IRDC3894-P3V3 - International Rectifier

IRDC3894-P3V3
SupIRBuck
TM
USER GUIDE FOR IR3894 EVALUATION BOARD
3.3Vout
DESCRIPTION
The IR3894 is a synchronous buck
converter, providing a compact, high
performance and flexible solution in a small
5mm X 6 mm Power QFN package.
Key features offered by the IR3894 include
internal Digital Soft Start/Soft Stop, precision
0.5Vreference voltage, Power Good,
thermal protection, programmable switching
frequency, Enable input, input under-voltage
lockout for proper start-up, enhanced line/
load regulation with feed forward, external
frequency synchronization with smooth
clocking, smart internal LDO and pre-bias
start-up.
Output over-current protection function is
implemented by sensing the voltage developed
across the on-resistance of the synchronous
rectifier MOSFET for optimum cost and
performance and the current limit is thermally
compensated.
This user guide contains the schematic and bill
of materials for the IR3894 evaluation board.
The guide describes operation and use of the
evaluation board itself. Detailed application
information for IR3894 is available in the
IR3894 data sheet.
BOARD FEATURES
• Vin = +12V (+ 13.2V Max)
•Vout = +3.3V @ 0- 12A
• Fs= 1MHz
• L= 0.51uH
• Cin= 4x10uF (ceramic 1206) + 1X330uF (electrolytic)
• Cout= 7x22uF (ceramic 0805)
8/15/2013
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
1
IRDC3894-P3V3
CONNECTIONS AND OPERATING INSTRUCTIONS
A well regulated +12V input supply should be connected to VIN+ and VIN-. A maximum of 12A load should
be connected to VOUT+ and VOUT-. The input and output connections of the board are listed in Table I.
IR3894 has only one input supply and internal LDO generates Vcc from Vin. If operation with external Vcc
is required, then R15 can be removed and external Vcc can be applied between Vcc+ and Vcc- pins. Vin pin
and Vcc/LDOout pins should be shorted together for external Vcc operation (use zero ohm resistor for R29).
The output can track voltage at the Vp pin. For this purpose, Vref pin is to be connected to ground (use zero
ohm resistor for R21). The value of R14 and R28 can be selected to provide the desired tracking ratio
between output voltage and the tracking input.
Table I. Connections
Connection
Signal Name
VIN+
Vin (+12V)
VIN-
Ground of Vin
Vout+
Vout(+3.3V)
Vout-
Ground for Vout
Vcc+
Vcc/ LDO_out Pin
Vcc-
Ground for Vcc input
Enable
Enable
PGood
Power Good Signal
Gnd
Analog ground
LAYOUT
The PCB is a 4-layer board (2.23”x2”) using FR4 material. All layers use 2 Oz. copper. The PCB
thickness is 0.062”. The IR3894 and other major power components are mounted on the top side of the
board.
Power supply decoupling capacitors, the bootstrap capacitor and feedback components are located
close to IR3894. The feedback resistors are connected to the output at the point of regulation and are
located close to the SupIRBuck IC. To improve efficiency, the circuit board is designed to minimize the
length of the on-board power ground current path.
8/15/2013
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
2
IRDC3894-P3V3
Vin
Gnd
Gnd
Vout
Enable
Top View
VDDQ
Vref
Sync
PGood
AGnd
S_Ctrl Vsns Vcc+ Vcc-
Bottom View
Fig. 1: Connection Diagram of IR3895/94 Evaluation Boards
8/15/2013
3
IRDC3894-P3V3
Fig. 2: Board Layout-Top Layer
Single point connection between
Analog Gnd and PGnd
Fig. 3: Board Layout-Bottom Layer
8/15/2013
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
4
IRDC3894-P3V3
Fig. 4: Board Layout-Mid Layer 1
Fig. 5: Board Layout-Mid Layer 2
8/15/2013
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
5
N/S
R28
PGood
1
Vcc
R17
49.9K
N/A
C10
R14
0
VDDQ
C11
6.8nF
S_Ctrl
23.2K
C26
R1
1.87K
R9
180pF
1
C12
100pF
0
R13
6
16
5
4
3
1
N/S
C37
IR3894
R7
(N/S)
SW
PVin
U1
R3
787
75
R4
PGnd
C32
1.0uF
49.9K
C8
R2
2200pF
0
R50
PGND
4.42K
11
12
C7
0.1uF
13
R10
0
A
NS
R6
20
Vsns
C25
0.1uF
C24
B
1
VCC
R29
R12
787
4.42K
R11
L1
0.51uH
N/S
R15
0
C34 C33 C30
N/S 22uF N/S
C9
C28
N/S
+ C36
N/S
+ C35
N/S
C27
N/S
C6
N/S
C29
N/S
N/S
Fig. 6: Schematic of the IR3894 evaluation board
C21 C23
N/S 2.2uF
VCC
S_Ctrl
Vp
Rt_Sy nc
AGnd
COMP
FB
9.09k
2
VREF
R19
9
Vin
PGood
7
SY NC
1
Boot
1
15
Enable
Vcc/LDO_OUT
10
1
1
14
Vsns
8
R21
N/S
1
AGND
17
VREF
1
R18
1
8/15/2013
1
Enable
C20
22uF
C5
10uF
C19
22uF
C4
10uF
C3
C18
22uF
C16
22uF
C2
10uF
C17
22uF
10uF
C1 +
1
1
C15 C14
22uF 0.1uF1
330uF/25V
1
Vout-
Vout+(3.3Vout)
Vin-
Vin+
IRDC3894-P3V3
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
6
IRDC3894-P3V3
Bill of Materials
BOM IRDC3894 Vin-12V Vout-3.3V/12A Freq-1MHz Rev B PCB
Item Qty Part Reference
Value
1
1
C1
330uF
2
4
C3 C4 C5 C6
10uF
3
3
C7 C14 C24
0.1uF
4
1
C12
1nF
5
1
C8
2200pF
6
1
C11
180pF
7
7
C15 C16 C17 C18 C19
C20 C33
22uF
Description
Manufacturer Part Num ber
SMD Electrolytic F size 25V 20% Panasonic
EEV-FK1E331P
1206, 25V, X5R, 20%
TDK
C3216X5R1E106M
0603, 25V, X7R, 10%
0603, 25V, COG, 5%
Murata
GRM188R71E104KA01B
Murata
GRM1885C1E102JA01D
0603,50V,X7R,10%
0603, 50V, COG, 5%
Murata
Murata
GRM188R71H222KA01B
GRM1885C1H181JA01D
0805, 6.3V, X5R, 20%
TDK
C2012X5R0J226M
8
1
C23
2.2uF
0603, 16V, X5R, 20%
TDK
C1608X5R1C475M
9
1
C26
6.8nF
0603, 25V, X7R, 10%
Murata
GRM188R71E682KA01J
10
1
C32
1.0uF
0603, 25V, X5R, 10%
Murata
GRM188R61E105KA12D
11
1
L1
0.51uH
Vitec
59PR9876N
12
1
R1
1.87k
SMD 11.0x7.2x7.5mm,0.29mΩ
Thick Film, 0603,1/10W,1%
Panasonic
ERJ-3EKF1871V
13
2
R2 R11
4.42k
Thick Film, 0603,1/10W,1%
Panasonic
ERJ-3EKF4421V
14
2
R3 R12
787
Thick Film, 0603,1/10W,1%
Panasonic
ERJ-3EKF7870V
15
1
R4
75
Thick Film, 0603,1/10W,1%
Panasonic
ERJ-3EKF75R0V
16
1
R6
20
Thick Film, 0603,1/10W,1%
Panasonic
ERJ-3EKF20R0V
17
1
R9
23.2k
Thick Film, 0603,1/10W,1%
Panasonic
ERJ-3EKF2322V
18
5
R10 R13 R14 R15 R50
0
Thick Film, 0603,1/10W
Panasonic
ERJ-3GEY0R00V
19
2
R17 R18
49.9k
Thick Film, 0603,1/10W,1%
Panasonic
ERJ-3EKF4992V
20
1
R19
9.09k
Thick Film, 0603,1/10W,1%
Panasonic
ERJ-3EKF9091V
21
1
U1
IR3894
PQFN 5x6mm
IR
IR3895MPBF
8/15/2013
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
7
IRDC3894-P3V3
TYPICAL OPERATING WAVEFORMS
Vin=12.0V, Vo=3.3V, Io=0-12A, Room Temperature, no airflow
Fig. 7: Start up at 12A Load
Ch1:Vo, Ch2:Vin, Ch3:PGood,Ch4:Enable
Fig. 8: Start up at 12A Load
Ch1:Vo, Ch2:Vin, Ch3: PGood,Ch4:Vcc
Fig. 9: Start up with Pre Bias , 0A Load,
Ch1:Vo
Fig. 10: Output Voltage Ripple, 12A load
Ch1: Vo ,
Fig. 11: Inductor node at 12A load
Ch1:Switch Node
Fig. 12: Short circuit (Hiccup) Recovery
Ch1:Vo , Ch4:Io
8/15/2013
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
8
IRDC3894-P3V3
TYPICAL OPERATING WAVEFORMS
Vin=12.0V, Vo=3.3V, Io=0-12A, Room Temperature, no air flow
Fig. 13: Transient Response, 6A to 12A step @2.5A/usec slew rate
Ch1:Vo
Ch4-Io
8/15/2013
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
9
IRDC3894-P3V3
TYPICAL OPERATING WAVEFORMS
Vin=12.0V, Vo=3.3V, Io=0-12A, Room Temperature
Fig. 14: Bode Plot at 12A load shows a bandwidth of 160.9kHz and phase margin of 48.3º
8/15/2013
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
10
IRDC3894-P3V3
TYPICAL OPERATING WAVEFORMS
Vin=12.0V, Vo=3.3V, Io=0-12A, Room Temperature, no air flow
Fig (15) Soft start and soft stop using S_Ctrl pin
Fig (16) Feed Forward for Vin change from 7 to 16V and back to 7V
Ch2-Vo Ch3-Vin
8/15/2013
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
11
IRDC3894-P3V3
TYPICAL OPERATING WAVEFORMS
Vin=12.0V, Vo=3.3V, Io=0-12A, Room Temperature, no air flow
95
93
Efficiency (%)
91
89
87
85
83
81
79
77
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
75
Load Current (A)
Fig.17: Efficiency versus load current
4.0
Power Dissipation (W)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
Load Current (A)
Fig.18: Power loss versus load current
8/15/2013
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
12
IRDC3894-P3V3
THERMAL IMAGES
Vin=12.0V, Vo=3.3V, Io=0-12A, Room Temperature, No Air flow
Fig. 19: Thermal Image of the board at 10A load
Test point 1 is IR3894: 95.600C
Test point 2 is inductor: 70.960C
8/15/2013
13
IRDC3894-P3V3
PACKAGE INFORMATION
DIM
A
A1
b
b1
c
D
E
e
e1
e2
MILIMITERS
MIN
MAX
0.800 1.000
0.000 0.050
0.375 0.475
0.250 0.350
0.203 REF.
5.000 BASIC
6.000 BASIC
1.033 BASIC
0.650 BASIC
0.852 BASIC
INCHES
MIN
MAX
0.0315 0.0394
0.0000 0.0020
0.1477 0.1871
0.0098 0.1379
0.008 REF.
1.969 BASIC
2.362 BASIC
0.0407 BASIC
0.0256 BASIC
0.0335 BASIC
DIM
L
M
N
O
P
Q
R
S
t1, t2, t3
t4
t5
MILIMITERS
MIN
MAX
0.350 0.450
2.441 2.541
0.703 0.803
2.079 2.179
3.242 3.342
1.265 1.365
2.644 2.744
1.500 1.600
0.401 BASIC
1.153 BASIC
0.727 BASIC
INCHES
MIN
MAX
0.0138 0.0177
0.0961 0.1000
0.0277 0.0316
0.0819 0.0858
0.1276 0.1316
0.0498 0.0537
0.1041 0.1080
0.0591 0.0630
0.016 BACIS
0.045 BASIC
0.0286 BASIC
Figure 20: Package Dimensions
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
This product has been designed and qualified for the Industrial market
Visit us at www.irf.com for sales contact information
Data and specifications subject to change without notice. 11/11
8/15/2013
Confidential
This evaluation board is a preliminary version meant for the engineering evaluation of the IR3894.
Based on the results of the continuing evaluation, this board can evolve and change without notice
14