M12L2561616A (2A) SDRAM

ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
SDRAM
4M x 16 Bit x 4 Banks
Synchronous DRAM
FEATURES









ORDERING INFORMATION
JEDEC standard 3.3V power supply
LVTTL compatible with multiplexed address
Four banks operation
MRS cycle with address key programs
- CAS Latency ( 2 & 3 )
- Burst Length ( 1, 2, 4, 8 & full page )
- Burst Type ( Sequential & Interleave )
All inputs are sampled at the positive going edge of
the system clock
Burst Read single write operation
DQM for masking
Auto & self refresh
64ms refresh period (8K cycle)
Product ID
Max Freq.
Package Comments
M12L2561616A-5TIG2A
200MHz
TSOP II
Pb-free
M12L2561616A-5BIG2A
200MHz
BGA
Pb-free
M12L2561616A-6TIG2A
166MHz
TSOP II
Pb-free
M12L2561616A-6BIG2A
166MHz
BGA
Pb-free
M12L2561616A-7TIG2A
143MHz
TSOP II
Pb-free
M12L2561616A-7BIG2A
143MHz
BGA
Pb-free
GENERAL DESCRIPTION
The M12L2561616A is 268,435,456 bits synchronous high data rate Dynamic RAM organized as 4 x 4,194,304 words by 16 bits.
Synchronous design allows precise cycle control with the use of system clock I/O transactions are possible on every clock cycle.
Range of operating frequencies, programmable burst length and programmable latencies allow the same device to be useful for a
variety of high bandwidth, high performance memory system applications.
PIN CONFIGURATION (TOP VIEW)
BALL CONFIGURATION (TOP VIEW)
(TSOPII 54L, 400milX875mil Body, 0.8mm Pin Pitch)
VDD
DQ0
V DD Q
DQ1
DQ2
V S SQ
DQ3
DQ4
VD D Q
DQ5
DQ6
V S SQ
DQ7
VDD
LD QM
1
2
3
4
5
6
7
8
54
53
V SS
DQ15
52
51
50
49
48
47
V S SQ
DQ14
DQ13
VDDQ
DQ12
DQ11
9
10
11
12
13
14
15
46
45
V S SQ
DQ10
44
43
42
41
40
39
DQ9
VDDQ
DQ8
VS S
NC
UD QM
38
37
CLK
CKE
36
35
34
33
32
31
A12
A11
A9
A8
A7
A6
30
29
A5
A4
28
VS S
WE
CAS
RAS
CS
BA0
BA1
16
17
18
19
20
21
A1 0 /AP
A0
22
23
A1
A2
A3
24
25
26
27
VDD
Elite Semiconductor Memory Technology Inc.
(BGA54, 8mmX8mmX1mm Body, 0.8mm Ball Pitch)
1
2
3
A
VSS
DQ15
B
DQ14
C
4
5
6
7
8
9
VSSQ
VDDQ
DQ0
VDD
DQ13
VDDQ
VSSQ
DQ2
DQ1
DQ12
DQ11
VSSQ
VDDQ
DQ4
DQ3
D
DQ10
DQ9
VDDQ
VSSQ
DQ6
DQ5
E
DQ8
NC
VSS
VDD
LDQM
DQ7
F
UDQM
CLK
CKE
CAS
RAS
WE
G
A12
A11
A9
BA0
BA1
CS
H
A8
A7
A6
A0
A1
A10
J
VSS
A5
A4
A3
A2
VDD
Publication Date: Jun. 2012
Revision: 1.1
1/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
BLOCK DIAGRAM
CKE
Clock
Generator
Bank D
Bank C
Bank B
Address
Mode
Register
Row
Address
Buffer
&
Refresh
Counter
Row Decoder
CLK
Bank A
CAS
WE
Address
L(U)DQM
Column Decoder
Buffer
&
Counter
Data Control Circuit
Input & Output
Buffer
RAS
Column
Latch Circuit
CS
Control Logic
Command Decoder
Sense Amplifier
DQ
PIN DESCRIPTION
PIN
NAME
INPUT FUNCTION
CLK
System Clock
Active on the positive going edge to sample all inputs
Disables or enables device operation by masking or enabling all
inputs except CLK , CKE and L(U)DQM
CS
Chip Select
CKE
Clock Enable
Masks system clock to freeze operation from the next clock cycle.
CKE should be enabled at least one cycle prior new command.
Disable input buffers for power down in standby.
A0 ~ A12
Address
Row / column address are multiplexed on the same pins.
Row address : RA0~RA12, column address : CA0~CA8
BA1, BA0
Bank Select Address
Selects bank to be activated during row address latch time.
Selects bank for read / write during column address latch time.
RAS
Row Address Strobe
Latches row addresses on the positive going edge of the CLK with
CAS
Column Address Strobe
RAS low. (Enables row access & precharge.)
Latches column address on the positive going edge of the CLK with
CAS low. (Enables column access.)
Enables write operation and row precharge.
WE
Write Enable
L(U)DQM
Data Input / Output Mask
Makes data output Hi-Z, tSHZ after the clock and masks the output.
Blocks data input when L(U)DQM active.
DQ0 ~ DQ15
Data Input / Output
Data inputs / outputs are multiplexed on the same pins.
VDD / VSS
Power Supply / Ground
Power and ground for the input buffers and the core logic.
VDDQ / VSSQ
Data Output Power / Ground
Isolated power supply and ground for the output buffers to provide
improved noise immunity.
NC
No Connection
This pin is recommended to be left No Connection on the device.
Elite Semiconductor Memory Technology Inc.
Latches data in starting from CAS , WE active.
Publication Date: Jun. 2012
Revision: 1.1
2/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Value
Unit
Voltage on any pin relative to VSS
VIN, VOUT
-1.0 ~ 4.6
V
Voltage on VDD supply relative to VSS
VDD, VDDQ
-1.0 ~ 4.6
V
TA
-40 ~ +85
C
TSTG
-55 ~ +150
C
Power dissipation
PD
1
W
Short circuit current
IOS
50
mA
Operating ambient temperature
Storage temperature
Note:
Permanent device damage may occur if ABSOLUTE MAXIMUM RATING are exceeded.
Functional operation should be restricted to recommended operating condition.
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.
DC OPERATING CONDITION
Recommended operating conditions (Voltage referenced to VSS = 0V, TA = -40 to 85 C )
Parameter
Symbol
Min
Typ
Max
Unit
VDD, VDDQ
3.0
3.3
3.6
V
Input logic high voltage
VIH
2.0
3.0
VDD+0.3
V
1
Input logic low voltage
VIL
-0.3
0
0.8
V
2
Output logic high voltage
VOH
2.4
-
-
V
IOH = -2mA
Output logic low voltage
Supply voltage
Note
VOL
-
-
0.4
V
IOL = 2mA
Input leakage current
IIL
-5
-
5
A
3
Output leakage current
IOL
-5
-
5
A
4
Note:
1. VIH(max) = 4.6V AC for pulse width  10ns acceptable.
2. VIL(min) = -1.5V AC for pulse width  10ns acceptable.
3. Any input 0V  VIN  VDD, all other pins are not under test = 0V.
4. Dout is disabled, 0V  VOUT  VDD.
CAPACITANCE (VDD = 3.3V, TA = 25 C , f = 1MHz)
Parameter
Symbol
Min
Max
Unit
Input capacitance (A0 ~ A12, BA0 ~ BA1)
CIN1
1.5
3
pF
Input capacitance (CLK)
CCLK
2
3
pF
CIN2
1.5
4.5
pF
COUT
2
4.5
pF
Input capacitance
(CKE, CS , RAS , CAS , WE & L(U)DQM)
Data input/output capacitance (DQ0 ~ DQ15)
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
3/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
DC CHARACTERISTICS
Recommended operating condition unless otherwise noted,TA = -40 to 85 C
Parameter
Operating Current
(One Bank Active)
Symbol
ICC1
Precharge Standby
ICC2P
Current in power-down
mode
ICC2PS
Precharge Standby
Current in non
power-down mode
ICC2N
ICC2NS
Active Standby
ICC3P
Current in power-down
ICC3PS
mode
Version
Test Condition
Burst Length = 2, tRC = tRC(min), IOL = 0 mA
Unit Note
-5
-6
-7
80
70
60
mA
CKE = VIL(max), tCC = 10ns
1
mA
CKE & CLK=VIL(max), tCC = 
1
mA
15
mA
5
mA
CKE=VIL(max), tCC =10ns
6
mA
CKE & CLK=VIL(max), tCC = 
6
mA
28
mA
20
mA
CKE=VIH(min), CS = VIH(min), tCC = 10ns
Input signals are changed one time during 2CLK
CKE=VIH(min), CLK=VIL(max), tCC = 
input signals are stable
1,2
CKE  VIH(min), CS  VIH(min), tCC = 15ns
Active Standby
Current in non
power-down mode
(One Bank Active)
ICC3N
Input signals are changed one time during 2 CLKs
All other pins  VDD-0.2V or ≤ 0.2V
ICC3NS
CKE=VIH(min), CLK=VIL(max), tCC = 
input signals are stable
IOL = 0 mA, Page Burst, 4 Banks activated,
Operating Current
(Burst Mode)
ICC4
Refresh Current
ICC5
tRFC  tRFC(min)
Self Refresh Current
ICC6
CKE=0.2V
tCCD = 2 CLKs
90
80
70
mA
120
110
100
mA
3
1,2
mA
Note: 1. Measured with outputs open.
2. Input signals are changed one time during 2 CLKs.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
4/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
AC OPERATING TEST CONDITIONS (VDD = 3.3V  0.3V ,TA = -40 to 85 C )
Parameter
Input levels (Vih/Vil)
Input timing measurement reference level
Input rise and fall-time
Output timing measurement reference level
Output load condition
Value
Unit
2.4/0.4
V
1.4
V
tr/tf = 1/1
ns
1.4
V
See Fig. 2
(Fig. 1) DC Output Load Circuit
(Fig. 2) AC Output Load Circuit
OPERATING AC PARAMETER
(AC operating conditions unless otherwise noted)
Parameter
Row active to row active delay
RAS to CAS delay
Row precharge time
Row active time
Row cycle time
Unit
Note
20
ns
ns
1
1
18
20
ns
1
42
45
ns
1
-5
-6
-7
tRRD(min)
tRCD(min)
10
12
14
15
18
tRP(min)
tRAS(min)
15
40
tRAS(max)
us
100
@ Operating
tRC(min)
55
60
63
ns
1
@ Auto refresh
tRFC(min)
55
60
63
ns
1,5
CLK
CLK
CLK
CLK
ms
2
2
2
3
6
ea
4
Last data in to col. address delay
Last data in to row precharge
Last data in to burst stop
Col. address to col. address delay
Refresh period (8,192 rows)
Number of valid
Output data
Version
Symbol
tCDL(min)
tRDL(min)
tBDL(min)
tCCD(min)
tREF(max)
1
2
1
1
64
CAS latency = 3
2
CAS latency = 2
1
Note: 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then
rounding off to the next higher integer.
2. Minimum delay is required to complete write.
3. All parts allow every cycle column address change.
4. In case of row precharge interrupt, auto precharge and read burst stop.
5. A new command may be given tRFC after self refresh exit.
6. A maximum of eight consecutive AUTO REFRESH commands (with tRFCmin) can be posted to any given SDRAM, and the
maximum absolute interval between any AUTO REFRESH command and the next AUTO REFRESH command is
8x7.8 μ s.)
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
5/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
AC CHARACTERISTICS (AC operating condition unless otherwise noted)
Parameter
-5
Symbol
Min
CLK cycle time
CAS latency = 3
CAS latency = 2
CLK to valid
output delay
CAS latency = 3
Output data
hold time
CAS latency = 3
CAS latency = 2
CAS latency = 2
CLK high pulse width
CLK low pulse width
Input setup time
Input hold time
CLK to output in Low-Z
CLK to output
in Hi-Z
Note:
CAS latency = 3
CAS latency = 2
tCC
5
10
tSAC
tOH
tCH
tCL
tSS
tSH
tSLZ
tSHZ
-6
Max
1000
Min
6
10
-7
Max
1000
Min
7
10
1000
5
5.4
5.4
5.4
5.4
5.4
2
2.5
2.5
2
2
2
1.5
0.8
1
2.5
2.5
2.5
1.5
0.8
1
2.5
2.5
2.5
1.5
0.8
1
Unit
Note
ns
1
ns
1,2
ns
2
ns
ns
ns
ns
ns
3
3
3
3
2
Max
4.5
5.4
5.4
5.4
5.4
5.4
ns
1. Parameters depend on programmed CAS latency.
2. If clock rising time is longer than 1ns. (tr/2 - 0.5) ns should be considered.
3. Assumed input rise and fall time (tr & tf) =1ns.
If tr & tf is longer than 1ns. transient time compensation should be considered.
i.e., [(tr + tf)/2 – 1] ns should be added to the parameter.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
6/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
SIMPLIFIED TRUTH TABLE
COMMAND
Register
CKEn-1 CKEn
Mode Register set
Auto Refresh
Entry
Self
Refresh
Exit
Refresh
Write &
Column Address
A12~A11,
BA0,
A10/AP
Note
BA1
A9~A0
L
L
L
L
X
OP CODE
L
L
L
H
X
X
H
X
L
H
X
H
H
X
H
X
X
X
V
H
X
L
H
L
H
X
L
H
L
H
X
V
H
X
L
H
L
L
X
V
H
X
L
H
H
L
X
H
X
L
L
H
L
X
Entry
H
L
H
X
X
X
L
V
V
V
Exit
L
H
X
X
X
X
Entry
H
L
H
X
X
X
L
H
H
H
Exit
L
H
H
X
X
X
V
V
V
Auto Precharge Disable
Auto Precharge Enable
Auto Precharge Disable
Auto Precharge Enable
Bank Selection
All Banks
Clock Suspend or
Active Power Down
DQM
H
Burst Stop
Precharge
H
X
H
L
WE
L
Bank Active & Row Addr.
Read &
Column Address
H
CS RAS CAS
Precharge Power Down Mode
DQM
H
No Operating Command
H
L
X
X
H
X
X
X
L
H
H
H
1,2
3
3
3
3
X
Row Address
Column
L
Address
H
(A0~A8)
Column
L
Address
H
(A0~A8)
X
V
L
X
H
4
4,5
4
4,5
6
X
X
X
X
X
X
X
V
X
X
X
7
(V = Valid, X = Don’t Care. H = Logic High, L = Logic Low)
Note: 1.OP Code: Operating Code
A0~A12 & BA0~BA1: Program keys. (@ MRS)
2.MRS can be issued only at all banks precharge state.
A new command can be issued after 2 CLK cycles of MRS.
3.Auto refresh functions are as same as CBR refresh of DRAM.
The automatical precharge without row precharge of command is meant by “Auto”.
Auto/self refresh can be issued only at all banks idle state.
4.BA0~BA1: Bank select addresses.
If BA0 and BA1 are “Low” at read, write, row active and precharge, bank A is selected.
If BA0 is “Low” and BA1 is “High” at read, write, row active and precharge, bank B is selected.
If BA0 is “High” and BA1 is “Low” at read, write, row active and precharge, bank C is selected.
If BA0 and BA1 are “High” at read, write, row active and precharge, bank D is selected
If A10/AP is “High” at row precharge, BA0 and BA1 is ignored and all banks are selected.
5.During burst read or write with auto precharge, new read/write command can not be issued.
Another bank read/write command can be issued after the end of burst.
New row active of the associated bank can be issued at tRP after the end of burst.
6.Burst stop command is valid at every burst length.
7.DQM sampled at positive going edge of a CLK and masks the data-in at the very CLK (write DQM latency is 0), but makes
Hi-Z state the data-out of 2 CLK cycles after.(Read DQM latency is 2)
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
7/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
MODE REGISTER FIELD TABLE TO PROGRAM MODES
Register Programmed with MRS
Address
BA0~BA1
A12~A10/AP
A9
Function
RFU
RFU
W.B.L.
Test Mode
A8
A7
A6
TM
CAS Latency
A5
A4
A3
CAS Latency
A2
BT
A1
A0
Burst Length
Burst Type
Burst Length
A8
A7
Type
A6
A5
A4
Latency
A3
Type
A2
A1
A0
BT = 0
BT = 1
0
0
Mode Register Set
0
0
0
Reserved
0
Sequential
0
0
0
1
1
0
1
Reserved
0
0
1
Reserved
1
Interleave
0
0
1
2
2
1
0
Reserved
0
1
0
2
0
1
0
4
4
1
1
Reserved
0
1
1
3
0
1
1
8
8
1
0
0
Reserved
1
0
0
Reserved Reserved
Write Burst Length
A9
Length
1
0
1
Reserved
1
0
1
Reserved Reserved
0
Burst
1
1
0
Reserved
1
1
0
Reserved Reserved
1
Single Bit
1
1
1
Reserved
1
1
1
Full Page Reserved
Full Page Length: 512
Note:
1. RFU (Reserved for future use) should stay “0” during MRS cycle.
2. If A9 is high during MRS cycle, “Burst Read single write” function will be enabled.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
8/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
BURST SEQUENCE (BURST LENGTH = 4)
Initial Address
Sequential
Interleave
A1
A0
0
0
0
1
2
3
0
1
2
3
0
1
1
2
3
0
1
0
3
2
1
0
2
3
0
1
2
3
0
1
1
1
3
0
1
2
3
2
1
0
BURST SEQUENCE (BURST LENGTH = 8)
Initial Address
Sequential
Interleave
A2
A1
A0
0
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
0
1
1
2
3
4
5
6
7
0
1
0
3
2
5
4
7
6
0
1
0
2
3
4
5
6
7
0
1
2
3
0
1
6
7
4
5
0
1
1
3
4
5
6
7
0
1
2
3
2
1
0
7
6
5
4
1
0
0
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
1
0
1
5
6
7
0
1
2
3
4
5
4
7
6
1
0
3
2
1
1
0
6
7
0
1
2
3
4
5
6
7
4
5
2
3
0
1
1
1
1
7
0
1
2
3
4
5
6
7
6
5
4
3
2
1
0
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
9/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
DEVICE OPERATIONS
CLOCK (CLK)
POWER-UP
The clock input is used as the reference for all SDRAM
operations. All operations are synchronized to the positive
going edge of the clock. The clock transitions must be
monotonic between VIL and VIH. During operation with CKE
high all inputs are assumed to be in valid state (low or high) for
the duration of setup and hold time around positive edge of the
clock for proper functionality and ICC specifications.
1.Apply power and start clock, Attempt to maintain CKE =
“H”, DQM = “H” and the other pins are NOP condition at
the inputs.
2.Maintain stable power, stable clock and NOP input
condition for minimum of 200us.
3.Issue precharge commands for all banks of the devices.
4.Issue 2 or more auto-refresh commands.
5.Issue a mode register set command to initialize the
mode register.
cf.) Sequence of 4 & 5 is regardless of the order.
CLOCK ENABLE(CKE)
The clock enable (CKE) gates the clock onto SDRAM. If CKE
goes low synchronously with clock (set-up and hold time same
as other inputs), the internal clock suspended from the next
clock cycle and the state of output and burst address is frozen
as long as the CKE remains low. All other inputs are ignored
from the next clock cycle after CKE goes low. When all banks
are in the idle state and CKE goes low synchronously with
clock, the SDRAM enters the power down mode from the next
clock cycle. The SDRAM remains in the power down mode
ignoring the other inputs as long as CKE remains low. The
power down exit is synchronous as the internal clock is
suspended. When CKE goes high at least “1CLK + tSS” before
the high going edge of the clock, then the SDRAM becomes
active from the same clock edge accepting all the input
commands.
BANK ADDRESSES (BA0~BA1)
This SDRAM is organized as four independent banks of
4,194,304 words x 16 bits memory arrays. The BA0~BA1
inputs are latched at the time of assertion of RAS and CAS
to select the bank to be used for the operation. The banks
addressed BA0~BA1 are latched at bank active, read, write,
mode register set and precharge operations.
ADDRESS INPUTS (A0~A12)
The 22 address bits are required to decode the 4,194,304
word locations are multiplexed into 13 address input pins
(A0~A12). The 13 row addresses are latched along with RAS
and BA0~BA1 during bank active command. The 9 bit column
addresses are latched along with CAS , WE and BA0~BA1
during read or with command.
NOP and DEVICE DESELECT
CS
high.
CS
MODE REGISTER SET (MRS)
The mode register stores the data for controlling the
various operating modes of SDRAM. It programs the CAS
latency, burst type, burst length, test mode and various
vendor specific options to make SDRAM useful for variety
of different applications. The default value of the mode
register is not defined, therefore the mode register must
be written after power up to operate the SDRAM. The
mode register is written by asserting low on CS , RAS ,
CAS and WE (The SDRAM should be in active mode
with CKE already high prior to writing the mode register).
The state of address pins A0~A12 and BA0~BA1 in the
same cycle as CS , RAS , CAS and WE going low is
the data written in the mode register. Two clock cycles is
required to complete the write in the mode register. The
mode register contents can be changed using the same
command and clock cycle requirements during operation
as long as all banks are in the idle state. The mode
register is divided into various fields into depending on
functionality. The burst length field uses A0~A2, burst type
uses A3, CAS latency (read latency from column address)
use A4~A6, vendor specific options or test mode use
A7~A8, A10/AP~A12 and BA0~BA1. The write burst
length is programmed using A9. A7~A8, A10/AP~A12 and
BA0~BA1 must be set to low for normal SDRAM
operation. Refer to the table for specific codes for various
burst length, burst type and CAS latencies.
BANK ACTIVATE
The bank activate command is used to select a random
When RAS , CAS and WE are high , The SDRAM
performs no operation (NOP). NOP does not initiate any new
operation, but is needed to complete operations which require
more than single clock cycle like bank activate, burst read,
auto refresh, etc. The device deselect is also a NOP and is
entered by asserting
The device is now ready for normal operation.
high disables the
command decoder so that RAS , CAS , WE and all the
address inputs are ignored.
Elite Semiconductor Memory Technology Inc.
row in an idle bank. By asserting low on RAS and CS
with desired row and bank address, a row access is
initiated. The read or write operation can occur after a
time delay of tRCD(min) from the time of bank activation.
tRCD is the internal timing parameter of SDRAM, therefore
it is dependent on operating clock frequency. The
minimum number of clock cycles required between bank
activate and read or write command should be calculated
by dividing tRCD(min) with cycle time of the clock and then
Publication Date: Jun. 2012
Revision: 1.1
10/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
DEVICE OPERATIONS (Continued)
rounding of the result to the next higher integer. The SDRAM
has four internal banks in the same chip and shares part of the
internal circuitry to reduce chip area, therefore it restricts the
activation of four banks simultaneously. Also the noise
generated during sensing of each bank of SDRAM is high
requiring some time for power supplies to recover before
another bank can be sensed reliably. tRRD(min) specifies the
minimum time required between activating different bank. The
number of clock cycles required between different bank
activation must be calculated similar to tRCD specification. The
minimum time required for the bank to be active to initiate
sensing and restoring the complete row of dynamic cells is
determined by tRAS(min). Every SDRAM bank activate
command must satisfy tRAS(min) specification before a
precharge command to that active bank can be asserted. The
maximum time any bank can be in the active state is
determined by tRAS(max) and tRAS(max) can be calculated
similar to tRCD specification.
BURST READ
The burst read command is used to access burst of data on
consecutive clock cycles from an active row in an active bank.
The burst read command is issued by asserting low on CS
and RAS with WE being high on the positive edge of the
clock. The bank must be active for at least tRCD(min) before the
burst read command is issued. The first output appears in CAS
latency number of clock cycles after the issue of burst read
command. The burst length, burst sequence and latency from
the burst read command is determined by the mode register
which is already programmed. The burst read can be initiated
on any column address of the active row. The address wraps
around if the initial address does not start from a boundary
such that number of outputs from each I/O are equal to the
burst length programmed in the mode register. The output
goes into high-impedance at the end of burst, unless a new
burst read was initiated to keep the data output gapless. The
burst read can be terminated by issuing another burst read or
burst write in the same bank or the other active bank or a
precharge command to the same bank. The burst stop
command is valid at every page burst length.
BURST WRITE
The burst write command is similar to burst read command
and is used to write data into the SDRAM on consecutive clock
cycles in adjacent addresses depending on burst length and
burst sequence. By asserting low on CS , CAS and WE
with valid column address, a write burst is initiated. The data
inputs are provided for the initial address in the same clock
cycle as the burst write command. The input buffer is
deselected at the end of the burst length, even though the
internal writing can be completed yet. The writing can be
complete by issuing a burst read and DQM for blocking data
inputs or burst write in the same or another active bank. The
burst stop command is valid at every burst length. The write
burst can also be terminated by using DQM for blocking data
and precharge the bank tRDL after the last data input to be
written into the active row. See DQM OPERATION also.
Elite Semiconductor Memory Technology Inc.
DQM OPERATION
The DQM is used mask input and output operations. It
works similar to OE during operation and inhibits writing
during write operation. The read latency is two cycles from
DQM and zero cycle for write, which means DQM masking
occurs two cycles later in read cycle and occurs in the
same cycle during write cycle. DQM operation is
synchronous with the clock. The DQM signal is important
during burst interrupts of write with read or precharge in
the SDRAM. Due to asynchronous nature of the internal
write, the DQM operation is critical to avoid unwanted or
incomplete writes when the complete burst write is
required. Please refer to DQM timing diagram also.
PRECHARGE
The precharge is performed on an active bank by
asserting low on clock cycles required between bank
activate and clock cycles required between bank activate
and CS , RAS , WE and A10/AP with valid BA0~BA1
of the bank to be procharged. The precharge command
can be asserted anytime after tRAS(min) is satisfy from the
bank active command in the desired bank. tRP is defined
as the minimum number of clock cycles required to
complete row precharge is calculated by dividing tRP with
clock cycle time and rounding up to the next higher
integer. Care should be taken to make sure that burst
write is completed or DQM is used to inhibit writing before
precharge command is asserted. The maximum time any
bank can be active is specified by tRAS(max). Therefore,
each bank has to be precharge with tRAS(max) from the
bank activate command. At the end of precharge, the
bank enters the idle state and is ready to be activated
again. Entry to power-down, Auto refresh, Self refresh and
Mode register set etc. is possible only when all banks are
in idle state.
AUTO PRECHARGE
The precharge operation can also be performed by using
auto precharge. The SDRAM internally generates the
timing to satisfy tRAS(min) and “tRP” for the programmed
burst length and CAS latency. The auto precharge
command is issued at the same time as burst write by
asserting high on A10/AP, the bank is precharge command
is asserted. Once auto precharge command is given, no
new commands are possible to that particular bank until
the bank achieves idle state.
FOUR BANKS PRECHARGE
Four banks can be precharged at the same time by using
Precharge all command. Asserting low on CS , RAS ,
and WE with high on A10/AP after all banks have
satisfied tRAS(min) requirement, performs precharge on all
banks. At the end of tRP after performing precharge all, all
banks are in idle state.
Publication Date: Jun. 2012
Revision: 1.1
11/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
DEVICE OPERATIONS (Continued)
AUTO REFRESH
SELF REFRESH
The storage cells of SDRAM need to be refreshed every 64ms
to maintain data. An auto refresh cycle accomplishes refresh of
a single row of storage cells. The internal counter increments
automatically on every auto refresh cycle to refresh all the
rows. An auto refresh command is issued by asserting low on
The self refresh is another refresh mode available in the
SDRAM. The self refresh is the preferred refresh mode for
data retention and low power operation of SDRAM. In self
refresh mode, the SDRAM disables the internal clock and
all the input buffers except CKE. The refresh addressing
and timing is internally generated to reduce power
consumption.
The self refresh mode is entered from all banks idle state
CS , RAS and CAS with high on CKE and WE . The auto
refresh command can only be asserted with all banks being in
idle state and the device is not in power down mode (CKE is
high in the previous cycle). The time required to complete the
auto refresh operation is specified by tRFC(min). The minimum
number of clock cycles required can be calculated by driving
tRFC with clock cycle time and them rounding up to the next
higher integer. The auto refresh command must be followed by
NOP’s until the auto refresh operation is completed. The auto
refresh is the preferred refresh mode when the SDRAM is
being used for normal data transactions. The auto refresh
cycle can be performed once in 7.8us.
Elite Semiconductor Memory Technology Inc.
by asserting low on CS , RAS , CAS and CKE with
high on WE . Once the self refresh mode is entered, only
CKE state being low matters, all the other inputs including
clock are ignored to remain in the refresh.
The self refresh is exited by restarting the external clock
and then asserting high on CKE. This must be followed by
NOP’s for a minimum time of tRFC before the SDRAM
reaches idle state to begin normal operation. 8K cycles of
burst auto refresh is required immediately before self
refresh entry and immediately after self refresh exit.
Publication Date: Jun. 2012
Revision: 1.1
12/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
COMMANDS
CLK
CKE
Mode register set command
CS
( CS , RAS , CAS , WE = Low)
RAS
The M12L2561616A has a mode register that defines how the device operates.
In this command, A0~A12, BA0 and BA1 are the data input pins. After power on, the
mode register set command must be executed to initialize the device.
The mode register can be set only when all banks are in idle state.
During 2CLK following this command, the M12L2561616A cannot accept any
other commands.
H
CAS
WE
BA0, BA1
A10
Add
Fig. 1 Mode register set
command
CLK
Activate command
( CS , RAS = Low, CAS , WE = High)
The M12L2561616A has four banks, each with 8,192 rows.
This command activates the bank selected by BA1 and BA0 (BS) and a row
address selected by A0 through A12.
This command corresponds to a conventional DRAM’s RAS falling.
CKE
H
CS
RAS
CAS
WE
BA0, BA1
(Bank select)
A10
Row
Add
Row
Fig. 2 Row address strobe and
bank active command
Precharge command
( CS , RAS , WE = Low, CAS = High )
This command begins precharge operation of the bank selected by BA1 and BA0
(BS). When A10 is High, all banks are precharged, regardless of BA1 and BA0.
When A10 is Low, only the bank selected by BA1 and BA0 is precharged.
After this command, the M12L2561616A can’t accept the activate command to
the precharging bank during tRP (precharge to activate command period).
This command corresponds to a conventional DRAM’s RAS rising.
CLK
CKE
H
CS
RAS
CAS
WE
BA0, BA1
(Bank select)
A10
(Precharge select)
Add
Fig. 3 Precharge command
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
13/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Write command
( CS , CAS , WE = Low, RAS = High)
If the mode register is in the burst write mode, this command sets the burst start
address given by the column address to begin the burst write operation. The first
write data in burst can be input with this command with subsequent data on following
clocks.
CLK
CKE
H
CS
RAS
CAS
WE
BA0,BA1
(Bank select)
A10
Add
Col.
Fig. 4 Column address and
write command
CLK
Read command
( CS , CAS = Low, RAS , WE = High)
Read data is available after CAS latency requirements have been met.
This command sets the burst start address given by the column address.
CKE
H
CS
RAS
CAS
WE
BA0,BA1
(Bank select)
A10
Add
Col.
Fig. 5 Column address and
read command
CBR (auto) refresh command
( CS , RAS , CAS = Low, WE , CKE = High)
This command is a request to begin the CBR refresh operation. The refresh
address is generated internally.
Before executing CBR refresh, all banks must be precharged.
After this cycle, all banks will be in the idle (precharged) state and ready for a
row activate command.
During tRFC period (from refresh command to refresh or activate command), the
M12L2561616A cannot accept any other command.
CLK
CKE
H
CS
RAS
CAS
WE
BA0,BA1
(Bank select)
A10
Add
Fig. 6 Auto refresh command
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
14/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Self refresh entry command
( CS , RAS , CAS , CKE = Low , WE = High)
After the command execution, self refresh operation continues while CKE
remains low. When CKE goes to high, the M12L2561616A exits the self refresh
mode.
During self refresh mode, refresh interval and refresh operation are performed
internally, so there is no need for external control.
Before executing self refresh, all banks must be precharged.
CLK
CKE
CS
RAS
CAS
WE
BA0, BA1
(Bank select)
A10
Add
Fig. 7 Self refresh entry
command
Burst stop command
( CS , WE = Low, RAS , CAS = High)
This command terminates the current burst operation.
Burst stop is valid at every burst length.
CLK
CKE
H
CS
RAS
CAS
WE
BA0, BA1
(Bank select)
A10
Add
Fig. 8 Burst stop command
No operation
CLK
CKE
( CS = Low, RAS , CAS , WE = High)
This command is not an execution command. No operations begin or terminate
by this command.
H
CS
RAS
CAS
WE
BA0, BA1
(Bank select)
A10
Add
Fig. 9 No operation
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
15/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
BASIC FEATURE AND FUNCTION DESCRIPTIONS
1. CLOCK Suspend
1) Clock Suspended During W rite (BL=4)
2) Clock Suspended During Read (BL=4)
CLK
CMD
WR
RD
CKE
Masked by CKE
Internal
CLK
DQ(CL2)
D0
D1
D2
D3
DQ(CL3)
D0
D1
D2
D3
Q0
Q1
Q2
Q3
Q1
Q2
Q3
Not W ritten
Q0
Suspe nded Dout
2. DQM Operation
2)Read Mask (BL=4)
1)W rit e Mask (BL=4)
CLK
CMD
RD
WR
DQM
Ma s k e d b y D Q M
Ma s k e d b y D Q M
DQ(CL2)
D0
D1
D3
DQ( CL3)
D0
D1
D3
Q0
Hi-Z
Hi-Z
DQ M t o D at a - i n M a s k = 0
Q2
Q3
Q1
Q2
Q3
DQ M to D at a- ou t M a sk = 2
*Note2
3)DQM with clc ok su sp end ed (F ull Page Read )
CLK
CMD
RD
CKE
Internal
CLK
DQM
DQ(CL2)
DQ(CL3)
Q0
Hi-Z
Hi- Z
Q2
Q1
Hi-Z
Hi-Z
Q4
Q3
Hi- Z
Hi-Z
Q6
Q7
Q8
Q5
Q6
Q7
*Note: 1. CKE to CLK disable/enable = 1CLK.
2. DQM masks data out Hi-Z after 2CLKs which should masked by CKE ”L”.
3. DQM masks both data-in and data-out.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
16/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
3. CAS Interrupt (I)
*N ote1
1)R ea d i nt er ru pt ed by R ead (B L =4)
CL K
C MD
RD
RD
ADD
A
B
DQ ( C L 2 )
QA0
D Q ( CL 3 )
QB0
QB1
QB2
QB3
QA0
QB0
QB1
QB2
QB3
t C CD
*N ot e 2
2) Wr i t e i n t er ru pt e d b y W ri t e (B L= 2)
3 )W ri t e in t er rup t ed b y R e ad (B L=2 )
CLK
C MD
WR
WR
t CC D
A DD
DQ
WR
tC CD
* No t e 2
A
B
DA0
DB 0
A
D B1
tC D L
* No t e 3
DQ ( C L 2 )
DA0
D Q ( CL 3 )
DA 0
RD
*N ote 2
B
DB0
DB1
DB 0
DB1
tC D L
* No t e 3
*Note:
1. By “interrupt” is meant to stop burst read/write by external before the end of burst.
By ” CAS interrupt ”, to stop burst read/write by CAS access ; read and write.
2. tCCD: CAS to CAS delay. (=1CLK)
3. tCDL: Last data in to new column address delay. (=1CLK)
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
17/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
4. CAS Interrupt (II): Read Interrupted by Write & DQM
( a) CL =2 , B L= 4
CLK
i)CMD
RD
WR
DQM
DQ
ii)CMD
D0
RD
D1
D2
D3
D1
D2
D3
D1
D2
D3
D1
D2
WR
DQM
Hi-Z
DQ
iii)CMD
D0
WR
RD
DQM
Hi-Z
DQ
iv)CMD
D0
WR
RD
DQM
DQ
Q0
HHi -i -ZZ
D0
D3
*Note1
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
18/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
(b) CL =3 ,B L= 4
CLK
i)CMD
WR
RD
DQM
DQ
D0
ii)CMD
D1
D2
D3
D1
D2
D3
D1
D2
D3
D1
D2
D3
D1
D2
WR
RD
DQM
DQ
D0
iii)CMD
RD
WR
DQM
D0
DQ
iv)CMD
WR
RD
DQM
Hi-Z
DQ
v)CM D
D0
RD
WR
DQM
DQ
Q0
Hi-Z
D0
D3
*Note1
*Note: 1. To prevent bus contention, there should be at least one gap between data in and data out.
5. Write Interrupted by Precharge & DQM
CLK
CMD
WR
PRE
*Note2
DQM
DQ
D0
D1
D3
tRDL(min)
*Note:
*Note3
Masked by DQM
1. To prevent bus contention, DQM should be issued which makes at least one gap between data in and data out.
2. To inhibit invalid write, DQM should be issued.
3. This precharge command and burst write command should be of the same bank, otherwise it is not precharge interrupt
but only another bank precharge of four banks operation.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
19/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
6. Precharge
1) Nor mal W rit e (B L=4)
2) Norm al Read (B L= 4)
CLK
CLK
CMD
WR
DQ
D0
PRE
CMD
RD
PRE
CL=2
Q2
Q3
*Note2
D1
D2
DQ( CL2)
D3
tRDL
Q0
Q1
PRE CL= 3
CMD
*Note1
*Note2
DQ ( CL 3 )
Q0
Q1
Q2
Q3
.
7. Auto Precharge
1)Normal W rit e (BL=4)
2)Normal Read (BL=4)
CLK
CMD
DQ
CLK
CMD
WR
D0
D1
D2
D3
DQ( CL 2)
tRDL
RD
D0
D1
D2
D3
D0
D1
D2
(min )
DQ(CL3)
D3
*Note3
Auto Pr ech arge st art s
*Note3
Auto Pr ech arge st art s
*Note:
1. tRDL: Last data in to row precharge delay.
2. Number of valid output data after row precharge: 1, 2 for CAS Latency = 2, 3 respectively.
3. The row active command of the precharge bank can be issued after tRP from this point.
The new read/write command of other activated bank can be issued from this point.
At burst read/write with auto precharge, CAS interrupt of the same/another bank is illegal.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
20/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
8. Burst Stop & Interrupted by Precharge
1)W rite Bu rst St op (BL=8)
1)W rite interrupted by precharge ( BL=4)
CLK
CLK
CMD
CMD
STOP
WR
DQM
* Note3
WR
tRDL
PRE
*Note4
DQM
DQ
D0
D1
D2
D3
D4
tBDL
D5
DQ
D0
D1
Mask Mask
*Note1
2)Read Burst Stop (BL=4)
2)Read interrupted by precharge (BL=4)
CLK
C LK
CMD
RD
CMD
STOP
RD
PRE
*Note5
*Note2
DQ(CL2)
Q0
Q1
DQ (CL2)
Q0
Q1
Q2
Q3
Q0
Q1
Q2
*Note2
DQ(CL3)
Q0
Q1
DQ(CL3)
Q3
9. MRS
1) Mo d e Re g is te r S e t
CLK
*Note4
CMD
PRE
tRP
*Note:
ACT
MRS
2CLK
1. tBDL: 1 CLK; Last data in to burst stop delay.
Read or write burst stop command is valid at every burst length.
2. Number of valid output data after burst stop: 1, 2 for CAS latency = 2, 3 respectiviely.
3. Write burst is terminated. tBDL determinates the last data write.
4. DQM asserted to prevent corruption of locations D2 and D3.
5. Precharge can be issued here or earlier (satisfying tRAS min delay) with DQM.
6. PRE: All banks precharge, if necessary.
MRS can be issued only at all banks precharge state.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
21/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
10. Clock Suspend Exit & Power Down Exit
1) Cl o ck S u sp en d (= Ac t ive P ow er Do wn ) Exi t
CLK
CLK
CKE
Inter nal
CLK
2)P ower Down (= Pr ec ha rg e Power Down )
tSS
CKE
tSS
Internal
CLK
*Note1
CMD
*Note2
CMD
RD
NOP AC T
11. Auto Refresh & Self Refresh
1)Auto Refresh & Self Refresh
*Note3
CLK
*Note4
CMD
*Note5
PRE
AR
CMD
CKE
tRP
2)Self Refresh
tRFC
*Note6
CLK
*Note4
CMD
SR
PRE
CMD
CKE
tRP
*Note:
tRFC
1. Active power down: one or more banks active state.
2. Precharge power down: all banks precharge state.
3. The auto refresh is the same as CBR refresh of conventional DRAM.
No precharge commands are required after auto refresh command.
During tRFC from auto refresh command, any other command can not be accepted.
4. Before executing auto/self refresh command, all banks must be idle state.
5. MRS, Bank Active, Auto/Self Refresh, Power Down Mode Entry.
6. During self refresh entry, refresh interval and refresh operation are performed internally.
After self refresh entry, self refresh mode is kept while CKE is low.
During self refresh entry, all inputs expect CKE will be don’t cared, and outputs will be in Hi-Z state.
For the time interval of tRFC from self refresh exit command, any other command can not be accepted.
8K cycles of burst auto refresh is required immediately before self refresh entry and immediately after self refresh exit.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
22/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
12. About Burst Type Control
Sequential Counting
At MRS A3 = “0”. See the BURST SEQUENCE TABLE. (BL = 4,8)
BL = 1, 2, 4, 8 and full page.
Interleave Counting
At MRS A3 = “1”. See the BURST SEQUENCE TABLE. (BL = 4,8)
BL = 4, 8 At BL =1, 2 interleave Counting = Sequential Counting
Basic
MODE
Random Random Column Access
MODE
tCCD = 1 CLK
Every cycle Read/Write Command with random column address can realize Random
Column Access.
That is similar to Extended Data Out (EDO) Operation of conventional DRAM.
13. About Burst Length Control
Basic
MODE
1
At MRS A210 = “000”
At auto precharge. tRAS should not be violated.
2
At MRS A210 = “001”
At auto precharge. tRAS should not be violated.
4
At MRS A210 = “010”
8
At MRS A210 = “011”
Full Page
Special
MODE
BRSW
Random
MODE
Burst Stop
Interrupt
MODE
RAS Interrupt
(Interrupted by
Precharge)
CAS Interrupt
At MRS A210 = “111”
At the end of the burst length, burst is warp-around.
At MRS A9 = “1”
Read burst = 1,2,4,8, full page write burst =1
At auto precharge of write, tRAS should not be violated.
tBDL = 1, Valid DQ after burst stop is 1, 2 for CAS latency 2, 3 respectively.
Using burst stop command, any burst length control is possible.
Before the end of burst. Row precharge command of the same bank stops read /write burst
with auto precharge.
tRDL = 1 with DQM , Valid DQ after burst stop is 1, 2 for CAS latency 2, 3 respectively.
During read/write burst with auto precharge, RAS interrupt can not be issued.
Before the end of burst, new read/write stops read/write burst and starts new read/write
burst.
During read/write burst with auto precharge, CAS interrupt can not be issued.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
23/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
FUNCTION TRUTH TABLE (TABLE 1)
Current
State
IDLE
Row
Active
Read
Write
Read with
Auto
Precharge
Write with
Auto
Precharge
CS
RAS
CAS
WE
BA
ADDR
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
L
L
L
L
X
H
H
H
L
L
L
L
X
H
H
H
H
L
L
L
X
H
H
H
H
L
L
L
X
H
H
H
H
L
L
L
X
H
H
H
L
L
X
H
H
H
L
L
X
H
H
L
H
H
L
L
X
H
H
L
L
H
H
L
X
H
H
L
L
H
H
L
X
H
H
L
L
H
H
L
X
H
H
L
H
L
X
H
H
L
H
L
X
H
L
X
H
L
H
L
X
H
L
H
L
H
L
X
X
H
L
H
L
H
L
X
X
H
L
H
L
H
L
X
X
H
L
X
X
X
X
H
L
X
X
X
X
X
X
BA
BA
BA
X
OP code
X
X
X
BA
BA
BA
BA
X
X
X
X
BA
BA
BA
BA
X
X
X
X
BA
BA
BA
BA
X
X
X
X
BA
BA
X
X
X
X
BA
BA
X
X
X
X
CA, A10/AP
RA
A10/AP
X
OP code
X
X
X
CA, A10/AP
CA, A10/AP
RA
A10/AP
X
X
X
X
CA, A10/AP
CA, A10/AP
RA
A10/AP
X
X
X
X
CA, A10/AP
CA, A10/AP
RA
A10/AP
X
X
X
X
CA, A10/AP
RA, RA10
X
X
X
X
CA, A10/AP
RA, RA10
X
Elite Semiconductor Memory Technology Inc.
ACTION
NOP
NOP
ILLEGAL
ILLEGAL
Row (&Bank) Active ; Latch RA
NOP
Auto Refresh or Self Refresh
Mode Register Access
NOP
NOP
ILLEGAL
Begin Read ; latch CA ; determine AP
Begin Write ; latch CA ; determine AP
ILLEGAL
Precharge
ILLEGAL
NOP (Continue Burst to End  Row Active)
NOP (Continue Burst to End  Row Active)
Term burst  Row active
Term burst, New Read, Determine AP
Term burst, New Write, Determine AP
ILLEGAL
Term burst, Precharge timing for Reads
ILLEGAL
NOP (Continue Burst to End  Row Active)
NOP (Continue Burst to End  Row Active)
Term burst  Row active
Term burst, New Read, Determine AP
Term burst, New Write, Determine AP
ILLEGAL
Term burst, Precharge timing for Writes
ILLEGAL
NOP (Continue Burst to End  Row Active)
NOP (Continue Burst to End  Row Active)
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
NOP (Continue Burst to End  Row Active)
NOP (Continue Burst to End  Row Active)
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
Note
2
2
4
5
5
2
2
3
2
3
3
2
3
2
2
Publication Date: Jun. 2012
Revision: 1.1
24/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Current
State
Read with
Auto
Precharge
Row
Activating
Refreshing
Mode
Register
Accessing
Abbreviations:
*Note:
CS
RAS
CAS
WE
BA
ADDR
ACTION
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
H
L
L
L
L
X
H
H
H
L
L
L
X
H
H
H
L
L
L
X
H
H
L
L
X
H
H
H
L
X
H
H
L
H
H
L
X
H
H
L
H
H
L
X
H
L
H
L
X
H
H
L
X
X
H
L
X
H
L
X
X
H
L
X
H
L
X
X
X
X
X
X
X
H
L
X
X
X
X
X
BA
BA
BA
X
X
X
X
BA
BA
BA
X
X
X
X
X
X
X
X
X
X
X
X
X
X
CA
RA
A10/AP
X
X
X
X
CA
RA
A10/AP
X
X
X
X
X
X
X
X
X
X
X
NOP  Idle after tRP
NOP  Idle after tRP
ILLEGAL
ILLEGAL
ILLEGAL
NOP  Idle after tRP
ILLEGAL
NOP  Row Active after tRCD
NOP  Row Active after tRCD
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
NOP  Idle after tRFC
NOP  Idle after tRFC
ILLEGAL
ILLEGAL
ILLEGAL
NOP  Idle after 2clocks
NOP  Idle after 2clocks
ILLEGAL
ILLEGAL
ILLEGAL
RA = Row Address
NOP = No Operation Command
BA = Bank Address
CA = Column Address
Note
2
2
2
4
2
2
2
2
AP = Auto Precharge
1. All entries assume the CKE was active (High) during the precharge clock and the current clock cycle.
2. Illegal to bank in specified state; Function may be legal in the bank indicated by BA, depending on the state of the bank.
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
4. NOP to bank precharge or in idle state. May precharge bank indicated by BA (and A10/AP).
5. Illegal if any bank is not idle.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
25/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
FUNCTION TRUTH TABLE (TABLE2)
Current
State
Self
Refresh
All
Banks
Precharge
Power
Down
All
Banks
Idle
Any State
other than
Listed
above
CKE
( n-1 )
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
L
H
H
L
L
CKE
n
X
H
H
H
H
H
L
X
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
L
H
L
H
L
CS RAS CAS
X
H
L
L
L
L
X
X
H
L
L
L
L
X
X
H
L
L
L
L
L
L
L
X
X
X
X
X
X
X
H
H
H
L
X
X
X
H
H
H
L
X
X
X
H
H
H
L
L
L
L
X
X
X
X
X
X
X
H
H
L
X
X
X
X
H
H
L
X
X
X
X
H
H
L
H
H
L
L
X
X
X
X
X
WE
ADDR
X
X
H
L
X
X
X
X
X
H
L
X
X
X
X
X
H
L
X
H
H
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
RA
X
X
OP Code
X
X
X
X
X
ACTION
INVALID
Exit Self Refresh  Idle after tRFC (ABI)
Exit Self Refresh  Idle after tRFC (ABI)
ILLEGAL
ILLEGAL
ILLEGAL
NOP (Maintain Self Refresh)
INVALID
Exit Self Refresh  ABI
Exit Self Refresh  ABI
ILLEGAL
ILLEGAL
ILLEGAL
NOP (Maintain Low Power Mode)
Refer to Table1
Enter Power Down
Enter Power Down
ILLEGAL
ILLEGAL
Row (& Bank) Active
NOP
Enter Self Refresh
Mode Register Access
NOP
Refer to Operations in Table 1
Begin Clock Suspend next cycle
Exit Clock Suspend next cycle
Maintain Clock Suspend
Note
6
6
7
7
8
8
8
9
9
Abbreviations: ABI = All Banks Idle, RA = Row Address
*Note:
6.CKE low to high transition is asynchronous.
7.CKE low to high transition is asynchronous if restart internal clock.
A minimum setup time 1CLK + tSS must be satisfy before any command other than exit.
8.Power down and self refresh can be entered only from the all banks idle state.
9.Must be a legal command.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
26/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Single Bit Read-Write-Read Cycle (Same Page) @ CAS Latency = 3, Burst Length = 1
tCH
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
tCL
tCC
HIGH
CKE
tRAS
tRC
tS
H
*Note1
CS
tSH
tRCD
tRP
tSS
RAS
tSS
tCCD
tSH
CAS
tSH
ADDR
Ra
tSS
*Note2
BA0,BA1
BS
A10/AP
Ra
tSS
Cb
Ca
*Note2,3
Cc
*Note2,3
*Note2,3
BS
*Note3
*Note4
* Note2
BS
BS
BS
BS
*Note3
*Note3
*Note4
Rb
tSH
tSAC
Qa
DQ
Rb
Db
tSLZ
Qc
tSS
tOH
tSH
WE
tSS
tSS
tSH
DQM
Row Active
R ead
W rite
Row Active
Read
Prec ha rge
:Don't Care
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
27/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Note:
1. All input expect CKE & DQM can be don’t care when CS is high at the CLK high going edge.
2. Bank active @ read/write are controlled by BA0~BA1.
BA0
BA1
Active & Read/Write
0
0
Bank A
0
1
Bank B
1
0
Bank C
1
1
Bank D
3. Enable and disable auto precharge function are controlled by A10/AP in read/write command
A10/AP
0
1
BA0
BA1
Operating
0
0
Disable auto precharge, leave A bank active at end of burst.
0
1
Disable auto precharge, leave B bank active at end of burst.
1
0
Disable auto precharge, leave C bank active at end of burst.
1
1
Disable auto precharge, leave D bank active at end of burst.
0
0
Enable auto precharge, precharge bank A at end of burst.
0
1
Enable auto precharge, precharge bank B at end of burst.
1
0
Enable auto precharge, precharge bank C at end of burst.
1
1
Enable auto precharge, precharge bank D at end of burst.
4. A10/AP and BA0~BA1 control bank precharge when precharge is asserted.
A10/AP
BA0
BA1
Precharge
0
0
0
Bank A
0
0
1
Bank B
0
1
0
Bank C
0
1
1
Bank D
1
X
X
All Banks
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
28/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Power Up Sequence
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
29/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Read & Write Cycle at Same Bank @ Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
HIGH
CKE
t
*Note 1
RC
CS
tRCD
RAS
*Note2
CAS
ADDR
Ra
Ca
Rb
Cb
BA0
BA1
A10/AP
Ra
Rb
CL =2
Qa0
Qa1
Qa2
Db0
Qa3
Db1
Db2
Db3
*Note3
DQ
CL =3
Qa0
Qa 1
Qa2
tRDL
D b0
Qa3
Db1
*No te 3
Db2
Db3
tRDL
WE
DQM
Row Active
( A - Bank )
Read
( A - Bank )
Precharge
( A - Bank )
Row Active
( A - Bank )
Write
( A - Bank )
Precharge
(A - Bank)
:Don't Care
*Note:
1. Minimum row cycle times is required to complete internal DRAM operation.
2. Row precharge can interrupt burst on any cycle. [CAS Latency-1] number of valid output data is available after Row
precharge. Last valid output will be Hi-Z (tSHZ) after the clock.
3. Output will be Hi-Z after the end of burst. (1, 2, 4, 8 & Full page bit burst)
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
30/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Page Read & Write Cycle at Same Bank @ Burst Length = 4
Note: 1. To Write data before burst read ends. DQM should be asserted three cycles prior to write command to avoid bus
contention.
2. Row precharge will interrupt writing. Last data input, tRDL before row precharge , will be written.
3. DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input
data after Row precharge cycle will be masked internally.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
31/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Page Read Cycle at Different Bank @ Burst Length = 4
Note: 1. CS can be don’t cared when RAS , CAS and WE are high at the clock high going edge.
2. To interrupt a burst read by row precharge, both the read and the precharge banks must be the same.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
32/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Page Write Cycle at Different Bank @ Burst Length = 4
*Note:
1. To interrupt burst write by Row precharge, DQM should be asserted to mask invalid input data.
2. To interrupt burst write by Row precharge, both the write and the precharge banks must be the same.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
33/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Read & Write Cycle at Different Bank @ Burst Length = 4
*Note:
1. tCDL should be met to complete write.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
34/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Read & Write cycle with Auto Precharge @ Burst Length = 4
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
35/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Clock Suspension & DQM Operation Cycle @ CAS Latency = 2, Burst Length = 4
*Note: 1. DQM is needed to prevent bus contention
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
36/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Read interrupted by Precharge Command & Read Burst Stop Cycle @ Burst Length = Full page
*Note:
1. About the valid DQs after burst stop, it is same as the case of RAS interrupt.
Both cases are illustrated above timing diagram. See the label 1, 2 on them.
But at burst write, Burst stop and RAS interrupt should be compared carefully.
Refer the timing diagram of “Full page write burst stop cycles”.
2. Burst stop is valid at every burst length.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
37/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Write interrupted by Precharge Command & Write Burst Stop Cycle @ Burst Length = Full page
*Note:
1. Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is defined by
AC parameter of tRDL.
DQM at write interrupted by precharge command is needed to prevent invalid write.
DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input
data after Row precharge cycle will be masked internally.
2. Burst stop is valid at every burst length.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
38/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Active/Precharge Power Down Mode @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
*Note2
tSS
CKE
tSS
*Note1
tSS
*Note3
CS
RAS
CAS
ADDR
Ra
Ca
BA0
BA1
A10/AP
Ra
tSHZ
DQ
Qa0
Qa1
Qa2
WE
DQM
Prec harge
Power-Down
En try
Row Active
Prech arge
Power-Down
Exit
Active
Power-d own
Entry
Read
Precharge
Active
Power-down
Exit
: Don't care
*Note:
1. All banks should be in idle state prior to entering precharge power down mode.
2. CKE should be set high at least 1CLK + tSS prior to Row active command.
3. Can not violate minimum refresh specification.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
39/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Self Refresh Entry & Exit Cycle
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
*Note4
*No te 2
t RFC min
*Note1
*Note6
CKE
*No te 3
tSS
CS
*Note5
RAS
*No te 7
CAS
ADDR
BA0,BA1
A10/ AP
DQ
Hi -Z
Hi-Z
WE
DQM
Self Refresh Entry
Self Refresh Exit
Auto Refresh
: Don't care
*Note:
TO ENTER SELF REFRESH MODE
1. CS , RAS & CAS with CKE should be low at the same clock cycle.
2. After 1 clock cycle, all the inputs including the system clock can be don’t care except for CKE.
3. The device remains in self refresh mode as long as CKE stays “Low”.
cf.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh.
TO EXIT SELF REFRESH MODE
4. System clock restart and be stable before returning CKE high.
5. CS starts from high.
6. Minimum tRFC is required after CKE going high to complete self refresh exit.
7. 8K cycles of burst auto refresh is required immediately before self refresh entry and immediately after self refresh exit.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
40/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Mode Register Set Cycle
0
1
2
Auto Refresh Cycle
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10
CLOCK
HIG H
HIGH
CKE
CS
tRFC
*Note2
RAS
*Note1
CAS
*Note3
ADDR
Key
Ra
HI-Z
HI-Z
DQ
WE
DQM
MRS
New
Command
New Command
Auto Refresh
:Don't Care
All banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.
MODE REGISTER SET CYCLE
*Note:
1. CS , RAS , CAS , & WE activation at the same clock cycle with address key will set internal mode register.
2. Minimum 2 clock cycles should be met before new RAS activation.
3. Please refer to Mode Register Set table.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
41/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
54-LEAD TSOP(II) SDRAM (400mil) (1:3)
A
D
A2
see detail A
28
54
θ
B
L
E
E1
A1
B
L1
DETAIL "A"
Pin 1 identifier
27
1
c1
c
BASE METAL
b
b1
WITH PLANTING
-C-
Seating plane
e
b
Symbol
Min
A
A1
A2
b
b1
c
c1
D
E
E1
L
L1
e
Y
Θ
0.05
0.95
0.30
0.30
0.12
0.10
0.40
0°
SECTION B-B
Y
Dimension in mm
Norm
Max
1.20
0.10
0.15
1.00
1.05
0.45
0.35
0.40
0.21
0.127
0.16
22.22 BSC
11.76 BSC
10.16 BSC
0.50
0.60
0.80 REF
0.80 BSC
0.1
8°
Min
0.002
0.037
0.012
0.012
0.005
0.004
0.016
0°
Dimension in inch
Norm
Max
0.047
0.004
0.006
0.039
0.041
0.018
0.014
0.016
0.008
0.005
0.006
0.875 BSC
0.463 BSC
0.400 BSC
0.020
0.024
0.031 REF
0.031 BSC
0.004
8°
Controlling dimension : Millimeter
(Revision date : May 25 2012)
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
42/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
PACKING
DIMENSIONS
54-BALL
SDRAM ( 8x8 mm )
Symbol
Dimension in mm
Min
Norm
Max
A
1.00
A1
0.20
0.25
0.30
A2
0.61
0.66
0.71
Φb
0.30
0.35
0.40
D
7.90
8.00
8.10
E
7.90
8.00
8.10
D1
6.40
E1
6.40
e
0.80
Controlling dimension : Millimeter.
Elite Semiconductor Memory Technology Inc.
Dimension in inch
Min
Norm
Max
0.039
0.008
0.010
0.012
0.024
0.026
0.028
0.012
0.014
0.016
0.311
0.315
0.319
0.311
0.315
0.319
0.252
0.252
0.031
Publication Date: Jun. 2012
Revision: 1.1
43/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Revision History
Revision
Date
1.0
2011.01.25
Original
2012.06.06
Modify Page 42
θ=10 to 8°
b,b1=0.25 to 0.3mm
1.1
Elite Semiconductor Memory Technology Inc.
Description
Publication Date: Jun. 2012
Revision: 1.1
44/45
ESMT
M12L2561616A (2A)
Operation Temperature Condition -40°C~85°C
Important Notice
All rights reserved.
No part of this document may be reproduced or duplicated in any form or by any means without
the prior permission of ESMT.
The contents contained in this document are believed to be accurate at the time of publication.
ESMT assumes no responsibility for any error in this document, and reserves the right to change
the products or specification in this document without notice.
The information contained herein is presented only as a guide or examples for the application of
our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights,
or other intellectual property rights of third parties which may result from its use. No license, either
express , implied or otherwise, is granted under any patents, copyrights or other intellectual
property rights of ESMT or others.
Any semiconductor devices may have inherently a certain rate of failure. To minimize risks
associated with customer's application, adequate design and operating safeguards against injury,
damage, or loss from such failure, should be provided by the customer when making application
designs.
ESMT's products are not authorized for use in critical applications such as, but not limited to, life
support devices or system, where failure or abnormal operation may directly affect human lives or
cause physical injury or property damage. If products described here are to be used for such
kinds of application, purchaser must do its own quality assurance testing appropriate to such
applications.
Elite Semiconductor Memory Technology Inc.
Publication Date: Jun. 2012
Revision: 1.1
45/45