TinyPower TM HT70xxA-1 Voltage Detector Features General Description • Low power consumption The HT70xxA-1 series devices area set of three terminal low power voltage detectors implemented in CMOS technology. Each voltage detector in the series detects a particular fixed voltage ranging from 2.2V to 5.0V. The voltage detectors consist of a high-precision and low power consumption standard voltage source as well as a comparator, hysteresis circuit, and an output driver. CMOS technology ensures low power consumption. • Low temperature coefficient • High input voltage range (up to 30V) • Quiescent current 3μA • Output voltage accuracy: tolerance ±3% • Built-in hysteresis characteristic • TO92, SOT89, SOT23 and SOT23-5 package Although designed primarily as fixed voltage detectors, these devices can be used with external components to detect user specified threshold voltages. Applications • Battery checkers • Level selectors • Power failure detectors • Microcomputer reset • Battery memory backup • Non-volatile RAM signal storage protectors Selection Table Part No. Detectable Voltage Hysteresis Width HT7022A-1 2.2V 0.110V HT7024A-1 2.4V 0.120V HT7027A-1 2.7V 0.135V HT7033A-1 3.3V 0.165V HT7039A-1 3.9V 0.195V HT7044A-1 4.4V 0.220V HT7050A-1 5.0V 0.250V Tolerance Package Marking ±3% TO92 SOT89 SOT23 SOT23-5 70xxA-1 (for TO92) 70xxA-1 (for SOT89) 0xxA (for SOT23) 0xxA (for SOT23-5) Note: ″xx″ stands for detectable voltages. Rev. 2.10 1 March 19, 2014 HT70xxA-1 Block Diagram N Channel Open Drain Output (Normal Open; Active Low) Output Table & Curve V VDD VDD>VDET(+) VDD≤VDET(−) VOUT Hi-Z VSS O U T D a s h lin e ... V S o lid lin e ... V V V D E T V D E T V 1 .0 5 IN IN fro m L fro m H O I H L O I IN H Y S Pin Assignment Rev. 2.10 2 March 19, 2014 HT70xxA-1 Absolute Maximum Ratings Supply Voltage ....................................................VSS−0.3V to VSS+33V Power Consumption.................................................................. 200mW Output Voltage................................................... VSS−0.3V to VDD+0.3V Storage Temperature.................................................... −50°C to 125°C Output Current............................................................................. 50mA Operating Temperature.................................................. −40°C to 85°C Note: These are stress ratings only. Stresses exceeding the range specified under ″Absolute Maximum Ratings″ may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability. Electrical Characteristics HT7022A-1 Ta=25°C Symbol Parameter Test Conditions VDD Conditions Min. Typ. Max. Unit V VDET Detection Voltage — — 2.134 2.200 2.266 VHYS Hysteresis Width — — 0.02VDET 0.05VDET 0.10VDET V IDD Operating Current 3.2V — 3 6 µA VDD Operating Voltage 1.5 — 30 V IOL Output Sink Current 1 2 — mA — ±100 — ppm/°C Temperature Coefficient No load — — VDET–0.2V VOUT=0.2V — -40°C<Ta<85°C HT7024A-1 Ta=25°C Symbol Parameter Test Conditions VDD Conditions Min. Typ. Max. Unit V VDET Detection Voltage — — 2.328 2.400 2.472 VHYS Hysteresis Width — — 0.02VDET 0.05VDET 0.10VDET V IDD Operating Current 3.4V — 3 6 µA VDD Operating Voltage 1.5 — 30 V IOL Output Sink Current 1 2 — mA — ±100 — ppm/°C Rev. 2.10 Temperature Coefficient No load — — VDET–0.2V VOUT=0.2V — -40°C<Ta<85°C 3 March 19, 2014 HT70xxA-1 HT7027A-1 Ta=25°C Symbol Parameter Test Conditions VDD Conditions Min. Typ. Max. Unit V VDET Detection Voltage — — 2.619 2.700 2.781 VHYS Hysteresis Width — — 0.02VDET 0.05VDET 0.10VDET V IDD Operating Current 3.7V — 3 6 µA VDD Operating Voltage 1.5 — 30 V IOL Output Sink Current 1 2 — mA — ±100 — ppm/°C Temperature Coefficient No load — — VDET–0.2V VOUT=0.2V — -40°C<Ta<85°C HT7033A-1 Ta=25°C Symbol Parameter Test Conditions VDD Conditions Min. Typ. Max. Unit V VDET Detection Voltage — — 3.201 3.300 3.399 VHYS Hysteresis Width — — 0.02VDET 0.05VDET 0.10VDET V IDD Operating Current 4.3V — 3 6 µA VDD Operating Voltage 1.5 — 30 V IOL Output Sink Current 2 4 — mA — ±100 — ppm/°C Temperature Coefficient No load — — VDET–0.2V VOUT=0.25V — -40°C<Ta<85°C HT7039A-1 Ta=25°C Symbol Parameter Test Conditions VDD Conditions Min. Typ. Max. Unit V VDET Detection Voltage — — 3.783 3.900 4.017 VHYS Hysteresis Width — — 0.02VDET 0.05VDET 0.10VDET V IDD Operating Current 4.9V — 3 6 µA VDD Operating Voltage 1.5 — 30 V IOL Output Sink Current 2 4 — mA — ±100 — ppm/°C Rev. 2.10 Temperature Coefficient No load — — VDET–0.2V VOUT=0.25V — -40°C<Ta<85°C 4 March 19, 2014 HT70xxA-1 HT7044A-1 Ta=25°C Symbol Parameter Test Conditions VDD Conditions VDET Detection Voltage — — VHYS Hysteresis Width — — IDD Operating Current 5.4V VDD Operating Voltage IOL Output Sink Current Temperature Coefficient No load — — VDET–0.2V VOUT=0.36V — -40°C<Ta<85°C Min. Typ. Max. Unit 4.268 4.400 4.532 V 0.02VDET 0.05VDET 0.10VDET V — 3 6 µA 1.5 — 30 V 4 7 — mA — ±100 — ppm/°C HT7050A-1 Ta=25°C Symbol Parameter Test Conditions VDD Conditions VDET Detection Voltage — — VHYS Hysteresis Width — — IDD Operating Current 6.0V VDD Operating Voltage IOL Output Sink Current Rev. 2.10 Temperature Coefficient No load — — VDET–0.2V VOUT=0.36V — -40°C<Ta<85°C 5 Min. Typ. Max. Unit 4.850 5.000 5.150 V 0.02VDET 0.05VDET 0.10VDET V — 3 6 µA 2.1 — 30 V 4 7 — mA — ±100 — ppm/°C March 19, 2014 HT70xxA-1 Typical Performance Characteristics Detection Voltage vs Temperature HT7022A-1 2.60 Falling Curve Detection Voltage (V) 2.50 Rising Curve 2.40 2.30 2.20 2.10 2.00 -40 -30 -20 -10 0 10 20 30 Temperature(OC) 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 Hysteresis Width vs Temperature HT7022A-1 Hysteresis Width (V) 0.20 0.15 0.10 0.05 0.00 -40 -30 -20 -10 0 10 20 30 Temperature(OC) Operating Current vs Temperature HT7022A-1 Operation Current (uA) 6.00 VDD=3.2V 5.00 4.00 3.00 2.00 1.00 0.00 -40 -30 -20 -10 0 10 20 30 Temperature(OC) Output Sink Current vs Temperature HT7022A-1 Output Sink Current (mA) 6.0 5.0 4.0 3.0 2.0 1.0 0.0 Rev. 2.10 -40 -30 -20 -10 0 10 20 30 Temperature(OC) 6 40 50 60 70 80 March 19, 2014 HT70xxA-1 Functional Description The HT70xxA-1 series is a set of voltage detectors equipped with a high stability voltage reference which is connected to the negative input of a comparator denoted as VREF in the following figure for NMOS output voltage detector. When the voltage drop to the positive input of the comparator (i,e,V B) is higher than V REF, V OUT goes high, M1 turns off, and V B is expressed as VBH=VDD×(RB+RC)/(RA+RB+RC). If VDD is decreased so that VB falls to a value less than VREF, the comparator output inverts from high to low, VOUT goes low, VC is high, M1 turns on, RC is bypassed, and VB becomes: VBL=VDD×RB/(RA+RB), which is less than VBH. By so doing, the comparator output will stay low to prevent the circuit from oscillating when VB≈VREF. NMOS Output Voltage Detector If VDD falls below the minimum operating voltage, the output becomes undefined. When VDD goes from low to VDD×RB/(RA+RB)>VREF, the comparator output and VOUT goes high. The figure demonstrates the NMOS output type with positive output polarity (VOUT is normally open, active low). The HT70xxA-1 series also supplies options for other output types with active high outputs. Application circuits shown are examples of positive output polarity (normally open, active low) unless otherwise specified. The detectable voltage is defined as: VDET (−) = (RA+RB+RC) / (RB+RC) × VREF The release voltage is defined as: VDET (+) = (RA+RB) / RB × VREF The hysteresis width is: VHYS = VDET (+) − VDET (−) Rev. 2.10 7 March 19, 2014 HT70xxA-1 Application Circuits Power-on Reset Circuit Microcomputer Reset Circuit With several external components, the NMOS open drain type of the HT70xxA-1 series can be used to perform a power-on reset function as shown: Normally a reset circuit is required to protect the microcomputer system from malfunctions due to power line interruptions. The following examples show how different output configurations perform a reset function in various systems. • NMOS open drain output application for separate power supply • NMOS open drain output application with R-C delay Rev. 2.10 8 March 19, 2014 HT70xxA-1 5V Power Line Monitoring Circuit • Varying the detectable voltage with a diode Generally, a minimum operating voltage of 4.5V is guaranteed in a 5V power line system. The HT7044A-1 is recommended for use as 5V power line monitoring circuit. • 5V power line monitor with power-on reset Detectable voltage=Vf1+Vf2+VDET Malfunction Analysis The following circuit demonstrates the way a circuit analyzes malfunctions by monitoring the variation or spike noise of power supply voltage. • with 5V voltage regulator The following circuit shows a charged monitor for protection against battery deterioration by overcharging. When the voltage of the battery is higher than the set detectable voltage, the transistor turns on to bypass the charge current, protecting the battery from overcharging. Change of Detectable Voltage If the required voltage is not found in the standard product selection table, it is possible to change it by using external resistance dividers or diodes. • Varying the detectable voltage with a resistance divider Charge Monitoring Circuit Detectable voltage=(RA+RB)/RB×VDET Hysteresis width=(RA+RB)/RB×VHYS Rev. 2.10 9 March 19, 2014 HT70xxA-1 Level Selector The following diagram illustrates a logic level selector. Rev. 2.10 10 March 19, 2014 HT70xxA-1 Package Information Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the package information. Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page. • Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications) • Packing Meterials Information • Carton information Rev. 2.10 11 March 19, 2014 HT70xxA-1 3-pin TO92 Outline Dimensions Symbol Min. Nom. Max. A 0.173 0.180 0.205 B 0.170 — 0.210 C 0.500 0.580 — D — 0.015 BSC — E — 0.010 BSC — F — 0.050 BSC — G — 0.035 BSC — H 0.125 0.142 0.165 Symbol Rev. 2.10 Dimensions in inch Dimensions in mm Min. Nom. Max. A 4.39 4.57 5.21 B 4.32 — 5.33 C 12.70 14.73 — D — 0.38 BSC — E — 2.54 BSC — F — 1.27 BSC — G — 0.89 BSC — H 3.18 3.61 4.19 12 March 19, 2014 HT70xxA-1 3-pin SOT89 Outline Dimensions Symbol Dimensions in inch Min. Nom. Max. A 0.173 — 0.181 B 0.053 — 0.072 C 0.090 — 0.102 D 0.035 — 0.047 E 0.155 — 0.167 F 0.014 — 0.019 G 0.017 — 0.022 H — 0.059 BSC — I 0.055 — 0.063 J 0.014 — 0.017 Symbol Rev. 2.10 Dimensions in mm Min. Nom. Max. A 4.40 — 4.60 B 1.35 — 1.83 C 2.29 — 2.60 D 0.89 — 1.20 E 3.94 — 4.25 F 0.36 — 0.48 G 0.44 — 0.56 H — 1.50 BSC — I 1.40 — 1.60 J 0.35 — 0.44 13 March 19, 2014 HT70xxA-1 3-pin SOT23-3 Outline Dimensions Symbol Nom. Max. A — — 0.057 A1 — — 0.006 A2 0.035 0.045 0.051 b 0.012 — 0.020 C 0.003 — 0.009 D — 0.114 BSC — E — 0.063 BSC — e — 0.037 BSC — e1 — 0.075 BSC — H — 0.110 BSC — L1 — 0.024 BSC — θ 0° — 8° Symbol Rev. 2.10 Dimensions in inch Min. Dimensions in mm Min. Nom. Max. A — — 1.45 A1 — — 0.15 A2 0.90 1.15 1.30 b 0.30 — 0.50 C 0.08 — 0.22 D — 2.90 BSC — E — 1.60 BSC — e — 0.95 BSC — e1 — 1.90 BSC — H — 2.80 BSC — L1 — 0.60 BSC — θ 0° — 8° 14 March 19, 2014 HT70xxA-1 5-pin SOT23-5 Outline Dimensions Symbol A Min. Nom. Max. — — 0.057 A1 — — 0.006 A2 0.035 0.045 0.051 b 0.012 — 0.020 C 0.003 — 0.009 D — 0.114 BSC — E — 0.063 BSC — e — 0.037 BSC — e1 — 0.075 BSC — H — 0.110 BSC — L1 — 0.024 BSC — θ 0° — 8° Symbol A Rev. 2.10 Dimensions in inch Dimensions in mm Min. Nom. Max. — — 1.45 A1 — — 0.15 A2 0.90 1.15 1.30 b 0.30 — 0.50 C 0.08 — 0.22 D — 2.90 BSC — E — 1.60 BSC — e — 0.95 BSC — e1 — 1.90 BSC — H — 2.80 BSC — L1 — 0.60 BSC — θ 0° — 8° 15 March 19, 2014 HT70xxA-1 Copyright© 2014 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw. Rev. 2.10 16 March 19, 2014