HT77xxS 100mA PFM Synchronous Step-up DC/DC Converter Features General Description • Low start-up voltage: 0.7V (Typ.) The HT77xxS devices are a high efficiency PFM synchronous step-up DC-DC converter series which are designed to operate with both wire wound chip power inductors and also with multi-layered chip power inductors. The device series have the advantages of extremely low start-up voltage as well as high output voltage accuracy. Being manufactured using CMOS technology ensures ultra low supply current. Because of their higher operating frequency, up to 500 kHz, the devices have the benefits of requiring smaller outline type lower value external inductors and capacitors. The higher operating frequency also offers the advantages of much reduced audio frequency noise. The devices require only three external components to provide a fixed output voltage of 1.8V, 2.2V, 2.7V, 3.0V, 3.3V, 3.7V or 5.0V. • High efficiency: 1.8V ≤ VOUT ≤ 2.2V upper 80%, 2.7V ≤ VOUT ≤ 5.0V upper 85% (Typ.) • High output voltage accuracy: ±2.5% • Output voltage: 1.8V, 2.2V, 2.7V, 3.0V, 3.3V, 3.7V, 5.0V • Output current up to 100mA • Ultra low supply current IDD: 4μA (Typ.) • Low ripple and low noise • Low shutdown current: 0.1μA (Typ.) • TO92, SOT89, SOT23 and SOT23-5 package Applications • Palmtops/PDAs The HT77xxS devices include an internal oscillator, PFM control circuit, driver transistor, reference voltage unit and a high speed comparator. They employ pulse frequency modulation techniques, to obtain minimum supply current and ripple at light output loading. These devices are available in space saving TO92, SOT89, SOT23 and SOT23-5 packages. For SOT23-5 package types, they also include an internal chip enable function to reduce power consumption when in the shutdown mode. • Portable communicators/Smartphones • Cameras/Camcorders • Battery-powered equipment Selection Table Rev. 1.20 Part No. Output Voltage HT7718S 1.8V HT7722S 2.2V HT7727S 2.7V HT7730S 3.0V HT7733S 3.3V HT7737S 3.7V HT7750S 5.0V 1 Tolerance Package ±2.5% TO92 SOT89 SOT23 SOT23-5 October 03, 2014 HT77xxS Block Diagram V re f V O U T P F M V O U T C o n tro l B u ffe r L X O S C C h ip E n a b le G N D C E Pin Assignment V O U T 3 F r o n t V ie w 1 2 L X 5 G N D 4 3 T o p V ie w T o p V ie w G N D V O U T L X B o tto m 1 2 3 G N D V O U T L X G N D V O U T L X 1 2 1 2 3 G N D L X C E V O U T N C G N D L X C E V O U T N C V ie w Pin Description Pin No. Pin Name TO92 SOT89 SOT23 SOT23-5 — — — 1 CE 2 2 3 2 VOUT — — — 3 NC 1 1 1 4 GND 3 3 2 5 LX Rev. 1.20 2 Description Chip enable pin, high active DC/DC converter output monitoring pin No connection Ground pin Switching pin October 03, 2014 HT77xxS Absolute Maximum Ratings Maximum Input Supply Voltage........................... 6.5V Storage Temperature ........................... -50°C to 125°C Ambient Temperature Range ................ -40°C to 85°C Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability. Electrical Characteristics Symbol Parameter VIN Input Voltage ΔVOUT Output Voltage Tolerance VSTART Starting Voltage VHOLD Voltage Hold IDD Ta= 25°C; VIN= VOUT×0.6; IOUT= 10mA; unless otherwise specified Test Conditions Min. Typ. Max. Unit — — 6.0 V -2.5 — +2.5 % VIN: 0 to 2V, IOUT= 1mA — 0.7 0.9 V VIN: 2 to 0V, IOUT= 1mA — 0.7 — V Supply Current Measured at VOUT pin when VOUT+0.5V — 4 7 μA ISHDN Shutdown Current CE= GND — 0.1 1.0 μA 1.5 — — V — — 0.4 V — 0.05 1 μA — 500 — kHz 70 80 — % 1.8V≤ VOUT≤ 2.2V — 80 — % 2.7V≤ VOUT≤ 5.0V — 85 — % VIH CE High Threshold VIL CE Low Threshold ILEAK LX Leakage Current FOSC Oscillator Frequency DOSC Oscillator Duty Cycle η Efficiency — — Add 5.5V at VOUT pin, 4V at LX pin. Measured at LX pin. Measured at LX pin when VOUT×0.95 Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed. Rev. 1.20 3 October 03, 2014 HT77xxS Application Circuits Without CE Pin L VIN 10μH LX VOUT VOUT HT77xxS CIN 10μF COUT 10μF GND With CE Pin L VIN 10μH CIN 10μF VOUT LX VOUT HT77xxS CE COUT 10μF GND L VIN 10μH LX VOUT VOUT HT77xxS CE CIN 10μF VOUT GND COUT 10μF List of Components Component Reference Part Number Manufacturer CIN, COUT GJ831CR61E106KE83L Murata Value 10μF, 25V. X5R Ceramic L SR0302100MLB ABC Taiwan Electronics Corp. 10μH, RDC= 0.25Ω. Wire Wound Chip Power Inductor L LBC3225T100MR TAIYO YUDEN 10μH, RDC= 0.133Ω. Multi-layered Chip Power Inductor Rev. 1.20 4 October 03, 2014 HT77xxS Functional Description Application Information The HT77xxS is a constant on time synchronous step-up converter, which uses a pulse frequency modulation (PFM) controller scheme. The PFM control scheme is inherently stable. The required input/output capacitor and inductor selections will not create situations of instability. Inductor Selection Selecting a suitable inductor is an important consideration as it is usually a compromise situation between the output current requirements, the inductor saturation limit and the acceptable output voltage ripple. Lower values of inductor values can provide higher output currents but will suffer from higher ripple voltages and reduced efficiencies. Higher inductor values can provide reduced output ripple voltages and better efficiencies, but will be limited in their output current capabilities. For all inductors it must be noted however that lower core losses and lower DC resistance values will always provide higher efficiencies. The device includes a fully integrated synchronous rectifier which reduces costs (includes reduce L and C sizes, eliminates Schottky diode cost etc.) and board area. Low Voltage Start-up The devices have a very low start up voltage down to 0.7V. When power is first applied, the synchronous switch will be initially off but energy will be transferred to the load through its intrinsic body diode. The peak inductor current can be calculated using the following equation: IL ( PEAK Shutdown During normal device operation, the CE pin should be either high or connected to the VOUT pin or the VIN power source. When the device is in the shutdown mode, that is when the CE pin is pulled low, the internal circuitry will be switched off. During shutdown, the PMOS power transistor will be switched off. = V OUT × I OUT V × ( V OUT − V IN ) + IN V IN × η 2 × V OUT × L Where VIN = Input Voltage VOUT = Output Voltage IOUT = Output Current η = Efficiency L = Inductor Synchronous Rectification Capacitor Selection A dead time exists between the N channel and P channel MOSFET switching operations. In synchronous rectification, the P channel is replaced by a Schottky diode. Here the P channel switch must be completely off before the N channel switch is switched on. After each cycle, a 30ns delay time is inserted to ensure the N channel switch is completely off before the P channel switch is switched on to maintain a high efficiency over a wide input voltage and output power range. Rev. 1.20 ) As the output capacitor selected affects both efficiency and output ripple voltage, it must be chosen with care to achieve best results from the converter. Output voltage ripple is the product of the peak inductor current and the output capacitor equivalent series resistance or ESR for short. It is important that low ESR value capacitors are used to achieve optimum performance. One method to achieve low ESR values is to connect two or more filter capacitors in parallel. The capacitors values and rated voltages are only suggested values. 5 October 03, 2014 HT77xxS Layout Considerations Circuit board layout is a very important consideration for switching regulators if they are to function properly. Poor circuit layout may result in related noise problems. In order to minimise EMI and switching noise, note the following guidelines: • All tracks should be as wide as possible. • The input and output capacitors should be placed as close as possible to the VIN, VOUT and GND pins. • A full ground plane is always helpful for better EMI performance. Rev. 1.20 Top Layer Bottom Layer Top Layer Bottom Layer Top Layer Bottom Layer Top Layer Bottom Layer 6 October 03, 2014 HT77xxS Typical Performance Characteristics (L use wire wound chip power inductor) 6 100% 80% Efficiency (%) Output Voltage (V) 5.2 4.4 3.6 VIN=3.0V 60% 40% VIN=3.0V VIN=2.0V VIN=2.0V VIN=1.5V 2.8 20% VIN=1.2V VIN=1.5V VIN=1.2V 0% 2 0 50 100 150 200 Output Current (mA) 250 0 300 Fig 1. HT7750S Output Voltage vs. Output Current 100 150 200 Output Current (mA) 250 300 Fig 2. HT7750S Efficiency vs. Output Current 1.2 250 200 Ripple Voltage (mV) 0.9 Input Voltage (V) 50 Start-up Hold-on 0.6 0.3 150 VIN=3.0V VIN=2.0V 100 VIN=1.5V VIN=1.2V 50 0 0 0 5 10 15 0 20 50 100 150 200 250 300 Output Current (mA) Output Current (mA) Fig 3. HT7750S Start-up & Hold-on Voltage Fig 4. HT7750S Ripple Voltage vs. Output Current Fig 5. HT7750S Load Transient Response Fig 6. HT7750S Line Transient Response (L= 10μH, CIN= COUT= 10μF, VIN= 3.0V) (L= 10μH, CIN= COUT= 10μF, VIN= 3.0V) Rev. 1.20 7 October 03, 2014 HT77xxS 82 81 1.1 Oscillator Duty Cycle (%) Output Voltage Tolerance (%) 2 HT7750S NO.1 0.2 HT7750S NO.2 -0.7 -1.6 80 79 78 HT7750S NO.1 HT7750S NO.2 77 76 -2.5 -40 -15 10 35 60 -40 85 -15 10 35 60 85 Temperature (℃) Temperature (℃) Fig 7. HT7750S Output Voltage Tolerance vs. Fig 8. HT7750S Oscillator Duty Cycle vs. Temperature Temperature Oscillator Frequency (KHz) 750 675 600 HT7750S NO.1 HT7750S NO.2 525 450 375 300 -40 -15 10 35 60 85 Temperature (℃) Fig 9. HT7750S Oscillator Frequency vs. Fig 10. HT7750S LX Leakage Current vs. Temperature Temperature Rev. 1.20 8 October 03, 2014 4 100% 3.7 80% Efficiency (%) Output Voltage (V) HT77xxS 3.4 3.1 60% 40% VIN=2.0V VIN=2.0V VIN=1.8V 2.8 VIN=1.8V 20% VIN=1.5V VIN=1.5V VIN=1.2V VIN=1.2V 0% 2.5 0 50 100 150 0 200 50 Output Current (mA) 150 200 Fig 12. HT7737S Efficiency vs. Output Current Fig 11. HT7737S Output Voltage vs. Output Current 200 1.2 150 Ripple Voltage (mV) 0.9 Input Voltage (V) 100 Output Current (mA) Start-up Hold-on 0.6 100 VIN=2.0V 50 0.3 VIN=1.8V VIN=1.5V VIN=1.2V 0 0 0 5 10 15 0 20 50 100 150 200 Output Current (mA) Output Current (mA) Fig 13. HT7737S Start-up & Hold-on Voltage Fig 14. HT7737S Ripple Voltage vs. Output Current Fig 15. HT7737S Load Transient Response Fig 16. HT7737S Line Transient Response (L= 10μH, CIN= COUT= 10μF, VIN= 2.22V) (L= 10μH, CIN= COUT= 10μF, VIN= 2.22V) Rev. 1.20 9 October 03, 2014 HT77xxS 100% 3.5 80% Efficiency (%) Output Voltage (V) 3.3 3.1 60% 40% VIN=2.0V VIN=2.0V 2.9 VIN=1.8V VIN=1.8V 20% VIN=1.5V VIN=1.5V VIN=1.2V VIN=1.2V 2.7 0% 0 50 100 150 200 0 50 100 150 200 Output Current (mA) Output Current (mA) Fig 17. HT7733S Output Voltage vs. Output Current Fig 18. HT7733S Efficiency vs. Output Current 600 1.2 500 Ripple Voltage (mV) Input Voltage (V) 0.9 Start-up Hold-on 0.6 400 300 200 VIN=2.0V VIN=1.8V 0.3 100 VIN=1.5V VIN=1.2V 0 0 0 5 10 15 0 20 50 100 150 200 Output Current (mA) Output Current (mA) Fig 19. HT7733S Start-up & Hold-on Voltage Fig 20. HT7733S Ripple Voltage vs. Output Current Fig 21. HT7733S Load Transient Response Fig 22. HT7733S Line Transient Response (L=10μH, CIN=COUT=10μF, VIN=1.98V) (L=10μH, CIN=COUT=10μF, VIN=1.98V) Rev. 1.20 10 October 03, 2014 HT77xxS 100% 3.3 80% Efficiency (%) Output Voltage (V) 3.1 2.9 60% 40% VIN=2.0V VIN=2.0V 2.7 VIN=1.8V VIN=1.8V 20% VIN=1.5V VIN=1.5V VIN=1.2V VIN=1.2V 0% 2.5 0 50 100 150 200 0 250 50 100 150 200 250 Output Current (mA) Output Current (mA) Fig 23. HT7730S Output Voltage vs. Output Current Fig 24. HT7730S Efficiency vs. Output Current 1.2 600 500 Ripple Voltage (mV) Input Voltage (V) 0.9 Start-up Hold-on 0.6 400 300 200 VIN=2.0V 0.3 VIN=1.8V 100 VIN=1.5V VIN=1.2V 0 0 0 5 10 15 0 20 50 100 150 200 250 Output Current (mA) Output Current (mA) Fig 25. HT7730S Start-up & Hold-on Voltage Fig 26. HT7730S Ripple Voltage vs. Output Current Fig 27. HT7730S Load Transient Response Fig 28. HT7730S Line Transient Response (L=10μH, CIN=COUT=10μF, VIN=1.8V) (L=10μH, CIN=COUT=10μF, VIN=1.8V) Rev. 1.20 11 October 03, 2014 3 100% 2.8 80% Efficiency (%) Output Voltage (V) HT77xxS 2.6 2.4 60% 40% VIN=2.0V VIN=2.0V VIN=1.8V VIN=1.8V 2.2 20% VIN=1.6V VIN=1.6V VIN=1.2V VIN=1.2V 0% 2 0 50 100 150 0 200 50 Output Current (mA) Fig 29. HT7727S Output Voltage vs. Output Current 150 200 Fig 30. HT7727S Efficiency vs. Output Current 1.2 200 0.9 150 Ripple Voltage (mV) Input Voltage (V) 100 Output Current (mA) Start-up Hold-on 0.6 0.3 100 VIN=2.0V VIN=1.8V 50 VIN=1.6V VIN=1.2V 0 0 0 5 10 15 20 0 Output Current (mA) 50 100 Output Current (mA) 150 200 Fig 31. HT7727S Start-up & Hold-on Voltage Fig 32. HT7727S Ripple Voltage vs. Output Current Fig 33. HT7727S Load Transient Response Fig 34. HT7727SLine Transient Response (L= 10μH, CIN= COUT= 10μF, VIN= 1.62V) (L= 10μH, CIN= COUT= 10μF, VIN= 1.62V) Rev. 1.20 12 October 03, 2014 HT77xxS 82 81 HT7727S NO.1 1.1 HT7727S NO.2 Oscillator Duty Cycle (%) Output Voltage Tolerance (%) 2 0.2 -0.7 -1.6 HT7727S NO.1 80 HT7727S NO.2 79 78 77 76 -2.5 -40 -15 10 35 60 -40 85 -15 10 35 60 85 Temperature (℃) Temperature (℃) Fig 35. HT7727S Output Voltage Tolerance vs. Fig 36. HT7727S Oscillator Duty Cycle vs. Temperature Temperature 750 Oscillator Frequency (KHz) 675 HT7727S NO.1 600 HT7727S NO.2 525 450 375 300 -40 -15 10 35 60 85 Temperature (℃) Fig 37. HT7727S Oscillator Frequency vs. Fig 38. HT7727S LX Leakage Current vs. Temperature Temperature Rev. 1.20 13 October 03, 2014 2.4 100% 2.32 80% Efficiency (%) Output Voltage (V) HT77xxS 2.24 2.16 60% 40% VIN=2.0V VIN=2.0V 2.08 VIN=1.8V 20% VIN=1.8V VIN=1.5V VIN=1.5V VIN=1.2V VIN=1.2V 0% 2 0 0 50 100 150 50 200 100 150 200 Output Current (mA) Output Current (mA) Fig 39. HT7722S Output Voltage vs. Output Current Fig 40. HT7722S Efficiency vs. Output Current 1.2 600 500 Ripple Voltage (mV) Input Voltage (V) 0.9 Start-up Hold-on 0.6 400 300 VIN=2.0V 200 VIN=1.8V 0.3 VIN=1.5V 100 VIN=1.2V 0 0 0 5 10 15 0 20 50 100 150 200 Output Current (mA) Output Current (mA) Fig 41. HT7722S Start-up & Hold-on Voltage Fig 42.HT7722S Ripple Voltage vs. Output Current Fig 43. HT7722S Load Transient Response Fig 44. HT7722SLine Transient Response (L= 10μH, CIN= COUT= 10μF, VIN= 1.32V) Rev. 1.20 (L= 10μH, CIN= COUT= 10μF, VIN= 1.32V) 14 October 03, 2014 1.9 100% 1.85 80% Efficiency (%) Output Voltage (V) HT77xxS 1.8 1.75 60% 40% VIN=1.6V VIN=1.6V VIN=1.4V 1.7 VIN=1.4V 20% VIN=1.2V VIN=1.2V VIN=1.08V VIN=1.08V 1.65 0% 0 30 60 90 120 150 0 30 Fig 45. HT7718S Output Voltage vs. Output Current 90 120 150 Fig 46. HT7718S Efficiency vs. Output Current 1.2 200 0.9 150 Ripple Voltage (mV) Input Voltage (V) 60 Output Current (mA) Output Current (mA) Start-up Hold-on 0.6 0.3 100 VIN=1.6V VIN=1.4V 50 VIN=1.2V VIN=1.08V 0 0 0 5 10 15 20 0 Output Current (mA) 30 60 90 120 150 Output Current (mA) Fig 47. HT7718S Start-up & Hold-on Voltage Fig 48.HT7718S Ripple Voltage vs. Output Current Fig 49. HT7718S Load Transient Response Fig 50. HT7718S Line Transient Response (L= 10μH, CIN= COUT= 10μF, VIN= 1.08V) (L= 10μH, CIN= COUT= 10μF, VIN= 1.08V) Rev. 1.20 15 October 03, 2014 HT77xxS 82 81 1.1 Oscillator Duty Cycle (%) Output Voltage Tolerance (%) 2 HT7718S NO.1 0.2 HT7718S NO.2 -0.7 -1.6 80 79 78 HT7718S NO.1 HT7718S NO.2 77 76 -2.5 -40 -15 10 35 60 -40 85 -15 10 35 60 85 Temperature (℃) Temperature (℃) Fig 51. HT7718S Output Voltage Tolerance vs. Fig 52. HT7718S Oscillator Duty Cycle vs. Temperature Temperature 750 Oscillator Frequency (KHz) 675 HT7718S NO.1 600 HT7718S NO.2 525 450 375 300 -40 -15 10 35 60 85 Temperature (℃) Fig 53. HT7718S Oscillator Frequency vs. Fig 54. HT7718S LX Leakage Current vs. Temperature Temperature Rev. 1.20 16 October 03, 2014 HT77xxS 6 100% 5.2 80% Efficiency (%) Output Voltage (V) Typical Performance Characteristics (L use multi-layered chip power inductor) 4.4 3.6 VIN=3.0V 40% VIN=3.0V VIN=2.0V VIN=2.0V VIN=1.5V 2.8 20% VIN=1.5V VIN=1.2V VIN=1.2V 0% 2 0 50 100 150 200 Output Current (mA) 250 0 300 Fig 55. HT7750S Output Voltage vs. Output Current 50 100 150 200 Output Current (mA) 4 100% 3.7 80% 3.4 3.1 300 60% 40% VIN=2.0V VIN=2.0V VIN=1.8V VIN=1.8V 2.8 250 Fig 56. HT7750S Efficiency vs. Output Current Efficiency (%) Output Voltage (V) 60% 20% VIN=1.5V VIN=1.5V VIN=1.2V VIN=1.2V 0% 2.5 0 50 100 150 0 200 50 Output Current (mA) 100 Output Current (mA) 150 200 Fig 58. HT7737S Efficiency vs. Output Current Fig 57. HT7737S Output Voltage vs. Output Current 100% 3.5 80% Efficiency (%) Output Voltage (V) 3.3 3.1 60% 40% VIN=2.0V VIN=2.0V 2.9 VIN=1.8V VIN=1.8V 20% VIN=1.5V VIN=1.5V VIN=1.2V VIN=1.2V 0% 2.7 0 50 100 150 0 200 Output Current (mA) 100 Output Current (mA) 150 200 Fig 60. HT7733S Efficiency vs. Output Current Fig 59. HT7733S Output Voltage vs. Output Current Rev. 1.20 50 17 October 03, 2014 HT77xxS 100% 3.3 80% Efficiency (%) Output Voltage (V) 3.1 2.9 60% 40% VIN=2.0V VIN=2.0V 2.7 VIN=1.8V VIN=1.8V 20% VIN=1.5V VIN=1.5V VIN=1.2V VIN=1.2V 0% 2.5 0 50 100 150 200 250 0 50 100 150 Output Current (mA) Output Current (mA) 100% 2.8 80% Efficiency (%) Output Voltage (V) 3 2.6 2.4 60% 40% VIN=2.0V VIN=2.0V VIN=1.8V VIN=1.8V 20% VIN=1.6V VIN=1.6V VIN=1.2V VIN=1.2V 0% 2 0 50 100 150 200 0 50 Output Current (mA) Fig 63. HT7727S Output Voltage vs. Output Current 100 Output Current (mA) 2.4 100% 2.32 80% 2.24 2.16 40% VIN=2.0V VIN=1.8V VIN=1.8V 20% VIN=1.5V VIN=1.5V VIN=1.2V VIN=1.2V 2 0 50 100 150 0% 200 0 Output Current (mA) Fig 65. HT7722S Output Voltage vs. Output Current Rev. 1.20 200 60% VIN=2.0V 2.08 150 Fig 64. HT7727S Efficiency vs. Output Current Efficiency (%) Output Voltage (V) 250 Fig 62. HT7730S Efficiency vs. Output Current Fig 61. HT7730S Output Voltage vs. Output Current 2.2 200 50 100 Output Current (mA) 150 200 Fig 66. HT7722S Efficiency vs. Output Current 18 October 03, 2014 HT77xxS 1.9 100% 80% 1.8 Effciency (%) Output Voltage (V) 1.85 1.75 VIN=1.6V 60% 40% VIN=1.4V 1.7 IOUT=10mA VIN=1.2V IOUT=30mA 20% IOUT=50mA VIN=1.08V 1.65 0 30 60 90 120 0% 150 -40 -15 Output Current (mA) 10 35 60 85 Temperature (℃) Fig 67. HT7718S Output Voltage vs. Output Current Fig 69. HT7718S Temperature vs. Output Voltage 100% 100% 80% Effciency (%) Efficiency (%) 80% 60% 40% VIN=1.6V 60% 40% IOUT=10mA VIN=1.4V 20% VIN=1.2V IOUT=30mA 20% IOUT=50mA VIN=1.08V IOUT=100mA 0% 0% 0 30 60 90 Output Current (mA) 120 150 -40 Fig 68. HT7718S Efficiency vs. Output Current Rev. 1.20 -15 10 35 Temperature (℃) 60 85 Fig 70. HT7733S Temperature vs. Output Voltage 19 October 03, 2014 HT77xxS Package Information Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the package information. Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page. • Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications) • Packing Meterials Information • Carton information Rev. 1.20 20 October 03, 2014 HT77xxS 3-pin SOT23 Outline Dimensions Symbol Dimensions in inch Min. Nom. Max. A — — 0.057 A1 — — 0.006 A2 0.035 0.045 0.051 b 0.012 — 0.020 C 0.003 — 0.009 D — 0.114 BSC — E — 0.063 BSC — e — 0.037 BSC — e1 — 0.075 BSC — H — 0.110 BSC — L 0.012 0.018 0.024 θ 0° ― 8° Symbol A Rev. 1.20 Dimensions in mm Min. Nom. Max. — — 1.45 A1 — — 0.15 A2 0.90 1.15 1.30 b 0.30 — 0.50 C 0.08 — 0.22 D — 2.9 BSC — E — 1.6 BSC — e — 0.95 BSC — e1 — 1.9 BSC — H — 2.8 BSC — L 0.30 0.45 0.60 θ 0° — 8° 21 October 03, 2014 HT77xxS 5-pin SOT23-5 Outline Dimensions Symbol A Dimensions in inch Min. Nom. Max. — — 0.057 A1 — — 0.006 A2 0.035 0.045 0.051 b 0.012 — 0.020 C 0.003 — 0.009 D — 0.114 BSC — E — 0.063 BSC — e — 0.037 BSC — e1 — 0.075 BSC — H — 0.110 BSC — L 0.012 0.018 0.024 θ 0° — 8° Symbol Rev. 1.20 Dimensions in mm Min. Nom. Max. A — — 1.45 A1 — — 0.15 A2 0.90 1.15 1.30 b 0.30 — 0.50 C 0.08 — 0.22 D — 2.90 BSC — E — 1.60 BSC — e — 0.95 BSC — e1 — 1.90 BSC — H — 2.80 BSC — L 0.30 0.45 0.60 θ 0° — 8° 22 October 03, 2014 HT77xxS 3-pin SOT89 Outline Dimensions Symbol Dimensions in inch Min. Nom. Max. A 0.173 — 0.181 B 0.053 — 0.072 C 0.090 — 0.102 D 0.035 — 0.047 E 0.155 — 0.167 F 0.014 — 0.019 G 0.017 — 0.022 H — 0.059 BSC — I 0.055 — 0.063 J 0.014 — 0.017 Symbol Rev. 1.20 Dimensions in mm Min. Nom. Max. A 4.40 — 4.60 B 1.35 — 1.83 C 2.29 — 2.60 D 0.89 — 1.20 E 3.94 — 4.25 F 0.36 — 0.48 G 0.44 — 0.56 H — 1.50 BSC — I 1.40 — 1.60 J 0.35 — 0.44 23 October 03, 2014 HT77xxS 3-pin TO92 Outline Dimensions Symbol Nom. Max. A 0.173 0.180 0.205 B 0.170 — 0.210 C 0.500 0.580 — D — 0.015 — E — 0.100 — F — 0.050 — G — 0.035 — H 0.125 0.142 0.165 Symbol Rev. 1.20 Dimensions in inch Min. Dimensions in mm Min. Nom. Max. A 4.39 4.57 5.21 B 4.32 — 5.33 C 12.70 14.73 — D — 0.38 — E — 2.54 — F — 1.27 — G — 0.89 — H 3.18 3.61 4.19 24 October 03, 2014 HT77xxS Copyright© 2014 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com. Rev. 1.20 25 October 03, 2014