BF P7 4 0 F ES D BF P7 4 0 F ES D E SD - Ha r d e n e d Si Ge : C Ul tr a L o w No i s e R F Tra n s i s to r wi t h 2 k V ES D Ra ti n g i n 5 – 6 G Hz L NA Ap p l i c a ti o n . 1 7 d B G a i n , 1 .4 d B No i s e Fi g u r e & < 1 0 0 n s T u rn - O n / T u rn - O ff Ti m e Fo r 8 0 2 . 1 1 a & 8 0 2 . 1 1 n “ MI M O” W i re l e s s L A N Ap p l i c a ti o n s Ap p l i c a ti o n N o te A N 2 2 0 Revision: Rev. 1.0 2010-07-02 RF a n d P r o te c ti o n D e vi c e s Edition 2010-07-02 Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. BFP740FESD BFP740FESD for 5-6GHz WLAN applications Application Note AN220 Revision History: 2010-07-02 Previous Revision: prev. Rev. x.x Page Subjects (major changes since last revision) Trademarks of Infineon Technologies AG A-GOLD™, BlueMoon™, COMNEON™, CONVERGATE™, COSIC™, C166™, CROSSAVE™, CanPAK™, CIPOS™, CoolMOS™, CoolSET™, CONVERPATH™, CORECONTROL™, DAVE™, DUALFALC™, DUSLIC™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, E-GOLD™, EiceDRIVER™, EUPEC™, ELIC™, EPIC™, FALC™, FCOS™, FLEXISLIC™, GEMINAX™, GOLDMOS™, HITFET™, HybridPACK™, INCA™, ISAC™, ISOFACE™, IsoPACK™, IWORX™, M-GOLD™, MIPAQ™, ModSTACK™, MUSLIC™, my-d™, NovalithIC™, OCTALFALC™, OCTAT™, OmniTune™, OmniVia™, OptiMOS™, OPTIVERSE™, ORIGA™, PROFET™, PRO-SIL™, PrimePACK™, QUADFALC™, RASIC™, ReverSave™, SatRIC™, SCEPTRE™, SCOUT™, S-GOLD™, SensoNor™, SEROCCO™, SICOFI™, SIEGET™, SINDRION™, SLIC™, SMARTi™, SmartLEWIS™, SMINT™, SOCRATES™, TEMPFET™, thinQ!™, TrueNTRY™, TriCore™, TRENCHSTOP™, VINAX™, VINETIC™, VIONTIC™, WildPass™, X-GOLD™, XMM™, X-PMU™, XPOSYS™, XWAY™. Other Trademarks AMBA™, ARM™, MULTI-ICE™, PRIMECELL™, REALVIEW™, THUMB™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO. OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Sattelite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2009-10-19 Application Note AN220, Rev. 1.0 3 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications List of Content, Figures and Tables Table of Content 1 Overview ............................................................................................................................................. 6 2 Typical Measurement Results........................................................................................................... 6 3 Schematic Diagram ............................................................................................................................ 7 4 Bill of Material ..................................................................................................................................... 8 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9.1 5.9.2 Measured Graphs ............................................................................................................................... 9 Noise Figure ......................................................................................................................................... 9 1 dB Compression Point .................................................................................................................... 11 Gain .................................................................................................................................................... 12 Input Return Loss ............................................................................................................................... 13 Output Return Loss ............................................................................................................................ 15 Reverse Isolation................................................................................................................................ 17 Amplifier Stability ................................................................................................................................ 19 Third Order Intercept Point ................................................................................................................. 20 Turn-On / Turn-Off Time .................................................................................................................... 21 Turn On Time ..................................................................................................................................... 22 Turn Off Time ..................................................................................................................................... 22 6 Details of PC Board Construction .................................................................................................. 24 7 TSFP-4 Package Outline and Footprint ......................................................................................... 26 8 ESD Protection ................................................................................................................................. 27 Authors 28 List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Schematic Diagram .............................................................................................................................. 7 Noise Figure Plot, from Rohde and Schwarz FSEK3 + FSEM30 ........................................................ 9 Input 1 dB Compression Point ........................................................................................................... 11 Forward Gain...................................................................................................................................... 12 Input Return Loss in dB ...................................................................................................................... 13 Input Return Loss, Smith Chart .......................................................................................................... 14 Output Return Loss in dB ................................................................................................................... 15 Output Return Loss, Smith Chart ....................................................................................................... 16 Reverse Isolation................................................................................................................................ 17 Reverse Isolation, Amplifier DC Power turned off.............................................................................. 18 Definition of Stability Factor µ1 .......................................................................................................... 19 Stability Factor.................................................................................................................................... 19 Carrier and Intermodulation Products at LNA’s Output...................................................................... 20 Test setup for Turn-On / Turn-Off measurements ............................................................................. 21 Turn On Time ..................................................................................................................................... 22 Turn Off time ...................................................................................................................................... 23 View of entire PC Board, Top / Component Side............................................................................... 24 Close-In View of LNA Section ............................................................................................................ 24 Backside of PCB ................................................................................................................................ 25 PCB Layer Information ....................................................................................................................... 25 TSFP-4 package outline ..................................................................................................................... 26 Recommended Soldering Footprint ................................................................................................... 26 Application Note AN220, Rev. 1.0 4 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications List of Content, Figures and Tables List of Tables Table 1 Table 2 Table 3 Electrical Characteristics (at room temperature).................................................................................. 6 Bill-of-Materials..................................................................................................................................... 8 Noise Figure, Tabular Data ................................................................................................................ 10 Application Note AN220, Rev. 1.0 5 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Overview 1 Overview The BFP740FESD is a high gain, ultra low noise Silicon-Germanium-Carbon (SiGe:C) HBT device suitable for a wide range of Low Noise Amplifier (LNA) applications. The BFP740FESD has internal ESD-protection structures giving an ESD-survival rating of 2000 Volts per the Human Body Model (HBM), for ESD strikes of either polarity applied across any pair of terminals (Base, Emitter, Collector). The circuit shown in this document is targeted for 802.11a & 802.11n “MIMO” applications in the Wireless Local Area Network (WLAN) market, particularly for Access Points (AP’s) which require external LNA’s to fulfill highsensitivity / long range requirements. LNA’s for this application must be able to switch on / off within about 1 microsecond (1000 nanoseconds). The charge storage (capacitance) used in the circuit is minimized to reduce turn-on / turn-off times. Trade-off for reduced capacitance values is a reduction in Third Order Intercept (IP3) performance. Amplifier is Unconditionally Stable (µ1 > 1.0) from 10 MHz – 12 GHz. External parts count (not including BFP740F transistor) = 12; 6 capacitors, 3 resistors, and 3 chip inductors. All passives are ‘0402’ case size. BFP740FESD transistor package is RoHS – compliant and measures 1.4 x 1.2 x 0.55mm. 2 Typical Measurement Results Table 1 Electrical Characteristics (at room temperature) Parameter Symbol Value Unit Frequency Freq 5.470 GHz DC Voltage Vcc 3.0 V DC Current Icc 14.8 mA Gain G 17.1 dB Network analyzer source power = -25 dBm Noise Figure NF 1.4 dB Does not extract PCB loss. If PCB loss at input were extracted, NF would be ~0.2 dB lower Input Return Loss RLin 11.4 dB Network analyzer source power = -25 dBm Output Return Loss RLout 10.3 dB Network analyzer source power = -25 dBm Reverse Isolation IRev 24.9 dB Network analyzer source power = -25 dBm When DC Power to LNA is OFF: 14.2dB Input P1dB IP1dB -8.7 dBm Output P1dB OP1dB +7.4 dBm Input IP3 IIP3 +0.8 dBm Input power -23dBm / tone, ∆f = 1MHz Output IP3 OIP3 +17.9 dBm Input power -23dBm / tone, ∆f = 1MHz Application Note AN220, Rev. 1.0 6 / 29 Comment/Test Condition 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Schematic Diagram 3 Schematic Diagram Figure 1 Schematic Diagram Application Note AN220, Rev. 1.0 7 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Bill of Material 4 Bill of Material Table 2 Bill-of-Materials Symbol Value Unit Size Manufacturer Comment C1 0.4 pF 0402 Input matching C2 1.5 pF 0402 Murata GRM1555C1HR30BZ01D or equivalent various Input DC block, input matching C3 1.5 pF 0402 various RF decoupling / blocking cap C4 33 pF 0402 various RF decoupling / blocking cap C5 1.2 pF 0402 various RF decoupling / blocking cap C6 0.3 pF 0402 L1 6.8 nH 0402 L2 1.3 nH 0402 Murata LQP15M series L3 1.5 nH 0402 Murata LQP15M series R1 22 Ω 0402 various RF Choke at LNA output, for DC bias to collector. Also influences matching and stability. Output matching; also influences input match. For RF stability improvement R2 30 kΩ 0402 various DC biasing (base). R3 39 Ω 0402 various DC biasing (provides DC negative feedback to stabilize DC operating point over temperature variation, transistor hFE variation, etc.) TSFP-4 Infineon Technologies LNA active device Q1 BFP740FESD Murata Output DC block and output GRM1555C1HR30BZ01D matching. Also influences input or equivalent match. Murata LQP15M series RF Choke at LNA input (for DC bias to base). J1, J2 RF Edge Mount SMA Female Connector, 142-0701-841 Emerson / Johnson Input / Output RF connector J3 MTA-100 Series 5 pin connector 640456-5 PC Board, Part # 740F-080919 Rev A Tyco (AMP) 5 Pin DC connector header Infineon Technologies Printed Circuit Board --- Application Note AN220, Rev. 1.0 8 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs 5 Measured Graphs The reference plane of all data displayed here are the input and output SMA connectors of the evaluation board. This means all PCB losses and SMA connector losses are included. 5.1 Noise Figure Rohde & Schwarz 25 Jun 2010 Noise and Gain Measurement EUT Name: Manufacturer: Operating Conditions: Operator Name: Test Specification: Comment: BFP740FESD 5 - 6 GHz LNA, Fast Switching / Fast Turn ON Turn OFF time Infineon Technologies Vcc = 3.0 V, Vce = 2.1V, I = 14.2mA Gerard Wevers WLAN 802.11n PCB = 740FESD-100503 Rev A 22 June 2010 Analyzer RF Att: Ref Lvl: 0.00 dB -46.00 dBm RBW : VBW : 1 MHz 100 Hz Range: 30.00 dB Ref Lvl auto: ON Measurement 2nd stage corr: ON Mode: Direct ENR: 346A173.ENR Noise Figure /dB 2.00 1.90 1.80 1.70 1.60 1.50 1.40 1.30 1.20 1.10 1.00 4800 MHz Figure 2 120 MHz / DIV 6000 MHz Noise Figure Plot, from Rohde and Schwarz FSEK3 + FSEM30 Application Note AN220, Rev. 1.0 9 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs Table 3 Frequency / MHz 1 1 Noise Figure, Tabular Data NF / dB Noise Temperature / K 4800 1.41 111.1 4850 1.41 111.5 4900 1.4 110.1 4950 1.4 109.9 5000 1.38 108.6 5050 1.39 109.7 5100 1.37 107.8 5150 1.38 108.9 5200 1.38 108.6 5250 1.4 110 5300 1.37 107.3 5350 1.37 107.3 5400 1.37 108 5450 1.39 109.1 5500 1.37 107.6 5550 1.39 109.7 5600 1.43 113.4 5650 1.36 106.5 5700 1.42 111.7 5750 1.39 109.3 5800 1.41 111.5 5850 1.43 113.5 5900 1.42 112.5 5950 1.44 114.4 6000 1.45 114.7 Taken with Rohde & Schwarz FSEM30 + FSEK3; System Preamplifier: MITEQ 4-8 GHz LNA Application Note AN220, Rev. 1.0 10 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs 5.2 1 dB Compression Point Gain Compression at 5470 MHz, VCC = +3.0 V, I = 14.2mA, VCE = 2.1V, T = 25°C: Rohde & Schwarz ZVB20 Vector Network Analyzer is set up to sweep input power to LNA at a fixed frequency of 5470 MHz. X-axis of VNA screen-shot below shows input power to LNA being swept from –30 to –5 dBm. ZVB20 output power over sweep range is calibrated at end of test cable (reference plane at input SMA connector to Amplifier Under Test) with Rohde & Schwarz NRP-Z21 power sensor. Input 1 dB compression point = - 8.7 dBm Output 1dB compression point = - 8.7 dBm + (Gain – 1dB) = -8.7 dBm + 16.1 dB = +7.4 dBm Trc1 S21 dB Mag 0.5 dB / Ref 16 dB Cal int PCal Offs 1 M 1 -24.56 dBm • M 2 -8.70 dBm S21 17.089 dB 16.080 dB 17.5 M1 17.0 16.5 M2 16.0 15.5 15.0 14.5 14.0 13.5 Ch1 Start -30 dBm Freq 5.47 GHz Stop -5 dBm 6/23/2010, 6:40 AM Figure 3 Input 1 dB Compression Point Application Note AN220, Rev. 1.0 11 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs 5.3 Gain Input / Output Matching Circuits of LNA reduce gain in 2.4 – 2.5 GHz band Trc1 S21 dB Mag 10 dB / Ref 0 dB Cal Offs 1 M1 M2 M3 •M 4 S21 30 5.150000 5.470000 5.825000 2.483500 GHz GHz GHz GHz 17.100 17.085 16.655 4.4037 dB dB dB dB M 1M 2M 3 20 10 M4 0 -10 -20 -30 -40 -50 Ch1 Start 10 MHz Pwr -25 dBm Stop 12 GHz 6/23/2010, 6:14 AM Figure 4 Forward Gain Application Note AN220, Rev. 1.0 12 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs 5.4 Input Return Loss Trc1 S11 dB Mag 3 dB / Ref 0 dB Cal Offs 1 M1 M2 M3 •M 4 S11 12 5.150000 5.470000 5.825000 2.483500 GHz GHz GHz GHz -9.4544 -11.366 -9.4706 -2.5552 dB dB dB dB 9 6 3 0 M4 -3 -6 M1 M3 -9 M2 -12 Ch1 Start 10 MHz Pwr -25 dBm Stop 12 GHz 6/23/2010, 6:13 AM Figure 5 Input Return Loss in dB Application Note AN220, Rev. 1.0 13 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs Trc1 S11 Smith Ref 1 U Cal Offs 1 1 S11 M 1 5.150000 GHz 99.954 j7.7221 238.64 2 M 2 5.470000 GHz 69.548 -j26.760 1.087 M 3 5.825000 GHz 32.483 -j22.831 5 1.197 • M 4 2.483500 GHz 7.3646 -j4.2856 M1 14.954 0.5 0 0.2 0.5 1 M4 2 5 Ω Ω pH Ω Ω pF Ω Ω pF Ω Ω pF M2 M3 -5 -0.5 -2 -1 Ch1 Start 10 MHz Pwr -25 dBm Stop 12 GHz 6/23/2010, 6:10 AM Figure 6 Input Return Loss, Smith Chart Application Note AN220, Rev. 1.0 14 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs 5.5 Output Return Loss Trc1 S22 dB Mag 5 dB / Ref 0 dB Mem2[Trc1] S11 dB Mag 5 dB / Ref 0 dB Cal Offs Invisible 1 M1 M2 M3 •M 4 S22 10 5.150000 5.470000 5.825000 2.483500 GHz GHz GHz GHz -9.2165 -10.323 -14.328 -0.6761 dB dB dB dB 5 M4 0 -5 M1 M2 -10 M3 -15 -20 -25 -30 Ch1 Start 10 MHz Pwr -25 dBm Stop 12 GHz 11/14/2008, 9:42 AM Figure 7 Output Return Loss in dB Application Note AN220, Rev. 1.0 15 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs Trc1 S22 Smith Ref 1 U Cal Offs 1 1 S22 M 1 5.150000 GHz M4 0.5 M3 0 0.2 0.5 1 M2 35.800 -j20.169 1.532 2 M 2 5.470000 GHz 32.573 -j5.8874 4.942 M 3 5.825000 GHz 45.974 j3.3389 5 91.227 • M 4 2.483500 GHz 2.3068 j25.616 1.642 2 5 Ω Ω pF Ω Ω pF Ω Ω pH Ω Ω nH M1 -5 -0.5 -2 -1 Ch1 Start 10 MHz Pwr -25 dBm Stop 12 GHz 6/23/2010, 6:20 AM Figure 8 Output Return Loss, Smith Chart Application Note AN220, Rev. 1.0 16 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs 5.6 Reverse Isolation Trc1 S12 dB Mag 10 dB / Ref 0 dB Cal Offs 1 M1 M2 M3 •M 4 S12 10 5.150000 5.470000 5.825000 2.483500 GHz GHz GHz GHz -25.494 -24.886 -24.640 -45.494 dB dB dB dB 0 -10 -20 M 1M 2M 3 -30 -40 M4 -50 -60 -70 Ch1 Start 10 MHz Pwr -25 dBm Stop 12 GHz 6/23/2010, 6:18 AM Figure 9 Reverse Isolation Application Note AN220, Rev. 1.0 17 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs Trc1 S12 dB Mag 10 dB / Ref 0 dB Cal Offs 1 M1 M2 M3 •M 4 S12 10 5.150000 5.470000 5.825000 2.483500 GHz GHz GHz GHz -15.536 -14.212 -12.234 -34.711 dB dB dB dB 0 M3 M 1M 2 -10 -20 M4 -30 -40 -50 -60 -70 Ch1 Start 10 MHz Pwr -25 dBm Stop 12 GHz 6/23/2010, 6:19 AM Figure 10 Reverse Isolation, Amplifier DC Power turned off Application Note AN220, Rev. 1.0 18 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs 5.7 Amplifier Stability Rohde and Schwarz ZVB Network Analyzer calculates and plots stability factor “µ1” of the BFP740FESD 1 amplifier in real time. Stability Factor µ1 is defined as follows : Figure 11 Definition of Stability Factor µ1 The necessary and sufficient condition for Unconditional Stability is µ1 > 1.0. In the plot, µ1 > 1.0 over 10 MHz – 12 GHz; amplifier is Unconditionally Stable over 10 MHz – 12 GHz frequency range. Trc1 µ1 Lin Mag 200 mU/ Ref 1.6 U Cal Offs 1 M1 M2 M3 •M 4 µ1 2200.0 5.150000 5.470000 5.825000 2.483500 GHz GHz GHz GHz 1.1979 1.3102 1.5296 1.0403 U U U U 2000.0 1800.0 M3 1600.0 M2 1400.0 M1 1200.0 M4 1000.0 800.0 600.0 Ch1 Start 10 MHz Pwr -25 dBm Stop 12 GHz 6/23/2010, 6:23 AM Figure 12 1 Stability Factor “Fundamentals of Vector Network Analysis”, Michael Hiebel, 4th edition 2008, pages 175 – 177, ISBN 978-3-939837-06-0 Application Note AN220, Rev. 1.0 19 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs 5.8 Third Order Intercept Point In-Band Third Order Intercept (IIP3) Test. Input Stimulus: f1=5470 MHz, f2=5471 MHz, -23 dBm each tone. Input IP3 = -23 + (47.5 / 2) = +0.8 dBm. Figure 13 Output IP3 = +0.8 dBm + 17.1 dB gain = +17.9 dBm. Carrier and Intermodulation Products at LNA’s Output Application Note AN220, Rev. 1.0 20 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs 5.9 Turn-On / Turn-Off Time The amplifier is tested for turn-on / turn-off time. See diagram below. The RF signal generator runs continuously at a power level sufficient to drive the output of the LNA to approximately 0 dBm when the LNA has DC power ON. Agilent DSO6104A Digital Oscilloscope +3 Volts Ch. 1 (Trigger, edge) 1 Megaohm input Z Amplifier 6 dB Attenuator Pad Signal Generator f=5470 MHz Agilent 8473B Detector Ch. 2 (50 ohm input Z) ! Note ! Set Ch. 2 Input Impedance to 50 ohms, not 1M ohm! 1M ohm setting will not allow detector to discharge rapidly, and will give erroneous results to turn-off time measurment, e.g. will indicate excessively long turn-off times. 1. Signal Generator set such that output power of BFP740F LNA is approx. 0 dBm when LNA is powered ON 2. Channel 1 of oscilloscope monitors input power supply voltage to Amplifier (+3.0 volts when ON, ~ 0 volts when OFF) 3. Channel 2 of oscilloscope monitors rectified RF output of Amplifier 4. To make measurement of turn-on time, turn power supply OFF, reset o’scope, setup trigger to trigger on rising edge of Ch.1 5. To make measurement of turn-off time, turn power supply ON, reset o’scope, setup trigger to trigger on falling edge of Ch. 1 Figure 14 Test setup for Turn-On / Turn-Off measurements Application Note AN220, Rev. 1.0 21 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs 5.9.1 Turn On Time Refer to oscilloscope screen-shot below. Upper trace (yellow, Channel 1) is the DC power supply turn-on step waveform whereas the lower trace (green, Channel 2) is the rectified RF output signal of the LNA stage. Amplifier turn-on time is aproximately 35 ns, or 0.035 ms. Main source of time delay in the LNA turn-on and turn-off events are the R-C time constants formed by (R3 * C4), [(R2+R3) * C3], etc. Charge storage has been minimized in this circuit so as to speed up turn on and turn off times. (Refer to Figure 1). Figure 15 Turn On Time 5.9.2 Turn Off Time Upper trace (Channel 1, yellow color) is the falling edge of the DC power supply voltage. Rectified RF output signal (Channel 2, lower green trace) takes about ~ 25 ns or ~ 0.025 ms to settle out after power supply is turned off. Note that input impedance of digital oscilloscope which senses RF Detector Diode output is set to 50 Ω, rather than 1 MΩ, to permit RF Detector Diode to rapidly discharge after Amplifier is turned off. If input impedance of oscilloscope is set to 1 MΩ, the RF Detector will have to discharge through this 1 MΩ impedance, giving excessively long results for the turn-off time measurement. Application Note AN220, Rev. 1.0 22 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Measured Graphs Figure 16 Turn Off time Application Note AN220, Rev. 1.0 23 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Details of PC Board Construction 6 Details of PC Board Construction Figure 17 View of entire PC Board, Top / Component Side Figure 18 Close-In View of LNA Section Application Note AN220, Rev. 1.0 24 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Details of PC Board Construction Figure 19 Backside of PCB PC board is fabricated from standard, low-cost “FR4” glass-epoxy material. A cross-section diagram of the PC board is given below. PCB CROSS SECTION 0.012 inch / 0.305 mm TOP LAYER INTERNAL GROUND PLANE 0.028 inch / 0.711 mm ? LAYER FOR MECHANICAL RIGIDITY OF PCB, THICKNESS HERE NOT CRITICAL AS LONG AS TOTAL PCB THICKNESS DOES NOT EXCEED 0.045 INCH / 1.14 mm (SPECIFICATION FOR TOTAL PCB THICKNESS: 0.040 + 0.005 / - 0.005 INCH; 1.016 + 0.127 mm / - 0.127 mm ) BOTTOM LAYER Figure 20 PCB Layer Information Application Note AN220, Rev. 1.0 25 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications TSFP-4 Package Outline and Footprint 7 TSFP-4 Package Outline and Footprint Dinensions in millimeters. Note maximum package height is 0.59 mm / 0.023 inch Figure 21 TSFP-4 package outline Recommended Soldering Footprint for TSFP-4 (dimensions in millimeters). Device package is to be oriented as shown in above drawing (e.g. orient long package dimension horizontally on this footprint). Figure 22 Recommended Soldering Footprint Application Note AN220, Rev. 1.0 26 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications ESD Protection 8 ESD Protection Electrostatic discharge (ESD) plays an important role when ESD sensitive devices are connected to exposed interfaces or antennas that can be touched by humans. This is usually applicable to low noise amplifiers (LNAs) and therefore LNAs must be properly protected against ESD in order to avoid irreversible damage of the LNA. For mobile applications low voltage supply and low current consumption is a major issue that requires new technologies with smaller transistor structures. However, the smaller the transistor structure the more sensitive the transistor is to ESD events. Therefore, RF-LNAs based on new front-end technologies have already ESD protection elements integrated on-chip, e.g. BFP740FESD, BFP640FESD, BFP540FESD. These on-chip ESD protection techniques are always a compromise between good ESD protection and RF performance. Integrated RF ESD concepts hardly ever achieve an ESD protection above ±2 kV according HBM. An on-chip ESD protection of ±1 kV HBM (component level ESD test JEDEC JESD 22-A115) is quite sufficient to protect the chip from ESD events in the manufacturing environment where stringent measures are taken to prevent electrostatic buildup. However in the field, exposed antennas, for example, always require higher ESD protection levels of at least ±8kV up to ±15kV. Additional the more stringent system level test according to IEC61000-4-2 is applied. Therefore a special ESD protection becomes mandatory to handle the majority of the ESD current. An ESD protection based on silicon TVS diodes fits perfect to keep the residual ESD stress for the subsequent device as small as possible. For high frequency applications (2.4GHz and 5GHz WLAN) ESD protection diodes with ultra low line capacitances are required. Infineon offers ultra low clamping voltage and ultra low capacitance, 0.2pF line capacitance, ESD protection diodes in leadless packages of EIA case 0402 (TSLP-2-17) as well as 0201 (TSSLP-2-1): ESD0P2RF-02LRH / -02LS The Infineon TVS diode ESD0P2RF has a line capacitance of only 0.2 pF and comes in either a TSLP-2-17 package (1 mm x 0.6 mm x 0.39 mm) or a super small TSSLP-2-1 package (0.62 mm x 0.32 mm x 0.31 mm). The ESD0P2 ESD diode is a bidirectional TVS diode with a maximum working voltage of ±5.3V. It is capable of handling TX power levels of up to +20dBm without influencing the signal integrity, EVM and harmonic generation. Therefore it is well suited for WLAN 2.4GHz and for a lot of 5GHz applications as well. Application Note AN220, Rev. 1.0 27 / 29 2010-07-02 BFP740FESD BFP740FESD for 5-6GHz WLAN applications Authors Authors Jerry Wevers, Senior Staff Engineer of Business Unit “RF and Protection Devices” Dietmar Stolz, Staff Engineer of Business Unit “RF and Protection Devices” Application Note AN220, Rev. 1.0 28 / 29 2010-07-02 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG AN220