDR Read
The read port samples the status of the Address Input and R pins at each rising edge of K. A low on the Read Enable-bar pin, R,
begins a read cycle. Data can be clocked out after the next rising edge of K with a rising edge of C (or by K if C and C are tied
high), and after the following rising edge of K with a rising edge of C (or by K if C and C are tied high). Clocking in a high on the
Read Enable-bar pin, R, begins a read port deselect cycle.
SigmaQuad-II B2 Double Data Rate SRAM Read First
Read A
NOP
Write B
K
K
A
Address
Read C Write D
B
De
sig
R
W
BWx
C
me
nd
ed
for
C
Q
CQ
C
D
E
F
G
H
B+1
D
D+1
F
F+1
H
H+1
B
B+1
D
D+1
F
F+1
H
H+1
A
A+1
C
C+1
E
No
t
Re
co
m
CQ
Read G Write H
B
Ne
w
D
Read E Write F
Rev: 1.09a 11/2011
7/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
ct
SigmaQuad-II B2 SRAM DDR Write
The write port samples the status of the W pin at each rising edge of K and the Address Input pins on the following rising edge of
K. A low on the Write Enable-bar pin, W, begins a write cycle. The first of the data-in pairs associated with the write command is
clocked in with the same rising edge of K used to capture the write command. The second of the two data in transfers is captured on
the rising edge of K along with the write address. Clocking in a high on W causes a write port deselect cycle.
Read B
Read C Write D
K
K
A
Address
n—
Di
sco
nt
inu
ed
Pr
od
u
SigmaQuad-II B2 Double Data Rate SRAM Write First
Write A
B
C
D
R
W
NOP
Read E Write F
Read G Write H
E
F
G
H
BWx
A
A+1
D
D+1
F
F+1
H
H+1
D
A
A+1
D
D+1
F
F+1
H
H+1
De
sig
C
C
Ne
w
Q
CQ
B+1
C
C+1
E
E+1
me
nd
ed
for
CQ
B
NOP
Special Functions
Re
co
m
Byte Write and Nybble Write Control
Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low
during the data in sample times in a write sequence.
No
t
Each write enable command and write address loaded into the RAM provides the base address for a 2 beat data transfer. The x18
version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-bit byte may be masked in any
write sequence.
Nybble Write (4-bit) control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble
Write Enable” and “NBx” may be substituted in all the discussion above.
Rev: 1.09a 11/2011
8/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Example x18 RAM Write Sequence using Byte Write Enables
BW0
BW1
D0–D8
D9–D17
Beat 1
0
1
Data In
Don’t Care
Beat 2
1
0
Don’t Care
Data In
n—
Di
sco
nt
inu
ed
Pr
od
u
Resulting Write Operation
Byte 1
D0–D8
Byte 2
D9–D17
Written
Unchanged
ct
Data In Sample Time
Beat 1
Byte 3
D0–D8
Byte 4
D9–D17
Unchanged
Written
Beat 2
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
Output Register Control
SigmaQuad-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output
Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the
output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K
and K clocks. If the C and C clock inputs are tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to
function as a conventional pipelined read SRAM.
Rev: 1.09a 11/2011
9/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Example Four Bank Depth Expansion Schematic
R3
W3
W2
R1
W1
R0
W0
A0–An
K
Bank 1
A
A
W
W
R
R
K
D
CQ
K
D
Q
C
CQ
Q
C
Bank 2
Bank 3
A
A
W
W
R
R
K
D
CQ
K
CQ
Q
D
Q
C
C
me
nd
ed
for
C
De
sig
Bank 0
Ne
w
D1–Dn
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
R2
Q1–Qn
CQ0
CQ1
Re
co
m
CQ2
No
t
CQ3
Note:
For simplicity BWn, NWn, K, and C are not shown.
Rev: 1.09a 11/2011
10/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Rev: 1.09a 11/2011
B
B+1
B
D(Bank2)
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
11/34
CQ(Bank2)
CQ(Bank2)
Q(Bank2)
C(Bank2)
C(Bank2)
CQ(Bank1)
CQ(Bank1)
Q(Bank1)
C(Bank1)
C(Bank1)
B+1
B
BWx(Bank2)
D(Bank1)
BWx(Bank1)
W(Bank2)
W(Bank1)
R(Bank2)
R(Bank1)
A
C
D
D
D+1
D+1
A
F
F
E
A+1
F+1
H+1
H+1
H
Read G Write H
J
J
I
J+1
J+1
J
Read I Write J
L
K
L+1
L
Read K Write L
I
C+1
E
E+1
G
L
G+1
L+1
I+1
ct
NOP
n—
Di
sco
nt
inu
ed
Pr
od
u
H
H
G
C
De
sig
F+1
F
Read E Write F
Ne
w
D
Read C Write D
me
nd
ed
for
Re
co
m
K
Address
No
t
K
Read A Write B
Burst of 2 SigmaQuad-II SRAM Depth Expansion
GS8662Q08/09/18/36E-278/250/200/167
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
FLXDrive-II Output Driver Impedance Control
HSTL I/O SigmaQuad-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to
VSS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be
5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is
between 175Ω and 350Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts
in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and
temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance
evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is
implemented with discrete binary weighted impedance steps.
SigmaQuad-II B2 Coherency and Pass Through Functions
Because the SigmaQuad-II B2 read and write commands are loaded at the same time, there may be some confusion over what
constitutes “coherent” operation. Normally, one would expect a RAM to produce the just-written data when it is read immediately
after a write. This is true of the SigmaQuad-II B2 except in one case, as is illustrated in the following diagram. If the user holds the
same address value in a given K clock cycle, loading the same address as a read address and then as a matching write address, the
SigmaQuad-II B2 will read or “Pass-thru” the latest data input, rather than the data from the previously completed write operation.
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
SigmaQuad-II B2 Coherency and Pass Through Functions
Rev: 1.09a 11/2011
12/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Read Truth Table
R
Output Next State
Q
Q
K↑
(tn)
K↑
(tn)
K↑
(tn)
K↑
(tn+1)
K↑
(tn+1½)
X
1
Deselect
Hi-Z
Hi-Z
V
0
Read
Q0
Q1
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
A
Notes:
1. X = Don’t Care, 1 = High, 0 = Low, V = Valid.
2. R is evaluated on the rising edge of K.
3. Q0 and Q1 are the first and second data output transfers in a read.
Separate I/O SigmaQuad-II B2 SigmaQuad-II SRAM Write Truth Table
BWn
K↑
(tn + ½)
K↑
(tn)
K↑
(tn)
K↑
(tn + ½)
V
0
0
0
V
0
0
1
V
0
1
0
X
0
1
X
1
X
Input Next State
D
D
(tn), (tn + ½)
K ↑, K ↑
K↑
(tn)
K↑
(tn + ½)
Write Byte Dx0, Write Byte Dx1
D0
D1
Write Byte Dx0, Write Abort Byte Dx1
D0
X
Write Abort Byte Dx0, Write Byte Dx1
X
D1
1
Write Abort Byte Dx0, Write Abort Byte Dx1
X
X
X
Deselect
X
X
De
sig
BWn
Ne
w
W
me
nd
ed
for
A
No
t
Re
co
m
Notes:
1. X = Don’t Care, H = High, L = Low, V = Valid.
2. W is evaluated on the rising edge of K.
3. D0 and D1 are the first and second data input transfers in a write.
4. BWn represents any of the Byte Write Enable inputs (BW0, BW1, etc.).
Rev: 1.09a 11/2011
13/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
x36 Byte Write Enable (BWn) Truth Table
BW1
BW2
BW3
D0–D8
D9–D17
D18–D26
D27–D35
1
1
1
1
Don’t Care
Don’t Care
Don’t Care
Don’t Care
0
1
1
1
Data In
Don’t Care
Don’t Care
Don’t Care
1
0
1
1
Don’t Care
Data In
Don’t Care
Don’t Care
0
0
1
1
Data In
Data In
Don’t Care
Don’t Care
1
1
0
1
Don’t Care
Don’t Care
Data In
Don’t Care
0
1
0
1
Data In
Don’t Care
Data In
Don’t Care
1
0
0
1
Don’t Care
Data In
Data In
Don’t Care
0
0
0
1
Data In
Data In
Data In
Don’t Care
1
1
1
0
Don’t Care
Don’t Care
Don’t Care
Data In
0
1
1
0
Data In
Don’t Care
Don’t Care
Data In
1
0
1
0
Don’t Care
Data In
Don’t Care
Data In
0
0
1
0
Data In
Data In
Don’t Care
Data In
1
1
0
0
Don’t Care
Don’t Care
Data In
Data In
0
1
0
0
Data In
Don’t Care
Data In
Data In
1
0
0
0
Don’t Care
Data In
Data In
Data In
0
0
0
0
Data In
Data In
Data In
Data In
BW1
1
1
0
1
1
0
0
0
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
D0–D8
D9–D17
Don’t Care
Don’t Care
Data In
Don’t Care
Don’t Care
Data In
Data In
Data In
NW1
D0–D3
D4–D7
1
Don’t Care
Don’t Care
1
Data In
Don’t Care
0
Don’t Care
Data In
0
Data In
Data In
me
nd
ed
for
BW0
Ne
w
x18 Byte Write Enable (BWn) Truth Table
ct
BW0
Re
co
m
x8 Nybble Write Enable (NWn) Truth Table
NW0
1
1
0
No
t
0
Rev: 1.09a 11/2011
14/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Absolute Maximum Ratings
(All voltages reference to VSS)
Description
Value
Unit
VDD
Voltage on VDD Pins
–0.5 to 2.9
V
VDDQ
Voltage in VDDQ Pins
–0.5 to VDD
VREF
Voltage in VREF Pins
VI/O
Voltage on I/O Pins
VIN
Voltage on Other Input Pins
IIN
Input Current on Any Pin
IOUT
Output Current on Any I/O Pin
TJ
Maximum Junction Temperature
TSTG
Storage Temperature
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Symbol
V
–0.5 to VDDQ
V
–0.5 to VDDQ +0.5 (≤ 2.9 V max.)
V
–0.5 to VDDQ +0.5 (≤ 2.9 V max.)
V
+/–100
mA dc
+/–100
mA dc
125
oC
–55 to 125
oC
Note:
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect
reliability of this component.
De
sig
Recommended Operating Conditions
Power Supplies
Reference Voltage
Min.
Typ.
Max.
Unit
VDD
1.7
1.8
1.9
V
VDDQ
1.4
—
1.9
V
VREF
0.68
—
0.95
V
me
nd
ed
for
Supply Voltage
I/O Supply Voltage
Symbol
Ne
w
Parameter
Note:
The power supplies need to be powered up simultaneously or in the following sequence: VDD, VDDQ, VREF, followed by signal inputs. The power
down sequence must be the reverse. VDDQ must not exceed VDD. For more information, read AN1021 SigmaQuad and SigmaDDR PowerUp.
Re
co
m
Operating Temperature
Symbol
Min.
Typ.
Max.
Unit
Ambient Temperature
(Commercial Range Versions)
TA
0
25
70
°C
Ambient Temperature
(Industrial Range Versions)
TA
–40
25
85
°C
No
t
Parameter
Rev: 1.09a 11/2011
15/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Thermal Impedance
Test PCB
Substrate
θ JA (C°/W)
Airflow = 0 m/s
θ JA (C°/W)
Airflow = 1 m/s
θ JA (C°/W)
Airflow = 2 m/s
θ JB (C°/W)
θ JC (C°/W)
165 BGA
4-layer
16.3
13.4
12.4
6.2
1.5
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Package
Notes:
1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number.
2. Please refer to JEDEC standard JESD51-6.
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to
the PCB can result in cooling or heating of the RAM depending on PCB temperature.
HSTL I/O DC Input Characteristics
Parameter
Symbol
DC Input Logic High
VIH (dc)
DC Input Logic Low
VIL (dc)
Min
Max
Units
Notes
VREF + 0.1
VDDQ + 0.3
V
1
–0.3
VREF – 0.1
V
1
HSTL I/O AC Input Characteristics
AC Input Logic High
AC Input Logic Low
VREF Peak-to-Peak AC Voltage
Symbol
Min
Max
Units
Notes
VIH (ac)
VREF + 200
—
mV
2,3
VIL (ac)
—
VREF – 200
mV
2,3
VREF (ac)
—
5% VREF (DC)
mV
1
me
nd
ed
for
Parameter
Ne
w
De
sig
Notes:
1. Compatible with both 1.8 V and 1.5 V I/O drivers.
2. These are DC test criteria. DC design criteria is VREF ± 50 mV. The AC VIH/VIL levels are defined separately for measuring timing
parameters.
3. VIL (Min)DC = –0.3 V, VIL(Min)AC = –1.5 V (pulse width ≤ 3 ns).
4. VIH (Max)DC = VDDQ + 0.3 V, VIH(Max)AC = VDDQ + 0.85 V (pulse width ≤ 3 ns).
No
t
Re
co
m
Notes:
1. The peak-to-peak AC component superimposed on VREF may not exceed 5% of the DC component of VREF.
2. To guarantee AC characteristics, VIH,VIL, Trise, and Tfall of inputs and clocks must be within 10% of each other.
3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.
Rev: 1.09a 11/2011
16/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Undershoot Measurement and Timing
Overshoot Measurement and Timing
VIH
20% tKHKH
VDD + 1.0 V
VSS
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
50%
50%
VDD
VSS – 1.0 V
20% tKHKH
VIL
Capacitance
(TA = 25oC, f = 1 MHZ, VDD = 1.8 V)
Parameter
Symbol
Input Capacitance
CIN
Output Capacitance
COUT
Clock Capacitance
CCLK
Typ.
Max.
Unit
VIN = 0 V
4
5
pF
VOUT = 0 V
6
7
pF
VIN = 0 V
5
6
pF
De
sig
Note:
This parameter is sample tested.
Test conditions
Parameter
Input high level
1.25 V
0.25 V
me
nd
ed
for
Input low level
Conditions
Ne
w
AC Test Conditions
Max. input slew rate
2 V/ns
Input reference level
0.75 V
Output reference level
VDDQ/2
Re
co
m
Note:
Test conditions as specified with output loading as shown unless otherwise noted.
AC Test Load Diagram
No
t
DQ
Rev: 1.09a 11/2011
50Ω
RQ = 250 Ω (HSTL I/O)
VREF = 0.75 V
VT = VDDQ/2
17/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Symbol
Test Conditions
Min.
Max
Input Leakage Current
(except mode pins)
IIL
VIN = 0 to VDD
–2 uA
2 uA
Doff
IINDOFF
VDD ≥ VIN ≥ VIL
0 V ≤ VIN ≤ VIL
–2 uA
–2 uA
2 uA
2 uA
Output Leakage Current
IOL
–2 uA
2 uA
n—
Di
sco
nt
inu
ed
Pr
od
u
Parameter
ct
Input and Output Leakage Characteristics
Output Disable,
VOUT = 0 to VDDQ
Programmable Impedance HSTL Output Driver DC Electrical Characteristics
Parameter
Output High Voltage
Output Low Voltage
Output High Voltage
Output Low Voltage
Symbol
Min.
Max.
Units
Notes
VOH1
VDDQ/2 – 0.12
VDDQ/2 + 0.12
V
1, 3
VOL1
VDDQ/2 – 0.12
VDDQ/2 + 0.12
V
2, 3
VOH2
VDDQ – 0.2
VDDQ
V
4, 5
VOL2
Vss
0.2
V
4, 6
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
Notes:
1. IOH = (VDDQ/2) / (RQ/5) +/– 15% @ VOH = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω).
2. IOL = (VDDQ/2) / (RQ/5) +/– 15% @ VOL = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω).
3. Parameter tested with RQ = 250Ω and VDDQ = 1.5 V or 1.8 V.
4. 0Ω ≤ RQ ≤ ∞Ω
5. IOH = –1.0 mA
6. IOL = 1.0 mA
Rev: 1.09a 11/2011
18/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Operating Currents
-278
Test Conditions
-167
0
to 70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
ct
Symbol
-200
–40
to
85°C
0
to
70°C
–40
to
85°C
n—
Di
sco
nt
inu
ed
Pr
od
u
Parameter
-250
Notes
Operating Current (x36): DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
1050 mA
1075 mA
950 mA
975 mA
900 mA
925 mA
800 mA
825 mA
2, 3
Operating Current (x18): DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
1000 mA
1025 mA
900 mA
925 mA
800 mA
825 mA
750 mA
775 mA
2, 3
Operating Current (x9): DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
950 mA
975 mA
850 mA
875 mA
750 mA
775 mA
700 mA
725 mA
2, 3
Operating Current (x8): DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
950 mA
975 mA
850 mA
875 mA
750 mA
775 mA
700 mA
725 mA
2, 3
Standby Current (NOP): DDR
ISB1
315 mA
325 mA
305 mA
315 mA
285 mA
295 mA
270 mA
280 mA
2, 4
Device deselected,
IOUT = 0 mA, f = Max,
All Inputs ≤ 0.2 V or ≥ VDD – 0.2 V
Notes:
De
sig
Power measured with output pins floating.
Minimum cycle, IOUT = 0 mA
Operating current is calculated with 50% read cycles and 50% write cycles.
Standby Current is only after all pending read and write burst operations are completed.
No
t
Re
co
m
me
nd
ed
for
Ne
w
1.
2.
3.
4.
Rev: 1.09a 11/2011
19/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
AC Electrical Characteristics
Parameter
Symbol
-278
-250
-200
-167
Min
Max
Min
Max
Min
Max
Min
4.0
8.4
5.0
8.4
6.0
Max
Units
Notes
tKHKH
tCHCH
3.6
8.4
tKC Variable
tKCVar
—
0.2
K, K Clock High Pulse Width
C, C Clock High Pulse Width
tKHKL
tCHCL
1.32
—
K, K Clock Low Pulse Width
C, C Clock Low Pulse Width
tKLKH
tCLCH
1.32
—
K to K High
C to C High
tKHKH
tCHCH
1.49
—
K to K High
C to C High
tKHKH
tCHCH
1.49
—
K, K Clock High to C, C Clock High
tKHCH
0
1.45
DLL Lock Time
tKCLock
1024
—
K Static to DLL reset
tKCReset
30
—
K, K Clock High to Data Output Valid
C, C Clock High to Data Output Valid
tKHQV
tCHQV
—
K, K Clock High to Data Output Hold
C, C Clock High to Data Output Hold
tKHQX
tCHQX
–0.45
K, K Clock High to Echo Clock Valid
C, C Clock High to Echo Clock Valid
tKHCQV
tCHCQV
—
K, K Clock High to Echo Clock Hold
C, C Clock High to Echo Clock Hold
tKHCQX
tCHCQX
8.4
ns
—
0.2
—
0.2
—
0.2
ns
1.6
—
2.0
—
2.4
—
ns
1.6
—
2.0
—
2.4
—
ns
1.8
—
2.2
—
2.7
—
ns
1.8
—
2.2
—
2.7
—
ns
0
1.8
0
2.3
0
2.8
ns
1024
—
1024
—
1024
—
cycle
30
—
30
—
30
—
ns
De
sig
Output Times
n—
Di
sco
nt
inu
ed
Pr
od
u
K, K Clock Cycle Time
C, C Clock Cycle Time
ct
Clock
5
6
—
0.45
—
0.45
—
0.5
ns
3
—
–0.45
—
–0.45
—
–0.5
—
ns
3
0.45
—
0.45
—
0.45
—
0.5
ns
–0.45
—
–0.45
—
–0.45
—
–0.5
—
ns
tCQHQV
—
0.27
—
0.30
—
0.35
—
0.40
ns
7
tCQHQX
–0.27
—
–0.30
—
–0.35
—
–0.40
—
ns
7
tCQHCQH
tCQHCQH
1.24
—
1.55
—
1.95
—
2.45
—
ns
tKHQZ
tCHQZ
—
0.45
—
0.45
—
0.45
—
0.5
ns
3
tKHQX1
tCHQX1
–0.45
—
–0.45
—
–0.45
—
–0.5
—
ns
3
tAVKH
0.3
—
0.35
—
0.4
—
0.5
—
ns
Control Input Setup Time
tIVKH
0.3
—
0.35
—
0.4
—
0.5
—
ns
Data Input Setup Time
tDVKH
0.3
—
0.35
—
0.4
—
0.5
—
ns
CQ, CQ High Output Hold
CQ Phase Distortion
Re
co
m
K Clock High to Data Output High-Z
C Clock High to Data Output High-Z
K Clock High to Data Output Low-Z
C Clock High to Data Output Low-Z
Setup Times
No
t
Address Input Setup Time
Rev: 1.09a 11/2011
me
nd
ed
for
CQ, CQ High Output Valid
Ne
w
0.45
20/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
2
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
AC Electrical Characteristics (Continued)
Parameter
Symbol
-278
-250
-200
-167
Min
Max
Min
Max
Min
Max
Min
Max
—
Units
Notes
tKHAX
0.3
—
0.35
—
0.4
—
0.5
Control Input Hold Time
tKHIX
0.3
—
0.35
—
0.4
—
0.5
Data Input Hold Time
tKHDX
0.3
—
Notes:
1.
2.
3.
4.
—
0.4
—
0.5
ns
—
ns
—
ns
All Address inputs must meet the specified setup and hold times for all latching clock edges.
Control singles are R, W, BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36).
If C, C are tied high, K, K become the references for C, C timing parameters
To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus contention because tCHQX1 is a MIN
parameter that is worst case at totally different test conditions (0°C, 1.9 V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7 V). It is not possible for two
SRAMs on the same board to be at such different voltages and temperatures.
Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable.
Echo clock is very tightly controlled to data valid/data hold. By design, there is a ±0.1 ns variation from echo clock to data. The datasheet parameters reflect tester guard
bands and test setup variations.
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
5.
6.
7.
0.35
ct
Address Input Hold Time
n—
Di
sco
nt
inu
ed
Pr
od
u
Hold Times
Rev: 1.09a 11/2011
21/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Rev: 1.09a 11/2011
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
22/34
Q
CQ
CQ
D
BWx
W
R
Address
K
No
t
K
B
A
B
B+1
KHCQX
KHCQV
DVKH
IVKH
IVKH
IVKH
AVKH
KHIX
KHKL
NOP
KHIX
KHCQX
KHCQV
KHDX
KHQX1
A
C
Read C
A+1
CQHQX
KHKHbar
E
D
KHQX
E+1
F
Write F
C
CQHQV
C+1
KHQV
F+1
F
D
H
G
D+1
H+1
H
Read G Write H
KHQZ
NOP
n—
Di
sco
nt
inu
ed
Pr
od
u
E
Read D Write E
De
sig
KHIX
KHAX
Ne
w
KLKH
me
nd
ed
for
Re
co
m
KHKH
Read A Write B
K and K Controlled Read-Write-Read Timing Diagram
ct
G
GS8662Q08/09/18/36E-278/250/200/167
© 2005, GSI Technology
Rev: 1.09a 11/2011
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
23/34
CQ
CQ
Q
C
C
D
BWx
W
R
Address
K
No
t
K
CHCQX
CHCQV
KHKH
KHKL
NOP
CHCQX
KHKL
DVKH
IVKH
B+1
KHIX
IVKH
B
KLKH
IVKH
Write C
A
CHQX1
KHKHbar
C
C
KHKHbar
D
CQHQX
A+1
C+1
KHDX
CHQZ
E
E+1
G
F
G+1
G
Read F Write G
D
CHQV
H
Read H
D+1
CHQX
NOP
CQHQV
F
ct
F+1
n—
Di
sco
nt
inu
ed
Pr
od
u
E
Read D Write E
De
sig
KHIX
KHIX
Ne
w
KLKH
me
nd
ed
for
KHAX
AVKH
CHCQV
B
A
Re
co
m
KHKH
Read A Write B
C and C Controlled Read-Write-Read Timing Diagram
H
GS8662Q08/09/18/36E-278/250/200/167
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
JTAG Port Operation
Overview
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output
drivers are powered by VDD.
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Disabling the JTAG Port
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG
Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected.
JTAG Pin Descriptions
Pin Name
I/O
TCK
Test Clock
In
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate
from the falling edge of TCK.
TMS
Test Mode Select
In
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP
controller state machine. An undriven TMS input will produce the same result as a logic one input
level.
In
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers
placed between TDI and TDO. The register placed between TDI and TDO is determined by the
state of the TAP Controller state machine and the instruction that is currently loaded in the TAP
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce
the same result as a logic one input level.
Test Data In
TDO
Test Data Out
Output that is active depending on the state of the TAP state machine. Output changes in
Out response to the falling edge of TCK. This is the output side of the serial registers placed between
TDI and TDO.
Ne
w
TDI
Description
De
sig
Pin
JTAG Port Registers
me
nd
ed
for
Note:
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.
Re
co
m
Overview
The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the
TDI and TDO pins.
No
t
Instruction Register
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the
controller is placed in Test-Logic-Reset state.
Bypass Register
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.
Rev: 1.09a 11/2011
24/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Boundary Scan Register
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.
JTAG TAP Block Diagram
·
·
·
·
·
·
·
·
Boundary Scan Register
·
·
0
De
sig
Bypass Register
0
108
1
·
2 1 0
Ne
w
Instruction Register
TDI
TDO
ID Code Register
me
nd
ed
for
31 30 29
·
· ··
2 1 0
Control Signals
TMS
Test Access Port (TAP) Controller
Re
co
m
TCK
No
t
Identification (ID) Register
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.
Rev: 1.09a 11/2011
25/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
GSI Technology
JEDEC Vendor
ID Code
n—
Di
sco
nt
inu
ed
Pr
od
u
Bit #
ct
Not Used
Presence Register
ID Register Contents
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0
X
1
X
X
X
X
X
X
X
X
X
X
X
X
Tap Controller Instruction Set
X
X
X
X
X
X
X
0
0 0 1 1 0 1 1 0 0 1
Overview
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load
address, data or control signals into the RAM or to preload the I/O buffers.
No
t
Re
co
m
me
nd
ed
for
Ne
w
De
sig
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this
device is listed in the following table.
Rev: 1.09a 11/2011
26/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
JTAG Tap Controller State Diagram
Test Logic Reset
1
0
Run Test Idle
1
Select DR
1
0
ct
0
1
1
Capture DR
0
Capture IR
0
Shift DR
1
1
Shift IR
0
1
1
Exit1 DR
0
Exit1 IR
0
0
Pause DR
1
Exit2 DR
De
sig
1
Update DR
0
0
Pause IR
1
Exit2 IR
0
1
0
0
Update IR
1
0
Ne
w
1
1
Select IR
n—
Di
sco
nt
inu
ed
Pr
od
u
0
me
nd
ed
for
Instruction Descriptions
BYPASS
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
No
t
Re
co
m
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then
places the boundary scan register between the TDI and TDO pins.
EXTEST
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is
still determined by its input pins.
Rev: 1.09a 11/2011
27/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output
drivers on the falling edge of TCK when the controller is in the Update-IR state.
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associated.
IDCODE
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.
SAMPLE-Z
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (highZ) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR
state.
RFU
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.
Notes
EXTEST
000
Places the Boundary Scan Register between TDI and TDO.
1
IDCODE
001
Preloads ID Register and places it between TDI and TDO.
1, 2
SAMPLE-Z
010
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.
Forces all RAM output drivers to High-Z except CQ.
1
RFU
011
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
1
SAMPLE/PRELOAD
100
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.
1
GSI
101
GSI private instruction.
1
RFU
110
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
1
Places Bypass Register between TDI and TDO.
1
Ne
w
Description
me
nd
ed
for
Code
Re
co
m
Instruction
De
sig
JTAG TAP Instruction Set Summary
BYPASS
111
No
t
Notes:
1. Instruction codes expressed in binary, MSB on left, LSB on right.
2. Default instruction automatically loaded at power-up and in test-logic-reset state.
Rev: 1.09a 11/2011
28/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Symbol
Min.
Max.
Unit Notes
Test Port Input Low Voltage
VILJ
–0.3
0.3 * VDD
V
1
Test Port Input High Voltage
VIHJ
0.6 * VDD
VDD +0.3
V
1
IINHJ
–300
1
uA
2
IINLJ
–1
100
uA
3
IOLJ
–1
1
uA
4
VOHJ
VDD – 200 mV
—
V
5, 6
VOLJ
—
0.4
V
5, 7
VOHJC
VDD – 100 mV
—
V
5, 8
VOLJC
—
100 mV
V
5, 9
n—
Di
sco
nt
inu
ed
Pr
od
u
Parameter
ct
JTAG Port Recommended Operating Conditions and DC Characteristics
TMS, TCK and TDI Input Leakage Current
TMS, TCK and TDI Input Leakage Current
TDO Output Leakage Current
Test Port Output High Voltage
Test Port Output Low Voltage
Test Port Output CMOS High
Test Port Output CMOS Low
me
nd
ed
for
Ne
w
De
sig
Notes:
1. Input Under/overshoot voltage must be –1 V < Vi < VDDn +1 V not to exceed 2.9 V maximum, with a pulse width not to exceed 20% tTKC.
2. VILJ ≤ VIN ≤ VDDn
3. 0 V ≤ VIN ≤ VILJn
4. Output Disable, VOUT = 0 to VDDn
5. The TDO output driver is served by the VDD supply.
6. IOHJ = –2 mA
7. IOLJ = + 2 mA
8. IOHJC = –100 uA
9. IOLJC = +100 uA
JTAG Port AC Test Conditions
Parameter
Input high level
Re
co
m
Input low level
Conditions
VDD – 0.2 V
TDO
0.2 V
Input slew rate
1 V/ns
Input reference level
VDD/2
Output reference level
VDD/2
No
t
JTAG Port AC Test Load
50Ω
30pF*
VDDQ/2
* Distributed Test Jig Capacitance
Notes:
1. Include scope and jig capacitance.
2. Test conditions as shown unless otherwise noted.
Rev: 1.09a 11/2011
29/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
JTAG Port Timing Diagram
tTKC
tTKH
tTKL
TCK
tTH
tTS
TMS
tTKQ
TDO
tTH
tTS
Parallel SRAM input
JTAG Port AC Electrical Characteristics
Symbol
Min
Max
TCK Cycle Time
tTKC
50
—
TCK Low to TDO Valid
tTKQ
—
TCK High Pulse Width
tTKH
20
TCK Low Pulse Width
tTKL
20
TDI & TMS Set Up Time
tTS
TDI & TMS Hold Time
tTH
Unit
ns
De
sig
Parameter
n—
Di
sco
nt
inu
ed
Pr
od
u
tTH
tTS
ct
TDI
ns
—
ns
—
ns
10
—
ns
10
—
ns
No
t
Re
co
m
me
nd
ed
for
Ne
w
20
Rev: 1.09a 11/2011
30/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Package Dimensions—165-Bump FPBGA (Package E)
BOTTOM VIEW
Ø0.10 M C
Ø0.25 M C A B
Ø0.40~0.60 (165x)
1 2 3 4 5 6 7 8 9 10 11
A1 CORNER
ct
TOP VIEW
n—
Di
sco
nt
inu
ed
Pr
od
u
A1 CORNER
11 10 9 8 7 6 5 4 3 2 1
1.0
10.0
B
15±0.05
0.20(4x)
No
t
Re
co
m
C
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
0.36~0.46
1.50 MAX.
SEATING PLANE
1.0
14.0
0.20 C
me
nd
ed
for
Ne
w
A
De
sig
17±0.05
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
Rev: 1.09a 11/2011
31/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Part Number1
Type
Package
Speed
(MHz)
TA3
2M x 36
GS8662Q36E-278
SigmaQuad-II SRAM
165-bump BGA
278
C
2M x 36
GS8662Q36E-250
SigmaQuad-II SRAM
165-bump BGA
250
C
2M x 36
GS8662Q36E-200
SigmaQuad-II SRAM
165-bump BGA
200
C
2M x 36
GS8662Q36E-167
SigmaQuad-II SRAM
165-bump BGA
167
C
2M x 36
GS8662Q36E-278I
SigmaQuad-II SRAM
165-bump BGA
278
I
2M x 36
GS8662Q36E-250I
SigmaQuad-II SRAM
165-bump BGA
250
I
2M x 36
GS8662Q36E-200I
SigmaQuad-II SRAM
165-bump BGA
200
I
2M x 36
GS8662Q36E-167I
SigmaQuad-II SRAM
165-bump BGA
167
I
4M x 18
GS8662Q18E-278
SigmaQuad-II SRAM
165-bump BGA
278
C
4M x 18
GS8662Q18E-250
SigmaQuad-II SRAM
165-bump BGA
250
C
4M x 18
GS8662Q18E-200
SigmaQuad-II SRAM
165-bump BGA
200
C
4M x 18
GS8662Q18E-167
SigmaQuad-II SRAM
165-bump BGA
167
C
4M x 18
GS8662Q18E-278I
SigmaQuad-II SRAM
165-bump BGA
278
I
4M x 18
GS8662Q18E-250I
SigmaQuad-II SRAM
165-bump BGA
250
I
4M x 18
GS8662Q18E-200I
SigmaQuad-II SRAM
165-bump BGA
200
I
4M x 18
GS8662Q18E-167I
SigmaQuad-II SRAM
165-bump BGA
167
I
8M x 9
GS8662Q09E-278
SigmaQuad-II SRAM
165-bump BGA
278
C
8M x 9
GS8662Q09E-250
SigmaQuad-II SRAM
165-bump BGA
250
C
8M x 9
GS8662Q09E-200
SigmaQuad-II SRAM
165-bump BGA
200
C
8M x 9
GS8662Q09E-167
SigmaQuad-II SRAM
165-bump BGA
167
C
8M x 9
GS8662Q09E-278I
SigmaQuad-II SRAM
165-bump BGA
278
I
8M x 9
GS8662Q09E-250I
SigmaQuad-II SRAM
165-bump BGA
250
I
8M x 9
GS8662Q09E-200I
SigmaQuad-II SRAM
165-bump BGA
200
I
8M x 9
GS8662Q09E-167I
SigmaQuad-II SRAM
165-bump BGA
167
I
8M x 8
GS8662Q08E-278
SigmaQuad-II SRAM
165-bump BGA
278
C
8M x 8
GS8662Q08E-250
SigmaQuad-II SRAM
165-bump BGA
250
C
8M x 8
GS8662Q08E-200
SigmaQuad-II SRAM
165-bump BGA
200
C
8M x 8
GS8662Q08E-167
SigmaQuad-II SRAM
165-bump BGA
167
C
GS8662Q08E-278I
SigmaQuad-II SRAM
165-bump BGA
278
I
GS8662Q08E-250I
SigmaQuad-II SRAM
165-bump BGA
250
I
GS8662Q08E-200I
SigmaQuad-II SRAM
165-bump BGA
200
I
8M x 8
8M x 8
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
me
nd
ed
for
Re
co
m
No
t
8M x 8
ct
Org
Ne
w
Ordering Information—GSI SigmaQuad-II SRAM
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662x36E-200T.
2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
Rev: 1.09a 11/2011
32/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Part Number1
Type
Package
Speed
(MHz)
TA3
8M x 8
GS8662Q08E-167I
SigmaQuad-II SRAM
165-bump BGA
167
I
2M x 36
GS8662Q36GE-278
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
278
C
2M x 36
GS8662Q36GE-250
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
C
2M x 36
GS8662Q36GE-200
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
C
2M x 36
GS8662Q36GE-167
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
C
2M x 36
GS8662Q36GE-278I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
278
I
2M x 36
GS8662Q36GE-250I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
I
2M x 36
GS8662Q36GE-200I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
I
2M x 36
GS8662Q36GE-167I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
I
4M x 18
GS8662Q18GE-278
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
278
C
4M x 18
GS8662Q18GE-250
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
C
4M x 18
GS8662Q18GE-200
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
C
4M x 18
GS8662Q18GE-167
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
C
4M x 18
GS8662Q18GE-278I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
278
I
4M x 18
GS8662Q18GE-250I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
I
4M x 18
GS8662Q18GE-200I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
I
4M x 18
GS8662Q18GE-167I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
I
8M x 9
GS8662Q09GE-278
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
278
C
8M x 9
GS8662Q09GE-250
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
C
8M x 9
GS8662Q09GE-200
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
C
8M x 9
GS8662Q09GE-167
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
C
8M x 9
GS8662Q09GE-278I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
278
I
8M x 9
GS8662Q09GE-250I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
I
8M x 9
GS8662Q09GE-200I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
I
8M x 9
GS8662Q09GE-167I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
I
8M x 8
GS8662Q08GE-278
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
278
C
8M x 8
GS8662Q08GE-250
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
C
8M x 8
GS8662Q08GE-200
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
C
8M x 8
GS8662Q08GE-167
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
C
GS8662Q08GE-278I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
278
I
GS8662Q08GE-250I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
I
GS8662Q08GE-200I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
I
8M x 8
8M x 8
n—
Di
sco
nt
inu
ed
Pr
od
u
De
sig
Ne
w
me
nd
ed
for
No
t
8M x 8
ct
Org
Re
co
m
Ordering Information—GSI SigmaQuad-II SRAM
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662x36E-200T.
2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
Rev: 1.09a 11/2011
33/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
GS8662Q08/09/18/36E-278/250/200/167
Ordering Information—GSI SigmaQuad-II SRAM
Org
Part Number1
Type
Package
Speed
(MHz)
TA3
8M x 8
GS8662Q08GE-167I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
I
SigmaQuad-II Revision History
File Name
Format/Content
n—
Di
sco
nt
inu
ed
Pr
od
u
ct
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8662x36E-200T.
2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
Description of changes
Creation of datasheet
Added RoHS-compliant package information
8662Qxx_r1; 8662Qxx_r1_01
Content
8662Qxx_r1_01; 8662Qxx_r1_02
Content
8662Qxx_r1_02; 8662Qxx_r1_03
Content
8662Qxx_r1_03; 8662Qxx_r1_04
Content
8662Qxx_r1_05
Content
• Removed 300 MHz (Q)
• Updated to PQ
8662Qxx_r1_06
Content
• Removed status from ordering information
8662Qxx_r1_07
Ne
w
8662Qxx_r1
• Updated tKHKH, tKHCH in AC Char table
• Added tKHKH and CQ Phase Distortion to AC Char table
De
sig
• Added CZ data
• Updated I/O supply voltage data
• Updated power-up sequence information
Content
• Added 278 MHz (Q)
Content
• Added VREF note to Pin Description table
• Updated FLXDrive-II Output Driver Impedance Control section
• Removed Preliminary banner due to production status
me
nd
ed
for
8662Qxx_r1_08
Content
• Updated AC Electrical Characteristics table
• Updated 165-BGA Mechanical drawing
• Revised Power-up Sequence and Truth Tables
• Removed Status column from Ordering Information table
• (Rev1.09a: Editorial updates)
No
t
Re
co
m
8662Qxx_r1_09
Updated MAX tKHKH
Rev: 1.09a 11/2011
34/34
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology