RENESAS M38508M2

3850 Group (Spec.A)
REJ03B0093-0210
Rev.2.10
Nov 14, 2005
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
DESCRIPTION
The 3850 group (spec. A) is the 8-bit microcomputer based on the
740 family core technology.
The 3850 group (spec. A) is designed for the household products
and office automation equipment and includes serial interface
functions, 8-bit timer, and A/D converter.
FEATURES
●Basic machine-language instructions ...................................... 71
●Minimum instruction execution time ................................ 0.32 µs
(at 12.5 MHz oscillation frequency)
●Memory size
ROM ................................................................... 8K to 32K bytes
RAM ..................................................................... 512 to 1K bytes
●Programmable input/output ports ............................................ 34
●On-chip software pull-up resistor
●Interrupts ................................................. 15 sources, 14 vectors
●Timers ............................................................................. 8-bit ✕ 4
●Serial interface
Serial I/O1 .................... 8-bit ✕ 1(UART or Clock-synchronized)
Serial I/O2 ................................... 8-bit ✕ 1(Clock-synchronized)
●PWM ............................................................................... 8-bit ✕ 1
●A/D converter ............................................... 10-bit ✕ 9 channels
●Watchdog timer ............................................................ 16-bit ✕ 1
●Clock generating circuit ..................................... Built-in 2 circuits
(connect to external ceramic resonator or quartz-crystal oscillator)
●Power source voltage
In high-speed mode .................................................. 4.0 to 5.5 V
(at 12.5 MHz oscillation frequency)
In high-speed mode .................................................. 2.7 to 5.5 V
(at 6 MHz oscillation frequency)
In middle-speed mode ............................................... 2.7 to 5.5 V
(at 12.5 MHz oscillation frequency)
In low-speed mode .................................................... 2.7 to 5.5 V
(at 32 kHz oscillation frequency)
●Power dissipation
In high-speed mode
Except M38507F8AFP/SP ............................................. 32.5mW
M38507F8AFP/SP ......................................................... 37.5mW
(at 12.5 MHz oscillation frequency, at 5 V power source voltage)
In low-speed mode
Except M38507F8AFP/SP ................................................ 60 µW
M38507F8AFP/SP .......................................................... 450 µW
(at 32 kHz oscillation frequency, at 3 V power source voltage)
●Operating temperature range .................................... –20 to 85°C
APPLICATION
Office automation equipment, FA equipment, Household products,
Consumer electronics, etc.
PIN CONFIGURATION (TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
M3850XMXA-XXXFP/SP
VCC
VREF
AVSS
P44/INT3/PWM
P43/INT2/SCMP2
P42/INT1
P41/INT0
P40/CNTR1
P27/CNTR0/SRDY1
P26/SCLK1
P25/TxD
P24/RxD
P23
P22
CNVSS
VPP
P21/XCIN
P20/XCOUT
RESET
XIN
XOUT
VSS
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
P30/AN0
P31/AN1
P32/AN2
P33/AN3
P34/AN4
P00/SIN2
P01/SOUT2
P02/SCLK2
P03/SRDY2
P04/AN5
P05/AN6
P06/AN7
P07/AN8
P10(LED0)
P11(LED1)
P12(LED2)
P13(LED3)
P14(LED4)
P15(LED5)
P16(LED6)
P17(LED7)
: Flash memory version
Package type : FP ........................... PRSP0042GA-B (42P2R-A/E) (42-pin plastic-molded SSOP)
Package type : SP ........................... PRDP0042BA-A (42P4B) (42-pin plastic-molded SDIP)
Fig. 1 M3850XMXA-XXXFP/SP pin configuration
Rev.2.10 2005.11.14
REJ03B0093-0210
page 1 of 86
Rev.2.10 2005.11.14
REJ03B0093-0210
20
Fig. 2 Functional block diagram
page 2 of 86
AVSS
VREF
2 3
A/D
converter
(10)
Watchdog
timer
PWM
(8)
Reset
Sub-clock Sub-clock
input
output
XCIN XCOUT
Main-clock
output
XOUT
Clock generating circuit
19
Main-clock
input
XIN
I/O port P4
4 5 6 7 8
P4(5)
RAM
FUNCTIONAL BLOCK DIAGRAM
INT0–
INT3
ROM
I/O port P3
38 39 40 41 42
P3(5)
21
VSS
PC H
SI/O1(8)
C P U
1
VCC
PS
PC L
S
CNTR0
22 23 24 25 26 27 28 29
I/O port P1
I/O port P2
P1(8)
9 10 11 12 13 1416 17
P2(8)
XCIN
XCOUT
CNTR1
Prescaler Y(8)
Prescaler X(8)
I/O port P0
30 31 32 33 34 35 36 37
P0(8)
Timer Y( 8 )
Timer X( 8 )
Timer 2( 8 )
Prescaler 12(8)
X
Y
Timer 1( 8 )
15
CNVSS
A
18
RESET
Reset input
SI/O2(8)
3850 Group (Spec.A)
3850 Group (Spec.A)
Table 1 Pin description
Pin
Functions
Name
VCC, VSS
Power source
CNVSS
CNVSS input
VREF
Reference voltage
AVss
RESET
Analog power
source
Reset input
XIN
Clock input
Function except a port function
•Apply voltage of 2.7 V – 5.5 V to Vcc, and 0 V to Vss.
•This pin controls the operation mode of the chip.
•Normally connected to VSS.
•Reference voltage input pin for A/D converter.
•Analog power source input pin for A/D converter.
•Connect to Vss.
•Reset input pin for active “L”.
•Input and output pins for the clock generating circuit.
•Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set
the oscillation frequency.
XOUT
Clock output
P00/SIN2
P01/SOUT2
P02/SCLK2
P03/SRDY2
P04/AN5–P07/AN8
I/O port P0
•When an external clock is used, connect the clock source to the XIN pin and leave the XOUT
pin open.
• Serial I/O2 function pin
•8-bit CMOS I/O port.
•I/O direction register allows each pin to be individually
programmed as either input or output.
•CMOS compatible input level.
•CMOS 3-state output structure.
• A/D converter input pin
•Pull-up control is enabled in a byte unit.
P10–P17
I/O port P1
P20/XCOUT
P21/XCIN
P22
P23
P24/RxD
P25/TxD
P26/SCLK1
I/O port P2
•I/O direction register allows each pin to be individually
programmed as either input or output.
• Sub-clock generating circuit I/O
pins (connect a resonator)
•CMOS compatible input level.
•P20, P21, P24 to P27: CMOS3-state output structure.
• Serial I/O1 function pin
•P22, P23: N-channel open-drain structure.
•Pull-up control of P2 0, P2 1, P2 4–P2 7 is enabled in a
byte unit.
P27/CNTR0/
SRDY1
P30/AN0–
P34/AN4
•P10 to P17 (8 bits) are enabled to output large current
for LED drive.
•8-bit CMOS I/O port.
I/O port P3
•5-bit CMOS I/O port with the same function as port P0.
• Serial I/O1 function pin/
Timer X function pin
• A/D converter input pin
•CMOS compatible input level.
•CMOS 3-state output structure.
•Pull-up control is enabled in a bit unit.
P40/CNTR1
P41/INT0
P42/INT1
P43/INT2/SCMP2
I/O port P4
•CMOS compatible input level.
• Timer Y function pin
• Interrupt input pins
•CMOS 3-state output structure.
•Pull-up control is enabled in a bit unit.
P44/INT3/PWM
Rev.2.10 2005.11.14
REJ03B0093-0210
•5-bit CMOS I/O port with the same function as port P0.
page 3 of 86
• Interrupt input pin
• SCMP2 output pin
• Interrupt input pin
• PWM output pin
3850 Group (Spec.A)
PART NUMBERING
Product name
M3850 3
M
4
A– XXX
SP
Package type
SP : PRDP0042BA-A
FP : PRSP0042GA-B
ROM number
Omitted in flash memory version.
– : standard
Omitted in flash memory version.
H–: Partial specification changed version
A–: High-speed version
ROM/Flash memory size
1 : 4096 bytes
9 : 36864 bytes
2 : 8192 bytes
A: 40960 bytes
3 : 12288 bytes
B: 45056 bytes
4 : 16384 bytes
C: 49152 bytes
5 : 20480 bytes
D: 53248 bytes
6 : 24576 bytes
E: 57344 bytes
7 : 28672 bytes
F : 61440 bytes
8 : 32768 bytes
The first 128 bytes and the last 2 bytes of ROM are reserved areas ; they
cannot be used as a user’s ROM area.
However, they can be programmed or erased in the flash memory version,
so that the users can use them.
Memory type
M : Mask ROM version
F : Flash memory version
RAM size
0 : 192 bytes
1 : 256 bytes
2 : 384 bytes
3 : 512 bytes
4 : 640 bytes
Fig. 3 Part numbering
Rev.2.10 2005.11.14
REJ03B0093-0210
page 4 of 86
5 : 768 bytes
6 : 896 bytes
7 : 1024 bytes
8 : 1536 bytes
9 : 2048 bytes
3850 Group (Spec.A)
GROUP EXPANSION
Packages
Renesas Technology expands the 3850 group (spec.A) as follows.
PRDP0042BA-A ......................... 42-pin shrink plastic-molded DIP
PRSP0042GA-B .................................. 42-pin plastic-molded SOP
Memory Type
Support for mask ROM and flash memory versions.
Memory Size
Flash memory size ......................................................... 32 K bytes
Mask ROM size ................................................... 8 K to 32 K bytes
RAM size ............................................................... 512 to 1 K bytes
Memory Expansion Plan
ROM size (bytes)
ROM
exteranal
AAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAA
M38507M8A/F8A
AAAAAAAAA
AAAAAAAA
Mass production
32K
28K
AAAAAAAA
AAAAAAAA
M38504M6A
AAAAAAAA
Mass production
24K
20K
AAAAAAAAA
AAAAAAAA
M38503M4A
AAAAAAAAA
AAAAAAAA
Mass production
16K
12K
AAAAAAAAA
AAAAAAAA
AAAAAAAAA
AAAAAAAA
M38503M2A
AAAAAAAAA
AAAAAAAA
Mass production
8K
384
512
Fig. 4 Memory expansion plan
Rev.2.10 2005.11.14
REJ03B0093-0210
page 5 of 86
640
768
896
1024
1152
RAM size (bytes)
1280
1408
1536
2048
3850 Group (Spec.A)
Currently planning products are listed below.
Table 2 Support products (spec. A)
Product name
ROM size (bytes)
ROM size for User in ( )
RAM size (bytes)
8192
(8062)
512
16384
(16254)
512
24576
(24446)
640
32768
1024
32768
(32635)
1024
M38503M2A-XXXSP
M38503M2A-XXXFP
M38503M4A-XXXSP
M38503M4A-XXXFP
M38504M6A-XXXSP
M38504M6A-XXXFP
M38507F8ASP
M38507F8AFP
M38507M8A-XXXSP
M38507M8A-XXXFP
Package
PRDP0042BA-A
PRSP0042GA-B
PRDP0042BA-A
PRSP0042GA-B
PRDP0042BA-A
PRSP0042GA-B
PRDP0042BA-A
PRSP0042GA-B
PRDP0042BA-A
PRSP0042GA-B
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Flash memory version
Mask ROM version
Table 3 Differences among 3850 group (standard), 3850 group (spec. H), and 3850 group (spec. A)
3850 group (spec. A)
3850 group (spec. H)
3850 group (standard)
2: Serial I/O1 (UART or Clock-synchronized) 2: Serial I/O1 (UART or Clock-synchronized)
Serial interface
1: Serial I/O
Serial I/O2 (Clock-synchronized)
Serial I/O2 (Clock-synchronized)
(UART or Clock-synchronized)
Serviceable in low-speed mode
Serviceable in low-speed mode
A/D converter
Unserviceable in low-speed mode
Analog channel ............................. 5 Analog channel ................................ 5 Analog channel ................................ 9
8: P10–P17
8: P10–P17
Large current port 5: P13–P17
Not available
Built-in (Port P0–P4)
Software pull-up
Not available
resistor
Maximum operating 8 MHz
frequency
8 MHz
Notes on differences among 3850 group
(standard), 3850 group (spec. H), and 3850
group (spec. A)
(1) The absolute maximum ratings of 3850 group (spec. A) is
smaller than that of 3850 group (standard).
•Power source voltage Vcc = –0.3 to 6.5 V
•CNVss input voltage VI = –0.3 to Vcc +0.3 V
(2) The oscillation circuit constants of XIN-XOUT, XCIN-XCOUT may
be some differences among 3850 group (standard), 3850
group (spec. H), and 3850 group (spec. A).
(3) Do not write any data to the reserved area and the reserved
bit. (Do not change the contents after reset.)
(4) Fix bit 3 of the CPU mode register to “1”.
(5) Be sure to perform the termination of unused pins.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 6 of 86
12.5 MHz
3850 Group (Spec.A)
FUNCTIONAL DESCRIPTION
CENTRAL PROCESSING UNIT (CPU)
[Stack Pointer (S)]
The stack pointer is an 8-bit register used during subroutine calls
and interrupts. This register indicates start address of stored area
(stack) for storing registers during subroutine calls and interrupts.
The low-order 8 bits of the stack address are determined by the
contents of the stack pointer. The high-order 8 bits of the stack address are determined by the stack page selection bit. If the stack
page selection bit is “0” , the high-order 8 bits becomes “0016”. If
the stack page selection bit is “1”, the high-order 8 bits becomes
“0116”.
The operations of pushing register contents onto the stack and
popping them from the stack are shown in Figure 6.
Store registers other than those described in Figure 6 with program when the user needs them during interrupts or subroutine
calls.
The 3850 group (spec. A) uses the standard 740 Family instruction set. Refer to the table of 740 Family addressing modes and
machine instructions or the 740 Family Software Manual for details on the instruction set.
Machine-resident 740 Family instructions are as follows:
The FST and SLW instructions cannot be used.
The STP, WIT, MUL, and DIV instructions can be used.
[Accumulator (A)]
The accumulator is an 8-bit register. Data operations such as data
transfer, etc., are executed mainly through the accumulator.
[Index Register X (X)]
The index register X is an 8-bit register. In the index addressing
modes, the value of the OPERAND is added to the contents of
register X and specifies the real address.
[Program Counter (PC)]
The program counter is a 16-bit counter consisting of two 8-bit
registers PC H and PCL . It is used to indicate the address of the
next instruction to be executed.
[Index Register Y (Y)]
The index register Y is an 8-bit register. In partial instruction, the
value of the OPERAND is added to the contents of register Y and
specifies the real address.
b0
b7
A
Accumulator
b0
b7
X
Index register X
b0
b7
Y
b7
Index register Y
b0
S
b15
b7
PCH
Stack pointer
b0
Program counter
PCL
b7
b0
N V T B D I Z C
Processor status register (PS)
Carry flag
Zero flag
Interrupt disable flag
Decimal mode flag
Break flag
Index X mode flag
Overflow flag
Negative flag
Fig. 5 740 Family CPU register structure
Rev.2.10 2005.11.14
REJ03B0093-0210
page 7 of 86
3850 Group (Spec.A)
On-going Routine
Interrupt request
(Note)
M (S)
Execute JSR
Push return address
on stack
M (S)
(PCH)
(S)
(S) – 1
M (S)
(PCL)
(S)
(S)– 1
(S)
M (S)
(S)
M (S)
(S)
Subroutine
POP return
address from stack
(S) + 1
(PCL)
M (S)
(S)
(S) + 1
(PCH)
M (S)
(S) – 1
(PCL)
Push return address
on stack
(S) – 1
(PS)
Push contents of processor
status register on stack
(S) – 1
Interrupt
Service Routine
Execute RTS
(S)
(PCH)
I Flag is set from “0” to “1”
Fetch the jump vector
Execute RTI
Note: Condition for acceptance of an interrupt
(S)
(S) + 1
(PS)
M (S)
(S)
(S) + 1
(PCL)
M (S)
(S)
(S) + 1
(PCH)
M (S)
POP contents of
processor status
register from stack
POP return
address
from stack
Interrupt enable flag is “1”
Interrupt disable flag is “0”
Fig. 6 Register push and pop at interrupt generation and subroutine call
Table 4 Push and pop instructions of accumulator or processor status register
Push instruction to stack
Pop instruction from stack
Accumulator
PHA
PLA
Processor status register
PHP
PLP
Rev.2.10 2005.11.14
REJ03B0093-0210
page 8 of 86
3850 Group (Spec.A)
[Processor status register (PS)]
The processor status register is an 8-bit register consisting of 5
flags which indicate the status of the processor after an arithmetic
operation and 3 flags which decide MCU operation. Branch operations can be performed by testing the Carry (C) flag , Zero (Z) flag,
Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z,
V, N flags are not valid.
•Bit 0: Carry flag (C)
The C flag contains a carry or borrow generated by the arithmetic
logic unit (ALU) immediately after an arithmetic operation. It can
also be changed by a shift or rotate instruction.
•Bit 1: Zero flag (Z)
The Z flag is set if the result of an immediate arithmetic operation
or a data transfer is “0”, and cleared if the result is anything other
than “0”.
•Bit 2: Interrupt disable flag (I)
The I flag disables all interrupts except for the interrupt
generated by the BRK instruction.
Interrupts are disabled when the I flag is “1”.
•Bit 3: Decimal mode flag (D)
The D flag determines whether additions and subtractions are
executed in binary or decimal. Binary arithmetic is executed when
this flag is “0”; decimal arithmetic is executed when it is “1”.
Decimal correction is automatic in decimal mode. Only the ADC
and SBC instructions can be used for decimal arithmetic.
•Bit 4: Break flag (B)
The B flag is used to indicate that the current interrupt was
generated by the BRK instruction. The BRK flag in the processor
status register is always “0”. When the BRK instruction is used to
generate an interrupt, the processor status register is pushed
onto the stack with the break flag set to “1”.
•Bit 5: Index X mode flag (T)
When the T flag is “0”, arithmetic operations are performed
between accumulator and memory. When the T flag is “1”, direct
arithmetic operations and direct data transfers are enabled
between memory locations.
•Bit 6: Overflow flag (V)
The V flag is used during the addition or subtraction of one byte
of signed data. It is set if the result exceeds +127 to -128. When
the BIT instruction is executed, bit 6 of the memory location
operated on by the BIT instruction is stored in the overflow flag.
•Bit 7: Negative flag (N)
The N flag is set if the result of an arithmetic operation or data
transfer is negative. When the BIT instruction is executed, bit 7 of
the memory location operated on by the BIT instruction is stored
in the negative flag.
Table 5 Set and clear instructions of each bit of processor status register
C flag
Set instruction
Clear instruction
Rev.2.10 2005.11.14
REJ03B0093-0210
I flag
SEC
Z flag
_
SEI
CLC
_
CLI
page 9 of 86
D flag
T flag
V flag
SED
B flag
_
SET
_
N flag
_
CLD
_
CLT
CLV
_
3850 Group (Spec.A)
[CPU Mode Register (CPUM)] 003B16
The CPU mode register contains the stack page selection bit, etc.
The CPU mode register is allocated at address 003B16.
b7
b0
1
CPU mode register
(CPUM : address 003B16)
Processor mode bits
b1 b0
0 0 : Single-chip mode
0 1 :
1 0 : Not available
1 1 :
Stack page selection bit
0 : 0 page
1 : 1 page
Fix this bit to “1”.
Port XC switch bit
0 : I/O port function (stop oscillating)
1 : XCIN–XCOUT oscillating function
Main clock (XIN–XOUT) stop bit
0 : Oscillating
1 : Stopped
Main clock division ratio selection bits
b7 b6
0 0 : φ = f(XIN)/2 (high-speed mode)
0 1 : φ = f(XIN)/8 (middle-speed mode)
1 0 : φ = f(XCIN)/2 (low-speed mode)
1 1 : Not available
Fig. 7 Structure of CPU mode register
Rev.2.10 2005.11.14
REJ03B0093-0210
page 10 of 86
3850 Group (Spec.A)
MEMORY
Special Function Register (SFR) Area
Zero Page
Access to this area with only 2 bytes is possible in the zero page
addressing mode.
The Special Function Register area in the zero page contains
control registers such as I/O ports and timers.
Special Page
RAM
Access to this area with only 2 bytes is possible in the special
page addressing mode.
RAM is used for data storage and for stack area of subroutine
calls and interrupts.
ROM
The first 128 bytes and the last 2 bytes of ROM are reserved for
device testing and the rest is user area for storing programs.
Interrupt Vector Area
The interrupt vector area contains reset and interrupt vectors.
RAM area
RAM size
(bytes)
Address
XXXX16
192
256
384
512
640
768
896
1024
1536
2048
00FF16
013F16
01BF16
023F16
02BF16
033F16
03BF16
043F16
063F16
083F16
000016
SFR area
Zero page
004016
RAM
010016
XXXX16
Not used
0FF016
0FFF16
SFR area (Note)
Not used
YYYY16
ROM area
Reserved ROM area
ROM size
(bytes)
Address
YYYY16
Address
ZZZZ16
4096
8192
12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440
F00016
E00016
D00016
C00016
B00016
A00016
900016
800016
700016
600016
500016
400016
300016
200016
100016
F08016
E08016
D08016
C08016
B08016
A08016
908016
808016
708016
608016
508016
408016
308016
208016
108016
Fig. 8 Memory map diagram
Rev.2.10 2005.11.14
REJ03B0093-0210
page 11 of 86
(128 bytes)
ZZZZ16
ROM
FF0016
FFDC16
Interrupt vector area
FFFE16
FFFF16
Reserved ROM area
Note: Flash memory version only
Special page
3850 Group (Spec.A)
000016
Port P0 (P0)
002016
Prescaler 12 (PRE12)
000116
Port P0 direction register (P0D)
002116
Timer 1 (T1)
000216
Port P1 (P1)
002216
Timer 2 (T2)
000316
Port P1 direction register (P1D)
002316
Timer XY mode register (TM)
000416
Port P2 (P2)
002416
Prescaler X (PREX)
000516
Port P2 direction register (P2D)
002516
Timer X (TX)
000616
Port P3 (P3)
002616
Prescaler Y (PREY)
000716
Port P3 direction register (P3D)
002716
Timer Y (TY)
000816
Port P4 (P4)
002816
Timer count source selection register (TCSS)
000916
Port P4 direction register (P4D)
002916
000A16
002A16
000B16
002B16
Reserved ✽
000C16
002C16
Reserved ✽
000D16
002D16
Reserved ✽
000E16
002E16
Reserved ✽
000F16
002F16
Reserved ✽
001016
003016
Reserved ✽
001116
003116
Reserved ✽
001216
Port P0, P1, P2 pull-up control register (PULL012)
003216
001316
Port P3 pull-up control register (PULL3)
003316
001416
Port P4 pull-up control register (PULL4)
003416
AD control register (ADCON)
001516
Serial I/O2 control register 1 (SIO2CON1)
003516
AD conversion low-order register (ADL)
001616
Serial I/O2 control register 2 (SIO2CON2)
003616
AD conversion high-order register (ADH)
001716
Serial I/O2 register (SIO2)
003716
AD input selection register (ADSEL)
001816
Transmit/Receive buffer register (TB/RB)
003816
MISRG
001916
Serial I/O1 status register (SIOSTS)
003916
Watchdog timer control register (WDTCON)
001A16
Serial I/O1 control register (SIOCON)
003A16
Interrupt edge selection register (INTEDGE)
001B16
UART control register (UARTCON)
003B16
CPU mode register (CPUM)
001C16
Baud rate generator (BRG)
003C16
Interrupt request register 1 (IREQ1)
001D16
PWM control register (PWMCON)
003D16
Interrupt request register 2 (IREQ2)
001E16
PWM prescaler (PREPWM)
003E16
Interrupt control register 1 (ICON1)
001F16
PWM register (PWM)
003F16
Interrupt control register 2 (ICON2)
0FFE16
Flash memory control register (FMCR)
✽ Reserved : Do not write any data to this addresses, because these areas are reserved.
Fig. 9 Memory map of special function register (SFR)
Rev.2.10 2005.11.14
REJ03B0093-0210
page 12 of 86
3850 Group (Spec.A)
I/O PORTS
The I/O ports have direction registers which determine the input/
output direction of each individual pin. Each bit in a direction
register corresponds to one pin, and each pin can be set to be
input port or output port.
When “0” is written to the bit corresponding to a pin, that pin
becomes an input pin. When “1” is written to that bit, that pin
becomes an output pin.
If data is read from a pin which is set to output, the value of the
port output latch is read, not the value of the pin itself. Pins set to
input are floating. If a pin set to input is written to, only the port
output latch is written to and the pin remains floating.
By setting the port P0, P1, P2 pull-up control register (address
001216), the port P3 pull-up control register (address 001316), or
the port P4 pull-up control register (address 001416), ports can
control pull-up with a program. However, the contents of these
registers do not affect ports programmed as the output ports.
Table 6 I/O port function
Pin
Name
Input/Output
I/O Structure
P00/SIN2
P01/SOUT2
P02/SCLK2
P03/SRDY2
P04/AN5–P07AN8
Port P0
P10–P17
P20/XCOUT
P21/XCIN
P22
P23
Port P1
P24/RxD
P25/TxD
P26/SCLK1
P27/CNTR0/SRDY1
CMOS compatible
input level
CMOS 3-state output
Non-Port Function
Serial I/O2 function I/O
Serial I/O2 control register
Ref.No.
(1)
(2)
(3)
(4)
A/D converter input
AD control register
AD input selection register
(13)
(5)
Sub-clock generating
circuit
CPU mode register
CMOS compatible
input level
N-channel open-drain
output
Port P2
Input/output,
individual
bits
Port P3
(Note)
Port P4
(Note)
Serial I/O1 function I/O
Serial I/O1 control register
Serial I/O1 function I/O
Serial I/O1 control register
Timer XY mode register
AD control register
AD input selection register
A/D converter input
CMOS compatible
input level
CMOS 3-state output
(13)
(14)
External interrupt input
Interrupt edge selection
register
(15)
Interrupt edge selection
register
Serial I/O2 control register
(16)
Interrupt edge selection
register
PWM control register
(17)
External interrupt input
PWM output
Note: When bits 5 to 7 of Ports P3 and P4 are read out, the contents are undefined.
page 13 of 86
(12)
Timer XY mode register
SCMP2 output
Rev.2.10 2005.11.14
REJ03B0093-0210
(9)
(10)
(11)
Timer Y function I/O
External interrupt input
P44/INT3/PWM
(6)
(7)
(8)
Timer X function I/O
P30/AN0–
P34/AN4
P40/CNTR1
P41/INT0
P42/INT1
P43/INT2/SCMP2
Related SFRs
3850 Group (Spec.A)
(2) Port P01
(1) Port P00
Pull-up control bit
Pull-up control bit
P01/SOUT2 P-channel output disable bit
Direction
register
Serial I/O2 Transmit completion signal
Serial I/O2 port selection bit
Direction
register
Port latch
Data bus
Port latch
Data bus
Serial I/O2 input
Serial I/O2 output
(4) Port P03
(3) Port P02
Pull-up control bit
Pull-up control bit
P02/SCLK2 P-channel output disable bit
Serial I/O2 synchronous
clock selection bit
Serial I/O2 port selection bit
SRDY2 output enable bit
Direction
register
Direction
register
Port latch
Data bus
Port latch
Data bus
Serial I/O2 ready output
Serial I/O2 clock output
Serial I/O2 external clock input
(6) Port P20
(5) Port P1
Pull-up control bit
Pull-up control bit
Port XC switch bit
Direction
register
Direction
register
Port latch
Data bus
Port latch
Data bus
Oscillator
Port P21
(7) Port P21
Port XC switch bit
Pull-up control bit
Port XC switch bit
(8) Ports P22,P23
Direction
register
Data bus
Direction
register
Port latch
Data bus
Sub-clock generating circuit input
Fig. 10 Port block diagram (1)
Rev.2.10 2005.11.14
REJ03B0093-0210
page 14 of 86
Port latch
3850 Group (Spec.A)
(9) Port P24
(10) Port P25
Pull-up control bit
Serial I/O1 enable bit
Receive enable bit
P-channel output disable bit
Serial I/O1 enable bit
Transmit enable bit
Direction
register
Data bus
Pull-up control bit
Direction
register
Port latch
Data bus
Port latch
Serial I/O1 input
Serial I/O1 output
(12) Port P27
(11) Port P26
Pull-up control bit
Pull-up control bit
Serial I/O1 synchronous
clock selection bit
Serial I/O1 enable bit
Pulse output mode
Serial I/O1 mode selection bit
Serial I/O1 enable bit
SRDY1 output enable bit
Serial I/O1 mode selection bit
Serial I/O1 enable bit
Direction
register
Direction
register
Data bus
Port latch
Port latch
Data bus
Pulse output mode
Serial ready output
Serial I/O1 clock output
External serial I/O1 clock input
Timer output
(14) Port P40
(13) Ports P04-P07, P30-P34
Pull-up control bit
Pull-up control bit
Direction
register
Direction
register
Data bus
Data bus
CNTR0 interrupt
input
Port latch
Port latch
Pulse output mode
Timer output
A/D converter input
CNTR1 interrupt
input
Analog input pin selection bit
Analog input port selection switch bit
(15) Ports P41,P42
(16) Port P43
Pull-up control bit
Serial I/O2 I/O
comparison signal control bit
Pull-up control bit
Direction
register
Data bus
Direction
register
Port latch
Data bus
Interrupt input
Port latch
Serial I/O2 I/O
comparison signal output
Interrupt input
Fig. 11 Port block diagram (2)
Rev.2.10 2005.11.14
REJ03B0093-0210
page 15 of 86
3850 Group (Spec.A)
(17) Port P44
Pull-up control bit
PWM function enable bit
Direction
register
Data bus
Port latch
PWM output
Interrupt input
Fig. 12 Port block diagram (3)
Rev.2.10 2005.11.14
REJ03B0093-0210
page 16 of 86
3850 Group (Spec.A)
b7
b0
Port P0, P1, P2 pull-up control register
(PULL012: address 001216)
P0 pull-up control bit
0: No pull-up
1: Pull-up
P1 pull-up control bit
Note: Pull-up control is valid when the corresponding bit
0: No pull-up
of the port direction register is “0” (input).
1: Pull-up
When that bit is “1” (output), pull-up cannot be set
P2 pull-up control bit
to the port of which pull-up is selected.
0: No pull-up
1: Pull-up
Not used (return “0” when read)
b7
b0
Port P3 pull-up control register
(PULL3: address 001316)
P30 pull-up control bit
0: No pull-up
1: Pull-up
P31 pull-up control bit
0: No pull-up
1: Pull-up
P32 pull-up control bit
0: No pull-up
1: Pull-up
P33 pull-up control bit
0: No pull-up
1: Pull-up
P34 pull-up control bit
0: No pull-up
1: Pull-up
Fix these bits to “0”.
Fig. 13 Structure of port registers (1)
Rev.2.10 2005.11.14
REJ03B0093-0210
page 17 of 86
Note: Pull-up control is valid when the corresponding bit
of the port direction register is “0” (input).
When that bit is “1” (output), pull-up cannot be set
to the port of which pull-up is selected.
3850 Group (Spec.A)
b7
b0
Port P4 pull-up control register
(PULL4: address 001416)
P40 pull-up control bit
0: No pull-up
1: Pull-up
P41 pull-up control bit
0: No pull-up
1: Pull-up
P42 pull-up control bit
0: No pull-up
1: Pull-up
P43 pull-up control bit
0: No pull-up
1: Pull-up
P44 pull-up control bit
0: No pull-up
1: Pull-up
Fix these bits to “0”.
Fig. 14 Structure of port registers (2)
Rev.2.10 2005.11.14
REJ03B0093-0210
page 18 of 86
Note: Pull-up control is valid when the corresponding bit
of the port direction register is “0” (input).
When that bit is “1” (output), pull-up cannot be set
to the port of which pull-up is selected.
3850 Group (Spec.A)
INTERRUPTS
■Notes
Interrupts occur by 15 sources among 15 sources: six external,
eight internal, and one software.
When setting the followings, the interrupt request bit may be set to
“1”.
•When setting external interrupt active edge
Related register: Interrupt edge selection register (address 003A16)
Timer XY mode register (address 002316)
•When switching interrupt sources of an interrupt vector address
where two or more interrupt sources are allocated
Related register: Interrupt edge selection register (address 003A16)
When not requiring for the interrupt occurrence synchronized with
these setting, take the following sequence.
(1) Set the corresponding interrupt enable bit to “0” (disabled).
(2) Set the interrupt edge select bit or the interrupt source select
bit to “1”.
(3) Set the corresponding interrupt request bit to “0” after 1 or
more instructions have been executed.
(4) Set the corresponding interrupt enable bit to “1” (enabled).
Interrupt Control
Each interrupt is controlled by an interrupt request bit, an interrupt
enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the
corresponding interrupt request and enable bits are “1” and the interrupt disable flag is “0”.
Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be
set by software.
The BRK instruction cannot be disabled with any flag or bit. The I
(interrupt disable) flag disables all interrupts except the BRK instruction interrupt.
When several interrupts occur at the same time, the interrupts are
received according to priority.
Interrupt Operation
By acceptance of an interrupt, the following operations are automatically performed:
1. The contents of the program counter and the processor status
register are automatically pushed onto the stack.
2. The interrupt disable flag is set and the corresponding interrupt
request bit is cleared.
3. The interrupt jump destination address is read from the vector
table into the program counter.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 19 of 86
3850 Group (Spec.A)
Table 7 Interrupt vector addresses and priority
Vector Addresses (Note 1)
Interrupt Source
Priority
High
Low
1
FFFD16
FFFC16
Reset (Note 2)
Interrupt Request
Generating Conditions
Remarks
At reset
Non-maskable
External interrupt
(active edge selectable)
INT0
2
FFFB16
FFFA16
At detection of either rising or
falling edge of INT0 input
Reserved
3
FFF916
FFF816
Reserved
INT1
4
FFF716
FFF616
At detection of either rising or
falling edge of INT1 input
External interrupt
(active edge selectable)
INT2
5
FFF516
FFF416
At detection of either rising or
falling edge of INT2 input
External interrupt
(active edge selectable)
INT3/ Serial I/O2
6
FFF316
FFF216
At detection of either rising or
falling edge of INT 3 input/ At
completion of serial I/O2 data
reception/transmission
External interrupt
(active edge selectable)
Switch by Serial I/O2/INT3
interrupt source bit
Reserved
Timer X
Timer Y
Timer 1
Timer 2
7
8
FFF116
FFEF16
9
FFED16
10
11
Serial I/O1
reception
FFF016
Reserved
At timer X underflow
FFEB16
FFE916
FFEE16
FFEC16
FFEA16
FFE816
12
FFE716
FFE616
At completion of serial I/O1 data
reception
Valid when serial I/O1 is selected
Serial I/O1
transmission
13
FFE516
FFE416
At completion of serial I/O1
transfer shift or when transmission buffer is empty
Valid when serial I/O1 is selected
CNTR0
14
FFE316
FFE216
At detection of either rising or
falling edge of CNTR0 input
External interrupt
(active edge selectable)
CNTR1
15
FFE116
FFE016
At detection of either rising or
falling edge of CNTR1 input
External interrupt
(active edge selectable)
A/D converter
BRK instruction
16
FFDF16
FFDE16
At completion of A/D conversion
17
FFDD16
FFDC16
At BRK instruction execution
At timer Y underflow
At timer 1 underflow
At timer 2 underflow
Notes 1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 20 of 86
STP release timer underflow
Non-maskable software interrupt
3850 Group (Spec.A)
Interrupt request bit
Interrupt enable bit
Interrupt disable flag (I)
BRK instruction
Reset
Interrupt request
Fig. 15 Interrupt control
b7
b0
Interrupt edge selection register
(INTEDGE : address 003A16)
INT0 interrupt edge selection bit
INT1 interrupt edge selection bit
0 : Falling edge active
1 : Rising edge active
INT2 interrupt edge selection bit
INT3 interrupt edge selection bit
Serial I/O2 / INT3 interrupt source bit
0 : INT3 interrupt selected
1 : Serial I/O2 interrupt selected
Not used (returns “0” when read)
b7
b0 Interrupt request register 1
(IREQ1 : address 003C16)
b7
b0 Interrupt request register 2
(IREQ2 : address 003D16)
Timer 1 interrupt request bit
Timer 2 interrupt request bit
Serial I/O1 reception interrupt request bit
Serial I/O1 transmit interrupt request bit
CNTR0 interrupt request bit
CNTR1 interrupt request bit
AD converter interrupt request bit
Not used (returns “0” when read)
INT0 interrupt request bit
Reserved
INT1 interrupt request bit
INT2 interrupt request bit
INT3 / Serial I/O2 interrupt request bit
Reserved
Timer X interrupt request bit
Timer Y interrupt request bit
0 : No interrupt request issued
1 : Interrupt request issued
0 : No interrupt request issued
1 : Interrupt request issued
b7
b0
b7
Interrupt control register 1
(ICON1 : address 003E16)
INT0 interrupt enable bit
Reserved(Do not write “1” to this bit.)
INT1 interrupt enable bit
INT2 interrupt enable bit
INT3 / Serial I/O2 interrupt enable bit
Reserved(Do not write “1” to this bit.)
Timer X interrupt enable bit
Timer Y interrupt enable bit
0 : Interrupts disabled
1 : Interrupts enabled
Fig. 16 Structure of interrupt-related registers
Rev.2.10 2005.11.14
REJ03B0093-0210
page 21 of 86
b0
Interrupt control register 2
(ICON2 : address 003F16)
Timer 1 interrupt enable bit
Timer 2 interrupt enable bit
Serial I/O1 reception interrupt enable bit
Serial I/O1 transmit interrupt enable bit
CNTR0 interrupt enable bit
CNTR1 interrupt enable bit
AD converter interrupt enable bit
Not used (returns “0” when read)
(Do not write “1” to this bit.)
0 : Interrupts disabled
1 : Interrupts enabled
3850 Group (Spec.A)
TIMERS
Timer X and Timer Y
The 3850 group (spec. A) has four timers: timer X, timer Y, timer 1,
and timer 2.
The division ratio of each timer or prescaler is given by 1/(n + 1),
where n is the value in the corresponding timer or prescaler latch.
All timers are count down. When the timer reaches “0016”, an underflow occurs at the next count pulse and the corresponding
timer latch is reloaded into the timer and the count is continued.
When a timer underflows, the interrupt request bit corresponding
to that timer is set to “1”.
Timer X and Timer Y can each select in one of four operating
modes by setting the timer XY mode register.
b0
b7
Timer XY mode register
(TM : address 002316)
Timer X operating mode bit
b1b0
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
CNTR0 active edge selection bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
Timer X count stop bit
0: Count start
1: Count stop
Timer Y operating mode bits
b5b4
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
CNTR1 active edge selection bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
Timer Y count stop bit
0: Count start
1: Count stop
Fig. 17 Structure of timer XY mode register
b0
b7
Timer count source selection register
(TCSS : address 002816)
Timer X count source selection bit
0 : f(XIN)/16 (f(XCIN)/16 at low-speed mode)
1 : f(XIN)/2 (f(XCIN)/2 at low-speed mode)
Timer Y count source selection bit
0 : f(XIN)/16 (f(XCIN)/16 at low-speed mode)
1 : f(XIN)/2 (f(XCIN)/2 at low-speed mode)
Timer 12 count source selection bit
0 : f(XIN)/16 (f(XCIN)/16 at low-speed mode)
1 : f(XCIN)
Not used (returns “0” when read)
Fig. 18 Structure of timer count source selection register
Timer 1 and Timer 2
The count source of prescaler 12 is the oscillation frequency
which is selected by timer 12 count source selection bit. The output of prescaler 12 is counted by timer 1 and timer 2, and a timer
underflow sets the interrupt request bit.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 22 of 86
(1) Timer Mode
The timer counts the count source selected by Timer count source
selection bit.
(2) Pulse Output Mode
The timer counts the count source selected by Timer count source
selection bit. Whenever the contents of the timer reach “0016”, the
signal output from the CNTR0 (or CNTR1) pin is inverted. If the
CNTR0 (or CNTR1) active edge selection bit is “0”, output begins
at “ H”.
If it is “1”, output starts at “L”. When using a timer in this mode, set
the corresponding port P27 ( or port P40) direction register to output mode.
(3) Event Counter Mode
Operation in event counter mode is the same as in timer mode,
except that the timer counts signals input through the CNTR0 or
CNTR1 pin.
When the CNTR0 (or CNTR1) active edge selection bit is “0”, the
rising edge of the CNTR0 (or CNTR1) pin is counted.
When the CNTR0 (or CNTR1) active edge selection bit is “1”, the
falling edge of the CNTR0 (or CNTR1) pin is counted.
(4) Pulse Width Measurement Mode
If the CNTR0 (or CNTR1) active edge selection bit is “0”, the timer
counts the selected signals by the count source selection bit while
the CNTR0 (or CNTR1) pin is at “H”. If the CNTR0 (or CNTR1) active edge selection bit is “1”, the timer counts it while the CNTR0
(or CNTR1) pin is at “L”.
The count can be stopped by setting “1” to the timer X (or timer Y)
count stop bit in any mode. The corresponding interrupt request
bit is set each time a timer underflows.
■Note
When switching the count source by the timer 12, X and Y count
source bits, the value of timer count is altered in unconsiderable
amount owing to generating of a thin pulses in the count input
signals.
Therefore, select the timer count source before set the value to
the prescaler and the timer.
When timer X/timer Y underflow while executing the instruction
which sets “1” to the timer X/timer Y count stop bits, the timer X/
timer Y interrupt request bits are set to “1”. Timer X/Timer Y interrupts are received if these interrupts are enabled at this time.
The timing which interrupt is accepted has a case after the instruction which sets “1” to the count stop bit, and a case after
the next instruction according to the timing of the timer underflow. When this interrupt is unnecessary, set “0” (disabled) to the
interrupt enable bit and then set “1” to the count stop bit.
3850 Group (Spec.A)
Data bus
f(XIN)/16
(f(XCIN)/16 at low-speed mode)
Prescaler X latch (8)
f(XIN)/2
Pulse width
(f(XCIN)/2 at low-speed mode)
Timer X count source selection bit measurement
mode
Timer mode
Pulse output mode
Prescaler X (8)
CNTR0 active edge
selection bit
“0 ”
P27/CNTR0
Event
counter
mode
“1”
Timer X (8)
To timer X interrupt
request bit
Timer X count stop bit
To CNTR0 interrupt
request bit
CNTR0 active
edge selection “1”
bit
“0”
Q
Toggle flip-flop T
Q
R
Timer X latch write pulse
Pulse output mode
Port P27
latch
Port P27
direction register
Timer X latch (8)
Pulse output mode
Data bus
f(XIN)/16
(f(XCIN)/16 at low-speed mode)
Prescaler Y latch (8)
f(XIN)/2
(f(XCIN)/2 at low-speed mode)
Timer Y count source selection bit
Pulse width
measurement mode
Timer mode
Pulse output mode
Prescaler Y (8)
CNTR1 active edge
selection bit
“0”
P40/CNTR1
Event
counter
mode
“1”
Port P40
direction register
Timer Y (8)
To timer Y interrupt
request bit
Timer Y count stop bit
To CNTR1 interrupt
request bit
CNTR1 active
edge selection “1”
bit
Q
Toggle flip-flop T
Q
Port P40
latch
Timer Y latch (8)
“0 ”
R
Timer Y latch write pulse
Pulse output mode
Pulse output mode
Data bus
Prescaler 12 latch (8)
f(XIN)/16
(f(XCIN)/16 at low-speed mode)
f(XCIN)
Prescaler 12 (8)
Timer 1 latch (8)
Timer 2 latch (8)
Timer 1 (8)
Timer 2 (8)
To timer 2 interrupt
request bit
Timer 12 count source selection bit
To timer 1 interrupt
request bit
Fig. 19 Block diagram of timer X, timer Y, timer 1, and timer 2
Rev.2.10 2005.11.14
REJ03B0093-0210
page 23 of 86
3850 Group (Spec.A)
SERIAL INTERFACE
●SERIAL I/O1
(1) Clock Synchronous Serial I/O Mode
Clock synchronous serial I/O mode can be selected by setting the
serial I/O1 mode selection bit of the serial I/O1 control register (bit
6 of address 001A16) to “1”.
For clock synchronous serial I/O, the transmitter and the receiver
must use the same clock. If an internal clock is used, transfer is
started by a write signal to the TB/RB.
Serial I/O1 can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer is also provided for
baud rate generation.
Data bus
Serial I/O1 control register
Address 001816
Receive buffer register
Receive buffer full flag (RBF)
Receive shift register
P24/RXD
Address 001A16
Receive interrupt request (RI)
Shift clock
Clock control circuit
P26/SCLK1
XIN
Serial I/O1 synchronous
clock selection bit
Frequency division ratio 1/(n+1)
Baud rate generator
1/4
Address 001C16
BRG count source selection bit
1/4
P27/SRDY1
F/F
Clock control circuit
Falling-edge detector
Shift clock
P25/TXD
Transmit shift completion flag (TSC)
Transmit interrupt source selection bit
Transmit interrupt request (TI)
Transmit shift register
Transmit buffer register
Transmit buffer empty flag (TBE)
Serial I/O1 status register
Address 001916
Address 001816
Data bus
Fig. 20 Block diagram of clock synchronous serial I/O1
Transfer shift clock
(1/2 to 1/2048 of the internal
clock, or an external clock)
Serial output TxD
D0
D1
D2
D3
D4
D5
D6
D7
Serial input RxD
D0
D1
D2
D3
D4
D5
D6
D7
Receive enable signal SRDY1
Write pulse to receive/transmit
buffer register (address 001816)
TBE = 0
TBE = 1
TSC = 0
RBF = 1
TSC = 1
Overrun error (OE)
detection
Notes 1: As the transmit interrupt (TI), either when the transmit buffer has emptied (TBE=1) or after the transmit shift operation has
ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1 control register.
2: If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data
is output continuously from the TxD pin.
3: The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .
Fig. 21 Operation of clock synchronous serial I/O1 function
Rev.2.10 2005.11.14
REJ03B0093-0210
page 24 of 86
3850 Group (Spec.A)
(2) Asynchronous Serial I/O (UART) Mode
two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is
written to the transmit buffer register, and receive data is read
from the receive buffer register.
The transmit buffer register can also hold the next data to be
transmitted, and the receive buffer register can hold a character
while the next character is being received.
Clock asynchronous serial I/O mode (UART) can be selected by
clearing the serial I/O1 mode selection bit (b6) of the serial I/O1
control register to “0”.
Eight serial data transfer formats can be selected, and the transfer
formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer, but the
Data bus
Address 001816
P24/RXD
Serial I/O1 control register Address 001A16
Receive buffer full flag (RBF)
Receive interrupt request (RI)
OE
Receive buffer register
Character length selection bit
ST detector
7 bits
Receive shift register
1/16
8 bits
PE FE
SP detector
Clock control circuit
UART control register
Address 001B16
Serial I/O1 synchronous clock selection bit
P26/SCLK1
XIN
BRG count source selection bit Frequency division ratio 1/(n+1)
Baud rate generator
Address 001C16
1/4
ST/SP/PA generator
1/16
P25/TXD
Transmit shift register
Transmit shift completion flag (TSC)
Transmit interrupt source selection bit
Transmit interrupt request (TI)
Character length selection bit
Transmit buffer register
Address 001816
Data bus
Fig. 22 Block diagram of UART serial I/O1
Rev.2.10 2005.11.14
REJ03B0093-0210
page 25 of 86
Transmit buffer empty flag (TBE)
Serial I/O1 status register Address 001916
3850 Group (Spec.A)
Transmit or receive clock
Transmit buffer write
signal
TBE=0
TSC=0
TBE=1
Serial output TXD
TBE=0
TBE=1
ST
D0
D1
SP
TSC=1
ST
D0
1 start bit
7 or 8 data bit
1 or 0 parity bit
1 or 2 stop bit (s)
Receive buffer read
signal
SP
D1
Generated at 2nd bit in 2-stop-bit mode
RBF=0
RBF=1
Serial input RXD
ST
D0
D1
SP
RBF=1
ST
D0
D1
SP
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes “1” (at 1st stop bit, during reception).
2: As the transmit interrupt (TI), when either the TBE or TSC flag becomes “1”, can be selected to occur depending on the setting of the transmit
interrupt source selection bit (TIC) of the serial I/O1 control register.
3: The receive interrupt (RI) is set when the RBF flag becomes “1”.
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.
Fig. 23 Operation of UART serial I/O1 function
[Transmit Buffer Register/Receive Buffer
Register (TB/RB)] 001816
The transmit buffer register and the receive buffer register are located at the same address. The transmit buffer is write-only and
the receive buffer is read-only. If a character bit length is 7 bits, the
MSB of data stored in the receive buffer is “0”.
[Serial I/O1 Status Register (SIOSTS)] 001916
The read-only serial I/O1 status register consists of seven flags
(bits 0 to 6) which indicate the operating status of the serial I/O1
function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to “0” when the receive
buffer register is read.
If there is an error, it is detected at the same time that data is
transferred from the receive shift register to the receive buffer register, and the receive buffer full flag is set. A write to the serial I/O1
status register clears all the error flags OE, PE, FE, and SE (bit 3
to bit 6, respectively). Writing “0” to the serial I/O1 enable bit SIOE
(bit 7 of the serial I/O1 control register) also clears all the status
flags, including the error flags.
Bits 0 to 6 of the serial I/O1 status register are initialized to “0” at
reset, but if the transmit enable bit (bit 4) of the serial I/O1 control
register has been set to “1”, the transmit shift completion flag (bit
2) and the transmit buffer empty flag (bit 0) become “1”.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 26 of 86
[Serial I/O1 Control Register (SIOCON)] 001A16
The serial I/O1 control register consists of eight control bits for the
serial I/O1 function.
[UART Control Register (UARTCON)] 001B16
The UART control register consists of four control bits (bits 0 to 3)
which are valid when asynchronous serial I/O is selected and set
the data format of an data transfer and one bit (bit 4) which is always valid and sets the output structure of the P25/TXD pin.
[Baud Rate Generator (BRG)] 001C16
The baud rate generator determines the baud rate for serial transfer.
The baud rate generator divides the frequency of the count source
by 1/(n + 1), where n is the value written to the baud rate generator.
3850 Group (Spec.A)
b7
b0
Serial I/O1 status register
(SIOSTS : address 001916)
b7
Transmit buffer empty flag (TBE)
0: Buffer full
1: Buffer empty
Receive buffer full flag (RBF)
0: Buffer empty
1: Buffer full
Transmit shift completion flag (TSC)
0: Transmit shift in progress
1: Transmit shift completed
Overrun error flag (OE)
0: No error
1: Overrun error
Parity error flag (PE)
0: No error
1: Parity error
Framing error flag (FE)
0: No error
1: Framing error
Summing error flag (SE)
0: (OE) U (PE) U (FE)=0
1: (OE) U (PE) U (FE)=1
Not used (returns “1” when read)
b7
b0
UART control register
(UARTCON : address 001B16)
Character length selection bit (CHAS)
0: 8 bits
1: 7 bits
Parity enable bit (PARE)
0: Parity checking disabled
1: Parity checking enabled
Parity selection bit (PARS)
0: Even parity
1: Odd parity
Stop bit length selection bit (STPS)
0: 1 stop bit
1: 2 stop bits
P25/TXD P-channel output disable bit (POFF)
0: CMOS output (in output mode)
1: N-channel open drain output (in output mode)
Not used (return “1” when read)
Fig. 24 Structure of serial I/O1 control registers
■Notes on serial I/O
When setting the transmit enable bit of serial I/O1 to “1”, the serial
I/O1 transmit interrupt request bit is automatically set to “1”. When
not requiring the interrupt occurrence synchronized with the transmission enabled, take the following sequence.
(1) Set the serial I/O1 transmit interrupt enable bit to “0” (disabled).
(2) Set the transmit enable bit to “1”.
(3) Set the serial I/O1 transmit interrupt request bit to “0” after 1 or
more instructions have been executed.
(4) Set the serial I/O1 transmit interrupt enable bit to “1” (enabled).
Rev.2.10 2005.11.14
REJ03B0093-0210
page 27 of 86
b0
Serial I/O1 control register
(SIOCON : address 001A16)
BRG count source selection bit (CSS)
0: f(XIN)
1: f(XIN)/4
Serial I/O1 synchronous clock selection bit (SCS)
0: BRG output divided by 4 when clock synchronous
serial I/O1 is selected, BRG output divided by 16
when UART is selected.
1: External clock input when clock synchronous serial
I/O1 is selected, external clock input divided by 16
when UART is selected.
SRDY1 output enable bit (SRDY)
0: P27 pin operates as ordinary I/O pin
1: P27 pin operates as SRDY1 output pin
Transmit interrupt source selection bit (TIC)
0: Interrupt when transmit buffer has emptied
1: Interrupt when transmit shift operation is completed
Transmit enable bit (TE)
0: Transmit disabled
1: Transmit enabled
Receive enable bit (RE)
0: Receive disabled
1: Receive enabled
Serial I/O1 mode selection bit (SIOM)
0: Clock asynchronous (UART) serial I/O
1: Clock synchronous serial I/O
Serial I/O1 enable bit (SIOE)
0: Serial I/O1 disabled
(pins P24 to P27 operate as ordinary I/O pins)
1: Serial I/O1 enabled
(pins P24 to P27 operate as serial I/O1 pins)
3850 Group (Spec.A)
●SERIAL I/O2
The serial I/O2 can be operated only as the clock synchronous type.
As a synchronous clock for serial transfer, either internal clock or
external clock can be selected by the serial I/O2 synchronous clock
selection bit (b6) of serial I/O2 control register 1.
The internal clock incorporates a dedicated divider and permits selecting 6 types of clock by the internal synchronous clock selection
bits (b2, b1, b0) of serial I/O2 control register 1.
Regarding SOUT2 and SCLK2 being output pins, either CMOS output
format or N-channel open-drain output format can be selected by the
P0 1 /S OUT2 , P0 2 /S CLK2 P-channel output disable bit (b7) of
serial I/O2 control register 1.
When the internal clock has been selected, a transfer starts by a
write signal to the serial I/O2 register (address 001716). After completion of data transfer, the level of the SOUT2 pin goes to high impedance automatically but bit 7 of the serial I/O2 control register 2 is not
set to “1” automatically.
When the external clock has been selected, the contents of the serial
I/O2 register is continuously shifted while transfer clocks are input.
Accordingly, control the clock externally. Note that the SOUT2 pin does
not go to high impedance after completion of data transfer.
To cause the SOUT2 pin to go to high impedance in the case where
the external clock is selected, set bit 7 of the serial I/O2 control register 2 to “1” when SCLK2 is “H” after completion of data transfer. After
the next data transfer is started (the transfer clock falls), bit 7 of the
serial I/O2 control register 2 is set to “0” and the SOUT2 pin is put into
the active state.
Regardless of the internal clock to external clock, the interrupt request bit is set after the number of bits (1 to 8 bits) selected by the
optional transfer bit is transferred. In case of a fractional number of
bits less than 8 bits as the last data, the received data to be stored in
the serial I/O2 register becomes a fractional number of bits close to
MSB if the transfer direction selection bit of serial I/O2 control register 1 is LSB first, or a fractional number of bits close to LSB if the
transfer direction selection bit is MSB first. For the remaining bits, the
previously received data is shifted.
At transmit operation using the clock synchronous serial I/O, the SCMP2
signal can be output by comparing the state of the transmit pin SOUT2
with the state of the receive pin SIN2 in synchronization with a rise of
the transfer clock. If the output level of the SOUT2 pin is equal to the
input level to the SIN2 pin, “L” is output from the SCMP2 pin. If not, “H”
is output. At this time, an INT2 interrupt request can also be generated. Select a valid edge by bit 2 of the interrupt edge selection register (address 003A16).
[Serial I/O2 Control Registers 1, 2 (SIO2CON1 /
SIO2CON2)] 001516, 001616
The serial I/O2 control registers 1 and 2 are containing various selection bits for serial I/O2 control as shown in Figure 25.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 28 of 86
b7
b0
Serial I/O2 control register 1
(SIO2CON1 : address 001516)
Internal synchronous clock selection bits
b2 b1 b0
0
0
0
0
1
1
0
0
1
1
1
1
0: f(XIN)/8 (f(XCIN)/8 in low-speed mode)
1: f(XIN)/16 (f(XCIN)/16 in low-speed mode)
0: f(XIN)/32 (f(XCIN)/32 in low-speed mode)
1: f(XIN)/64 (f(XCIN)/64 in low-speed mode)
0: f(XIN)/128 f(XCIN)/128 in low-speed mode)
1: f(XIN)/256 (f(XCIN)/256 in low-speed mode)
Serial I/O2 port selection bit
0: I/O port
1: SOUT2,SCLK2 output pin
SRDY2 output enable bit
0: P03 pin is normal I/O pin
1: P03 pin is SRDY2 output pin
Transfer direction selection bit
0: LSB first
1: MSB first
Serial I/O2 synchronous clock selection bit
0: External clock
1: Internal clock
P01/SOUT2 ,P02/SCLK2 P-channel output disable bit
0: CMOS output (in output mode)
1: N-channel open-drain output (in output mode )
b7
b0
Serial I/O2 control register 2
(SIO2CON2 : address 001616)
Optional transfer bits
b2 b1 b0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0: 1 bit
1: 2 bit
0: 3 bit
1: 4 bit
0: 5 bit
1: 6 bit
0: 7 bit
1: 8 bit
Not used ( returns "0" when read)
Serial I/O2 I/O comparison signal control bit
0: P43 I/O
1: SCMP2 output
SOUT2 pin control bit (P01)
0: Output active
1: Output high-impedance
Fig. 25 Structure of Serial I/O2 control registers 1, 2
3850 Group (Spec.A)
Internal synchronous
clock selection bits
1/8
XCIN
1/16
“10”
Divider
Main clock division ratio
selection bits (Note)
“00”
“01”
XIN
Data bus
1/32
1/64
1/128
1/256
P03 latch
Serial I/O2 synchronous
clock selection bit
“0”
SRDY2
“1”
SRDY2 output enable bit
Serial I/O2
synchronous clock
selection bit
“1”
Synchronous circuit
SCLK2
P03/SRDY2
“0”
External clock
P02 latch
Optional transfer bits (3)
“0”
P02/SCLK2
Serial I/O2
interrupt request
Serial I/O counter 2 (3)
“1”
Serial I/O2 port selection bit
P01 latch
“0”
P01/SOUT2
“1”
Serial I/O2 port selection bit
Serial I/O2 register (8)
P00/SIN2
P43 latch
“0”
D
P43/SCMP2/INT2
Q
“1”
Serial I/O2 I/O comparison
signal control bit
Note: Either high-speed, middle-speed or low-speed mode is selected by bits 6 and 7 of CPU mode register.
Fig. 26 Block diagram of Serial I/O2
Transfer clock (Note 1)
Write-in signal to
serial I/O2 register
(Note 2)
Serial I/O2 output SOUT2
D0
D1
.
D2
D3
D4
D5
D6
D7
Serial I/O2 input SIN2
Receive enable signal SRDY2
Serial I/O2 interrupt request bit set
Notes 1: When the internal clock is selected as a transfer clock, the f(XIN) clock division (f(XCIN) in low-speed mode) can be selected
by setting bits 0 to 2 of serial I/O2 control register 1.
2: When the internal clock is selected as a transfer clock, the SOUT2 pin has high impedance after transfer completion.
Fig. 27 Timing chart of Serial I/O2
Rev.2.10 2005.11.14
REJ03B0093-0210
page 29 of 86
3850 Group (Spec.A)
SCMP2
SCLK2
SOUT2
SIN2
Judgment of I/O data comparison
Fig. 28 SCMP2 output operation
Rev.2.10 2005.11.14
REJ03B0093-0210
page 30 of 86
3850 Group (Spec.A)
PULSE WIDTH MODULATION (PWM)
PWM Operation
The 3850 group (spec. A) has a PWM function with an 8-bit
resolution, based on a signal that is the clock input XIN or that
clock input divided by 2.
When bit 0 (PWM enable bit) of the PWM control register is set to
“1”, operation starts by initializing the PWM output circuit, and
pulses are output starting at an “H”.
If the PWM register or PWM prescaler is updated during PWM
output, the pulses will change in the cycle after the one in which
the change was made.
Data Setting
The PWM output pin also functions as port P44 . Set the PWM
period by the PWM prescaler, and set the “H” term of output pulse
by the PWM register.
If the value in the PWM prescaler is n and the value in the PWM
register is m (where n = 0 to 255 and m = 0 to 255) :
PWM period = 255 ✕ (n+1) / f(XIN)
= 31.875 ✕ (n+1) µs
(when f(XIN) = 8 MHz,count source selection bit = “0”)
Output pulse “H” term = PWM period ✕ m / 255
= 0.125 ✕ (n+1) ✕ m µs
(when f(XIN) = 8 MHz,count source selection bit = “0”)
31.875 ✕ m ✕ (n+1)
µs
255
PWM output
T = [31.875 ✕ (n+1)] µs
m: Contents of PWM register
n : Contents of PWM prescaler
T : PWM period (when f(XIN) = 8 MHz,count source
selection bit = “0”)
Fig. 29 Timing of PWM period
Data bus
PWM
prescaler pre-latch
PWM
register pre-latch
Transfer control circuit
PWM
prescaler latch
PWM
register latch
PWM prescaler
PWM register
Count source
selection bit
“0”
XIN
(XCIN at low-speed mode)
1/2
Port P44
“1”
Port P44 latch
PWM function
enable bit
Fig. 30 Block diagram of PWM function
Rev.2.10 2005.11.14
REJ03B0093-0210
page 31 of 86
3850 Group (Spec.A)
b7
b0
PWM control register
(PWMCON : address 001D16)
PWM function enable bit
0: PWM disabled
1: PWM enabled
Count source selection bit
0: f(XIN) (f(XCIN) at low-speed mode)
1: f(XIN)/2 (f(XCIN)/2 at low-speed mode)
Not used (return “0” when read)
Fig. 31 Structure of PWM control register
A
B
B = C
T
T2
C
PWM output
T
PWM register
write signal
T
T2
(Changes “H” term from “A” to “B”.)
PWM prescaler
write signal
(Changes PWM period from “T” to “T2”.)
When the contents of the PWM register or PWM prescaler have changed, the PWM
output will change from the next period after the change.
Fig. 32 PWM output timing when PWM register or PWM prescaler is changed
■Note
The PWM starts after the PWM function enable bit is set to enable and “L” level is output from the PWM pin.
The length of this “L” level output is as follows:
n+1
2 • f(XIN)
sec
(Count source selection bit = 0, where n is the value set in the prescaler)
n+1
f(XIN)
sec
(Count source selection bit = 1, where n is the value set in the prescaler)
Rev.2.10 2005.11.14
REJ03B0093-0210
page 32 of 86
3850 Group (Spec.A)
A/D CONVERTER
[AD Conversion Registers (ADL, ADH)]
003516, 003616
b7
b0
AD control register
(ADCON : address 003416)
Analog input pin selection bits
The AD conversion registers are read-only registers that store the
result of an A/D conversion. Do not read these registers during an
A/D conversion.
b2 b1 b0
0
0
0
0
1
[AD Control Register (ADCON)] 003416
The AD control register controls the A/D conversion process. Bits
0 to 2 select a specific analog input pin. By setting a value to these
bits, when bit 0 of the AD input selection register (address 003716)
is “0”, P30/AN0-P34/AN4 can be selected, and when bit 0 of the AD
input selection register is “1”, P04/AN5-P07/AN8 can be selected.
Bit 4 indicates the completion of an A/D conversion. The value of
this bit remains at “0” during an A/D conversion and changes to “1”
when an A/D conversion ends. Writing “0” to this bit starts the A/D
conversion.
[AD Input Selection Register (ADSEL)] 003716
0
0
1
1
0
Note 1
0: P30/AN0
1: P31/AN1
0: P32/AN2
1: P33/AN3
0: P34/AN4
Note 2
or
or
or
or
P04/AN5
P05/AN6
P06/AN7
P07/AN8
––––––
Not used (returns “0” when read)
AD conversion completion bit
0: Conversion in progress
1: Conversion completed
Not used (returns “0” when read)
Notes 1: This is selected when bit 0 of the AD input selection register
(address 003716) is “0”.
2: This is selected when bit 0 of the AD input selection register
(address 003716) is “1”.
Fig. 33 Structure of AD control register
b7
b0
AD input selection register
(ADSEL: address 003716)
The analog input port selection switch bit is assigned to bit 0 of the
AD input selection register. When “0” is set to the analog input port
selection switch bit, P30/AN0-P34/AN4 can be selected by the analog input pin selection bits (b2, b1, b0) of the AD control register
(address 003416). When “1” is set to the analog input port selection switch bit, P04 /AN5-P0 7/AN8 can be selected by the analog
input pin selection bits (b2, b1, b0) of the AD control register (address 003416).
Analog input port selection switch bit
0: P30/AN0 to P34/AN4 is selected as
analog input pin.
1: P04/AN5 to P07/AN8 is selected as
analog input pin.
Not used (returns “0” when read)
Fix this bit to “0”.
Comparison Voltage Generator
Not used (returns “0” when read)
The comparison voltage generator divides the voltage between
AVSS and VREF into 1024 and outputs the divided voltages.
Fix this bit to “0”.
Fig. 34 Structure of AD input selection register
Channel Selector
The channel selector selects one of ports P30/AN 0 to P3 4/AN 4,
P04/AN5 to P07/AN8 and inputs the voltage to the comparator.
Comparator and Control Circuit
The comparator and control circuit compare an analog input voltage with the comparison voltage, and the result is stored in the AD
conversion registers. When an A/D conversion is completed, the
control circuit sets the AD conversion completion bit and the AD
interrupt request bit to “1”.
Note that because the comparator consists of a capacitor coupling, set f(XIN) to 500 kHz or more during an A/D conversion.
When the A/D converter is operated at low-speed mode, f(XIN )
and f(XCIN) do not have the lower limit of frequency, because of
the A/D converter has a built-in self-oscillation circuit.
10-bit reading
(Read address 003616 before 003516)
b7
(Address 003616)
b7
(Address 003516)
b0
b7 b6 b5 b4 b3 b2 b1 b0
Note : The high-order 6 bits of address 003616 become “0”
at reading.
8-bit reading (Read only address 003516)
b7
(Address 003516)
b0
b9 b8 b7 b6 b5 b4 b3 b2
Fig. 35 Structure of AD conversion registers
Rev.2.10 2005.11.14
REJ03B0093-0210
page 33 of 86
b0
b9 b8
3850 Group (Spec.A)
Data bus
AD control register b7
(Address 003416)
b0
b7
b0
AD input selection register
(Address 003716)
3
A/D interrupt request
A/D control circuit
Channel selector
P30/AN0
P31/AN1
P32/AN2
P33/AN3
P34/AN4
P04/AN5
P05/AN6
P06/AN7
P07/AN8
Comparator
AD conversion high-order register (Address 003616)
AD conversion low-order register (Address 003516)
10
Resistor ladder
VREF AVSS
Fig. 36 Block diagram of A/D converter
Rev.2.10 2005.11.14
REJ03B0093-0210
page 34 of 86
3850 Group (Spec.A)
WATCHDOG TIMER
Bit 6 of Watchdog Timer Control Register
The watchdog timer gives a mean of returning to the reset status
when a program cannot run on a normal loop (for example, because of a software run-away). The watchdog timer consists of an
8-bit watchdog timer L and an 8-bit watchdog timer H.
When bit 6 of the watchdog timer control register is “0”, the MCU
enters the stop mode by execution of STP instruction. Just after
releasing the stop mode, the watchdog timer restarts counting
(Note). When executing the WIT instruction, the watchdog timer
does not stop.
When bit 6 is “1”, execution of STP instruction causes an internal
reset. When this bit is set to “1” once, it cannot be rewritten to “0”
by program. Bit 6 is “0” at reset.
Initial Value of Watchdog Timer
At reset or writing to the watchdog timer control register (address
003916), each of watchdog timer H and L is set to “FF16”. Any instruction which generates a write signal such as the instructions of
STA, LDM, CLB and others can be used to write. The data of bits
6 and 7 are only valid when writing to the watchdog timer control
register. Each of watchdog timer is set to “FF16” regardless of the
written data of bits 0 to 5.
The necessary time after writing to the watchdog timer control register to an underflow of the watchdog timer H is shown as follows.
When bit 7 of the watchdog timer control register is “0”:
32 s at XCIN = 32.768 kHz frequency and
65.536 ms at XIN = 16 MHz frequency.
When bit 7 of the watchdog timer control register is “1”:
125 ms at XCIN = 32.768 kHz frequency and
256 µs at XIN = 16 MHz frequency.
Operation of Watchdog Timer
The watchdog timer stops at reset and starts to count down by
writing to the watchdog timer control register. An internal reset occurs at an underflow of the watchdog timer H. The reset is
released after waiting for a reset release time and the program is
processed from the reset vector address. Accordingly, programming is usually performed so that writing to the watchdog timer
control register may be started before an underflow of the watchdog timer H. If writing to the watchdog timer control register is not
performed once, the watchdog timer does not function.
Note: The watchdog timer continues to count for waiting for a stop mode
release time. Do not generate an underflow of the watchdog timer H
during that time.
“FF16” is set when
watchdog timer
control register is
written to.
XCIN
Data bus
“0”
“10”
Main clock division
ratio selection bits
(Note)
XIN
“FF16” is set when
watchdog timer
control register is
written to.
Watchdog timer L (8)
1/16
“1 ”
“00”
“01”
Watchdog timer H (8)
Watchdog timer H count
source selection bit
STP instruction function selection bit
STP instruction
Reset
circuit
RESET
Internal reset
Note: Any one of high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.
Fig. 37 Block diagram of Watchdog timer
b7
b0
Watchdog timer control register
(WDTCON : address 003916)
Watchdog timer H (for read-out of high-order 6 bit)
STP instruction function selection bit
0: Entering Stop mode by execution of STP instruction
1: Internal reset by execution of STP instruction
Watchdog timer H count source selection bit
0: Watchdog timer L underflow
1: f(XIN)/16 or f(XCIN)/16
Fig. 38 Structure of Watchdog timer control register
Rev.2.10 2005.11.14
REJ03B0093-0210
page 35 of 86
3850 Group (Spec.A)
RESET CIRCUIT
To reset the microcomputer, RESET pin must be held at an “L”
level for 20 cycles or more of XIN. Then the RESET pin is returned
to an “H” level (the power source voltage must be between 2.7 V
and 5.5 V, and the oscillation must be stable), reset is released.
After the reset is completed, the program starts from the address
contained in address FFFD 16 (high-order byte) and address
FFFC16 (low-order byte). Make sure that the reset input voltage is
less than 0.54 V for VCC of 2.7 V.
Poweron
RESET
VCC
Power source
voltage
0V
Reset input
voltage
0V
(Note)
0.2VCC
Note : Reset release voltage; Vcc = 2.7 V
RESET
VCC
Power source
voltage detection
circuit
Fig. 39 Reset circuit example
XIN
φ
RESET
RESETOUT
Address
?
?
?
?
FFFC
FFFD
ADH,L
Reset address from the vector table.
?
Data
?
?
?
ADL
ADH
SYNC
XIN: 8 to 13 clock cycles
Notes 1: The frequency relation of f(XIN) and f(φ) is f(XIN) = 2 • f(φ).
2: The question marks (?) indicate an undefined state that depends on the previous state.
3: All signals except XIN and RESET are internals.
Fig. 40 Reset sequence
Rev.2.10 2005.11.14
REJ03B0093-0210
page 36 of 86
3850 Group (Spec.A)
Address Register contents
Address Register contents
(1)
Port P0 (P0)
000016
0016
(34) AD control register (ADCON)
003416 0 0 0 1 0 0 0 0
(2)
Port P0 direction register (P0D)
000116
0016
(35) AD conversion low-order register (ADL)
003516 X X X X X X X X
(3)
Port P1 (P1)
000216
0016
(36) AD conversion high-order register (ADH)
003616 0 0 0 0 0 0 X X
(4)
Port P1 direction register (P1D)
000316
0016
(37) AD input selection register (ADSEL)
003716
0016
(5)
Port P2 (P2)
000416
0016
(38) MISRG
003816
0016
(6)
Port P2 direction register (P2D)
000516
0016
(39) Watchdog timer control register (WDTCON)
003916 0 0 1 1 1 1 1 1
(7)
Port P3 (P3)
000616
0016
(40) Interrupt edge selection register (INTEDGE)
003A16
(8)
Port P3 direction register (P3D)
000716
0016
(41) CPU mode register (CPUM)
003B16 0 1 0 0 1 0 0 0
(9)
Port P4 (P4)
000816
0016
(42) Interrupt request register 1 (IREQ1)
003C16
0016
(10) Port P4 direction register (P4D)
000916
0016
(43) Interrupt request register 2 (IREQ2)
003D16
0016
(11) Port P0, P1, P2 pull-up control register (PULL012)
001216
0016
(44) Interrupt control register 1 (ICON1)
003E16
0016
(12) Port P3 pull-up control register (PULL3)
001316
0016
(45) Interrupt control register 2 (ICON2)
003F16
0016
(13) Port P4 pull-up control register (PULL4)
001416
0016
(46) Processor status register
(PS)
(14) Serial I/O2 control register 1 (SIO2CON1)
001516
0016
(47) Program counter
(PCH)
FFFD16 contents
(15) Serial I/O2 control register 2 (SIO2CON2)
001616 0 0 0 0 0 1 1 1
(PCL)
FFFC16 contents
(16) Serial I/O2 register (SIO2)
001716 X X X X X X X X
(17) Transmit/Receive buffer register (TB/RB)
001816 X X X X X X X X
(18) Serial I/O1 status register (SIOSTS)
001916 1 0 0 0 0 0 0 0
(19) Serial I/O1 control register (SIOCON)
001A16
(20) UART control register (UARTCON)
001B16 1 1 1 0 0 0 0 0
(21) Baud rate generator (BRG)
001C16 X X X X X X X X
(22) PWM control register (PWMCON)
001D16
(23) PWM prescaler (PREPWM)
001E16 X X X X X X X X
(24) PWM register (PWM)
001F16 X X X X X X X X
(25) Prescaler 12 (PRE12)
002016
FF16
(26) Timer 1 (T1)
002116
0116
(27) Timer 2 (T2)
002216
0016
(28) Timer XY mode register (TM)
002316
0016
(29) Prescaler X (PREX)
002416
FF16
(30) Timer X (TX)
002516
FF16
(31) Prescaler Y (PREY)
002616
FF16
(32) Timer Y (TY)
002716
FF16
(33) Timer count source selection register (TCSS)
002816
0016
0016
0016
Note : X : Not fixed
Since the initial values for other than above mentioned registers and
RAM contents are indefinite at reset, they must be set.
Fig. 41 Internal status at reset
Rev.2.10 2005.11.14
REJ03B0093-0210
page 37 of 86
0016
X X X X X 1 X X
3850 Group (Spec.A)
CLOCK GENERATING CIRCUIT
(2) Wait mode
The 3850 group (spec. A) has two built-in oscillation circuits. An
oscillation circuit can be formed by connecting a resonator between XIN and XOUT (XCIN and XCOUT). Use the circuit constants
in accordance with the resonator manufacturer’s recommended
values. No external resistor is needed between X IN and X OUT
since a feed-back resistor exists on-chip.(An external feed-back
resistor may be needed depending on conditions.) However, an
external feed-back resistor is needed between XCIN and XCOUT.
Immediately after power on, only the XIN oscillation circuit starts
oscillating, and XCIN and XCOUT pins function as I/O ports.
If the WIT instruction is executed, the internal clock φ stops at an
“H” level, but the oscillator does not stop. The internal clock φ restarts at reset or when an interrupt is received. Since the oscillator
does not stop, normal operation can be started immediately after
the clock is restarted.
Frequency Control
(1) Middle-speed mode
The internal clock φ is the frequency of XIN divided by 8. After reset is released, this mode is selected.
(2) High-speed mode
The internal clock φ is half the frequency of XIN.
(3) Low-speed mode
The internal clock φ is half the frequency of XCIN.
(4) Low power dissipation mode
The low power consumption operation can be realized by stopping
the main clock XIN in low-speed mode. To stop the main clock, set
bit 5 of the CPU mode register to “1”. When the main clock XIN is
restarted (by setting the main clock stop bit to “0”), set sufficient
time for oscillation to stabilize.
The sub-clock XCIN-XCOUT oscillating circuit can not directly input
clocks that are generated externally. Accordingly, make sure to
cause an external resonator to oscillate.
Oscillation Control
(1) Stop mode
To ensure that the interrupts will be received to release the STP or
WIT state, their interrupt enable bits must be set to “1” before executing of the STP or WIT instruction.
When releasing the STP state, the prescaler 12 and timer 1 will
start counting the clock XIN divided by 16. Accordingly, set the timer
1 interrupt enable bit to “0” before executing the STP instruction.
■Note
• If you switch the mode between middle/high-speed and lowspeed, stabilize both X IN and XCIN oscillations. The sufficient
time is required for the sub-clock to stabilize, especially immediately after power on and at returning from the stop mode. When
switching the mode between middle/high-speed and low-speed,
set the frequency on condition that f(XIN) > 3•f(XCIN).
• When using the oscillation stabilizing time set after STP instruction released bit set to “1”, evaluate time to stabilize oscillation
of the used oscillator and set the value to the timer 1 and
prescaler 12.
XCIN
XCOUT
XIN
XOUT
Rd (Note)
Rf
If the STP instruction is executed, the internal clock φ stops at an
“H” level, and XIN and XCIN oscillation stops. When the oscillation
stabilizing time set after STP instruction released bit (bit 0 of
address 003816) is “0”, the prescaler 12 is set to “FF16” and timer
1 is set to “0116”. When the oscillation stabilizing time set after
STP instruction released bit is “1”, set the sufficient time for oscillation of used oscillator to stabilize since nothing is set to the
prescaler 12 and timer 1.
After STP instruction is released, the input of the prescaler 12 is
connected to count source which had set at executing the STP instruction, and the output of the prescaler 12 is connected to timer 1.
Oscillator restarts when an external interrupt is received, but the internal clock φ is not supplied to the CPU (remains at “H”) until timer
1 underflows. The internal clock φ is supplied for the first time, when
timer 1 underflows. This ensures time for the clock oscillation using
the ceramic resonators to be stabilized. When the oscillator is restarted by reset, apply “L” level to the RESET pin until the oscillation
is stable since a wait time will not be generated.
Rd
CCIN
CCOUT
CI N
COUT
Notes : Insert a damping resistor if required.
The resistance will vary depending on the oscillator and
the oscillation drive capacity setting.
Use the value recommended by the maker of the oscillator.
Also, if the oscillator manufacturer's data sheet specifies to
add a feedback resistor externally to the chip though a
feedback resistor exists on-chip, insert a feedback resistor
between XIN and XOUT following the instruction.
Fig. 42 Ceramic resonator circuit
XCIN
XCOUT
Rf
XIN
XOUT
Open
Rd
External oscillation
circuit
CCIN
CCOUT
Vcc
Vss
Fig. 43 External clock input circuit
Rev.2.10 2005.11.14
REJ03B0093-0210
page 38 of 86
3850 Group (Spec.A)
[MISRG (MISRG)] 003816
b0
b7
MISRG consists of three control bits (bits 1 to 3) for middle-speed
mode automatic switch and one control bit (bit 0) for oscillation
stabilizing time set after STP instruction released.
By setting the middle-speed mode automatic switch start bit to “1”
while operating in the low-speed mode and setting the middlespeed mode automatic switch set bit to “1”, X IN oscillation
automatically starts and the mode is automatically switched to the
middle-speed mode.
MISRG
(MISRG : address 003816)
Oscillation stabilizing time set after STP instruction
released bit
0: Automatically set “0116” to Timer 1,
“FF16” to Prescaler 12
1: Automatically set nothing
Middle-speed mode automatic switch set bit
0: Not set automatically
1: Automatic switching enable
Middle-speed mode automatic switch wait time set bit
0: 6.5 to 7.5 machine cycles
1: 4.5 to 5.5 machine cycles
Middle-speed mode automatic switch start bit
(Depending on program)
0: Invalid
1: Automatic switch start
Not used (return “0” when read)
Note: When the mode is automatically switched from the low-speed mode to
the middle-speed mode, the value of CPU mode register (address 003B16)
changes.
Fig. 44 Structure of MISRG
XCOUT
XCIN
“0”
“1”
Port XC
switch bit
XOUT
XIN
(Note 4)
Timer 12 count
source selection
bit
Main clock division ratio
selection bits (Note 1)
Low-speed mode
1/2
1/4
Prescaler 12
1/2
High-speed or
middle-speed
mode
(Note 3)
Timer 1
Reset or
STP instruction
(Note 2)
Main clock division ratio
selection bits (Note 1)
Middle-speed mode
Timing φ (internal clock)
High-speed or
low-speed mode
Main clock stop bit
Q
S
R
S Q
STP instruction
WIT instruction
R
Reset
Q S
R
STP instruction
Reset
Interrupt disable flag l
Interrupt request
Notes 1: Any one of high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.
When low-speed mode is selected, set port Xc switch bit (b4) to “1”.
2: f(XIN)/16 is supplied as the count source to the prescaler 12 at reset, the count source
before executing the STP instruction is supplied as the count source at executing STP instruction.
3: When bit 0 of MISRG = “0”, the prescaler 12 is set to "FF16" and timer 1 is set to "0116".
When bit 0 of MISRG = “1”, set the sufficient time for oscillation of used oscillator to stabilize since nothing is set to
the prescaler 12 and timer 1.
4: Although a feed-back resistor exists on-chip, an external feed-back resistor may be needed depending on conditions.
Fig. 45 System clock generating circuit block diagram (Single-chip mode)
Rev.2.10 2005.11.14
REJ03B0093-0210
page 39 of 86
3850 Group (Spec.A)
Reset
”
“0
4
→
M
C ”←
0”
“1 6 → “
CM ” ←
“1
Middle-speed mode
(f(φ) = 1 MHz)
CM7 = 0
CM6 = 1
CM5 = 0 (8 MHz oscillating)
CM4 = 1 (32 kHz oscillating)
CM
“0 4
CM ” ←
“1 6 → “
”←
1”
→
“0
”
CM6
“1” ←→ “0”
CM
“0 7
”
CM ←
→
“1 6
“1
”←
”
→
“0
”
Middle-speed mode
automatic switch set bit
"1"
High-speed mode
(f(φ) = 4 MHz)
CM7 = 0
CM6 = 0
CM5 = 0 (8 MHz oscillating)
CM4 = 1 (32 kHz oscillating)
Low-speed mode
(f(φ)=16 kHz)
CM7 = 1
CM6 = 0
CM5 = 0 (8 MHz oscillating)
CM4 = 1 (32 kHz oscillating)
CM5
“1” ←→ “0”
Middle-speed mode
automatic switch start bit
"1"
CM7 = 0
CM6 = 0
CM5 = 0 (8 MHz oscillating)
CM4 = 0 (32 kHz stopped)
CM4
“1” ←→ “0”
CM4
“1” ←→ “0”
CM7 = 0
CM6 = 1
CM5 = 0 (8 MHz oscillating)
CM4 = 0 (32 kHz stopped)
High-speed mode
(f(φ) = 4 MHz)
CM6
“1” ←→ “0”
CM7
“1” ←→ “0”
Middle-speed mode
(f(φ) = 1 MHz)
Low-speed mode
(f(φ)=16 kHz)
CM7 = 1
CM6 = 0
CM5 = 1 (8 MHz stopped)
CM4 = 1 (32 kHz oscillating)
b7
b4
CPU mode register
(CPUM : address 003B16)
CM4 : Port Xc switch bit
0 : I/O port function (stop oscillating)
1 : XCIN-XCOUT oscillating function
CM5 : Main clock (XIN- XOUT) stop bit
0 : Operating
1 : Stopped
CM7, CM6: Main clock division ratio selection bit
b7 b6
0 0 : φ = f(XIN)/2 ( High-speed mode)
0 1 : φ = f(XIN)/8 (Middle-speed mode)
1 0 : φ = f(XCIN)/2 (Low-speed mode)
1 1 : Not available
Notes 1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the modes directly without an allow.)
2 : The all modes can be switched to the stop mode or the wait mode and return to the source mode when the stop mode or the wait mode is
ended.
3 : Timer operates in the wait mode.
4 : After STP instruction is released, the count source which had set by bit 2 (timer 12 count source selection bit) of the timer count source set
register at executing the STP instruction is supplied to timer 1. Accordingly, when bit 0 of MISRG is “0” and the timer 12 count source
selection bit is “0” (f(XIN)/16 or f(XCIN)/16), a delay of approximately 1 ms occurs automatically in the high/middle-speed mode. A delay of
approximately 256 ms occurs automatically in the low-speed mode (at f(XIN) = 8 MHz, f(XCIN) = 32 kHz). When the timer 12 count source
selection bit is “1” (f(XCIN)), a delay of approximately 16 ms occurs regardless of the operation mode.
5 : Wait until oscillation stabilizes after oscillating the main clock XIN before the switching from the low-speed mode to middle/high-speed
mode.
6 : When the mode is switched to the middle-speed mode by the middle-speed mode automatic switch set bit of MISRG, the waiting time set
by the middle-speed mode automatic switch wait time set bit is automatically generated, and then the mode is switched to the middlespeed mode.
7 : The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. φ indicates the internal clock.
Fig. 46 State transitions of system clock
Rev.2.10 2005.11.14
REJ03B0093-0210
page 40 of 86
3850 Group (Spec.A)
FLASH MEMORY MODE
Summary
The M38507F8A (flash memory version) has an internal new
DINOR (DIvided bit line NOR) flash memory that can be rewritten
with a single power source when VCC is 5 V, and 2 power sources
when VPP is 5 V and VCC is 3.0-5.5 V in the CPU rewrite and standard serial I/O modes.
For this flash memory, three flash memory modes are available in
which to read, program, and erase: the parallel I/O and standard
serial I/O modes in which the flash memory can be manipulated
using a programmer and the CPU rewrite mode in which the flash
memory can be manipulated by the Central Processing Unit
(CPU).
Table 8 lists the summary of the M38507F8A (flash memory version).
The flash memory of the M38507F8 is divided into User ROM area
and Boot ROM area as shown in Figure 47.
In addition to the ordinary User ROM area to store the MCU operation control program, the flash memory has a Boot ROM area
that is used to store a program to control rewriting in CPU rewrite
and standard serial I/O modes. This Boot ROM area has had a
standard serial I/O mode control program stored in it when
shipped from the factory. However, the user can write a rewrite
control program in this area that suits the user’s application system. This Boot ROM area can be rewritten in only parallel I/O
mode.
Table 8 Summary of M38507F8A (flash memory version)
Item
Power source voltage
VPP voltage (For Program/Erase)
Flash memory mode
Erase block division
User ROM area
Boot ROM area
Program method
Erase method
Program/Erase control method
Number of commands
Number of program/Erase times
ROM code protection
Specifications
Vcc = 2.7– 5.5 V (Note 1)
Vcc = 2.7–3.6 V (Note 2)
4.5-5.5 V
3 modes (Parallel I/O mode, Standard serial I/O mode, CPU rewrite mode)
1 block (32 Kbytes)
1 block (4 Kbytes) (Note 3)
Byte program
Batch erasing
Program/Erase control by software command
6 commands
100 times
Available in parallel I/O mode and standard serial I/O mode
Notes 1: The power source voltage must be Vcc = 4.5–5.5 V at program and erase operation.
2: The power source voltage can be Vcc = 3.0–3.6 V also at program and erase operation.
3: The Boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the factory. This Boot ROM area can be
rewritten in only parallel I/O mode.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 41 of 86
3850 Group (Spec.A)
(1) CPU Rewrite Mode
Microcomputer Mode and Boot Mode
In CPU rewrite mode, the internal flash memory can be operated
on (read, program, or erase) under control of the Central Processing Unit (CPU).
In CPU rewrite mode, only the User ROM area shown in Figure 47
can be rewritten; the Boot ROM area cannot be rewritten. Make
sure the program and block erase commands are issued for only
the User ROM area and each block area.
The control program for CPU rewrite mode can be stored in either
User ROM or Boot ROM area. In the CPU rewrite mode, because
the flash memory cannot be read from the CPU, the rewrite control program must be transferred to internal RAM area to be
executed before it can be executed.
The control program for CPU rewrite mode must be written into
the User ROM or Boot ROM area in parallel I/O mode beforehand.
(If the control program is written into the Boot ROM area, the standard serial I/O mode becomes unusable.)
See Figure 47 for details about the Boot ROM area.
Normal microcomputer mode is entered when the microcomputer
is reset with pulling CNV SS pin low. In this case, the CPU starts
operating using the control program in the User ROM area.
When the microcomputer is reset by pulling the P41/INT0 pin high,
the CNVss pin high, the CPU starts operating using the control
program in the Boot ROM area (program start address is FFFC16,
FFFD16 fixation). This mode is called the “Boot” mode.
Block Address
Block addresses refer to the maximum address of each block.
These addresses are used in the block erase command. In case
of the M38507F8A, it has only one block.
Parallel I/O mode
800016
Block 1 : 32 kbyte
FFFF16
F00016
4 kbyte
FFFF16
User ROM area
Boot ROM area
BSEL = 0
BSEL = 1
CPU rewrite mode, standard serial I/O mode
800016
Block 1 : 32 kbyte
Product name
Flash memory
start address
M38507F8A
800016
FFFF16
F00016
4 kbyte
FFFF16
User ROM area
User area / Boot area selection bit = 0
Boot ROM area
User area / Boot area selection bit = 1
Notes 1: The Boot ROM area can be rewritten in only parallel input/
output mode. (Access to any other areas is inhibited.)
2: To specify a block, use the maximum address in the block.
Fig. 47 Block diagram of built-in flash memory
Rev.2.10 2005.11.14
REJ03B0093-0210
page 42 of 86
3850 Group (Spec.A)
Outline Performance (CPU Rewrite Mode)
CPU rewrite mode is usable in the single-chip or Boot mode. The
only User ROM area can be rewritten in CPU rewrite mode.
In CPU rewrite mode, the CPU erases, programs and reads the internal flash memory by executing software commands. This
rewrite control program must be transferred to the RAM before it
can be executed.
The MCU enters CPU rewrite mode by applying 5 V ± 0.5 V to the
CNVSS pin and setting “1” to the CPU Rewrite Mode Select Bit (bit
1 of address 0FFE16). Software commands are accepted once the
mode is entered.
Use software commands to control program and erase operations.
Whether a program or erase operation has terminated normally or
in error can be verified by reading the status register.
Figure 48 shows the flash memory control register.
Bit 0 is the RY/BY status flag used exclusively to read the operating status of the flash memory. During programming and erase
operations, it is “0” (busy). Otherwise, it is “1” (ready).
Bit 1 is the CPU Rewrite Mode Select Bit. When this bit is set to
“1”, the MCU enters CPU rewrite mode. Software commands are
accepted once the mode is entered. In CPU rewrite mode, the
CPU becomes unable to access the internal flash memory directly.
b7
Therefore, use the control program in the RAM for write to bit 1. To
set this bit to “1”, it is necessary to write “0” and then write “1” in
succession. The bit can be set to “0” by only writing “0”.
Bit 2 is the CPU Rewrite Mode Entry Flag. This flag indicates “1” in
CPU rewrite mode, so that reading this flag can check whether
CPU rewrite mode has been entered or not.
Bit 3 is the flash memory reset bit used to reset the control circuit
of internal flash memory. This bit is used when exiting CPU rewrite
mode and when flash memory access has failed. When the CPU
Rewrite Mode Select Bit is “1”, setting “1” for this bit resets the
control circuit. To set this bit to “1”, it is necessary to write “0” and
then write “1” in succession. To release the reset, it is necessary
to set this bit to “0”.
Bit 4 is the User Area/Boot Area Select Bit. When this bit is set to
“1”, Boot ROM area is accessed, and CPU rewrite mode in Boot
ROM area is available. In Boot mode, this bit is set to “1” automatically. Reprogramming of this bit must be in the RAM.
Figure 49 shows a flowchart for setting/releasing CPU rewrite
mode.
b0
Flash memory control register (address 0FFE16) (Note 1)
FMCR
RY/BY status flag
0: Busy (being programmed or erased)
1: Ready
CPU rewrite mode select bit (Note 2)
0: Normal mode (Software commands invalid)
1: CPU rewrite mode (Software commands acceptable)
CPU rewrite mode entry flag
0: Normal mode
1: CPU rewrite mode
Flash memory reset bit (Note 3)
0: Normal operation
1: Reset
User ROM area / Boot ROM area select bit (Note 4)
0: User ROM area accessed
1: Boot ROM area accessed
Reserved bits (Indefinite at read/ “0” at write)
Notes 1: The contents of flash memory control register are “XXX00001” just after reset release. In the mask
ROM version, this address is reserved area.
2: For this bit to be set to “1”, the user needs to write “0” and then “1” to it in succession. If it is not
this procedure, this bit will not be set to “1”. Additionally, it is required to ensure that no interrupt
will be generated during that interval.
Use the control program in the area except the built-in flash memory for write to this bit.
3: This bit is valid when the CPU rewrite mode select bit is “1”. Set this bit 3 to “0” subsequently after
setting bit 3 to “1”.
4: Use the control program in the area except the built-in flash memory for write to this bit.
Fig.48 Structure of flash memory control register
Rev.2.10 2005.11.14
REJ03B0093-0210
page 43 of 86
3850 Group (Spec.A)
Start
Single-chip mode or Boot mode (Note 1)
Set CPU mode register (Note 2)
Transfer CPU rewrite mode control program
to RAM
Setting
Jump to control program transferred in RAM
(Subsequent operations are executed by control
program in this RAM)
Set CPU rewrite mode select bit to “1” (by
writing “0” and then “1” in succession)
Check CPU rewrite mode entry flag
Using software command execute erase,
program, or other operation
Execute read array command or reset flash
memory by setting flash memory reset bit (by
writing “1” and then “0” in succession) (Note 3)
Released
Write “0” to CPU rewrite mode select bit
End
Notes 1: When starting the MCU in the single-chip mode, supply 4.5 V to 5.25 V to the
CNVss pin until checking the CPU rewrite mode entry flag.
2: Set bits 6, 7 (main clock division ratio selection bits) at CPU mode register (003B16).
3: Before exiting the CPU rewrite mode after completing erase or program operation,
always be sure to execute the read array command or reset the flash memory.
Fig. 49 CPU rewrite mode set/release flowchart
Rev.2.10 2005.11.14
REJ03B0093-0210
page 44 of 86
3850 Group (Spec.A)
Precautions on CPU Rewrite Mode
Described below are the precautions to be observed when rewriting
the flash memory in CPU rewrite mode.
(1) Operation speed
During CPU rewrite mode, set the internal clock frequency 6.25
MHz or less using the main clock division ratio selection bits (bit
6, 7 at 003B16).
(2) Instructions inhibited against use
The instructions which refer to the internal data of the flash
memory cannot be used during CPU rewrite mode .
(3) Interrupts inhibited against use
The interrupts cannot be used during CPU rewrite mode because they refer to the internal data of the flash memory.
(4) Watchdog timer
In case of the watchdog timer has been running already, the internal reset generated by watchdog timer underflow does not
happen, because of watchdog timer is always clearing during
program or erase operation.
(5) Reset
Reset is always valid. In case of CNVSS = H when reset is released, boot mode is active. So the program starts from the address contained in address FFFC16 and FFFD16 in boot ROM
area.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 45 of 86
3850 Group (Spec.A)
Software Commands (CPU Rewrite Mode)
Table 9 lists the software commands.
After setting the CPU Rewrite Mode Select Bit of the flash memory
control register to “1”, execute a software command to specify an
erase or program operation.
Each software command is explained below.
●Read Array Command (FF16)
The read array mode is entered by writing the command code
“FF16” in the first bus cycle. When an address to be read is input in
one of the bus cycles that follow, the contents of the specified address are read out at the data bus (D0 to D7).
The read array mode is retained intact until another command is
written.
register mode is entered automatically and the contents of the status register is read at the data bus (D0 to D7). The status register
bit 7 (SR7) is set to “0” at the same time the write operation starts
and is returned to “1” upon completion of the write operation. In
this case, the read status register mode remains active until the
next command is written.
____
The RY/BY Status Flag is “0” (busy) during write operation and “1”
(ready) when the write operation is completed as is the status register bit 7.
At program end, program results can be checked by reading bit 4
(SR4) of the status register.
Start
●Read Status Register Command (7016)
The read status register mode is entered by writing the command
code “7016” in the first bus cycle. The contents of the status register are read out at the data bus (D0 to D7) by a read in the second
bus cycle.
The status register is explained in the next section.
Write 4016
Write Write address
Write data
Status register
read
●Clear Status Register Command (5016)
This command is used to clear the bits SR1, SR4, and SR5 of the
status register after they have been set. These bits indicate that
operation has ended in an error. To use this command, write the
command code “5016” in the first bus cycle.
SR7 = 1 ?
or
RY/BY = 1 ?
●Program Command (4016)
Program operation starts when the command code “4016” is written in the first bus cycle. Then, if the address and data to program
are written in the 2nd bus cycle, program operation (data programming and verification) will start.
Whether the write operation is completed can be confirmed by
_____
reading the status register or the RY/BY Status Flag of the flash
memory control register. When the program starts, the read status
NO
YES
NO
SR4 = 0 ?
Program
error
YES
Program completed
(Read array command
“FF16” write)
Fig. 50 Program flowchart
Table 9 List of software commands (CPU rewrite mode)
Command
Cycle number
Mode
Read array
1
Write
Read status register
2
Clear status register
First bus cycle
Data
Address
(D0 to D7)
Second bus cycle
Mode
Address
Data
(D0 to D7)
Read
X
SRD (Note 2)
(Note 1)
F F1 6
Write
X
7016
1
Write
X
5016
Program
2
Write
X
4016
Write
WA (Note 3)
WD (Note 3)
Erase all blocks
2
Write
X
2016
Write
X
2016
Block erase
2
Write
X
2016
Write
(Note 4)
D016
X
Notes 1: X denotes a given address in the User ROM area .
2: SRD = Status Register Data
3: WA = Write Address, WD = Write Data
4: BA = Block Address to be erased (Input the maximum address of each block.)
Rev.2.10 2005.11.14
REJ03B0093-0210
page 46 of 86
BA
3850 Group (Spec.A)
●Erase All Blocks Command (2016/2016)
By writing the command code “2016” in the first bus cycle and the
confirmation command code “2016” in the second bus cycle that
follows, the operation of erase all blocks (erase and erase verify)
starts.
Whether the erase all blocks command is terminated can be con____
firmed by reading the status register or the RY/BY Status Flag of
flash memory control register. When the erase all blocks operation
starts, the read status register mode is entered automatically and
the contents of the status register can be read out at the data bus
(D0 to D7). The status register bit 7 (SR7) is set to “0” at the same
time the erase operation starts and is returned to “1” upon completion of the erase operation. In this case, the read status register
mode remains active until another command is written.
____
The RY/BY Status Flag is “0” during erase operation and “1” when
the erase operation is completed as is the status register bit 7
(SR7).
After the erase all blocks end, erase results can be checked by
reading bit 5 (SRS) of the status register. For details, refer to the
section where the status register is detailed.
●Block Erase Command (2016/D016)
By writing the command code “2016” in the first bus cycle and the
confirmation command code “D016” and the blobk address in the
second bus cycle that follows, the block erase (erase and erase
verify) operation starts for the block address of the flash memory
to be specified.
Whether the block erase operation is completed can be confirmed
____
by reading the status register or the RY/BY Status Flag of flash
memory control register. At the same time the block erase operation starts, the read status register mode is automatically entered,
so that the contents of the status register can be read out. The
status register bit 7 (SR7) is set to “0” at the same time the block
erase operation starts and is returned to “1” upon completion of
the block erase operation. In this case, the read status register
mode remains active until the read array command (FF16) is written.
____
The RY/BY Status Flag is “0” during block erase operation and “1”
when the block erase operation is completed as is the status register bit 7.
After the block erase ends, erase results can be checked by reading bit 5 (SRS) of the status register. For details, refer to the
section where the status register is detailed.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 47 of 86
Start
Write 2016
Write
2016/D016
Block address
2016:Erase all blocks command
D016:Block erase command
Status register
read
SR7 = 1 ?
or
RY/BY = 1 ?
NO
YES
SR5 = 0 ?
YES
Erase completed
(Read comand “FF16”
write)
Fig. 51 Erase flowchart
NO
Erase error
3850 Group (Spec.A)
Status Register (SRD)
The status register shows the operating status of the flash
memory and whether erase operations and programs ended successfully or in error. It can be read in the following ways:
(1) By reading an arbitrary address from the User ROM area after
writing the read status register command (7016)
(2) By reading an arbitrary address from the User ROM area in the
period from when the program starts or erase operation starts
to when the read array command (FF16) is input.
Also, the status register can be cleared by writing the clear status
register command (5016).
After reset, the status register is set to “8016”.
Table 10 shows the status register. Each bit in this register is explained below.
•Erase status (SR5)
The erase status indicates the operating status of erase operation.
If an erase error occurs, it is set to “1”. When the erase status is
cleared, it is set to “0”.
•Program status (SR4)
The program status indicates the operating status of write operation. When a write error occurs, it is set to “1”.
The program status is set to “0” when it is cleared.
If “1” is written for any of the SR5 and SR4 bits, the program,
erase all blocks, and block erase commands are not accepted.
Before executing these commands, execute the clear status register command (5016) and clear the status register.
Also, if any commands are not correct, both SR5 and SR4 are set
to “1”.
•Sequencer status (SR7)
The sequencer status indicates the operating status of the flash
memory. This bit is set to “0” (busy) during write or erase operation
and is set to “1” when these operations ends.
After power-on, the sequencer status is set to “1” (ready).
Table 10 Definition of each bit in status register (SRD)
Symbol
Status name
SR7 (bit7)
Sequencer status
SR6 (bit6)
SR5 (bit5)
Reserved
Erase status
SR4 (bit4)
SR3 (bit3)
Program status
Reserved
SR2 (bit2)
SR1 (bit1)
Reserved
Reserved
SR0 (bit0)
Reserved
Rev.2.10 2005.11.14
REJ03B0093-0210
page 48 of 86
Definition
“1”
“0”
Ready
-
Busy
-
Terminated in error
Terminated in error
Terminated normally
Terminated normally
-
-
-
-
3850 Group (Spec.A)
Full Status Check
By performing full status check, it is possible to know the execution results of erase and program operations. Figure 52 shows a
full status check flowchart and the action to be taken when each
error occurs.
Read status register
SR4 = 1 and
SR5 = 1 ?
YES
Command
sequence error
NO
SR5 = 0 ?
NO
Erase error
Execute the clear status register command (5016)
to clear the status register. Try performing the
operation one more time after confirming that the
command is entered correctly.
Should an erase error occur, the block in error
cannot be used.
YES
SR4 = 0 ?
NO
Program error
Should a program error occur, the block in error
cannot be used.
YES
End (erase, program)
Note: When one of SR5 and SR4 is set to “1”, none of the read array, the program, erase
all blocks, and block erase commands is accepted. Execute the clear status register
command (5016) before executing these commands.
Fig. 52 Full status check flowchart and remedial procedure for errors
Rev.2.10 2005.11.14
REJ03B0093-0210
page 49 of 86
3850 Group (Spec.A)
Functions To Inhibit Rewriting Flash Memory
Version
To prevent the contents of internal flash memory from being read
out or rewritten easily, this MCU incorporates a ROM code protect
function for use in parallel I/O mode and an ID code check function for use in standard serial I/O mode.
●ROM Code Protect Function (in Parallel I/O Mode)
The ROM code protect function is the function to inhibit reading
out or modifying the contents of internal flash memory by using
the ROM code protect control (address FFDB 16) in parallel I/O
mode. Figure 53 shows the ROM code protect control (address
FFDB16). (This address exists in the User ROM area.)
If one or both of the pair of ROM Code Protect Bits is set to “0”,
b7
the ROM code protect is turned on, so that the contents of internal
flash memory are protected against readout and modification. The
ROM code protect is implemented in two levels. If level 2 is selected, the flash memory is protected even against readout by a
shipment inspection LSI tester, etc. When an attempt is made to
select both level 1 and level 2, level 2 is selected by default.
If both of the two ROM Code Protect Reset Bits are set to “00”, the
ROM code protect is turned off, so that the contents of internal
flash memory can be read out or modified. Once the ROM code
protect is turned on, the contents of the ROM Code Protect Reset
Bits cannot be modified in parallel I/O mode. Use the serial I/O or
CPU rewrite mode to rewrite the contents of the ROM Code Protect Reset Bits.
b0
1 1 ROM code protect control register (address FFDB16) (Note 1)
ROMCP
Reserved bits (“1” at read/write)
ROM code protect level 2 set bits (ROMCP2) (Notes 2, 3)
b3b2
0 0: Protect enabled
0 1: Protect enabled
1 0: Protect enabled
1 1: Protect disabled
ROM code protect reset bits (Note 4)
b5b4
0 0: Protect removed
0 1: Protect set bits effective
1 0: Protect set bits effective
1 1: Protect set bits effective
ROM code protect level 1 set bits (ROMCP1) (Note 2)
b7b6
0 0: Protect enabled
0 1: Protect enabled
1 0: Protect enabled
1 1: Protect disabled
Notes 1: This area is on the ROM in the mask ROM version.
2: When ROM code protect is turned on, the internal flash memory is protected
against readout or modification in parallel I/O mode.
3: When ROM code protect level 2 is turned on, ROM code readout by a shipment
inspection LSI tester, etc. also is inhibited.
4: The ROM code protect reset bits can be used to turn off ROM code protect level 1
and ROM code protect level 2. However, since these bits cannot be modified in
parallel I/O mode, they need to be rewritten in standard serial I/O mode or CPU
rewrite mode.
Fig. 53 Structure of ROM code protect control
Rev.2.10 2005.11.14
REJ03B0093-0210
page 50 of 86
3850 Group (Spec.A)
ID Code Check Function (in Standard serial
I/O mode)
Use this function in standard serial I/O mode. When the contents
of the flash memory are not blank, the ID code sent from the programmer is compared with the ID code written in the flash memory
to see if they match. If the ID codes do not match, the commands
sent from the programmer are not accepted. The ID code consists
of 8-bit data, and its areas are FFD4 16 to FFDA 16. Write a program which has had the ID code preset at these addresses to the
flash memory.
Address
FFD416
ID1
FFD516
ID2
FFD616
ID3
FFD716
ID4
FFD816
ID5
FFD916
ID6
FFDA16
ID7
FFDB16
ROM code protect control
Interrupt vector area
Fig. 54 ID code store addresses
Rev.2.10 2005.11.14
REJ03B0093-0210
page 51 of 86
3850 Group (Spec.A)
(2) Parallel I/O Mode
Parallel I/O mode is the mode which parallel output and input software command, address, and data required for the operations
(read, program, erase, etc.) to a built-in flash memory. Use the exclusive external equipment flash programmer which supports the
3850 Group (flash memory version). Refer to each programmer
maker’s handling manual for the details of the usage.
User ROM and Boot ROM Areas
In parallel I/O mode, the user ROM and boot ROM areas shown in
Figure 47 can be rewritten. Both areas of flash memory can be operated on in the same way.
Program and block erase operations can be performed in the user ROM
area. The user ROM area and its block is shown in Figure 47.
The boot ROM area is 4 Kbytes in size. It is located at addresses
F00016 through FFFF16. Make sure program and block erase operations are always performed within this address range. (Access to any
location outside this address range is prohibited.)
In the Boot ROM area, an erase block operation is applied to only
one 4 Kbyte block. The boot ROM area has had a standard serial I/O
mode control program stored in it when shipped from the Mitsubishi
factory. Therefore, using the device in standard serial I/O mode, you
do not need to write to the boot ROM area.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 52 of 86
3850 Group (Spec.A)
(3) Standard serial I/O Mode
The standard serial I/O mode inputs and outputs the software
commands, addresses and data needed to operate (read, program, erase, etc.) the internal flash memory. This I/O is clock
synchronized serial. This mode requires the exclusive external
equipment (serial programmer).
The standard serial I/O mode is different from the parallel I/O
mode in that the CPU controls flash memory rewrite (uses the
CPU rewrite mode), rewrite data input and so forth. The standard
serial I/O mode is started by connecting “H” to the P26 (SCLK1) pin
and “H” to the P41 (INT0) pin and “H” to the CNVSS pin (apply 4.5
V to 5.5 V to Vpp from an external source), and releasing the reset operation. (In the ordinary microcomputer mode, set CNVss
pin to “L” level.)
This control program is written in the Boot ROM area when the
product is shipped from Mitsubishi. Accordingly, make note of the
fact that the standard serial I/O mode cannot be used if the Boot
ROM area is rewritten in parallel I/O mode. Figure 55 shows the
pin connection for the standard serial I/O mode.
In standard serial I/O mode, serial data I/O uses the four serial I/O
pins SCLK1 , RxD, TxD and SRDY1 (BUSY). The SCLK1 pin is the
transfer clock input pin through which an external transfer clock is
input. The TxD pin is for CMOS output. The S RDY1 (BUSY) pin
outputs “L” level when ready for reception and “H” level when reception starts.
Serial data I/O is transferred serially in 8-bit units.
In standard serial I/O mode, only the User ROM area shown in
Figure 47 can be rewritten. The Boot ROM area cannot.
In standard serial I/O mode, a 7-byte ID code is used. When there
is data in the flash memory, commands sent from the peripheral
unit (programmer) are not accepted unless the ID code matches.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 53 of 86
Outline Performance (Standard Serial I/O
Mode)
In standard serial I/O mode, software commands, addresses and
data are input and output between the MCU and peripheral units
(serial programmer, etc.) using 4-wire clock-synchronized serial
I/O (serial I/O1).
In reception, software commands, addresses and program data
are synchronized with the rise of the transfer clock that is input to
the SCLK1 pin, and are then input to the MCU via the RxD pin. In
transmission, the read data and status are synchronized with the
fall of the transfer clock, and output from the TxD pin.
The TxD pin is for CMOS output. Transfer is in 8-bit units with LSB
first.
When busy, such as during transmission, reception, erasing or
program execution, the S RDY1 (BUSY) pin is “H” level. Accordingly, always start the next transfer after the SRDY1 (BUSY) pin is
“L” level.
Also, data and status registers in a memory can be read after inputting software commands. Status, such as the operating state of
the flash memory or whether a program or erase operation ended
successfully or not, can be checked by reading the status register.
Here following explains software commands, status registers, etc.
3850 Group (Spec.A)
Table 11 Description of pin function (Standard Serial I/O Mode)
Pin
Name
I/O
Description
VCC,VSS
Power input
CNVSS
CNVSS
I
Connect to VCC when VCC = 4.5 V to 5.5 V.
Connect to Vpp (=4.5 V to 5.5 V) when VCC = 2.7 V to 4.5 V.
RESET
Reset input
I
Reset input pin. While reset is “L” level, a 20 cycle or longer clock
must be input to XIN pin.
XIN
Clock input
I
XOUT
Clock output
O
Connect a ceramic resonator or crystal oscillator between XIN and
XOUT pins. To input an externally generated clock, input it to XIN pin
and open XOUT pin.
AVSS
Analog power supply input
VREF
Reference voltage input
I
Enter the reference voltage for AD from this pin.
P00 to P07
Input port P0
I
Input “H” or “L” level signal or open.
P10 to P17
Input port P1
I
Input “H” or “L” level signal or open.
P20 to P23
Input port P2
I
Input “H” or “L” level signal or open.
P24
RxD input
I
Serial data input pin
P25
TxD output
O
Serial data output pin
P26
SCLK1 input
I
Serial clock input pin
P27
BUSY output
O
BUSY signal output pin
P30 to P34
Input port P3
I
Input “H” or “L” level signal or open.
P40, P42 to P44
Input port P4
I
Input “H” or “L” level signal or open.
P41
Input port P4
I
Input “H” level signal, when reset is released.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 54 of 86
Apply program/erase protection voltage to Vcc pin and 0 V to Vss pin.
Connect AVSS to VSS .
3850 Group (Spec.A)
VCC
VSS
P41
BUSY
SCLK1
TxD
RXD
RxD
✽ 2 VPP
RESET
✽1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
M38507F8ASP/FP
VCC
VREF
AVSS
P44/INT3/PWM
P43/INT2/SCMP2
P42/INT1
P41/INT0
P40/CNTR1
P27/CNTR0/SRDY1
P26/SCLK1
P25/TxD
P24/RxD
P23/SCL1
P22/SDA1
CNVSS
P21/XCIN
P20/XCOUT
RESET
XIN
XOUT
VSS
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
P30/AN0
P31/AN1
P32/AN2
P33/AN3
P34/AN4
P00/SIN2
P01/SOUT2
P02/SCLK2
P03/SRDY2
P04
P05
P06
P07
P10(LED0)
P11(LED1)
P12(LED2)
P13(LED3)
P14(LED4)
P15(LED5)
P16(LED6)
P17(LED7)
Mode setup method
Signal
Value
CNVSS
4.5 to 5.5 V
P41
VCC ✽ 3
SCLK1
VCC ✽ 3
RESET
VSS → VCC
Notes 1: Connect oscillator circuit
2: Connect to Vcc when Vcc = 4.5 V to 5.5 V.
Connect to VPP (=4.5 V to 5.5 V) when Vcc = 2.7 V to 4.5 V.
3: It is necessary to apply Vcc only when reset is released.
Fig. 55 Pin connection diagram in standard serial I/O mode
Rev.2.10 2005.11.14
REJ03B0093-0210
page 55 of 86
3850 Group (Spec.A)
Software Commands (Standard Serial I/O
Mode)
commands via the RxD pin. Software commands are explained
here below.
Table 12 lists software commands. In standard serial I/O mode,
erase, program and read are controlled by transferring software
Table 12 Software commands (Standard serial I/O mode)
1st byte
transfer
Control command
2nd byte
3rd byte
4th byte
5th byte
6th byte
.....
When ID is
not verified
Address
(middle)
Address
(high)
Data
output
Data
output
Data
output
Not
acceptable
Address
(high)
Data
input
Data
input
Data
input
Data
output to
259th byte
Data input
to 259th
byte
1
Page read
FF16
2
Page program
4116
Address
(middle)
3
Erase all blocks
A716
D016
4
Read status register
7016
SRD
output
5
Clear status register
5016
6
ID code check
F516
Address
(low)
Address
(middle)
Address
(high)
ID size
ID1
7
Download function
FA16
Size
(low)
Size
(high)
Checksum
Data
input
To
required
number
of times
8
Version data output function
FB16
Version
data
output
Version
data
output
Version
data
output
Version
data
output
Version
data
output
Not
acceptable
Not
acceptable
SRD1
output
Acceptable
Not
acceptable
To ID7
Acceptable
Not
acceptable
Version
data output
to 9th byte
Acceptable
Notes1: Shading indicates transfer from the internal flash memory microcomputer to a programmer. All other data is transferred from an external equipment
(programmer) to the internal flash memory microcomputer.
2: SRD refers to status register data. SRD1 refers to status register 1 data.
3: All commands can be accepted when the flash memory is totally blank.
4: Address high must be “0016”.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 56 of 86
3850 Group (Spec.A)
●Page Read Command
This command reads the specified page (256 bytes) in the flash
memory sequentially one byte at a time. Execute the page read
command as explained here following.
(1) Transfer the “FF16” command code with the 1st byte.
(2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and
3rd bytes respectively.
(3) From the 4th byte onward, data (D0 to D7) for the page (256
bytes) specified with addresses A 8 to A 23 will be output sequentially from the smallest address first synchronized with the
fall of the clock.
SCLK1
RxD
FF16
A8 to
A15
A16 to
A23
data0
TxD
SRDY1(BUSY)
Fig. 56 Timing for page read
●Read Status Register Command
This command reads status information. When the “7016 ” command code is transferred with the 1st byte, the contents of the
status register (SRD) with the 2nd byte and the contents of status
register 1 (SRD1) with the 3rd byte are read.
SCLK1
RxD
TxD
SRDY1(BUSY)
Fig. 57 Timing for reading status register
Rev.2.10 2005.11.14
REJ03B0093-0210
page 57 of 86
7016
SRD
output
SRD1
output
data255
3850 Group (Spec.A)
●Clear Status Register Command
This command clears the bits (SR4, SR5) which are set when the
status register operation ends in error. When the “5016” command
code is sent with the 1st byte, the aforementioned bits are
cleared. When the clear status register operation ends, the SRDY1
(BUSY) signal changes from “H” to “L” level.
SCLK1
RxD
5016
TxD
SRDY1(BUSY)
Fig. 58 Timing for clear status register
●Page Program Command
This command writes the specified page (256 bytes) in the flash
memory sequentially one byte at a time. Execute the page program command as explained here following.
(1) Transfer the “4116” command code with the 1st byte.
(2) Transfer addresses A8 to A15 and A16 to A23 (“00 16”) with the
2nd and 3rd bytes respectively.
(3) From the 4th byte onward, as write data (D0 to D 7) for the
page (256 bytes) specified with addresses A8 to A23 is input
sequentially from the smallest address first, that page is automatically written.
When reception setup for the next 256 bytes ends, the S RDY1
(BUSY) signal changes from “H” to “L” level. The result of the
page program can be known by reading the status register. For
more information, see the section on the status register.
SCLK1
RxD
TxD
SRDY1(BUSY)
Fig. 59 Timing for page program
Rev.2.10 2005.11.14
REJ03B0093-0210
page 58 of 86
4116
A8 to
A15
A16 to
A23
data0
data255
3850 Group (Spec.A)
●Erase All Blocks Command
This command erases the contents of all blocks. Execute the
erase all blocks command as explained here following.
(1) Transfer the “A716” command code with the 1st byte.
(2) Transfer the verify command code “D016” with the 2nd byte.
With the verify command code, the erase operation will start
and continue for all blocks in the flash memory.
When erase all blocks end, the S RDY1 (BUSY) signal changes
from “H” to “L” level. The result of the erase operation can be
known by reading the status register.
SCLK1
RxD
TxD
SRDY1(BUSY)
Fig. 60 Timing for erase all blocks
Rev.2.10 2005.11.14
REJ03B0093-0210
page 59 of 86
A716
D016
3850 Group (Spec.A)
●Download Command
This command downloads a program to the RAM for execution.
Execute the download command as explained here following.
(1) Transfer the “FA16” command code with the 1st byte.
(2) Transfer the program size with the 2nd and 3rd bytes.
(3) Transfer the check sum with the 4th byte. The check sum is
added to all data sent with the 5th byte onward.
(4) The program to execute is sent with the 5th byte onward.
When all data has been transmitted, if the check sum matches,
the downloaded program is executed. The size of the program will
vary according to the internal RAM.
SCLK1
RxD
TxD
SRDY1(BUSY)
Fig. 61 Timing for download
Rev.2.10 2005.11.14
REJ03B0093-0210
page 60 of 86
FA16
Data size Data size
(high)
(low)
Check
sum
Program
data
Program
data
3850 Group (Spec.A)
●Version Information Output Command
This command outputs the version information of the control program stored in the Boot ROM area. Execute the version
information output command as explained here following.
(1) Transfer the “FB16” command code with the 1st byte.
(2) The version information will be output from the 2nd byte onward.
This data is composed of 8 ASCII code characters.
SCLK1
RxD
TxD
SRDY1(BUSY)
Fig. 62 Timing for version information output
Rev.2.10 2005.11.14
REJ03B0093-0210
page 61 of 86
FB16
‘V’
‘E’
‘R’
‘X’
3850 Group (Spec.A)
(1) Transfer the “F516” command code with the 1st byte.
(2) Transfer addresses A0 to A7, A8 to A15 and A16 to A23 (“0016”)
of the 1st byte of the ID code with the 2nd, 3rd, and 4th bytes
respectively.
(3) Transfer the number of data sets of the ID code with the 5th
byte.
(4) Transfer the ID code with the 6th byte onward, starting with the
1st byte of the code.
●ID Check
This command checks the ID code. Execute the boot ID check
command as explained here following.
SCLK1
F516
RxD
D416
FF16
0016
ID size
TxD
SRDY1(BUSY)
Fig. 63 Timing for ID check
●ID Code
When the flash memory is not blank, the ID code sent from the serial programmer and the ID code written in the flash memory are
compared to see if they match. If the codes do not match, the
command sent from the serial programmer is not accepted. An ID
code contains 8 bits of data. Area is, from the 1st byte, addresses
FFD416 to FFDA16. Write a program into the flash memory, which
already has the ID code set for these addresses.
Address
FFD416
ID1
FFD516
ID2
FFD616
ID3
FFD716
ID4
FFD816
ID5
FFD916
ID6
FFDA16
ID7
FFDB16
ROM code protect control
Interrupt vector area
Fig. 64 ID code storage addresses
Rev.2.10 2005.11.14
REJ03B0093-0210
page 62 of 86
ID1
ID7
3850 Group (Spec.A)
●Status Register (SRD)
The status register indicates operating status of the flash memory
and status such as whether an erase operation or a program
ended successfully or in error. It can be read by writing the read
status register command (70 16 ). Also, the status register is
cleared by writing the clear status register command (5016).
Table 13 lists the definition of each status register bit. After releasing the reset, the status register becomes “8016”.
•Sequencer status (SR7)
The sequencer status indicates the operating status of the flash
memory.
After power-on and recover from deep power down mode, the sequencer status is set to “1” (ready).
This status bit is set to “0” (busy) during write or erase operation
and is set to “1” upon completion of these operations.
•Erase status (SR5)
The erase status indicates the operating status of erase operation.
If an erase error occurs, it is set to “1”. When the erase status is
cleared, it is set to “0”.
•Program status (SR4)
The program status indicates the operating status of write operation. If a program error occurs, it is set to “1”. When the program
status is cleared, it is set to “0”.
Table 13 Definition of each bit of status register (SRD)
Definition
SRD0 bits
Status name
“1”
“0”
Ready
Busy
Reserved
Erase status
Terminated in error
Terminated normally
SR4 (bit4)
SR3 (bit3)
Program status
Reserved
Terminated in error
-
Terminated normally
-
SR2 (bit2)
SR1 (bit1)
Reserved
Reserved
-
-
SR0 (bit0)
Reserved
-
-
SR7 (bit7)
Sequencer status
SR6 (bit6)
SR5 (bit5)
Rev.2.10 2005.11.14
REJ03B0093-0210
page 63 of 86
3850 Group (Spec.A)
●Status Register 1 (SRD1)
The status register 1 indicates the status of serial communications, results from ID checks and results from check sum
comparisons. It can be read after the status register (SRD) by writing the read status register command (7016). Also, status register
1 is cleared by writing the clear status register command (5016).
Table 14 lists the definition of each status register 1 bit. This register becomes “0016” when power is turned on and the flag status is
maintained even after the reset.
•Boot update completed bit (SR15)
This flag indicates whether the control program was downloaded
to the RAM or not, using the download function.
•Check sum consistency bit (SR12)
This flag indicates whether the check sum matches or not when a
program, is downloaded for execution using the download function.
•ID check completed bits (SR11 and SR10)
These flags indicate the result of ID checks. Some commands
cannot be accepted without an ID code check.
•Data reception time out (SR9)
This flag indicates when a time out error is generated during data
reception. If this flag is attached during data reception, the received data is discarded and the MCU returns to the command
wait state.
Table 14 Definition of each bit of status register 1 (SRD1)
SRD1 bits
SR15 (bit7)
SR14 (bit6)
Boot update completed bit
Reserved
SR13 (bit5)
SR12 (bit4)
Reserved
Checksum match bit
SR11 (bit3)
SR10 (bit2)
ID check completed bits
SR9 (bit1)
SR8 (bit0)
Rev.2.10 2005.11.14
REJ03B0093-0210
Definition
Status name
Data reception time out
Reserved
page 64 of 86
“1”
“0”
Update completed
-
Not Update
-
Match
00
01
Not verified
Verification mismatch
10
11
Reserved
Verified
Time out
-
Mismatch
Normal operation
-
3850 Group (Spec.A)
Full Status Check
Results from executed erase and program operations can be
known by running a full status check. Figure 65 shows a flowchart
of the full status check and explains how to remedy errors which
occur.
Read status register
SR4 = 1 and
SR5 = 1 ?
YES
Command
sequence error
NO
SR5 = 0 ?
NO
Erase error
Execute the clear status register command (5016)
to clear the status register. Try performing the
operation one more time after confirming that the
command is entered correctly.
Should an erase error occur, the block in error
cannot be used.
YES
SR4 = 0 ?
NO
Program error
Should a program error occur, the block in error
cannot be used.
YES
End (Erase, program)
Note: When one of SR5 to SR4 is set to “1” , none of the program, erase all blocks
commands is accepted. Execute the clear status register command (5016) before
executing these commands.
Fig. 65 Full status check flowchart and remedial procedure for errors
Rev.2.10 2005.11.14
REJ03B0093-0210
page 65 of 86
3850 Group (Spec.A)
Example Circuit Application for Standard
Serial I/O Mode
Figure 66 shows a circuit application for the standard serial I/O
mode. Control pins will vary according to a programmer, therefore
see a programmer manual for more information.
P41
Clock input
SCLK1
BUSY output
SRDY1 (BUSY)
Data input
RXD
Data output
TXD
VPP power
source input
CNVss
M38507F8A
Notes 1: Control pins and external circuitry will vary according to peripheral unit. For more
information, see the peripheral unit manual.
2: In this example, the Vpp power supply is supplied from an external source (writer). To use
the user’s power source, connect to 4.5 V to 5.5 V.
3: It is necessary to apply Vcc to SCLK1 pin only when reset is released.
Fig. 66 Example circuit application for standard serial I/O mode
Rev.2.10 2005.11.14
REJ03B0093-0210
page 66 of 86
3850 Group (Spec.A)
Flash memory Electrical characteristics
Table 15 Absolute maximum ratings
Symbol
VCC
VI
VI
VI
VI
VO
VO
Pd
Topr
Tstg
Parameter
Power source voltage
Input voltage P00–P07, P10–P17, P20, P21,
P24–P27, P30–P34, P40–P44,
VREF
Input voltage P22, P23
Input voltage RESET, XIN
Input voltage CNVSS
Output voltage P00–P07, P10–P17, P20, P21,
P24–P27, P30–P34, P40–P44,
XOUT
Output voltage P22, P23
Power dissipation
Operating temperature
Storage temperature
Conditions
All voltages are based on VSS.
When an input voltage is measured,
output transistors are cut off.
Ta = 25 °C
Ratings
–0.3 to 6.5
Unit
V
–0.3 to VCC +0.3
V
–0.3 to 5.8
–0.3 to VCC +0.3
–0.3 to 6.5
V
V
V
–0.3 to VCC +0.3
V
–0.3 to 5.8
1000 (Note)
25±5
–40 to 125
V
mW
°C
°C
Note: The rating becomes 300 mW at the PRSP0042GA-B package.
Table 16 Flash memory mode Electrical characteristics
(Ta = 25oC, VCC = 4.5 to 5.5V unless otherwise noted)
Limits
Parameter
Symbol
IPP1
IPP2
IPP3
VPP
VCC
VPP power source current (read)
VPP power source current (program)
VPP power source current (erase)
VPP power source voltage
VCC power source voltage
Rev.2.10 2005.11.14
REJ03B0093-0210
page 67 of 86
Conditions
Min.
Max.
Unit
4.5
100
60
30
5.5
µA
mA
mA
V
4.5
5.5
V
3.0
3.6
V
VPP = VCC
VPP = VCC
VPP = VCC
Microcomputer mode operation at
VCC = 2.7 to 5.5V
Microcomputer mode operation at
VCC = 2.7 to 3.6V
Typ.
3850 Group (Spec.A)
NOTES ON PROGRAMMING
Processor Status Register
The contents of the processor status register (PS) after a reset are
undefined, except for the interrupt disable flag (I) which is “1”. After a reset, initialize flags which affect program execution. In
particular, it is essential to initialize the index X mode (T) and the
decimal mode (D) flags because of their effect on calculations.
Interrupts
The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt
request register, execute at least one instruction before performing a BBC or BBS instruction.
Serial Interface
In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the SRDY1 signal, set the transmit
enable bit, the receive enable bit, and the SRDY1 output enable bit
to “1”.
Serial I/O1 continues to output the final bit from the TXD pin after
transmission is completed.
SOUT2 pin for serial I/O2 goes to high impedance after transmission is completed.
When an external clock is used as synchronous clock in serial I/
O1 or serial I/O2, write transmission data to the transmit buffer
register or serial I/O2 register while the transfer clock is “H”.
A/D Converter
Decimal Calculations
• To calculate in decimal notation, set the decimal mode flag (D)
to “1”, then execute an ADC or SBC instruction. After executing
an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
• In decimal mode, the values of the negative (N), overflow (V),
and zero (Z) flags are invalid.
Timers
If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n+1).
Multiplication and Division Instructions
• The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
• The execution of these instructions does not change the contents of the processor status register.
The comparator uses capacitive coupling amplifier whose charge
will be lost if the clock frequency is too low.
Therefore, make sure that f(XIN) in the middle/high-speed mode is
at least on 500 kHz during an A/D conversion.
Do not execute the STP instruction during an A/D conversion.
Instruction Execution Time
The instruction execution time is obtained by multiplying the frequency of the internal clock φ by the number of cycles needed to
execute an instruction.
The number of cycles required to execute an instruction is shown
in the list of machine instructions.
The frequency of the internal clock φ is half of the XIN frequency in
high-speed mode.
Reserved Area, Reserved bit
Do not write any data to the reserved area and the reserved bit.
(Do not change the contents after reset.)
Ports
The contents of the port direction registers cannot be read. The
following cannot be used:
• The data transfer instruction (LDA, etc.)
• The operation instruction when the index X mode flag (T) is “1”
• The addressing mode which uses the value of a direction register as an index
• The bit-test instruction (BBC or BBS, etc.) to a direction register
• The read-modify-write instructions (ROR, CLB, or SEB, etc.) to
a direction register.
Use instructions such as LDM and STA, etc., to set the port direction registers.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 68 of 86
CPU Mode Register
Fix bit 3 of the CPU mode register to “1”.
3850 Group (Spec.A)
NOTES ON USAGE
Differences among 3850 group (standard), 3850
group (spec. H), and 3850 group (spec. A)
(1) The absolute maximum ratings of 3850 group (spec. H/A) is
smaller than that of 3850 group (standard).
•Power source voltage Vcc = –0.3 to 6.5 V
•CNVss input voltage VI = –0.3 to Vcc +0.3 V
(2) The oscillation circuit constants of XIN-XOUT, XCIN-XCOUT may
be some differences between 3850 group (standard) and 3850
group (spec. A).
(3) Be sure to perform the termination of unused pins.
Handling of Source Pins
In order to avoid a latch-up occurrence, connect a capacitor suitable for high frequencies as bypass capacitor between power
source pin (VCC pin) and GND pin (VSS pin) and between power
source pin (VCC pin) and analog power source input pin (AV SS
pin). Besides, connect the capacitor to as close as possible. For
bypass capacitor which should not be located too far from the pins
to be connected, a ceramic capacitor of 0.01 µF–0.1µF is recommended.
Power Source Voltage
When the power source voltage value of a microcomputer is less
than the value which is indicated as the recommended operating
conditions, the microcomputer does not operate normally and may
perform unstable operation.
In a system where the power source voltage drops slowly when
the power source voltage drops or the power supply is turned off,
reset a microcomputer when the power source voltage is less than
the recommended operating conditions and design a system not
to cause errors to the system by this unstable operation.
Flash Memory Version
Connect the CNVSS/VPP pin the shortest possible to the GND pattern which is supplied to the Vss pin of the microcomputer. In
addition connecting an approximately 1 k to 5 kΩ resistor in series
to the GND could improve noise immunity. In this case as well as
the above mention, connect the pin the shortest possible to the
GND pattern which is supplied to the Vss pin of the microcomputer.
●Reason
The CNVSS/VPP pin is the power source input pin for the built-in
flash memory. When programming in the flash memory, the impedance of the V PP pin is low to allow the electric current for
writing to flow into the built-in flash memory. Because of this, noise
can enter easily. If noise enters the VPP pin, abnormal instruction
codes or data are read from the flash memory, which may cause a
program runaway.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 69 of 86
The shortest
CNVSS/(VPP)
(Note)
Approx. 5kΩ
VSS
(Note)
The shortest
Note. Shows the microcomputer's pin.
Fig. 67 Wiring for the CNVSS/VPP pin
Electric Characteristic Differences Between
Mask ROM and Flash Memory Version MCUs
There are differences in electric characteristics, operation margin,
noise immunity, and noise radiation between mask ROM and flash
memory version MCUs due to the differences in the manufacturing
processes.
When manufacturing an application system with the flash memory
and then switching to use of the mask ROM version, perform sufficient evaluations for the commercial samples of the mask ROM
version.
DATA REQUIRED FOR MASK ORDERS
The following are necessary when ordering a mask ROM production:
1. Mask ROM Order Confirmation Form✽
2. Mark Specification Form✽
3. Data to be written to ROM .................................. one floppy disk
✽For the mask ROM confirmation, refer to the “Renesas Technology” Homepage Rom ordering (http://www.renesas.com/
homepage.jsp).
3850 Group (Spec.A)
Electrical characteristics
Absolute maximum ratings
Table 17 Absolute maximum ratings
Symbol
Parameter
VCC
Power source voltage
Input voltage P00–P07, P10–P17, P20, P21,
VI
P24–P27, P30–P34, P40–P44,
VREF
VI
VI
VI
VO
VO
Pd
Topr
Tstg
Input voltage
Input voltage
Input voltage
Output voltage
P22, P23
RESET, XIN
CNVSS
P00–P07, P10–P17, P20, P21,
P24–P27, P30–P34, P40–P44,
XOUT
Output voltage P22, P23
Power dissipation
Operating temperature
Storage temperature
Note : The rating becomes 300mW at the PRSP0042GA-B package.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 70 of 86
Conditions
All voltages are based on VSS.
When an input voltage is measured,
output transistors are cut off.
Ta = 25 °C
Ratings
–0.3 to 6.5
Unit
V
–0.3 to VCC +0.3
V
–0.3 to 5.8
–0.3 to VCC +0.3
–0.3 to VCC +0.3
V
V
V
–0.3 to VCC +0.3
V
–0.3 to 5.8
1000 (Note)
–20 to 85
–40 to 125
V
mW
°C
°C
3850 Group (Spec.A)
Recommended operating conditions
Table 18 Recommended operating conditions (1)
(VCC = 2.7 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
Parameter
12.5 MHz (high-speed mode)
12.5 MHz (middle-speed mode), 6 MHz (high-speed mode)
32 kHz (low-speed mode)
VCC
Power source voltage
VSS
VREF
AVSS
VIA
VIH
Power source voltage
A/D convert reference voltage
Analog power source voltage
Analog input voltage
“H” input voltage
VIH
VIH
VIL
VIL
VIL
ΣIOH(peak)
ΣIOH(peak)
ΣIOL(peak)
ΣIOL(peak)
ΣIOL(peak)
ΣIOH(avg)
ΣIOH(avg)
ΣIOL(avg)
ΣIOL(avg)
ΣIOL(avg)
Min.
4.0
2.7
Limits
Typ.
5.0
5.0
Max.
5.5
5.5
0
Unit
V
AN0–AN8
P00–P07, P10–P17, P20, P21, P24–P27,
P30–P34, P40–P44
AVSS
0.8VCC
VCC
VCC
V
V
V
V
V
“H” input voltage
P22, P23
“H” input voltage
RESET, XIN, CNVSS
“L” input voltage
P00–P07, P10–P17, P20–P27, P30–P34, P40–P44
“L” input voltage
RESET, CNVSS
0.8VCC
0.8VCC
0
0
0
5.8
VCC
0.2VCC
0.2VCC
0.16VCC
–80
–80
80
120
80
–40
–40
40
60
40
V
V
V
V
V
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
2.0
VCC
0
“L” input voltage
XIN
“H” total peak output current (Note) P00–P07, P10–P17, P30–P34
“H” total peak output current (Note) P20, P21, P24–P27, P40–P44
“L” total peak output current (Note) P00–P07, P30–P34
“L” total peak output current (Note) P10–P17
“L” total peak output current(Note) P20–P27,P40–P44
“H” total average output current (Note)
P00–P07, P10–P17, P30–P34
“H” total average output current (Note)
P20, P21, P24–P27, P40–P44
“L” total average output current (Note)
P00–P07, P30–P34
“L” total average output current (Note)
P10–P17
“L” total average output current (Note)
P20–P27,P40–P44
Note : The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured
over 100 ms. The total peak current is the peak value of all the currents.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 71 of 86
3850 Group (Spec.A)
Table 19 Recommended operating conditions (2)
(VCC = 2.7 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg)
f(XIN)
f(XIN)
f(XCIN)
Parameter
Min.
Limits
Typ.
P00–P07, P10–P17, P20, P21, P24–P27, P30–P34,
P40–P44 (Note 1)
“L” peak output current (Note 1) P00–P07, P20–P27, P30–P34, P40–P44
P10–P17
“H” average output current
P00–P07, P10–P17, P20, P21, P24–P27, P30–P34,
P40–P44 (Note 2)
“L” average output current (Note 2) P00–P07, P20–P27, P30–P34, P40–P44
P10–P17
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V) (Note 3)
Internal clock oscillation frequency (VCC = 2.7 to 4.0 V) (Note 3)
Max.
“H” peak output current
–10
mA
10
20
mA
mA
–5
mA
5
15
12.5
mA
mA
MHz
MHz
kHz
5Vcc-7.5
32.768
Sub-clock input oscillation frequency (Note 3, 4)
Unit
50
Notes 1: The peak output current is the peak current flowing in each port.
2: The average output current IOL(avg), IOH(avg) are average value measured over 100 ms.
3: When the oscillation frequency has a duty cycle of 50%.
4: When using the microcomputer in low-speed mode, set the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.
Electrical characteristics
Table 20 Electrical characteristics (1)
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Limits
Symbol
VOH
VOL
VOL
Parameter
“H” output voltage
P00–P07, P10–P17, P20, P21,
P24–P27, P30–P34, P40–P44
(Note)
“L” output voltage
P00–P07, P20–P27, P30–P34,
P40–P44
“L” output voltage
P10–P17
Test conditions
IOH = –10 mA
VCC = 4.0–5.5 V
IOH = –1.0 mA
VCC = 2.7–5.5 V
IOL = 10 mA
VCC = 4.0–5.5 V
IOL = 1.0 mA
VCC = 2.7–5.5 V
IOL = 20 mA
VCC = 4.0–5.5 V
IOL = 10 mA
VCC = 2.7–5.5 V
Min.
Typ.
page 72 of 86
Unit
VCC–2.0
V
VCC–1.0
V
Note: P25 is measured when the P25/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
Rev.2.10 2005.11.14
REJ03B0093-0210
Max.
2.0
V
1.0
V
2.0
V
1.0
V
3850 Group (Spec.A)
Table 21 Electrical characteristics (2)
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Limits
Symbol
VT+–VT–
VT+–VT–
VT+–VT–
IIH
IIH
IIH
IIL
IIL
IIL
IIL
VRAM
Parameter
Hysteresis
CNTR0, CNTR1, INT0–INT3
Hysteresis
RxD, SCLK1, SCLK2, SIN2
____________
Hysteresis
RESET
“H” input current
P00–P07, P10–P17, P20, P21,
P24–P27, P30–P34, P40–P44
____________
“H” input current RESET, CNVSS
“H” input current XIN
“L” input current
P00–P07, P10–P17, P20–P27
P30–P34, P40–P44
____________
“L” input current RESET,CNVSS
“L” input current XIN
“L” input current (at Pull-up)
P00–P07, P10–P17, P20, P21,
P24–P27, P30–P34, P40–P44
RAM hold voltage
Rev.2.10 2005.11.14
REJ03B0093-0210
page 73 of 86
Test conditions
Min.
Typ.
Max.
0.4
V
0.5
V
0.5
VI = VCC
Pin floating, Pull-up
Transistor "off"
VI = VCC
VI = VCC
VI = VSS
Pin floating, Pull-up
Transistor "off"
VI = VSS
VI = VSS
VI = VSS
VCC = 5.0 V
VI = VSS
VI = 3.0 V
When clock stopped
Unit
5.0
5.0
4
–5.0
V
µA
µA
µA
µA
–25
–4
–65
–120
µA
µA
µA
–8
–22
–40
µA
5.5
V
–5.0
2.0
3850 Group (Spec.A)
Table 22 Electrical characteristics (3)
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
ICC
Limits
Test conditions
Parameter
Min.
Except
Power source current High-speed mode
M38507F8AFP/SP
f(XIN) = 12.5 MHz
f(XCIN) = 32.768 kHz
M38507F8AFP/SP
Output transistors “off”
High-speed mode
Except
f(XIN) = 8 MHz
M38507F8AFP/SP
f(XCIN) = 32.768 kHz
M38507F8AFP/SP
Output transistors “off”
High-speed mode
f(XIN) = 12.5 MHz (in WIT state)
f(XCIN) = 32.768 kHz
Output transistors “off”
High-speed mode
f(XIN) = 8 MHz (in WIT state)
f(XCIN) = 32.768 kHz
Output transistors “off”
Middle-speed mode
Except
f(XIN) = 12.5 MHz
M38507F8AFP/SP
f(XCIN) = stopped
M38507F8AFP/SP
Output transistors “off”
Middle-speed mode
Except
f(XIN) = 8 MHz
M38507F8AFP/SP
f(XCIN) = stopped
M38507F8AFP/SP
Output transistors “off”
Middle-speed mode
f(XIN) = 12.5 MHz (in WIT state)
f(XCIN) = stopped
Output transistors “off”
Middle-speed mode
f(XIN) = 8 MHz (in WIT state)
f(XCIN) = stopped
Output transistors “off”
Except
Low-speed mode
f(XIN) = stopped
M38507F8AFP/SP
f(XCIN) = 32.768 kHz
M38507F8FP/SP
Output transistors “off”
Except
Low-speed mode
M38507F8AFP/SP
f(XIN) = stopped
f(XCIN) = 32.768 kHz (in WIT state)
M38507F8AFP/SP
Output transistors “off”
Except
Low-speed mode (VCC = 3 V)
f(XIN) = stopped
M38507F8AFP/SP
f(XCIN) = 32.768 kHz
M38507F8AFP/SP
Output transistors “off”
Except
Low-speed mode (VCC = 3 V)
M38507F8AFP/SP
f(XIN) = stopped
f(XCIN) = 32.768 kHz (in WIT state)
M38507F8AFP/SP
Output transistors “off”
Increment when A/D conversion is executed
f(XIN) = 8 MHz
All oscillation stopped
(in STP state)
Output transistors “off”
Rev.2.10 2005.11.14
REJ03B0093-0210
page 74 of 86
Ta = 25 °C
Ta = 85 °C
Unit
Typ.
Max.
6.5
13.0
mA
7.5
15.0
mA
5.0
10
mA
6.8
13
mA
1.6
4.5
mA
1.6
4.2
mA
4.0
7.0
mA
4.0
8.5
mA
3.0
6.5
mA
3.0
7.0
mA
1.5
4.2
mA
1.5
4.0
mA
60
200
µA
250
500
µA
40
70
µA
70
150
µA
20
55
µA
150
300
µA
5
10
µA
20
40
µA
µA
800
0.1
1.0
µA
10
µA
3850 Group (Spec.A)
A/D converter characteristics
Table 23 A/D converter characteristics
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 12.5 MHz, unless otherwise noted)
Symbol
Parameter
–
–
tCONV
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
RLADDER
IVREF
Ladder resistor
Reference power source input current
II(AD)
A/D port input current
Rev.2.10 2005.11.14
REJ03B0093-0210
page 75 of 86
Test conditions
VREF “on”
VREF “off”
Limits
Min.
High-speed mode,
Middle-speed mode
Low-speed mode
VREF = 5.0 V
50
Typ.
40
35
150
0.5
Max.
10
±4
61
200
5.0
5.0
Unit
bit
LSB
2tc(XIN)
µs
kΩ
µA
µA
3850 Group (Spec.A)
Timing requirements
Table 24 Timing requirements (1)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
tW(RESET)
tC(XIN)
tWH(XIN)
tWL(XIN)
tC(CNTR)
tWH(CNTR)
tWL(CNTR)
tWH(INT)
tWL(INT)
tC(SCLK1)
tWH(SCLK1)
tWL(SCLK1)
tsu(RxD-SCLK1)
th(SCLK1-RxD)
tC(SCLK2)
tWH(SCLK2)
tWL(SCLK2)
tsu(SIN2-SCLK2)
th(SCLK2-SIN2)
Parameter
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT3 input “H” pulse width
INT0 to INT3 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O1 input setup time
Serial I/O1 input hold time
Serial I/O2 clock input cycle time
Serial I/O2 clock input “H” pulse width
Serial I/O2 clock input “L” pulse width
Serial I/O2 clock input setup time
Serial I/O2 clock input hold time
Limits
Min.
20
80
32
32
200
80
80
80
80
800
370
370
220
100
1000
400
400
200
200
Typ.
Max.
Unit
XIN cycle
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (clock synchronous).
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART).
Table 25 Timing requirements (2)
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
tW(RESET)
tC(XIN)
tWH(XIN)
tWL(XIN)
tC(CNTR)
tWH(CNTR)
tWL(CNTR)
tWH(INT)
tWL(INT)
tC(SCLK1)
tWH(SCLK1)
tWL(SCLK1)
tsu(RxD-SCLK1)
th(SCLK1-RxD)
tC(SCLK2)
tWH(SCLK2)
tWL(SCLK2)
tsu(SIN2-SCLK2)
th(SCLK2-SIN2)
Parameter
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT3 input “H” pulse width
INT0 to INT3 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O1 input setup time
Serial I/O1 input hold time
Serial I/O2 clock input cycle time
Serial I/O2 clock input “H” pulse width
Serial I/O2 clock input “L” pulse width
Serial I/O2 clock input setup time
Serial I/O2 clock input hold time
Note : When f(XIN) = 4 MHz and bit 6 of address 001A16 is “1” (clock synchronous).
Divide this value by four when f(XIN) = 4 MHz and bit 6 of address 001A16 is “0” (UART).
Rev.2.10 2005.11.14
REJ03B0093-0210
page 76 of 86
Limits
Min.
20
166
66
66
500
230
230
230
230
2000
950
950
400
200
2000
950
950
400
300
Typ.
Max.
Unit
XIN cycle
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
3850 Group (Spec.A)
Switching characteristics
Table 26 Switching characteristics (1)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Parameter
Symbol
tWH (SCLK1)
tWL (SCLK1)
td (SCLK1-TXD)
tv (SCLK1-TXD)
tr (SCLK1)
tf (SCLK1)
tWH (SCLK2)
tWL (SCLK2)
td (SCLK2-SOUT2)
tv (SCLK2-SOUT2)
tf (SCLK2)
tr (CMOS)
tf (CMOS)
Test conditions
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time (Note 2)
Serial I/O2 output valid time (Note 2)
Serial I/O2 clock output falling time
CMOS output rising time (Note 3)
CMOS output falling time (Note 3)
Fig. 67
Limits
Min.
Typ.
tC(SCLK1)/2–30
tC(SCLK1)/2–30
Max.
140
–30
30
30
tC(SCLK2)/2–160
tC(SCLK2)/2–160
200
0
10
10
30
30
30
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Notes 1: When the P25/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: When the P01/SOUT2 and P02/SCLK2 P-channel output disable bit of the Serial I/O2 control register 1 (bit 7 of address 001516) is “0”.
3: The XOUT pin is excluded.
Table 27 Switching characteristics (2)
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
tWH (SCLK1)
tWL (SCLK1)
td (SCLK1-TXD)
tv (SCLK1-TXD)
tr (SCLK1)
tf (SCLK1)
tWH (SCLK2)
tWL (SCLK2)
td (SCLK2-SOUT2)
tv (SCLK2-SOUT2)
tf (SCLK2)
tr (CMOS)
tf (CMOS)
Parameter
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time (Note 2)
Serial I/O2 output valid time (Note 2)
Serial I/O2 clock output falling time
CMOS output rising time (Note 3)
CMOS output falling time (Note 3)
Test conditions
Fig. 67
Limits
Min.
Typ.
tC(SCLK1)/2–50
tC(SCLK1)/2–50
Max.
350
–30
50
50
tC(SCLK2)/2–240
tC(SCLK2)/2–240
400
0
20
20
50
50
50
Notes 1: When the P25/TX D P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: When the P01/SOUT2 and P02/SCLK2 P-channel output disable bit of the Serial I/O2 control register 1 (bit 7 of address 001516) is “0”.
3: The XOUT pin is excluded.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 77 of 86
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
3850 Group (Spec.A)
Measurement output pin
100 pF
CMOS output
Fig. 68 Circuit for measuring output switching characteristics
Rev.2.10 2005.11.14
REJ03B0093-0210
page 78 of 86
3850 Group (Spec.A)
tC(CNTR)
tWL(CNTR)
tWH(CNTR)
C N TR 0
C N TR 1
0.8VCC
0.2VCC
tWL(INT)
tWH(INT)
0.8VCC
INT0 to INT3
0.2VCC
tW(RESET)
RESET
0.8VCC
0.2VCC
tC(XIN)
tWL(XIN)
tWH(XIN)
0.8VCC
XIN
SCLK1
SCLK2
tf
0.2VCC
tC(SCLK1), tC(SCLK2)
tWL(SCLK1), tWL(SCLK2)
tWH(SCLK1), tWH(SCLK2)
tr
0.8VCC
0.2VCC
tsu(RxD-SCLK1),
tsu(SIN2-SCLK2)
RX D
SIN2
0.8VCC
0.2VCC
td(SCLK1-TXD),
td(SCLK2-SOUT2)
TX D
SOUT2
Fig. 69 Timing diagram
Rev.2.10 2005.11.14
REJ03B0093-0210
th(SCLK1-RxD),
th(SCLK2-SIN2)
page 79 of 86
tv(SCLK1-TXD),
tv(SCLK2-SOUT2)
3850 Group (Spec.A)
PACKAGE OUTLINE
RENESAS Code
PRDP0042BA-A
Previous Code
42P4B
MASS[Typ.]
4.1g
22
1
21
*1
E
42
e1
JEITA Package Code
P-SDIP42-13x36.72-1.78
c
D
A
A2
*2
NOTE)
1. DIMENSIONS "*1" AND "*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION "*3" DOES NOT
INCLUDE TRIM OFFSET.
Reference
Symbol
A1
L
SEATING PLANE
*3
e
JEITA Package Code
P-SSOP42-8.4x17.5-0.80
b3
RENESAS Code
PRSP0042GA-B
Previous Code
42P2R-E
b2
MASS[Typ.]
0.6g
E
22
*1
HE
42
*3
bp
Dimension in Millimeters
Min Nom Max
e1 14.94 15.24 15.54
D 36.5 36.7 36.9
E 12.85 13.0 13.15
A
5.5
A1 0.51
A2
3.8
bp 0.35 0.45 0.55
b2 0.63 0.73 1.03
b3
0.9 1.0 1.3
c
0.22 0.27 0.34
0°
15°
e 1.528 1.778 2.028
L
3.0
F
NOTE)
1. DIMENSIONS "*1" AND "*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION "*3" DOES NOT
INCLUDE TRIM OFFSET.
21
1
Index mark
A2
A1
c
*2
Reference
Symbol
L
A
D
e
y
*3 b
p
Detail F
D
E
A2
A
A1
bp
c
HE
e
y
L
Rev.2.10 2005.11.14
REJ03B0093-0210
page 80 of 86
Dimension in Millimeters
Min Nom Max
17.3 17.5 17.7
8.2 8.4 8.6
2.0
2.4
0.05
0.25 0.3 0.4
0.13 0.15 0.2
0°
10°
11.63 11.93 12.23
0.65 0.8 0.95
0.15
0.3 0.5 0.7
PRELIMINARY
Notice: This is not a final specification.
Some parametric limits are subject to change.
3850 Group (Spec.A)
APPENDIX
NOTES ON PROGRAMMING
1. Processor status register
(1) Initializing of processor status register
Flags which affect program execution must be initialized after a reset.
In particular, it is essential to initialize the T and D flags because
they have an important effect on calculations.
<Reason>
After a reset, the contents of the processor status register (PS)
are undefined except for the I flag which is “1”.
Reset
↓
Initializing of flags
↓
Main program
Fig. 1 Initialization of processor status register
(2) How to reference the processor status register
To reference the contents of the processor status register (PS), execute the PHP instruction once then read the contents of (S+1). If
necessary, execute the PLP instruction to return the PS to its original status.
3. Decimal calculations
(1) Execution of decimal calculations
The ADC and SBC are the only instructions which will yield proper
decimal notation, set the decimal mode flag (D) to “1” with the
SED instruction. After executing the ADC or SBC instruction, execute another instruction before executing the SEC, CLC, or CLD
instruction.
(2) Notes on status flag in decimal mode
When decimal mode is selected, the values of three of the flags in
the status register (the N, V, and Z flags) are invalid after a ADC or
SBC instruction is executed.
The carry flag (C) is set to “1” if a carry is generated as a result of
the calculation, or is cleared to “0” if a borrow is generated. To determine whether a calculation has generated a carry, the C flag
must be initialized to “0” before each calculation. To check for a
borrow, the C flag must be initialized to “1” before each calculation.
Set D flag to “1”
↓
ADC or SBC instruction
↓
NOP instruction
↓
SEC, CLC, or CLD instruction
Fig. 3 Execution of decimal calculations
4. JMP instruction
When using the JMP instruction in indirect addressing mode, do
not specify the last address on a page as an indirect address.
(S)
(S)+1
Stored PS
Fig. 2 Stack memory contents after PHP instruction execution
2. BRK instruction
(1) Interrupt priority level
When the BRK instruction is executed with the following conditions satisfied, the interrupt execution is started from the address
of interrupt vector which has the highest priority.
• Interrupt request bit and interrupt enable bit are set to “1”.
• Interrupt disable flag (I) is set to “1” to disable interrupt.
5. Multiplication and Division Instructions
• The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
• The execution of these instructions does not change the contents of the processor status register.
6. Ports
The contents of the port direction registers cannot be read. The
following cannot be used:
• The data transfer instruction (LDA, etc.)
• The operation instruction when the index X mode flag (T) is “1”
• The addressing mode which uses the value of a direction register as an index
• The bit-test instruction (BBC or BBS, etc.) to a direction register
• The read-modify-write instructions (ROR, CLB, or SEB, etc.) to a
direction register.
Use instructions such as LDM and STA, etc., to set the port direction registers.
7. Instruction Execution Timing
The instruction execution time can be obtained by multiplying the
frequency of the internal clock φ by the number of cycles mentioned in the 740 Family Software Manual.
The frequency of the internal clock φ is the twice the XIN cycle in
high-speed mode, 8 times the XIN cycle in middle-speed mode,
and the twice the XCIN in low-speed mode.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 81 of 86
PRELIMINARY
Notice: This is not a final specification.
Some parametric limits are subject to change.
3850 Group (Spec.A)
NOTES ON PERIPHERAL FUNCTIONS
Notes on input and output ports
1. Notes in standby state
In standby state*1, do not make input levels of an I/O port “undefined”, especially for I/O ports of the N-channel open-drain. When
setting the N-channel open-drain port as an output, do not make
input levels of an I/O port “undefined”, too.
Pull-up (connect the port to VCC) or pull-down (connect the port to
VSS) these ports through a resistor.
When determining a resistance value, note the following points:
• External circuit
• Variation of output levels during the ordinary operation
<Reason>
When setting as an input port with its direction register, the transistor becomes the OFF state, which causes the ports to be the
high-impedance state.
Accordingly, the potential which is input to the input buffer in a microcomputer is unstable in the state that input levels of an I/O port
are “undefined”. This may cause power source current.
In I/O ports of N-channel open-drain, when the contents of the port
latch are “1”, even if it is set as an output port with its direction
register, it becomes the same phenomenon as the case of an input port.
*1
Standby state: stop mode by executing STP instruction
wait mode by executing WIT instruction
2. Modifying output data with bit managing instruction
When the port latch of an I/O port is modified with the bit managing instruction*2, the value of the unspecified bit may be changed.
<Reason>
The bit managing instructions are read-modify-write form instructions for reading and writing data by a byte unit. Accordingly, when
these instructions are executed on a bit of the port latch of an I/O
port, the following is executed to all bits of the port latch.
• As for bit which is set for input port:
The pin state is read in the CPU, and is written to this bit after bit
managing.
• As for bit which is set for output port:
The bit value is read in the CPU, and is written to this bit after bit
managing.
Note the following:
• Even when a port which is set as an output port is changed for
an input port, its port latch holds the output data.
• As for a bit of which is set for an input port, its value may be
changed even when not specified with a bit managing instruction
in case where the pin state differs from its port latch contents.
*2
Bit managing instructions: SEB and CLB instructions
Rev.2.10 2005.11.14
REJ03B0093-0210
page 82 of 86
Termination of unused pins
1. Terminate unused pins
(1) I/O ports :
• Set the I/O ports for the input mode and connect them to VCC or
VSS through each resistor of 1 kΩ to 10 kΩ. In the port which can
select a internal pull-up resistor, the internal pull-up resistor can
be used.
Set the I/O ports for the output mode and open them at “L” or “H”.
• When opening them in the output mode, the input mode of the
initial status remains until the mode of the ports is switched over
to the output mode by the program after reset. Thus, the potential at these pins is undefined and the power source current may
increase in the input mode. With regard to an effects on the system, thoroughly perform system evaluation on the user side.
• Since the direction register setup may be changed because of a
program runaway or noise, set direction registers by program
periodically to increase the reliability of program.
(2) The AVss pin when not using the A/D converter :
• When not using the A/D converter, handle a power source pin for
the A/D converter, AVss pin as follows:
AVss: Connect to the Vss pin.
2. Termination remarks
(1) Input ports and I/O ports :
Do not open in the input mode.
<Reason>
• The power source current may increase depending on the firststage circuit.
• An effect due to noise may be easily produced as compared with
proper termination (1) in 1 shown on the above.
(2) I/O ports :
When setting for the input mode, do not connect to VCC or VSS directly.
<Reason>
If the direction register setup changes for the output mode because of a program runaway or noise, a short circuit may occur
between a port and VCC (or VSS).
(3) I/O ports :
When setting for the input mode, do not connect multiple ports in
a lump to VCC or VSS through a resistor.
<Reason>
If the direction register setup changes for the output mode because of a program runaway or noise, a short circuit may occur
between ports.
• At the termination of unused pins, perform wiring at the shortest
possible distance (20 mm or less) from microcomputer pins.
PRELIMINARY
Notice: This is not a final specification.
Some parametric limits are subject to change.
3850 Group (Spec.A)
Notes on Interrupts
Notes on timer
1. Change of relevant register settings
When the setting of the following registers or bits is changed, the
interrupt request bit may be set to “1”. When not requiring the interrupt occurrence synchronized with these setting, take the
following sequence.
• Interrupt edge selection register (address 3A16)
• Timer XY mode register (address 2316)
Set the above listed registers or bits as the following sequence.
• If a value n (between 0 and 255) is written to a timer latch, the
frequency division ratio is 1/(n+1).
• When switching the count source by the timer 12, X and Y count
source selection bits, the value of timer count is altered in
unconsiderable amount owing to generating of thin pulses in the
count input signals.
Therefore, select the timer count source before set the value to
the prescaler and the timer.
Set the corresponding interrupt enable bit to “0” (disabled) .
↓
Set the interrupt edge select bit (active edge switch bit) or
the interrupt (source) select bit to “1”.
↓
NOP (one or more instructions)
↓
Set the corresponding interrupt request bit to “0”
(no interrupt request issued).
↓
Set the corresponding interrupt enable bit to “1” (enabled).
Fig. 4 Sequence of changing relevant register
<Reason>
When setting the followings, the interrupt request bit may be set to “1”.
• When setting external interrupt active edge
Concerned register: Interrupt edge selection register (address 3A16)
Timer XY mode register (address 2316)
• When switching interrupt sources of an interrupt vector address
where two or more interrupt sources are allocated.
Concerned register: Interrupt edge selection register (address 3A16)
2. Check of interrupt request bit
When executing the BBC or BBS instruction to an interrupt request bit of an interrupt request register immediately after this bit
is set to “0” by using a data transfer instruction, execute one or
more instructions before executing the BBC or BBS instruction.
Clear the interrupt request bit to “0” (no interrupt issued)
↓
NOP (one or more instructions)
↓
Execute the BBC or BBS instruction
*Data transfer instruction:
LDM, LDA, STA, STX, and STY instructions
Fig. 5 Sequence of check of interrupt request bit
<Reason>
If the BBC or BBS instruction is executed immediately after an interrupt request bit of an interrupt request register is cleared to “0”,
the value of the interrupt request bit before being cleared to “0” is
read.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 83 of 86
Notes on serial interface
1. Notes when selecting clock synchronous serial I/O (Serial I/O1)
(1) Stop of transmission operation
Clear the serial I/O1 enable bit and the transmit enable bit to “0”
(Serial I/O1 and transmit disabled).
<Reason>
Since transmission is not stopped and the transmission circuit is
not initialized even if only the serial I/O1 enable bit is cleared to “0”
(Serial I/O1 disabled), the internal transmission is running (in this
case, since pins TxD, RxD, S CLK1, and S RDY1 function as I/O
ports, the transmission data is not output). When data is written to
the transmit buffer register in this state, data starts to be shifted to
the transmit shift register. When the serial I/O1 enable bit is set to
“1” at this time, the data during internally shifting is output to the
TxD pin and an operation failure occurs.
(2) Stop of receive operation
Clear the receive enable bit to “0” (receive disabled), or clear the
serial I/O1 enable bit to “0” (Serial I/O1 disabled).
(3) Stop of transmit/receive operation
Clear the transmit enable bit and receive enable bit to “0” simultaneously (transmit and receive disabled).
(when data is transmitted and received in the clock synchronous
serial I/O mode, any one of data transmission and reception cannot be stopped.)
<Reason>
In the clock synchronous serial I/O mode, the same clock is used
for transmission and reception. If any one of transmission and reception is disabled, a bit error occurs because transmission and
reception cannot be synchronized.
In this mode, the clock circuit of the transmission circuit also operates for data reception. Accordingly, the transmission circuit does
not stop by clearing only the transmit enable bit to “0” (transmit
disabled). Also, the transmission circuit is not initialized by clearing the serial I/O1 enable bit to “0” (Serial I/O1 disabled) (refer to
(1) in 1).
(4) SRDY1 output of reception side (Serial I/O1)
When signals are output from the SRDY1 pin on the reception side
by using an external clock in the clock synchronous serial I/O
mode, set all of the receive enable bit, the SRDY1 output enable
bit, and the transmit enable bit to “1” (transmit enabled).
PRELIMINARY
Notice: This is not a final specification.
Some parametric limits are subject to change.
3850 Group (Spec.A)
2. Notes when selecting clock asynchronous serial I/O (Serial I/O1)
(1) Stop of transmission operation
Clear the transmit enable bit to “0” (transmit disabled).
<Reason>
Since transmission is not stopped and the transmission circuit is
not initialized even if only the serial I/O1 enable bit is cleared to “0”
(Serial I/O1 disabled), the internal transmission is running (in this
case, since pins TxD, RxD, S CLK1 , and SRDY1 function as I/O
ports, the transmission data is not output). When data is written to
the transmit buffer register in this state, data starts to be shifted to
the transmit shift register. When the serial I/O1 enable bit is set to
“1” at this time, the data during internally shifting is output to the
TxD pin and an operation failure occurs.
(2) Stop of receive operation
Clear the receive enable bit to “0” (receive disabled).
(3) Stop of transmit/receive operation
Only transmission operation is stopped.
Clear the transmit enable bit to “0” (transmit disabled).
<Reason>
Since transmission is not stopped and the transmission circuit is
not initialized even if only the serial I/O1 enable bit is cleared to “0”
(Serial I/O1 disabled), the internal transmission is running (in this
case, since pins TxD, RxD, S CLK1 , and SRDY1 function as I/O
ports, the transmission data is not output). When data is written to
the transmit buffer register in this state, data starts to be shifted to
the transmit shift register. When the serial I/O1 enable bit is set to
“1” at this time, the data during internally shifting is output to the
TxD pin and an operation failure occurs.
Only receive operation is stopped.
Clear the receive enable bit to “0” (receive disabled).
3. Setting serial I/O1 control register again (Serial I/O1)
Set the serial I/O1 control register again after the transmission and
the reception circuits are reset by clearing both the transmit enable bit and the receive enable bit to “0”.
5. Transmit interrupt request when transmit enable bit is set (Serial
I/O1)
When the transmit interrupt is used, set the transmit interrupt enable bit to transmit enabled as shown in the following sequence.
(1) Set the interrupt enable bit to “0” (disabled) with CLB instruction.
(2) Prepare serial I/O for transmission/reception.
(3) Set the interrupt request bit to “0” with CLB instruction after 1
or more instruction has been executed.
(4) Set the interrupt enable bit to “1” (enabled).
<Reason>
When the transmission enable bit is set to “1”, the transmit buffer
empty flag and transmit shift register completion flag are set to “1”.
The interrupt request is generated and the transmission interrupt
request bit is set regardless of which of the two timings listed below is selected as the timing for the transmission interrupt to be
generated.
• Transmit buffer empty flag is set to “1”
• Transmit shift register completion flag is set to “1”
6. Transmission control when external clock is selected (Serial I/
O1 clock synchronous mode)
When an external clock is used as the synchronous clock for data
transmission, set the transmit enable bit to “1” at “H” of the SCLK1
input level. Also, write the transmit data to the transmit buffer register (serial I/O shift register) at “H” of the SCLK1 input level.
7. Transmit data writing (Serial I/O2)
In the clock synchronous serial I/O, when selecting an external
clock as synchronous clock, write the transmit data to the serial
I/O2 register (serial I/O shift register) at “H” of the transfer clock input level.
Notes on PWM
The PWM starts after the PWM enable bit is set to enable and “L”
level is output from the PWM pin.
The length of this “L“ level output is as follows:
Clear both the transmit enable bit (TE) and
the receive enable bit (RE) to “0”
↓
n+1
2 • f(XIN)
Set the bits 0 to 3 and bit 6 of the serial I/O1
control register
Can be set with the
↓
LDM instruction at
Set both the transmit enable bit (TE) and the
the same time
receive enable bit (RE), or one of them to “1”
Fig. 6 Sequence of setting serial I/O1 control register again
4. Data transmission control with referring to transmit shift register
completion flag (Serial I/O1)
The transmit shift register completion flag changes from “1” to “0”
with a delay of 0.5 to 1.5 shift clocks. When data transmission is
controlled with referring to the flag after writing the data to the
transmit buffer register, note the delay.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 84 of 86
n+1
f(XIN)
sec. (Count source selection bit = “0”,
where n is the value set in the prescaler)
sec. (Count source selection bit = “1”,
where n is the value set in the prescaler)
PRELIMINARY
Notice: This is not a final specification.
Some parametric limits are subject to change.
3850 Group (Spec.A)
Notes on A/D converter
Notes on using stop mode
1. Analog input pin
Make the signal source impedance for analog input low, or equip an
analog input pin with an external capacitor of 0.01 µF to 1 µF. Further,
be sure to verify the operation of application products on the user side.
<Reason>
An analog input pin includes the capacitor for analog voltage comparison. Accordingly, when signals from signal source with high impedance
are input to an analog input pin, charge and discharge noise generates. This may cause the A/D conversion precision to be worse.
1. Register setting
Since values of the prescaler 12 and Timer 1 are automatically reloaded when returning from the stop mode, set them again,
respectively. (When the oscillation stabilizing time set after STP instruction released bit is “0”)
When using the oscillation stabilizing time set after STP instruction
released bit set to “1”, evaluate time to stabilize oscillation of the
used oscillator and set the value to the timer 1 and prescaler 12.
2. A/D converter power source pin
The AVSS pin is A/D converter power source pin. Regardless of
using the A/D conversion function or not, connect it as following :
• AVSS : Connect to the VSS line
<Reason>
If the AVSS pin is opened, the microcomputer may have a failure
because of noise or others.
3. Clock frequency during A/D conversion
The comparator consists of a capacity coupling, and a charge of
the capacity will be lost if the clock frequency is too low. Thus,
make sure the following during an A/D conversion.
• f(XIN) is 500 kHz or more in middle-/high-speed mode.
• Do not execute the STP instruction.
• When the A/D converter is operated at low-speed mode, f(X IN)
do not have the lower limit of frequency, because of the A/D converter has a built-in self-oscillation circuit.
Notes on watchdog timer
• Make sure that the watchdog timer does not underflow while
waiting Stop release, because the watchdog timer keeps counting during that term.
• When the STP instruction disable bit has been set to “1”, it is impossible to switch it to “0” by a program.
____________
Notes on RESET pin
1. Connecting capacitor
____________
In case where the RESET signal rise time is long, connect a ce____________
ramic capacitor or others across the RESET pin and the VSS pin.
Use a 1000 pF or more capacitor for high frequency use. When
connecting the capacitor, note the following :
• Make the length of the wiring which is connected to a capacitor
as short as possible.
• Be sure to verify the operation of application products on the
user side.
<Reason>
If the several nanosecond or several ten nanosecond impulse noise
____________
enters the RESET pin, it may cause a microcomputer failure.
2. Reset release after power on
When releasing the reset after power on, such as power-on reset,
release reset after X IN passes more than 20 cycles in the state
where the power supply voltage is 2.7 V or more and the XIN oscillation is stable.
<Reason>
____________
To release reset, the RESET pin must be held at an “L” level for 20
cycles or more of XIN in the state where the power source voltage
is between 2.7 V and 5.5 V, and XIN oscillation is stable.
Rev.2.10 2005.11.14
REJ03B0093-0210
page 85 of 86
2. Clock restoration
After restoration from the stop mode to the normal mode by an interrupt request, the contents of the CPU mode register previous to
the STP instruction execution are retained. Accordingly, if both main
clock and sub clock were oscillating before execution of the STP instruction, the oscillation of both clocks is resumed at restoration.
In the above case, when the main clock side is set as a system
clock, the oscillation stabilizing time for approximately 8,000
cycles of the XIN input is reserved at restoration from the stop
mode. At this time, note that the oscillation on the sub clock side
may not be stabilized even after the lapse of the oscillation stabilizing time of the main clock side.
Notes on wait mode
• Clock restoration
If the wait mode is released by a reset when XCIN is set as the
system clock and XIN oscillation is stopped during execution of the
WIT instruction, XCIN oscillation stops, XIN oscillations starts, and
XIN is set as the system clock.
____________
In the above case, the RESET pin should be held at “L” until the
oscillation is stabilized.
Notes on CPU rewrite mode of flash memory
version
1. Operation speed
During CPU rewrite mode, set the internal clock frequency 4MHz
or less by using the main clock division ratio selection bits (bits 6,
7 at address 003B16).
2. Instructions inhibited against use
The instructions which refer to the internal data of the flash
memory cannot be used during CPU rewrite mode .
3. Interrupts inhibited against use
The interrupts cannot be used during CPU rewrite mode because
they refer to the internal data of the flash memory.
4. Watchdog timer
In case of the watchdog timer has been running already, the internal reset generated by watchdog timer underflow does not
happen, because of watchdog timer is always clearing during program or erase operation.
5. Reset
Reset is always valid. In case of CNVSS = “H” when reset is released, boot mode is active. So the program starts from the address
contained in addresses FFFC16 and FFFD16 in boot ROM area.
PRELIMINARY
Notice: This is not a final specification.
Some parametric limits are subject to change.
3850 Group (Spec.A)
Notes on restarting oscillation
Handling of Source Pins
• Restarting oscillation
Usually, when the MCU stops the clock oscillation by STP instruction and the STP instruction has been released by an external
interrupt source, the fixed values of Timer 1 and Prescaler 12
(Timer 1 = “0116 ”, Prescaler 12 = “FF 16”) are automatically reloaded in order for the oscillation to stabilize. The user can inhibit
the automatic setting by writing “1” to bit 0 of MISRG (address
003816).
However, by setting this bit to “1”, the previous values, set just before the STP instruction was executed, will remain in Timer 1 and
Prescaler 12. Therefore, you will need to set an appropriate value
to each register, in accordance with the oscillation stabilizing time,
before executing the STP instruction.
<Reason>
Oscillation will restart when an external interrupt is received. However, internal clock φ is supplied to the CPU only when Timer 1
starts to underflow. This ensures time for the clock oscillation using the ceramic resonators to be stabilized.
In order to avoid a latch-up occurrence, connect a capacitor suitable for high frequencies as bypass capacitor between power
source pin (VCC pin) and GND pin (VSS pin) and between power
source pin (VCC pin) and analog power source input pin (AVSS
pin). Besides, connect the capacitor to as close as possible. For
bypass capacitor which should not be located too far from the pins
to be connected, a ceramic capacitor of 0.01 µF–0.1 µF is recommended.
Flash Memory Version
Connect the CNVSS/VPP pin the shortest possible to the GND pattern which is supplied to the Vss pin of the microcomputer. In
addition connecting an approximately 1 k to 5 kΩ resistor in series
to the GND could improve noise immunity. In this case as well as
the above mention, connect the pin the shortest possible to the
GND pattern which is supplied to the Vss pin of the microcomputer.
●Reason
The CNVSS/VPP pin is the power source input pin for the built-in
flash memory. When programming in the flash memory, the impedance of the V PP pin is low to allow the electric current for
writing to flow into the built-in flash memory. Because of this, noise
can enter easily. If noise enters the VPP pin, abnormal instruction
codes or data are read from the flash memory, which may cause a
program runaway.
The shortest
CNVSS/(VPP)
(Note)
Approx. 5kΩ
VSS
(Note)
The shortest
Note. Shows the microcomputer's pin.
Fig. 7 Wiring for the CNVSS/VPP pin
Rev.2.10 2005.11.14
REJ03B0093-0210
page 86 of 86
Differences among 3850 group (standard),
3850 group (spec. H), and 3850 group (spec. A)
(1) The absolute maximum ratings of 3850 group (spec. H/A) is
smaller than that of 3850 group (standard).
• Power source voltage Vcc = 0.3 to 6.5 V
• CNVss input voltage VI = –0.3 to Vcc +0.3 V
(2) The oscillation circuit constants of XIN-XOUT, XCIN-XCOUT may
be some differences between 3850 group (standard) and 3850
group (spec. H).
(3) Do not write any data to the reserved area and the reserved
bit. (Do not change the contents after reset.)
(4) Fix bit 3 of the CPU mode register to “1”.
(5) Be sure to perform the termination of unused pins.
REVISION HISTORY
Rev.
Date
Description
Summary
Page
1.00 Jun. 10, 2004
–
2.00 Sep. 01, 2005
1, 4-6
3
5
16
35
38
39
67
68
69
70
71
72
73
80
2.10 Nov. 14, 2005
1, 4-6
35
67, 70
69
80
81 to 86
3850 Group (Spec.A) Data Sheet
First edition issued
Package name is revised. 42P4B → PRDP0042BA-A
Table 1 Pin description is partly revised.
GROUP EXPANSION is revised.
Fig. 12 Port block diagram (3) is partly revised.
WATCHDOG TIMER is revised.
Fig. 38 Structure of Watchdog timer control register is partly revised.
CLOCK GENERATING CIRCUIT is partly revised.
Oscillation Control (1) Stop mode is partly revised.
Fig. 42 Ceramic resonator circuit is partly revised.
Note 4 of Fig. 45 is added.
Table 15 Absolute maximum ratings is partly revised.
Reserved Area, Reserved Bit, CPU Mode Register are added.
Differences among 3850 group (standard), 3850 group (spec.H), and 3850 group
(spec.A) (3), (4) are deleted.
Power Source Voltage is added.
Flash Memory Version is revised.
DATA REQUIRED FOR MASK ORDERS is partly revised.
(http://www.renesas.com/jp/rom)(http://japan.renesas.com/homepage.jsp)
Table 17 Absolute maximum ratings is partly revised.
Table 18 Recommended operating conditions (1) is partly revised.
Table 19 Recommended operating conditions (2) is partly revised.
Table 21 Electrical characteristics (2) is partly revised.
PACKAGE OUTLINE 42P4B is revised.
Package name is revised. 42P2R-A/E → PRSP0042GA-B
Fig. 38 Block diagram of watchdog timer revised.
Table 15, Table 17 Package name is revised. 42P2R-A/E → PRSP0042GA-B
Fig. 67 Wiring for the CNVSS/VPP pin added.
PACKAGE OUTLINE 42P4B is revised.
Appendix added.
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product
information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes
no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater
use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com
RENESAS SALES OFFICES
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> 2-796-3115, Fax: <82> 2-796-2145
Renesas Technology Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510
© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon .3.0