M32C/8A Group REJ03B0213-0110 Rev.1.10 Jul 15, 2007 RENESAS MCU 1. Overview 1.1 Features The M32C/8A Group is a single-chip control MCU, fabricated using high-performance silicon gate CMOS technology, embedding the M32C/80 Series CPU core. The M32C/8A Group is housed in 144-pin and 100-pin plastic molded LQFP packages. With a 16-Mbyte address space, this MCU combines advanced instruction manipulation capabilities to process complex instructions by less bytes and execute instructions at higher speed. The M32C/8A Group has a multiplier and DMAC adequate for office automation, communication devices and industrial equipment, and other high-speed processing applications. The M32C/8A Group is ROMless device. Use the M32C/8A Group in microprocessor mode after reset. 1.1.1 Applications Audio, cameras, office/communication/portable equipment, etc. 1.1.2 Specifications Tables 1.11.3 to 1.4 lists the specifications of the M32C/8A Group. Rev.1.10 Jul 15, 2007 Page 1 of 65 M32C/8A Group Table 1.1 Item CPU Specifications (144-Pin Version) (1) Specification M32C/80 core (multiplier: 16 bits × 16 bits → 32 bits, multiply-addition operation instructions: 16 × 16 + 48 → 48 bits) • Basic instructions: 108 • Minimum instruction execution time: 31.3 ns ( f(CPU) = 32 MHZ / VCC1 = 4.2 to 5.5 V) 41.7 ns ( f(CPU) = 24 MHZ / VCC1 = 3.0 to 5.5 V) • Operating mode: microprocessor mode Memory ROM, RAM See Table 1.5 Product List. Power Supply Voltage Detection Vdet3 detection function, Vdet4 detection function, cold start/warm start determination function External Bus / memory expansion • Address space: 16 Mbyte Bus function • External bus interface: 1 to 7 wait states can be inserted, Expansion 4 chip select outputs, 3 V and 5 V interfaces • Bus format: Switchable between separate and multiplexed bus formats, switchable data bus width (8-bit or 16-bit) Clock Clock generation circuits • 4 circuits: Main clock, sub clock, on-chip oscillator, PLL frequency synthesizer • Oscillation stop detection: Main clock oscillation stop detection function • Frequency divider circuit: Dividing ratio selectable among 1, 2, 3, 4, 6, 8, 10, 12, 14, 16 • Low power consumption features: Wait mode, stop mode Interrupts • Interrupt vectors: 70 • External interrupt inputs: NMI × 1 INT × 3 (16-bit external bus width) INT × 6 (8- bit external bus width) Key input × 4 • Interrupt priority levels: 7 Watchdog Timer 15-bit × 1 (with prescaler) DMA DMAC • 4 channels, cycle steal method • Trigger sources: 31 • Transfer modes: 2 (single transfer and repeat transfer) DMAC II • Can be activated by all peripheral function interrupt sources • Transfer modes: 2 (single transfer and burst transfer) • Immediate transfer, calculation transfer, and chain transfer functions Timer Timer A 16-bit timer × 5 Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode) Event counter 2-phase pulse signal processing (2-phase encoder input) × 3 Timer B 16-bit timer × 6 Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode Timer function for 3-phase inverter control × 1 (using timer A1, timer A2, timer A4, 3-phase motor control and timer B2) On-chip dead time timer Rev.1.10 Function Central processing unit Jul 15, 2007 Page 2 of 65 M32C/8A Group Table 1.2 Item Serial Interface Specifications (144-Pin Version) (2) Function UART0 to UART4 A/D Converter D/A Converter CRC Calculation Circuit Specification Clock synchronous / asynchronous × 5 I2C bus (optional)(2), special mode 2, GCI mode, SIM mode IEBus (optional)(1)(2) 10-bit resolution x 18 channels, includes sample and hold function 8-bit resolution × 2 channels CRC-CCITT (X16 + X12 + X5 + 1) compliant X/Y Converter 16 bits x 16 bits I/O Ports Programmable I/O ports • Input only: 1 • CMOS I/O: 81 (8-bit external bus width) 73 (16-bit external bus width) with selectable pull-up resistor • N channel open drain ports: 2 Operating Frequency / 32 MHz: VCC1 = 4.2 to 5.5 V, VCC2 = 3.0 to VCC1 24 MHz: VCC1 = 3.0 to 5.5 V, VCC2 = 3.0 to VCC1 Supply Voltage Current Consumption 28 mA (32 MHz / VCC1 = VCC2 = 5 V) 22 mA (24 MHz / VCC1 = VCC2 = 3.3 V) 45 μA (approx. 1 MHz / VCC1 = VCC2 = 3.3 V, on-chip oscillator low-power consumption mode → wait mode) 0.8 μA (VCC1 = VCC2 = 3.3 V, stop mode) Operating Ambient Temperature (°C) -20 to 85°C, -40 to 85°C (optional)(2) Package 144-pin LQFP (PLQP0144KA-A) NOTES: 1. IEBus is a registered trademark of NEC Electronics Corporation. 2. Please contact a Renesas sales office to use the optional feature. Rev.1.10 Jul 15, 2007 Page 3 of 65 M32C/8A Group Table 1.3 Item CPU Specifications (100-Pin Version) (1) Specification M32C/80 core (multiplier: 16 bits × 16 bits → 32 bits, multiply-addition operation instructions: 16 × 16 + 48 → 48 bits) • Basic instructions: 108 • Minimum instruction execution time: 31.3 ns (f(CPU) = 32 MHZ / VCC1 = 4.2 to 5.5 V) 41.7 ns (f(CPU) = 24 MHZ / VCC1 = 3.0 to 5.5 V) • Operating mode: microprocessor mode Memory ROM, RAM See Table 1.5 Product List. Power Supply Voltage Detection Vdet3 detection function, Vdet4 detection function, cold start/warm start determination function External Bus / memory expansion • Address space: 16 Mbyte Bus function • External bus interface: 1 to 7 wait states can be inserted, Expansion 4 chip select outputs, 3 V and 5 V interfaces • Bus format: Switchable between separate bus and multiplexed bus formats, switchable data bus width (8-bit or 16-bit) Clock Clock generation circuits • 4 circuits: Main clock, sub clock, on-chip oscillator, PLL frequency synthesizer • Oscillation stop detection: Main clock oscillation stop detection function • Frequency divider circuit: Dividing ratio selectable among 1, 2, 3, 4, 6, 8, 10, 12, 14, 16 • Low power consumption features: Wait mode, stop mode Interrupts • Interrupt vectors: 70 • External interrupt inputs: NMI × 1 INT × 3 (16-bit external bus width) INT × 6 (8- bit external bus width) Key input × 4 • Interrupt priority levels: 7 Watchdog Timer 15-bit × 1 (with prescaler) DMA DMAC • 4 channels, cycle steal method • Trigger sources: 31 • Transfer modes: 2 (single transfer and repeat transfer) DMACII • Can be activated by all peripheral function interrupt sources • Transfer modes: 2 (single transfer and burst transfer) • Immediate transfer, calculation transfer, and chain transfer functions Timer Timer A 16-bit timer × 5 Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode Event counter 2-phase pulse signal processing (2-phase encoder input) × 3 Timer B 16-bit timer × 6 Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode Timer function for 3-phase inverter control × 1 (using timer A1, timer A2, timer A4, 3-phase motor control and timer B2) On-chip dead time timer Rev.1.10 Function Central processing unit Jul 15, 2007 Page 4 of 65 M32C/8A Group Table 1.4 Item Serial Interface Specifications (100-Pin Version) (2) Function UART0 to UART4 A/D Converter D/A Converter CRC Calculation Circuit Specification Clock synchronous / asynchronous × 5 I2C bus (optional)(2), special mode 2, GCI mode, SIM mode IEBus (optional)(1)(2) 10-bit resolution x 10 channels, includes sample and hold function 8-bit resolution × 2 channels CRC-CCITT (X16 + X12 + X5 + 1) compliant X/Y Converter 16 bits x 16 bits I/O Ports Programmable I/O ports • Input only: 1 • CMOS I/O: 45 (8-bit external bus width) 37 (16-bit external bus width) with selectable pull-up resistor • N channel open drain ports: 2 Operating Frequency / 32 MHz: VCC1 = 4.2 to 5.5 V, VCC2 = 3.0 to VCC1 24 MHz: VCC1 = 3.0 to 5.5 V, VCC2 = 3.0 to VCC1 Supply Voltage Current Consumption 28 mA (32 MHz / VCC1 = VCC2 = 5 V) 22 mA (24 MHz / VCC1 = VCC2 = 3.3 V) 45 μA (approx. 1 MHz / VCC1 = VCC2 = 3.3 V, on-chip oscillator low-power consumption mode → wait mode) 0.8 μA (VCC1 = VCC2 = 3.3 V, stop mode) Operating Ambient Temperature (°C) -20 to 85°C, -40 to 85°C (optional)(2) Package 100-pin LQFP (PLQP0100KB-A) NOTES: 1. IEBus is a registered trademark of NEC Electronics Corporation. 2. Please contact a Renesas sales office for optional features. Rev.1.10 Jul 15, 2007 Page 5 of 65 M32C/8A Group 1.2 Product List Table 1.5 lists product information. Figure 1.1 shows product numbering system. Table 1.5 Product List (M32C/8A) Type No. M308A0SGP M308A3SGP M308A5SGP Package PLQP0100KB-A (100P6Q-A) (P) PLQP0100KB-A (100P6Q-A) (P) PLQP0144KA-A (144P6Q-A) Current as of July. 2007 ROM Capacity − RAM Capacity 12KB 24KB 24KB Remarks ROMless ROMless ROMless (P): Under planning Part No. M30 8A x S GP Package type option GP: Package PLQP0100KB-A (100P6Q-A) Package PLQP0144KA-A (144P6Q-A) Memory type S: ROMless version Shows RAM capacity, pin count, etc. (The value itself has no specific meaning) M32C/8A Group M16C Family Figure 1.1 Rev.1.10 Product Numbering System Jul 15, 2007 Page 6 of 65 M32C/8A Group 1.3 Block Diagram Figure 1.2 shows a M32C/8A Group block diagram. 8 8 (2) 8 (2) Port P0 8 (2) Port P1 Port P2 8 (2) 8 (2) Port P3 Port P4 8 8 Port P6 Port P7 (2) Port P5 <VCC2> <VCC1> Internal peripheral functions 10-bit A/D converter: 1 circuit, 18 input (3) Timers (16-bit) Output (timer A): 5 Input (timer B): 6 Clock generation circuits: XIN-XOUT XCIN-XCOUT On-chip oscillator PLL frequency synthesizer 8-bit D/A converters: 2 circuits Three-phase motor control circuit DMAC: 4 channels DMAC II Watchdog timer (15 bits) M32C/80 Series CPU core Serial Interface: 5 channels clock synchronous/ asynchronous R0H R0L R1H R1L FLG ISP R3 USP A0 PC A1 X/Y converter: 16 bits × 16 bits (1) <VCC2> Port P13 8 (1) Port P12 8 (1) Port P11 5 SVF FB SVP SB VCT (1) Port P15 8 RAM INTB R2 CRC calculation circuit X16 + X12 + X5 + 1 (CCITT) Memory (1) Port P14 7 Multiplier <VCC1> Port P10 8 Port P9 8 P8_5 Port P8 7 NOTES: 1. Ports P11 to P15 are provided in the 144-pin package only. 2. Ports P0 to P5 function as bus control pins when using in microprocessor mode . Port P1 can function as I/O port when using with 8-bit external bus width only. 3. 18 channels are available in the 144-pin package. 10 channels are available in the 100-pin package. Figure 1.2 Rev.1.10 M32C/8A Group Block Diagram Jul 15, 2007 Page 7 of 65 M32C/8A Group 1.4 Pin Assignments Figures 1.3 and 1.4 show a pin assignment (top view). A19 A18 A9 , [ A9 / D9 ] A10 , [ A10 / D10 A11 , [ A11 / D11 A12 , [ A12 / D12 A13 , [ A13 / D13 A14 , [ A14 / D14 A15 , [ A15 / D15 A16 A17 73 74 75 76 77 78 79 80 81 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 82 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 <VCC2> M32C/8A Group PLQP0144KA-A (144P6Q-A) (top view) 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 3 2 1 <VCC1> P4_4 / CS3 / A20 P4_5 / CS2 / A21 P4_6 / CS1 / A22 P4_7 / CS0 / A23 P12_5 P12_6 P12_7 P5_0 / WRL / WR P5_1 / WRH / BHE P5_2 / RD P5_3 / CLKOUT / BCLK / ALE P13_0 P13_1 VCC2 P13_2 VSS P13_3 P5_4 / HLDA / ALE P5_5 / HOLD P5_6 / ALE P5_7 / RDY P13_4 P13_5 P13_6 P13_7 P6_0 / CTS0 / RTS0 / SS0 P6_1 / CLK0 P6_2 / RXD0 / SCL0 / STXD0 P6_3 / TXD0 / SDA0 / SRXD0 P6_4 / CTS1 / RTS1 / SS1 P6_5 / CLK1 VSS P6_6 / RXD1 / SCL1 / STXD1 VCC1 P6_7 / TXD1 / SDA1 / SRXD1 P7_0 / TA0OUT / TXD2 / SDA2 / SRXD2 (1) ANEX1 / TXD4 / SDA4 / SRXD4 ANEX0 / CLK4 DA1 / SS4 / RTS4 / CTS4 / TB4IN DA0 / SS3 / RTS3 / CTS3 / TB3IN SRXD3 / SDA3 / TXD3 / TB2IN STXD3 / SCL3 / RXD3 / TB1IN CLK3 / TB0IN / P9_6 / P9_5 / P9_4 / P9_3 / P9_2 / P9_1 / P9_0 P14_6 P14_5 P14_4 P14_3 P14_2 P14_1 P14_0 BYTE CNVSS XCIN / P8_7 XCOUT / P8_6 RESET XOUT VSS XIN VCC1 NMI / P8_5 INT2 / P8_4 INT1 / P8_3 INT0 / P8_2 U / TA4IN / P8_1 U / TA4OUT / P8_0 TA3IN / P7_7 TA3OUT / P7_6 W / TA2IN / P7_5 W / TA2OUT / P7_4 SS2 / RTS2 / CTS2 / V / TA1IN / P7_3 CLK2 / V / TA1OUT / P7_2 (1) STXD2 / SCL2 / RXD2 / TB5IN / TA0IN / P7_1 ( note 2 ) 98 99 100 101 102 103 104 105 106 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 11 D8 / P1_0 D7 / P0_7 D6 / P0_6 D5 / P0_5 D4 / P0_4 P11_4 P11_3 P11_2 P11_1 P11_0 D3 / P0_3 D2 / P0_2 D1 / P0_1 D0 / P0_0 AN15_7 / P15_7 AN15_6 / P15_6 AN15_5 / P15_5 AN15_4 / P15_4 AN15_3 / P15_3 AN15_2 / P15_2 AN15_1 / P15_1 VSS AN15_0 / P15_0 VCC1 AN_7 / KI3 / P10_7 AN_6 / KI2 / P10_6 AN_5 / KI1 / P10_5 AN_4 / KI0 / P10_4 AN_3 / P10_3 AN_2 / P10_2 AN_1 / P10_1 AVSS AN_0 / P10_0 VREF AVCC ADTRG / STXD4 / SCL4 / RXD4 / P9_7 107 108 P1_1 / P1_2 / P1_3 / P1_4 / P1_5 / P1_6 / P1_7 / P2_0 / P2_1 / P2_2 / P2_3 / P2_4 / P2_5 / P2_6 / P2_7 / VSS P3_0 / VCC2 P12_0 P12_1 P12_2 P12_3 P12_4 P3_1 / P3_2 / P3_3 / P3_4 / P3_5 / P3_6 / P3_7 / P4_0 / P4_1 / VSS P4_2 / VCC2 P4_3 / D9 D10 D11 D12 INT3 / D13 INT4 / D14 INT5 / D15 A0 , [ A0 / D0 A1 , [ A1 / D1 A2 , [ A2 / D2 A3 , [ A3 / D3 A4 , [ A4 / D4 A5 , [ A5 / D5 A6 , [ A6 / D6 A7 , [ A7 / D7 A8 , [ A8 / D8 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ( note 3 ) NOTES: 1. P7_0 and P7_1 are N-channel open drain output. 2. Confirm the pin 1 position on the package by referring to Package Dimensions. 3. Pin names in square brackets [ ] correspond to signal function names. Figure 1.3 Rev.1.10 Pin Assignment for 144-pin Package Jul 15, 2007 Page 8 of 65 M32C/8A Group Table 1.6 Pin No. 144-Pin Version List of Pin Names (1) Control Pin Port Interrupt Pin Timer Pin UART Pin 1 2 3 P9_6 P9_5 P9_4 TB4IN CTS4/RTS4/SS4 4 P9_3 TB3IN 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 P9_2 P9_1 P9_0 P14_6 P14_5 P14_4 P14_3 P14_2 P14_1 P14_0 TB2IN TB1IN TB0IN CTS3/RTS3/SS3 TXD3/SDA3/SRXD3 RXD3/SCL3/STXD3 CLK3 BYTE CNVSS XCIN XCOUT RESET XOUT VSS XIN VCC1 TXD4/SDA4/SRXD4 CLK4 P8_7 P8_6 P8_5 NMI 25 P8_4 INT2 26 P8_3 INT1 27 P8_2 INT0 28 P8_1 TA4IN/U 29 P8_0 TA4OUT/U 30 P7_7 TA3IN 31 P7_6 TA3OUT 32 P7_5 TA2IN/W 33 P7_4 TA2OUT/W 34 P7_3 TA1IN/V 35 P7_2 TA1OUT/V CTS2/RTS2/SS2 CLK2 36 P7_1 TA0IN/TB5IN RXD2/SCL2/STXD2 37 P7_0 TA0OUT TXD2/SDA2/SRXD2 38 39 40 41 42 43 P6_7 TXD1/SDA1/SRXD1 P6_6 RXD1/SCL1/STXD1 P6_5 P6_4 CTS1/RTS1/SS1 44 P6_3 TXD0/SDA0/SRXD0 45 P6_2 RXD0/SCL0/STXD0 46 P6_1 CLK0 47 P6_0 CTS0/RTS0/SS0 48 49 50 P13_7 P13_6 P13_5 VCC1 VSS Rev.1.10 Jul 15, 2007 CLK1 Page 9 of 65 Analog Pin ANEX1 ANEX0 DA1 DA0 Bus Control Pin M32C/8A Group Table 1.7 Pin No. 144-Pin Version List of Pin Names (2) Control Pin Port Interrupt Pin Timer Pin UART Pin Analog Pin Bus Control Pin 51 52 P13_4 P5_7 RDY 53 P5_6 ALE 54 P5_5 HOLD 55 P5_4 HLDA/ALE 56 57 58 59 60 61 62 63 P13_3 VSS P13_2 VCC2 CLKOUT P13_1 P13_0 P5_3 P5_2 BCLK/ALE RD 64 P5_1 WRH/BHE 65 P5_0 WRL/WR 66 67 68 69 P12_7 P12_6 P12_5 P4_7 CS0/A23 70 P4_6 CS1/A22 71 P4_5 CS2/A21 72 P4_4 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 P4_3 CS3/A20 A19 P4_2 A18 P4_1 P4_0 P3_7 P3_6 P3_5 P3_4 P3_3 P3_2 P3_1 P12_4 P12_3 P12_2 P12_1 P12_0 A17 A16 A15,[A15/D15] A14,[A14/D14] A13,[A13/D13] A12,[A12/D12] A11,[A11/D11] A10,[A10/D10] A9,[A9/D9] P3_0 A8,[A8/D8] P2_7 P2_6 P2_5 P2_4 P2_3 P2_2 P2_1 A7,[A7/D7] A6,[A6/D6] A5,[A5/D5] A4,[A4/D4] A3,[A3/D3] A2,[A2/D2] A1,[A1/D1] VCC2 VSS VCC2 VSS Rev.1.10 Jul 15, 2007 Page 10 of 65 M32C/8A Group Table 1.8 Pin No. 144-Pin Version List of Pin Names (3) Control Pin Port Interrupt Pin Timer Pin UART Pin Analog Pin Bus Control Pin 101 102 P2_0 P1_7 INT5 A0,[A0/D0] D15 103 P1_6 INT4 D14 104 P1_5 INT3 D13 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 VSS 131 132 VCC1 133 P1_4 P1_3 P1_2 P1_1 P1_0 P0_7 P0_6 P0_5 P0_4 P11_4 P11_3 P11_2 P11_1 P11_0 P0_3 P0_2 P0_1 P0_0 P15_7 P15_6 P15_5 P15_4 P15_3 P15_2 P15_1 AN15_7 AN15_6 AN15_5 AN15_4 AN15_3 AN15_2 AN15_1 P15_0 AN15_0 P10_7 KI3 AN_7 134 P10_6 KI2 AN_6 135 P10_5 KI1 AN_5 136 P10_4 KI0 137 138 139 140 AVSS 141 142 VREF 143 AVCC 144 P10_3 P10_2 P10_1 AN_3 AN_2 AN_1 P10_0 AN_0 Rev.1.10 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 P9_7 Jul 15, 2007 AN_4 RXD4/SCL4/STXD4 Page 11 of 65 ADTRG M32C/8A Group A9 / D9 ] [ A10 / D10 [ A11 / D11 [ A12 / D12 [ A13 / D13 [ A14 / D14 [ A15 / D15 A9 , A10 A11 A12 A13 A14 A15 A16 A17 [ , , , , , , A8 , [ A8 / D8 ] ] ] ] ] ] ] D2 D3 D4 D5 D6 D7 / / / / / / A2 A3 A4 A5 A6 A7 [ [ [ [ [ [ , , , , , , A2 A3 A4 A5 A6 A7 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 76 50 <VCC2> 77 49 78 48 79 47 80 46 81 45 82 44 83 43 M32C/8A Group 84 85 42 41 86 40 87 39 88 38 PLQP0100KB-A (100P6Q-A) (top view) 89 90 91 92 37 36 35 34 93 33 94 32 95 31 96 30 97 29 98 28 <VCC1> 99 27 100 P7_1 / TA0IN / TB5IN / RXD2 / SCL2 / STXD2(1) P7_2 / TA1OUT / V / CLK2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 NMI INT2 INT1 INT0 U / TA4IN U / TA4OUT TA3IN TA3OUT W / TA2IN W / TA2OUT SS2 / RTS2 / CTS2 / V / TA1IN 11 P4_2 / A18 P4_3 / A19 P4_4 / CS3 / A20 P4_5 / CS2 / A21 P4_6 / CS1 / A22 P4_7 / CS0 / A23 P5_0 / WRL / WR P5_1 / WRH / BHE P5_2 / RD P5_3 / CLKOUT / BCLK / ALE P5_4 / HLDA / ALE P5_5 / HOLD P5_6 / ALE P5_7 / RDY P6_0 / CTS0 / RTS0 / SS0 P6_1 / CLK0 P6_2 / RXD0 / SCL0 / STXD0 P6_3 / TXD0 / SDA0 / SRXD0 P6_4 / CTS1 / RTS1 / SS1 P6_5 / CLK1 P6_6 / RXD1 / SCL1 / STXD1 P6_7 / TXD1 / SDA1 / SRXD1 P7_0 / TA0OUT / TXD2 / SDA2 / SRXD2(1) VSS XIN VCC1 / P8_5 / P8_4 / P8_3 / P8_2 / P8_1 / P8_0 / P7_7 / P7_6 / P7_5 / P7_4 / P7_3 10 9 8 7 6 5 4 3 2 DA1 / SS4 / RTS4 / CTS4 DA0 / SS3 / RTS3 / CTS3 SRXD3 / SDA3 / TXD3 STXD3 / SCL3 / RXD3 CLK3 / / / / / TB4IN TB3IN TB2IN TB1IN TB0IN / / / / / P9_4 P9_3 P9_2 P9_1 P9_0 BYTE CNVSS XCIN / P8_7 XCOUT / P8_6 RESET XOUT (note 2) 26 1 D10 / P1_2 D9 / P1_1 D8 / P1_0 D7 / P0_7 D6 / P0_6 D5 / P0_5 D4 / P0_4 D3 / P0_3 D2 / P0_2 D1 / P0_1 D0 / P0_0 AN_7 / KI3 / P10_7 AN_6 / KI2 / P10_6 AN_5 / KI1 / P10_5 AN_4 / KI0 / P10_4 AN_3 / P10_3 AN_2 / P10_2 AN_1 / P10_1 AVSS AN_0 / P10_0 VREF AVCC ADTRG / STXD4 / SCL4 / RXD4 / P9_7 ANEX1 / SRXD4 / SDA4 / TXD4 / P9_6 ANEX0 / CLK4 / P9_5 74 75 P1_3 / P1_4 / P1_5 / P1_6 / P1_7 / P2_0 / P2_1 / P2_2 / P2_3 / P2_4 / P2_5 / P2_6 / P2_7 / VSS P3_0 / VCC2 P3_1 / P3_2 / P3_3 / P3_4 / P3_5 / P3_6 / P3_7 / P4_0 / P4_1 / D11 D12 INT3 / D13 INT4 / D14 INT5 / D15 A0 , [ A0 / D0 ] A1 , [ A1 / D1 ] ] ] ] ] ] ] (note 3) NOTES: 1. P7_0 and P7_1 are N-channel open drain output. 2. Confirm the pin 1 position on the package by referring to Package Dimensions. 3. Pin names in square brackets [ ] correspond to signal function names. Figure 1.4 Rev.1.10 Pin Assignment for 100-pin Package Jul 15, 2007 Page 12 of 65 M32C/8A Group Table 1.9 Pin No. 100-Pin Version List of Pin Names (1) Control Pin Port Interrupt Pin Timer Pin UART Pin Analog Pin 1 P9_4 TB4IN CTS4/RTS4/SS4 DA1 2 P9_3 TB3IN DA0 3 4 5 6 7 8 9 10 P9_2 P9_1 P9_0 TB2IN TB1IN TB0IN CTS3/RTS3/SS3 TXD3/SDA3/SRXD3 RXD3/SCL3/STXD3 CLK3 11 12 13 14 BYTE CNVSS XCIN XCOUT Bus Control Pin P8_7 P8_6 RESET XOUT VSS XIN VCC1 15 P8_5 NMI 16 P8_4 INT2 17 P8_3 INT1 18 P8_2 INT0 19 P8_1 TA4IN/U 20 P8_0 TA4OUT/U 21 P7_7 TA3IN 22 P7_6 TA3OUT 23 P7_5 TA2IN/W 24 P7_4 TA2OUT/W 25 P7_3 TA1IN/V CTS2/RTS2/SS2 26 P7_2 TA1OUT/V CLK2 27 P7_1 TA0IN/TB5IN RXD2/SCL2/STXD2 28 P7_0 TA0OUT TXD2/SDA2/SRXD2 29 P6_7 TXD1/SDA1/SRXD1 30 P6_6 RXD1/SCL1/STXD1 31 P6_5 CLK1 32 P6_4 CTS1/RTS1/SS1 33 P6_3 TXD0/SDA0/SRXD0 34 P6_2 RXD0/SCL0/STXD0 35 P6_1 CLK0 36 P6_0 CTS0/RTS0/SS0 37 P5_7 RDY 38 P5_6 ALE 39 P5_5 HOLD 40 P5_4 HLDA/ALE P5_3 BCLK/ALE 42 P5_2 RD 43 P5_1 WRH/BHE 44 P5_0 WRL/WR 45 P4_7 CS0/A23 46 P4_6 CS1/A22 47 P4_5 CS2/A21 48 P4_4 CS3/A20 49 P4_3 A19 50 P4_2 A18 41 CLKOUT Rev.1.10 Jul 15, 2007 Page 13 of 65 M32C/8A Group Table 1.10 Pin No. 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 100-Pin Version List of Pin Names (2) Control Pin Port Interrupt Pin Timer Pin UART Pin Analog Pin Bus Control Pin P4_1 P4_0 P3_7 P3_6 P3_5 P3_4 P3_3 P3_2 P3_1 A17 A16 A15,[A15/D15] A14,[A14/D14] A13,[A13/D13] A12,[A12/D12] A11,[A11/D11] A10,[A10/D10] A9,[A9/D9] P3_0 A8,[A8/D8] P2_7 P2_6 P2_5 P2_4 P2_3 P2_2 P2_1 P2_0 P1_7 INT5 A7,[A7/D7] A6,[A6/D6] A5,[A5/D5] A4,[A4/D4] A3,[A3/D3] A2,[A2/D2] A1,[A1/D1] A0,[A0/D0] D15 72 P1_6 INT4 D14 73 P1_5 INT3 D13 74 75 76 77 78 79 80 81 82 83 84 85 86 87 P1_4 P1_3 P1_2 P1_1 P1_0 P0_7 P0_6 P0_5 P0_4 P0_3 P0_2 P0_1 P0_0 P10_7 KI3 AN_7 88 P10_6 KI2 AN_6 89 P10_5 KI1 AN_5 90 P10_4 KI0 91 92 93 94 95 96 97 98 P10_3 P10_2 P10_1 AN_3 AN_2 AN_1 P10_0 AN_0 VCC2 VSS D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 AN_4 AVSS VREF AVCC 99 100 Rev.1.10 P9_7 RXD4/SCL4/STXD4 P9_6 P9_5 TXD4/SDA4/SRXD4 CLK4 Jul 15, 2007 Page 14 of 65 ADTRG ANEX1 ANEX0 M32C/8A Group 1.5 Pin Functions Table 1.11 Item Power supply Analog power supply input Reset input Pin Functions (1) (100-Pin Package and 144-Pin Package) Pin Name VCC1,VCC2 VSS AVCC AVSS RESET CNVSS CNVSS External data bus width select input Bus control Pins BYTE D0 to D7 D8 to D15 A0 to A22 A23 A0/D0 to A7/D7 Rev.1.10 I/O Supply Description Type Voltage − − Apply 3.0 to 5.5 V to pins VCC1 and VCC2, and 0 V to the VSS pin. The input condition of VCC1 ≥ VCC2 must be met. − VCC1 Power supply input pins to the A/D converter and D/A converter. Connect the AVCC pin to VCC1, and the AVSS pin to VSS. I VCC1 The MCU is placed in a reset state when applying an “L” signal to the RESET pin. I VCC1 This pin switches processor mode. Apply an “H” signal to the CNVSS pin to start up in microprocessor mode. I VCC1 This pin switches data bus width in external memory space 3. A data bus is 16 bits wide when the BYTE pin is held “L” and 8 bits wide when it is held “H”. I/O VCC2 Data (D0 to D7) input/output pins while accessing an external memory space with separate bus. I/O VCC2 Data (D8 to D15) inputs/output pins while accessing an external memory space with 16-bit separate bus. O VCC2 Address bits (A0 to A22) output pins. O VCC2 Inverted address bit (A23) output pin. I/O VCC2 A8/D8 to A15/D15 I/O VCC2 CS0 to CS3 O VCC2 WRL/WR WRH/BHE RD O VCC2 ALE O VCC2 HOLD I VCC2 HLDA O VCC2 RDY I VCC2 Jul 15, 2007 Page 15 of 65 Data (D0 to D7) input/output and 8 low-order address bits (A0 to A7) output are performed by time-sharing these pins while accessing an external memory space with multiplexed bus. Data (D8 to D15) input/output and 8 middle-order address bits (A8 to A15) output are performed by time-sharing these pins while accessing an external memory space with 16-bit multiplexed bus. Chip-select signal output pins used to specify external devices. WRL, WRH, (WR, BHE) and RD signal output pins. WRL and WRH can be switched with WR and BHE by program. • WRL, WRH and RD are selected: If external data bus is 16 bits wide, data is written to an even address in external memory space while an “L” is output from the WRL pin. Data is written to an odd address while an “L” is output from the WRH pin. Data is read while an “L” is output from the RD pin. • WR, BHE and RD are selected: Data is written while an “L” is output from the WR pin. Data is read while an “L” is output from the RD pin. Data in odd address is accessed while an “L” is output from the BHE pin. Select WR, BHE and RD when an external data bus is 8 bits wide. ALE signal is used for the external devices to latch address signals when the multiplexed bus is selected. The MCU is placed in a hold state while an “L” signal is applied to the HOLD pin. The HLDA pin outputs an “L” while the MCU is placed in a hold state Bus is placed in a wait state while an “L” signal is applied to the RDY pin. M32C/8A Group Table 1.12 Item Main clock input Main clock output Sub clock input Sub clock output BCLK output Clock output Pin Functions (2) (100-Pin Package and 144-Pin Package) Pin Name XIN XOUT I/O Supply Description Type Voltage I VCC1 Input/output pins for the main clock oscillation circuit. Connect a ceramic resonator or crystal oscillator between XIN and XOUT. To O VCC1 apply an external clock, apply it to XIN and leave XOUT open XCIN I VCC1 XCOUT O VCC1 BCLK CLKOUT O O VCC2 VCC2 Bus clock output pin The CLKOUT pin outputs the clock having the same frequency as fC, f8, or f32 INT interrupt input INT0 to INT2 I VCC1 INT interrupt input pins NT3 to INT5 I VCC2 NMI interrupt input Timer A NMI I VCC1 TA0OUT to TA4OUT TA0IN to TA4IN TB0IN to TB5IN I/O VCC1 I VCC1 NMI interrupt input pin. Connect the NMI pin to VCC1 via a resistor when the NMI interrupt is not used. Timer A0 to A4 input/output pins (TA0OUT is N-channel open drain output) Timer A0 to A4 input pins I VCC1 Timer B0 to B5 input pins U, U, V, V, W, W O VCC1 Three-phase motor control timer output pins CTS0 to CTS4 I VCC1 Input pins to control data transmission RTS0 to RTS4 CLK0 to CLK4 RXD0 to RXD4 TXD0 to TXD4 SDA0 to SDA4 SCL0 to SCL4 O VCC1 Output pins to control data reception I/O I VCC1 VCC1 Serial clock input/output pins Serial data input pins O VCC1 I/O VCC1 I/O VCC1 O VCC1 I VCC1 Serial data output pins (TXD2 is N-channel open drain output) Serial data input/output pins (SDA2 is N-channel open drain output) Serial clock input/output pins (SCL2 is N-channel open drain output) Serial data output pins when slave mode is selected (STXD2 is N-channel open drain output) Serial data input pins when slave mode is selected I VCC1 Control input pins used in the serial interface special mode. Timer B Three-phase motor control timer output Serial interface I2C mode STXD0 to Serial STXD4 interface special function SRXD0 to SRXD4 SS0 to SS4 Rev.1.10 Jul 15, 2007 Page 16 of 65 Input/output pins for the sub clock oscillation circuit. Connect a crystal oscillator between XCIN and XCOUT. To apply an external clock, apply it to XCIN and leave XCOUT open. M32C/8A Group Table 1.13 Item Reference voltage input A/D converter Pin Functions (3) (100-Pin Package and 144-Pin Package) Pin Name VREF AN_0 to AN_7 ADTRG ANEX0 D/A converter I/O port Input port Key input interrupt input I/O Supply Type Voltage I − I I VCC1 VCC1 I/O VCC1 ANEX1 I DA0, DA1 O P0_0 to P0_7, I/O(1) P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7 P6_0 to P6_7, I/O P7_0 to P7_7, P9_0 to P9_7, P10_0 to P10_7 P8_0 to P8_4 P8_6, P8_7 P8_5 I KI0 to KI3 I VCC1 VCC1 VCC2 VCC1 Description The VREF pin supplies the reference voltage to the A/D converter and D/A converter. Analog input pins for the A/D converter. External trigger input pin for the A/D converter. Extended analog input pin for the A/D converter or output pin in external op-amp connection mode. Extended analog input pin for the A/D converter. Output pins for the D/A converter. 8-bit CMOS I/O ports. The Port Pi Direction Register determines if each pin is used as an input port or an output port. The Pull-up Control Register determines if the input ports, divided into groups of four, are pulled up or not. These 8-bit I/O ports are functionally equivalent to P0. (P7_0 and P7_1 are N-channel open drain output.) These I/O ports are functionally equivalent to P0. VCC1 VCC1 Shares the pin with NMI. Input port to read NMI pin level. Key input interrupt input pins NOTE: 1. P0 to P5 function as bus control pins and cannot be used as I/O ports. P1_0 to P1_7 can be used as I/O ports when using with 8-bit external bus width only. Table 1.14 Item A/D converter I/O ports Rev.1.10 Pin Functions (4) (144-Pin Package Only) Pin Name AN15_0 to AN15_7 P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7 P14_0 to P14_6, P15_0 to P15_7 Jul 15, 2007 I/O Supply Description Type Voltage I VCC1 Analog input pins for the A/D converter I/O VCC2 I/O VCC1 Page 17 of 65 These I/O ports are functionally equivalent to P0. M32C/8A Group 2. Central Processing Unit (CPU) Figure 2.1 shows the CPU registers. The register bank is comprised of eight registers (R0, R1, R2, R3, A0, A1, SB, and FB) out of 28 CPU registers. There are two sets of register banks. b31 b15 R2 R2 R3 R3 General registers b0 R0H R0H R1H R1H R0L R0L R1L R1L Data registers(1) R2 R2 R3 R3 b23 A0 A0 A1 A1 SB SB FB FB Static base register(1) Frame base register(1) USP ISP INTB PC User stack pointer Interrupt stack pointer Interrupt table register Program counter Address registers(1) FLG b15 Flag register b8 b7 IPL b0 U I O B S Z D C Carry flag Debug flag Zero flag Sign flag Register bank select flag Overflow flag Interrupt enable flag Stack pointer select flag Reserved Processor interrupt priority level Reserved b15 High-speed interrupt registers b0 SVF b23 Flag save register PC save register Vector register SVP VCT b7 b0 DMD0 DMD1 DMAC-associated registers b15 DCT0 DCT1 DRC0 DRC1 b23 DMA0 DMA1 DRA0 DRA1 DSA0 DSA1 DMA mode registers DMA transfer count registers DMA transfer count reload registers DMA memory address registers DMA memory address reload registers DMA SFR address registers NOTE: 1. These registers comprise a register bank. There are two sets of register banks (register bank 0 and register bank 1). Figure 2.1 Rev.1.10 CPU Register Jul 15, 2007 Page 18 of 65 M32C/8A Group 2.1 General Registers 2.1.1 Data Registers (R0, R1, R2, and R3) R0, R1, R2, and R3 are 16-bit registers for transfer, arithmetic and logic operations. R0 and R1 can be split into high-order (R0H/R1H) and low-order bits (R0L/R1L) to be used separately as 8-bit data registers. R0 can be combined with R2 and used as a 32-bit data register (R2R0). The same applies to R3R1. 2.1.2 Address Registers (A0 and A1) A0 and A1 are 24-bit registers used for A0-/A1-indirect addressing, A0-/A1-relative addressing, transfer, arithmetic and logic operations. 2.1.3 Static Base Register (SB) SB is a 24-bit register used for SB-relative addressing. 2.1.4 Frame Base Register (FB) FB is a 24-bit register used for FB-relative addressing. 2.1.5 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP) The stack pointers (SP), USP and ISP, are 24 bits wide each. The U flag is used to switch between USP and ISP. Refer to 2.1.8 Flag Register (FLG) for details on the U flag. Set USP and ISP to even addresses to execute an interrupt sequence efficiently. 2.1.6 Interrupt Table Register (INTB) INTB is a 24-bit register indicating the starting address of a relocatable interrupt vector table. 2.1.7 Program Counter (PC) PC is 24 bits wide and indicates the address of the next instruction to be executed. 2.1.8 Flag Register (FLG) FLG is a 16-bit register indicating the CPU state. 2.1.8.1 Carry Flag (C) The C flag indicates whether or not carry or borrow has been generated after executing an instruction. 2.1.8.2 Debug Flag (D) The D flag is for debugging only. Set it to 0. 2.1.8.3 Zero Flag (Z) The Z flag becomes 1 when an arithmetic operation results in 0; otherwise becomes 0. 2.1.8.4 Sign Flag (S) The S flag becomes 1 when an arithmetic operation results in a negative value; otherwise becomes 0. 2.1.8.5 Register Bank Select Flag (B) Register bank 0 is selected when the B flag is set to 0. Register bank 1 is selected when this flag is set to 1. 2.1.8.6 Overflow Flag (O) The O flag becomes 1 when an arithmetic operation results in an overflow; otherwise becomes 0. Rev.1.10 Jul 15, 2007 Page 19 of 65 M32C/8A Group 2.1.8.7 Interrupt Enable Flag (I) The I flag enables maskable interrupts. Interrupts are disabled when the I flag is set to 0 and enabled when it is set to 1. The I flag becomes 0 when an interrupt request is acknowledged. 2.1.8.8 Stack Pointer Select Flag (U) ISP is selected when the U flag is set to 0. USP is selected when the U flag is set to 1. The U flag becomes 0 when a hardware interrupt request is acknowledged or the INT instruction specifying software interrupt numbers 0 to 31 is executed. 2.1.8.9 Processor Interrupt Priority Level (IPL) IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled. 2.1.8.10 Reserved Space Only write 0 to bits assigned to the reserved space. When read, the bits return undefined values. 2.2 High-Speed Interrupt Registers Registers associated with the high-speed interrupt are follows: • Save flag register (SVF) • Save PC register (SVP) • Vector register (VCT) 2.3 DMAC-Associated Registers Registers associated with the DMAC are as follows: • DMA mode register (DMD0, DMD1) • DMA transfer count register (DCT0, DCT1) • DMA transfer count reload register (DRC0, DRC1) • DMA memory address register (DMA0, DMA1) • DMA memory address reload register (DRA0, DRA1) • DMA SFR address register (DSA0, DSA1) Rev.1.10 Jul 15, 2007 Page 20 of 65 M32C/8A Group 3. Memory Figure 3.1 is a memory map of the M32C/8A Group. The M32C/8A Group has 16-Mbyte address space from addresses 000000h to FFFFFFh. The fixed interrupt vectors are allocated addresses FFFFDCh to FFFFFFh. They store the starting address of each interrupt routine. The internal RAM is allocated higher addresses, beginning with address 000400h. For example, a 12-Kbyte internal RAM area is allocated addresses 000400h to 0033FFh. The internal RAM is used not only for storing data but for the stacks when subroutines are called or when interrupt requests are acknowledged. SFRs are allocated address 000000h to 0003FFh. The peripheral function control registers such as for I/O ports, A/D converters, serial interfaces, timers are allocated here. All blank spaces within SFRs are reserved and cannot be accessed by users. The special page vectors are allocated addresses FFFE00h to FFFFDBh. They are used for the JMPS instruction and JSRS instruction. Refer to the Renesas publication M32C/80 Series Software Manual for details. 000000h SFR 000400h Internal RAM XXXXXXh 010000h Reserved FFFE00h FFFFDCh Special page vector table Undefined instruction Overflow BRK instruction Address match External Space Watchdog timer (1) NMI FFFFFFh FFFFFFh Reset Internal RAM Capacity XXXXXXh 12 Kbytes 0033FFh 24 Kbytes 0063FFh NOTE: 1. The watchdog timer interrupt, oscillation stop detection interrupt , and Vdet4 detection interrupt use the same vector. Figure 3.1 Rev.1.10 Memory Map Jul 15, 2007 Page 21 of 65 M32C/8A Group 4. Special Function Registers (SFRs) Special Function Registers (SFRs) are the control registers of peripheral functions. Tables 4.1 to 4.11 list SFR address maps. Table 4.1 SFR Address Map (1) Address Register Symbol After Reset 0000h 0001h 0002h 0003h 0004h Processor Mode Register 0(1) PM0 0000 0011b(CNVSS=”H”) 0005h Processor Mode Register 1 PM1 00h 0006h System Clock Control Register 0 CM0 0000 1000b 0007h System Clock Control Register 1 CM1 0010 0000b 0009h Address Match Interrupt Enable Register AIER 00h 000Ah Protect Register PRCR XXXX 0000b DS XXXX 1000b(BYTE=”L”) XXXX 0000b(BYTE=”H”) 0008h 000Bh External Data Bus Width Control Register 000Ch Main Clock Division Register MCD XXX0 1000b 000Dh Oscillation Stop Detection Register CM2 00h 000Eh Watchdog Timer Start Register WDTS XXh 000Fh Watchdog Timer Control Register WDC 00XX XXXXb Address Match Interrupt Register 0 RMAD0 000000h Processor Mode Register 2 PM2 00h Address Match Interrupt Register 1 RMAD1 000000h Voltage Detection Register 2 VCR2 00h Address Match Interrupt Register 2 RMAD2 000000h Voltage Detection Register 1 VCR1 0000 1000b Address Match Interrupt Register 3 RMAD3 000000h 0026h PLL Control Register 0 PLC0 0001 X010b 0027h PLL Control Register 1 PLC1 000X 0000b Address Match Interrupt Register 4 RMAD4 000000h Address Match Interrupt Register 5 RMAD5 000000h Vdet4 Detection Interrupt Register D4INT XX00 0000b 0010h 0011h 0012h 0013h 0014h 0015h 0016h 0017h 0018h 0019h 001Ah 001Bh 001Ch 001Dh 001Eh 001Fh 0020h 0021h 0022h 0023h 0024h 0025h 0028h 0029h 002Ah 002Bh 002Ch 002Dh 002Eh 002Fh X: Undefined Blank spaces are all reserved. No access is allowed. NOTE: 1. Bits PM01 and PM00 in the PM0 register maintain values set before reset, even after software reset or watchdog timer reset has been performed. Rev.1.10 Jul 15, 2007 Page 22 of 65 M32C/8A Group Table 4.2 SFR Address Map (2) Address Register Symbol After Reset 0030h 0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h Address Match Interrupt Register 6 RMAD6 000000h Address Match Interrupt Register 7 RMAD7 000000h 0048h External Space Wait Control Register 0 EWCR0 X0X0 0011b 0049h External Space Wait Control Register 1 EWCR1 X0X0 0011b 004Ah External Space Wait Control Register 2 EWCR2 X0X0 0011b 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh 0040h 0041h 0042h 0043h 0044h 0045h 0046h 0047h 004Bh External Space Wait Control Register 3 EWCR3 X0X0 0011b 004Ch Page Mode Wait Control Register 0 PWCR0 0001 0001b 004Dh Page Mode Wait Control Register 1 PWCR1 0001 0001b 004Eh 004Fh 0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h 0058h 0059h 005Ah 005Bh 005Ch 005Dh 005Eh 005Fh X: Undefined Blank spaces are all reserved. No access is allowed. Rev.1.10 Jul 15, 2007 Page 23 of 65 M32C/8A Group Table 4.3 SFR Address Map (3) Address Register Symbol After Reset 0060h 0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h DMA0 Interrupt Control Register DM0IC XXXX X000b 0069h Timer B5 Interrupt Control Register TB5IC XXXX X000b 006Ah DMA2 Interrupt Control Register DM2IC XXXX X000b 006Bh UART2 Receive/ACK Interrupt Control Register S2RIC XXXX X000b 006Ch Timer A0 Interrupt Control Register TA0IC XXXX X000b 006Dh UART3 Receive/ACK Interrupt Control Register S3RIC XXXX X000b 006Eh Timer A2 Interrupt Control Register TA2IC XXXX X000b 006Fh UART4 Receive/ACK Interrupt Control Register S4RIC XXXX X000b 0070h Timer A4 Interrupt Control Register TA4IC XXXX X000b 0071h UART0/UART3 Bus Conflict Detection Interrupt Control Register BCN0IC/BCN3IC XXXX X000b 0072h UART0 Receive/ACK Interrupt Control Register S0RIC XXXX X000b 0073h A/D0 Conversion Interrupt Control Register AD0IC XXXX X000b 0074h UART1 Receive/ACK Interrupt Control Register S1RIC XXXX X000b Timer B1 Interrupt Control Register TB1IC XXXX X000b Timer B3 Interrupt Control Register TB3IC XXXX X000b INT5 Interrupt Control Register INT5IC XX00 X000b INT3 Interrupt Control Register INT3IC XX00 X000b INT1 Interrupt Control Register INT1IC XX00 X000b 0088h DMA1 Interrupt Control Register DM1IC XXXX X000b 0089h UART2 Transmit/NACK Interrupt Control Register S2TIC XXXX X000b 008Ah DMA3 Interrupt Control Register DM3IC XXXX X000b 008Bh UART3 Transmit/NACK Interrupt Control Register S3TIC XXXX X000b 008Ch Timer A1 Interrupt Control Register TA1IC XXXX X000b 0075h 0076h 0077h 0078h 0079h 007Ah 007Bh 007Ch 007Dh 007Eh 007Fh 0080h 0081h 0082h 0083h 0084h 0085h 0086h 0087h 008Dh UART4 Transmit/NACK Interrupt Control Register S4TIC XXXX X000b 008Eh Timer A3 Interrupt Control Register TA3IC XXXX X000b 008Fh UART2 Bus Conflict Detection Interrupt Control Register BCN2IC XXXX X000b X: Undefined Blank spaces are all reserved. No access is allowed. Rev.1.10 Jul 15, 2007 Page 24 of 65 M32C/8A Group Table 4.4 SFR Address Map (4) Address Register Symbol After Reset 0090h UART0 Transmit/NACK Interrupt Control Register S0TIC XXXX X000b 0091h UART1/UART4 Bus Conflict Detection Interrupt Control Register BCN1IC/BCN4IC XXXX X000b 0092h UART1 Transmit/NACK Interrupt Control Register S1TIC XXXX X000b 0093h Key Input Interrupt Control Register KUPIC XXXX X000b 0094h Timer B0 Interrupt Control Register TB0IC XXXX X000b Timer B2 Interrupt Control Register TB2IC XXXX X000b Timer B4 Interrupt Control Register TB4IC XXXX X000b INT4 Interrupt Control Register INT4IC XX00 X000b INT2 Interrupt Control Register INT2IC XX00 X000b 009Eh INT0 Interrupt Control Register INT0IC XX00 X000b 009Fh Exit Priority Register RLVL XXXX 0000b 0095h 0096h 0097h 0098h 0099h 009Ah 009Bh 009Ch 009Dh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ADh 00AEh 00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BBh 00BCh 00BDh 00BEh 00BFh to 02BFh X: Undefined Blank spaces are all reserved. No access is allowed. Rev.1.10 Jul 15, 2007 Page 25 of 65 M32C/8A Group Table 4.5 SFR Address Map (5) Address 02C0h Register Symbol After Reset X0 Register, Y0 Register X0R, Y0R XXXXh X1 Register, Y1 Register X1R, Y1R XXXXh X2 Register, Y2 Register X2R, Y2R XXXXh X3 Register, Y3 Register X3R, Y3R XXXXh X4 Register, Y4 Register X4R, Y4R XXXXh X5 Register, Y5 Register X5R, Y5R XXXXh X6 Register, Y6 Register X6R, Y6R XXXXh X7 Register, Y7 Register X7R, Y7R XXXXh X8 Register, Y8 Register X8R, Y8R XXXXh X9 Register, Y9 Register X9R, Y9R XXXXh X10 Register, Y10 Register X10R, Y10R XXXXh X11 Register, Y11 Register X11R, Y11R XXXXh X12 Register, Y12 Register X12R, Y12R XXXXh X13 Register, Y13 Register X13R, Y13R XXXXh X14 Register, Y14 Register X14R, Y14R XXXXh X15 Register, Y15 Register X15R, Y15R XXXXh X/Y Control Register XYC XXXX XX00b 02E4h UART1 Special Mode Register 4 U1SMR4 00h 02E5h UART1 Special Mode Register 3 U1SMR3 00h 02E6h UART1 Special Mode Register 2 U1SMR2 00h 02E7h UART1 Special Mode Register U1SMR 00h 02E8h UART1 Transmit/Receive Mode Register U1MR 00h 02E9h UART1 Baud Rate Register U1BRG XXh UART1 Transmit Buffer Register U1TB XXXXh 02ECh UART1 Transmit/Receive Control Register 0 U1C0 0000 1000b 02EDh UART1 Transmit/Receive Control Register 1 U1C1 0000 0010b UART1 Receive Buffer Register U1RB XXXXh 02C1h 02C2h 02C3h 02C4h 02C5h 02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh 02CDh 02CEh 02CFh 02D0h 02D1h 02D2h 02D3h 02D4h 02D5h 02D6h 02D7h 02D8h 02D9h 02DAh 02DBh 02DCh 02DDh 02DEh 02DFh 02E0h 02E1h 02E2h 02E3h 02EAh 02EBh 02EEh 02EFh X: Undefined Blank spaces are all reserved. No access is allowed. Rev.1.10 Jul 15, 2007 Page 26 of 65 M32C/8A Group Table 4.6 SFR Address Map (6) Address Register Symbol After Reset 02F0h 02F1h 02F2h 02F3h 02F4h UART4 Special Mode Register 4 U4SMR4 00h 02F5h UART4 Special Mode Register 3 U4SMR3 00h 02F6h UART4 Special Mode Register 2 U4SMR2 00h 02F7h UART4 Special Mode Register U4SMR 00h 02F8h UART4 Transmit/Receive Mode Register U4MR 00h 02F9h UART4 Baud Rate Register U4BRG XXh UART4 Transmit Buffer Register U4TB XXXXh 02FCh UART4 Transmit/Receive Control Register 0 U4C0 0000 1000b 02FDh UART4 Transmit/Receive Control Register 1 U4C1 0000 0010b UART4 Receive Buffer Register U4RB XXXXh Timer B3, B4, B5 Count Start Register TBSR 000X XXXXb Timer A11 Register TA11 XXXXh Timer A21 Register TA21 XXXXh Timer A41 Register TA41 XXXXh 0308h Three-Phase PWM Control Register 0 INVC0 00h 0309h Three-Phase PWM Control Register 1 INVC1 00h 030Ah Three-Phase Output Buffer Register 0 IDB0 XX11 1111b 02FAh 02FBh 02FEh 02FFh 0300h 0301h 0302h 0303h 0304h 0305h 0306h 0307h 030Bh Three-Phase Output Buffer Register 1 IDB1 XX11 1111b 030Ch Dead Time Timer DTT XXh 030Dh Timer B2 Interrupt Generation Frequency Set Counter ICTB2 XXh Timer B3 Register TB3 XXXXh Timer B4 Register TB4 XXXXh Timer B5 Register TB5 XXXXh 030Eh 030Fh 0310h 0311h 0312h 0313h 0314h 0315h 0316h 0317h 0318h 0319h 031Ah 031Bh Timer B3 Mode Register TB3MR 00XX 0000b 031Ch Timer B4 Mode Register TB4MR 00XX 0000b 031Dh Timer B5 Mode Register TB5MR 00XX 0000b External Interrupt Source Select Register IFSR 00h 031Eh 031Fh X: Undefined Blank spaces are all reserved. No access is allowed. Rev.1.10 Jul 15, 2007 Page 27 of 65 M32C/8A Group Table 4.7 SFR Address Map (7) Address Register Symbol After Reset 0320h 0321h 0322h 0323h 0324h UART3 Special Mode Register 4 U3SMR4 00h 0325h UART3 Special Mode Register 3 U3SMR3 00h 0326h UART3 Special Mode Register 2 U3SMR2 00h 0327h UART3 Special Mode Register U3SMR 00h 0328h UART3 Transmit/Receive Mode Register U3MR 00h 0329h UART3 Baud Rate Register U3BRG XXh UART3 Transmit Buffer Register U3TB XXXXh 032Ch UART3 Transmit/Receive Control Register 0 U3C0 0000 1000b 032Dh UART3 Transmit/Receive Control Register 1 U3C1 0000 0010b UART3 Receive Buffer Register U3RB XXXXh 0334h UART2 Special Mode Register 4 U2SMR4 00h 0335h UART2 Special Mode Register 3 U2SMR3 00h 0336h UART2 Special Mode Register 2 U2SMR2 00h 0337h UART2 Special Mode Register U2SMR 00h 032Ah 032Bh 032Eh 032Fh 0330h 0331h 0332h 0333h 0338h UART2 Transmit/Receive Mode Register U2MR 00h 0339h UART2 Baud Rate Register U2BRG XXh UART2 Transmit Buffer Register U2TB XXXXh 033Ch UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 033Dh UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b UART2 Receive Buffer Register U2RB XXXXh 0340h Count Start Register TABSR 00h 0341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 0342h One-Shot Start Register ONSF 00h 033Ah 033Bh 033Eh 033Fh 0343h Trigger Select Register TRGSR 00h 0344h Up/Down Select Register UDF 00h Timer A0 Register TA0 XXXXh Timer A1 Register TA1 XXXXh Timer A2 Register TA2 XXXXh Timer A3 Register TA3 XXXXh Timer A4 Register TA4 XXXXh 0345h 0346h 0347h 0348h 0349h 034Ah 034Bh 044Ch 034Dh 034Eh 034Fh X: Undefined Blank spaces are all reserved. No access is allowed. Rev.1.10 Jul 15, 2007 Page 28 of 65 M32C/8A Group Table 4.8 SFR Address Map (8) Address 0350h Register Symbol After Reset Timer B0 Register TB0 XXXXh Timer B1 Register TB1 XXXXh Timer B2 Register TB2 XXXXh 0356h Timer A0 Mode Register TA0MR 00h 0357h Timer A1 Mode Register TA1MR 00h 0358h Timer A2 Mode Register TA2MR 00h 0359h Timer A3 Mode Register TA3MR 00h 035Ah Timer A4 Mode Register TA4MR 00h 035Bh Timer B0 Mode Register TB0MR 00XX 0000b 035Ch Timer B1 Mode Register TB1MR 00XX 0000b 0351h 0352h 0353h 0354h 0355h 035Dh Timer B2 Mode Register TB2MR 00XX 0000b 035Eh Timer B2 Special Mode Register TB2SC XXXX XXX0b 035Fh Count Source Prescaler Register(1) TCSPR 0XXX 0000b 0364h UART0 Special Mode Register 4 U0SMR4 00h 0365h UART0 Special Mode Register 3 U0SMR3 00h 0366h UART0 Special Mode Register 2 U0SMR2 00h 0367h UART0 Special Mode Register U0SMR 00h 0360h 0361h 0362h 0363h 0368h UART0 Transmit/Receive Mode Register U0MR 00h 0369h UART0 Baud Rate Register U0BRG XXh UART0 Transmit Buffer Register U0TB XXXXh 036Ch UART0 Transmit/Receive Control Register 0 U0C0 0000 1000b 036Dh UART0 Transmit/Receive Control Register 1 U0C1 0000 0010b UART0 Receive Buffer Register U0RB XXXXh 0378h DMA0 Request Source Select Register DM0SL 0X00 0000b 0379h DMA1 Request Source Select Register DM1SL 0X00 0000b 037Ah DMA2 Request Source Select Register DM2SL 0X00 0000b 037Bh DMA3 Request Source Select Register DM3SL 0X00 0000b CRC Data Register CRCD XXXXh CRC Input Register CRCIN XXh 036Ah 036Bh 036Eh 036Fh 0370h 0371h 0372h 0373h 0374h 0375h 0376h 0377h 037Ch 037Dh 037Eh 037Fh X: Undefined Blank spaces are all reserved. No access is allowed. NOTE: 1. The TCSPR register maintains values set before reset, even after software reset or watchdog timer reset has been performed. Rev.1.10 Jul 15, 2007 Page 29 of 65 M32C/8A Group Table 4.9 SFR Address Map (9) Address 0380h 0381h 0382h 0383h 0384h 0385h 0386h 0387h 0388h 0389h 038Ah 038Bh 038Ch 038Dh 038Eh 038Fh Register Symbol After Reset A/D0 Register 0 AD00 00XXh A/D0 Register 1 AD01 00XXh A/D0 Register 2 AD02 00XXh A/D0 Register 3 AD03 00XXh A/D0 Register 4 AD04 00XXh A/D0 Register 5 AD05 00XXh A/D0 Register 6 AD06 00XXh A/D0 Register 7 AD07 00XXh A/D0 Control Register 4 AD0CON4 XXXX 00XXb 0390h 0391h 0392h 0393h 0394h A/D0 Control Register 2 AD0CON2 XX0X X000b 0395h A/D0 Control Register 3 AD0CON3 XXXX X000b 0396h A/D0 Control Register 0 AD0CON0 00h 0397h A/D0 Control Register 1 AD0CON1 00h 0398h D/A Register 0 DA0 XXh D/A Register 1 DA1 XXh D/A Control Register DACON XXXX XX00b 0399h 039Ah 039Bh 039Ch 039Dh 039Eh 039Fh X: Undefined Blank spaces are all reserved. No access is allowed. Rev.1.10 Jul 15, 2007 Page 30 of 65 M32C/8A Group Table 4.10 SFR Address Map (10) Address Register Address Register 03A0h 03A1h 03A2h 03A3h 03A4h 03A5h 03A6h 03A7h 03A8h 03A9h 03AAh 03ABh 03ACh 03ADh 03AEh 03AFh Function Select Register C PSC 00X0 0000b 03B0h Function Select Register A0 PS0 00h 03B1h Function Select Register A1 PS1 00h 03B2h Function Select Register B0 PSL0 00h 03B3h Function Select Register B1 PSL1 00h 03B4h Function Select Register A2 PS2 00X0 0000b 03B5h Function Select Register A3 PS3 00h 03B6h Function Select Register B2 PSL2 00X0 0000b 03B7h Function Select Register B3 PSL3 00h 03C0h Port P6 Register P6 XXh 03C1h Port P7 Register P7 XXh 03C2h Port P6 Direction Register PD6 00h 03C3h Port P7 Direction Register PD7 00h 03C4h Port P8 Register P8 XXh 03C5h Port P9 Register P9 XXh 03C6h Port P8 Direction Register PD8 00X0 0000b 03C7h Port P9 Direction Register PD9 00h 03C8h Port P10 Register P10 XXh 03C9h Port P11 Register(1) P11 XXh 03CAh Port P10 Direction Register PD10 00h 03CBh Port P11 Direction Register(1)(2) PD11 XXX0 0000b 03CCh Port P12 Register(1) P12 XXh 03CDh Port P13 Register(1) P13 XXh 03CEh Port P12 Direction Register(1)(2) PD12 00h 03CFh Port P13 Direction Register(1)(2) PD13 00h 03B8h 03B9h 03BAh 03BBh 03BCh 03BDh 03BEh 03BFh X: Undefined Blank spaces are all reserved. No access is allowed. NOTES: 1. These registers cannot be used in the 100-pin package. 2. Set to FFh in the 100-pin package. Rev.1.10 Jul 15, 2007 Page 31 of 65 M32C/8A Group Table 4.11 SFR Address Map (11) Address Register Address Register 03D0h Port P14 Register(1) P14 XXh 03D1h Port P15 Register(1) P15 XXh 03D2h Port P14 Direction Register(1)(2) PD14 X000 0000b 03D3h Port P15 Direction Register(1)(2) PD15 00h 03DAh Pull-Up Control Register 2 PUR2 00h 03DBh Pull-Up Control Register 3 PUR3 00h 03DCh Pull-Up Control Register 4(1)(3) PUR4 XXXX 0000b 03E0h Port P0 Register P0 XXh 03E1h Port P1 Register P1 XXh 03E2h Port P0 Direction Register PD0 00h 03E3h Port P1 Direction Register PD1 00h 03E4h Port P2 Register P2 XXh 03E5h Port P3 Register P3 XXh 03E6h Port P2 Direction Register PD2 00h 03E7h Port P3 Direction Register PD3 00h 03E8h Port P4 Register P4 XXh 03E9h Port P5 Register P5 XXh 03EAh Port P4 Direction Register PD4 00h 03EBh Port P5 Direction Register PD5 00h 03F0h Pull-Up Control Register 0 PUR0 00h 03F1h Pull-Up Control Register 1 PUR1 XXXX 0000b Port Control Register PCR XXXX XXX0b 03D4h 03D5h 03D6h 03D7h 03D8h 03D9h 03DDh 03DEh 03DFh 03ECh 03EDh 03EEh 03EFh 03F2h 03F3h 03F4h 03F5h 03F6h 03F7h 03F8h 03F9h 03FAh 03FBh 03FCh 03FDh 03FEh 03FFh X: Undefined Blank spaces are all reserved. No access is allowed. NOTES: 1. These registers cannot be used in the 100-pin package. 2. Set to FFh in the 100-pin package. 3. Set to 00h in the 100-pin package. Rev.1.10 Jul 15, 2007 Page 32 of 65 M32C/8A Group 5. Electrical Characteristics Table 5.1 Absolute Maximum Ratings Symbol Parameter Condition Value Unit VCC1, VCC2 Supply voltage VCC1 = AVCC -0.3 to 6.0 V VCC2 Supply voltage − -0.3 to VCC1 + 0.1 V AVCC Analog supply voltage VCC1 = AVCC -0.3 to 6.0 V VI Input voltage RESET, CNVSS, BYTE, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P14_0 to P14_6, P15_0 to P15_7(1), VREF, XIN -0.3 to VCC1 + 0.3 V P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7(1) -0.3 to VCC2 + 0.3 P7_0, P7_1 VO Output voltage -0.3 to 6.0 P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P14_0 to 14_6, P15_0 to P15_7(1), XOUT -0.3 to VCC1 + 0.3 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7(1) -0.3 to VCC2 + 0.3 P7_0, P7_1 Pd Power dissipation Topr Tstg -0.3 to 6.0 -40°C≤Topr≤85°C 500 mW Operating ambient temperature -20 to 85/ -40 to 85(2) °C Storage temperature -65 to 150 °C NOTES: 1. P11 to P15 are provided in the 144-pin package only. 2. Contact a Renesas sales office if temperature range of -40 to 85°C is required. Rev.1.10 V Jul 15, 2007 Page 33 of 65 M32C/8A Group Table 5.2 Recommended Operating Conditions (1) (VCC1 = VCC2 = 3.0 to 5.5 V, Topr = -20 to 85°C unless otherwise specified) Symbol Parameter VCC1, VCC2 Supply voltage (VCC1 ≥ VCC2) AVCC Analog supply voltage VSS Standard Min. Typ. Max. 3.0 5.0 5.5 Unit V VCC1 V Supply voltage 0 V AVSS Analog supply voltage 0 V VIH 0.8VCC2 Input high “H” P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, voltage P5_0 to P5_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7(2) VCC2 0.8VCC1 P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7(1), P9_0 to P9_7, P10_0 to P10_7, P14_0 to P14_6, P15_0 to P15_7(2), XIN, RESET, CNVSS, BYTE VCC1 VIL Input low “L” voltage P7_0, P7_1 0.8VCC1 6.0 P0_0 to P0_7, P1_0 to P1_7 (in microprocessor mode) 0.5VCC2 VCC2 P2_0 to P2_7,P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7(2) 0 0.2VCC2 P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7(1), P9_0 to P9_7, P10_0 to P10_7, P14_0 to P14_6, P15_0 to P15_7(2), XIN, RESET, CNVSS, BYTE 0 0.2VCC1 P0_0 to P0_7, P1_0 to P1_7 (in microprocessor mode) 0 0.16VCC2 NOTES: 1. VIH and VIL reference for P8_7 apply when P8_7 is used as a programmable input port. It does not apply when P8_7 is used as XCIN. 2. P11 to P15 are provided in the 144-pin package only. Rev.1.10 Jul 15, 2007 Page 34 of 65 V V M32C/8A Group Table 5.3 Recommended Operating Conditions (2) (VCC1 = VCC2 = 3.0 to 5.5 V, Topr = -20 to 85°C unless otherwise specified Symbol Parameter Standard Min. Typ. Max. Unit IOH(peak) Peak output high “H” current(2) P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(3) -10.0 mA IOH(avg) Average output “H” current(1) P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(3) -5.0 mA IOL(peak) Peak output “L” current(2) P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(3) 10.0 mA IOL(avg) Average output “L” current(1) P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(3) 5.0 mA NOTES: 1. Average output current is the average value within 100 ms. 2. A total IOL(peak) of P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14, and P15 must be 80 mA or less. A total IOL(peak) of P3, P4, P5, P6, P7,P8_0 to P8_4, P12, and P13 must be 80 mA or less. A total IOH(peak) of P0, P1, P2, and P11 must be -40 mA or less. A total IOH(peak) of P8_6 to P8_7, P9, P10, P14, and P15 must be -40 mA or less. A total IOH(peak) of P3, P4, P5, P12, and P13 must be -40 mA or less. A total IOH(peak) of P6, P7, and P8_0 to P8_4 must be -40 mA or less. 3. P11 to P15 are provided in the 144-pin package only. Rev.1.10 Jul 15, 2007 Page 35 of 65 M32C/8A Group Table 5.4 Recommended Operating Conditions (3) (VCC1 = VCC2 = 3.0 to 5.5 V, Topr = -20 to 85°C unless otherwise specified) Symbol f(CPU) f(XIN) Standard Parameter Min. Typ. Max. Unit CPU clock frequency (same frequency as f(BCLK)) VCC1 = 4.2 to 5.5V 0 32 MHz VCC1 = 3.0 to 5.5V 0 24 MHz Main clock input frequency VCC1 = 4.2 to 5.5V 0 32 MHz VCC1 = 3.0 to 5.5V 0 24 MHz 32.768 50 kHz 1 2 MHz f(XCIN) Sub clock frequency f(Ring) On-chip oscillator frequency 0.5 f(VCO) VCO clock frequency (PLL frequency synthesizer) 20 80 MHz f(PLL) PLL clock frequency VCC1 = 4.2 to 5.5V 10 32 MHz VCC1 = 3.0 to 5.5V 10 24 MHz VCC1 = 5.0V 5 ms VCC1 = 3.3V 10 ms tsu(PLL) Rev.1.10 Wait time to stabilize PLL frequency synthesizer Jul 15, 2007 Page 36 of 65 M32C/8A Group VCC1 = VCC2 = 5V Table 5.5 Electrical Characteristics (1) (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C, f(CPU) = 32 MHz unless otherwise specified) Symbol VOH Parameter Output high “H” voltage Condition IOH = -5 mA VCC2 - 2.0 VCC2 P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7,P10_0 to P10_7, P14_0 to P14_6, P15_0 to P15_7(1) IOH = -5 mA VCC1 - 2.0 VCC1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7 IOH = -200 μA VCC2 - 0.3 P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7(1) VCC2 P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, IOH = -200 μA VCC1 - 0.3 P8_6, P8_7, P9_0 to P9_7,P10_0 to P10_7, P14_0 to P14_6, P15_0 to P15_7(1) VCC1 XCOUT IOH = -1 mA Jul 15, 2007 V V Low drive capability No load applied 1.6 V IOL = 5 mA 2.0 V IOL = 200 μA 0.45 V IOL = 1 mA 2.0 V High drive capability No load applied 0 V Low drive capability No load applied 0 V HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INT0 to INT5, ADTRG, CTS0 to CTS4, CLK0 to CLK4, TA0OUT to TA4OUT, NMI, KI0 to KI3, RXD0 to RXD4, SCL0 to SCL4, SDA0 to SDA4 0.2 1.0 V RESET 0.2 1.8 V NOTE: 1. P11 to P15 are provided in the 144-pin package only. Rev.1.10 V 2.5 XOUT Hysteresis VCC1 V No load applied P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7,P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(1) XCOUT 3.0 Unit High drive capability Output low P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, “L” voltage P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7,P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(1) VT+ - VT- Standard Typ. Max. P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7(1) XOUT VOL Min. Page 37 of 65 M32C/8A Group VCC1 = VCC2 = 5V Table 5.6 Electrical Characteristics (2) (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C, f(CPU) = 32 MHz unless otherwise specified) Symbol Parameter Condition Standard Min. Typ. Max. Unit IIH Input high “H” current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(1), XIN, RESET, CNVSS, BYTE VI = 5 V 5.0 μA IIL Input low “L” P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, current P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(1), XIN, RESET, CNVSS, BYTE VI = 0V -5.0 μA 167 kΩ RPULLUP Pull-up resistance P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7,P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(1) RfXIN Feedback resistance XIN 1.5 MΩ RfXCIN Feedback resistance XCIN 10 MΩ VRAM RAM data retention voltage In stop mode VI = 0V 20 40 2.0 V NOTE: 1. P11 to P15 are provided in the 144-pin package only. Table 5.7 Electrical Characteristics (3) (VCC1 = VCC2 = 5.5 V, VSS = 0 V, Topr = 25°C) Symbol Parameter ICC Rev.1.10 Power supply current Condition ROMless version Jul 15, 2007 f(CPU) = 32 MHz f(CPU) = 16 MHz f(CPU) = 8 MHz f(CPU) = f(Ring) In on-chip oscillator low-power consumption mode f(CPU) = 32 kHz In low-power consumption mode f(CPU) = f(Ring) After entering wait mode from on-chip oscillator low-power consumption mode Stop mode (while clock is stopped) Stop mode (while clock is stopped) Topr = 85°C Page 38 of 65 Standard Unit Min. Typ. Max. 28 45 mA 16 mA 10 mA 1 mA 25 μA 50 μA 0.8 5 50 μA μA M32C/8A Group VCC1 = VCC2 = 5V Table 5.8 A/D Conversion Characteristics (VCC1 = VCC2 = AVCC = VREF = 4.2 to 5.5 V, VSS = AVSS = 0 V, Topr = -20 to 85°C, f(CPU) = 32MHz unless otherwise specified) Symbol Parameter Measurement Condition − Resolution VREF = VCC1 INL Integral nonlinearity error VREF = VCC1 = VCC2 = 5 V Min. Standard Typ. Max. Unit 10 Bits AN_0 to AN_7, AN15_0 to AN15_7, ANEX0, ANEX1 ±3 LSB External op-amp connection mode ±7 LSB DNL Differential nonlinearity error ±1 LSB − Offset error ±3 LSB − Gain error ±3 LSB 40 kΩ RLADDER Resistor ladder VREF = VCC1 8 tCONV 10-bit conversion time(1)(2) 2.06 μs tCONV 8-bit conversion time(1)(2) 1.75 μs tSAMP Sampling time(1) 0.188 μs VREF Reference voltage 2 VCC1 V VIA Analog input voltage 0 VREF V NOTES: 1. The value is obtained when φAD frequency is at 16 MHz. Keep φAD frequency at 16 MHz or less. 2. With using the sample and hold function Table 5.9 Symbol D/A Conversion Characteristics (VCC1 = VCC2 = VREF = 4.2 to 5.5 V, VSS = AVSS = 0 V, Topr = -20 to 85°C, f(CPU) = 32MHz unless otherwise specified) Parameter − Resolution − Absolute accuracy tsu Setup time RO Output resistance IVREF Reference power supply input current Measurement Condition Min. 4 (note 1) Standard Typ. Max. 10 Unit 8 Bits 1.0 % 3 μs 20 kΩ 1.5 mA NOTE: 1. Measured when one D/A converter is used, and the DAi register (i = 0, 1) of the unused D/A converter is set to 00h. The current flown into the resistor ladder in the A/D converter is excluded. IVREF flows even if the VCUT bit in the AD0CON1 register is set to 0 (VREF not connected) Rev.1.10 Jul 15, 2007 Page 39 of 65 M32C/8A Group VCC1 = VCC2 = 5V Table 5.10 Voltage Detection Circuit Electrical Characteristics (VCC1 = VCC2 = 3.0 to 5.5 V, VSS = 0 V, Topr = 25°C unless otherwise specified) Symbol Standard Parameter Vdet4 Vdet4 detection voltage Vdet3 Vdet3 detection voltage Vdet3s Hardware reset 2 hold voltage Vdet3r Hardware reset 2 release voltage Min. Typ. Max. 3.3 3.8 4.4 3.0 VCC1 = 3.0 V to 5.5 V Unit V V 2.0 3.1 V V NOTES: 1. Vdet4 > Vdet3 2. Vdet3r > Vdet3 is not guaranteed. Table 5.11 Power Supply Timing Characteristics Symbol Parameter Measurement Condition td(P-R) Wait time to stabilize internal supply voltage when power-on VCC1 = 3.0 to 5.5 V td(S-R) Wait time to release hardware reset 2 VCC1 = Vdet3r to 5.5 V td(E-A) Start-up time for Vdet3 and Vdet4 detection circuit VCC1 = 3.0 to 5.5 V Standard Min. Typ. 6(1) NOTE: 1. When VCC1= 5 V td(P-R) Wait time to stabilize internal supply voltage when power-on Recommended operating voltage VCC1 td(P-R) CPU clock td(S-R) Wait time to release hardware reset 2 Vdet3r VCC1 td(S-R) CPU clock td(E-A) Start-up time for Vdet3 and Vdet4 detection circuit VC26, VC27 Vdet3 and Vdet4 detection circuit Stop Operating td(E-A) Figure 5.1 Rev.1.10 Power Supply Timing Diagram Jul 15, 2007 Page 40 of 65 Max. Unit 2 ms 20 ms 20 μs M32C/8A Group VCC1 = VCC2 = 5V Timing Requirements (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.12 External Clock Input Symbol Parameter Standard Min. Max. Unit tc External clock input cycle time 31.25 ns tw(H) External clock input high (“H”) pulse width 13.75 ns tw(L) External clock input low (“L”) pulse width 13.75 ns tr External clock rise time 5 ns tf External clock fall time 5 ns Table 5.13 Timer A Input (Count Source Input in Event Counter Mode) Symbol Parameter Standard Min. Max. Unit tc(TA) TAiIN input cycle time 100 ns tw(TAH) TAiIN input high (“H”) pulse width 40 ns tw(TAL) TAiIN input low (“L”) pulse width 40 ns i = 0 to 4 Table 5.14 Timer A Input (Gate Signal Input in Timer Mode) Symbol tc(TA) Parameter TAiIN input cycle time Standard Min. Max. Unit 400 ns tw(TAH) TAiIN input high (“H”) pulse width 200 ns tw(TAL) TAiIN input low (“L”) pulse width 200 ns i = 0 to 4 Table 5.15 Timer A Input (External Trigger Input in One-Shot Timer Mode) Symbol Parameter Standard Min. Max. Unit tc(TA) TAiIN input cycle time 200 ns tw(TAH) TAiIN input high (“H”) pulse width 100 ns tw(TAL) TAiIN input low (“L”) pulse width 100 ns i = 0 to 4 Table 5.16 Timer A Input (External Trigger Input in Pulse Width Modulation Mode) Symbol Parameter Standard Min. Max. Unit tw(TAH) TAiIN input high (“H”) pulse width 100 ns tw(TAL) TAiIN input low (“L”) pulse width 100 ns i = 0 to 4 Rev.1.10 Jul 15, 2007 Page 41 of 65 M32C/8A Group VCC1 = VCC2 = 5V Timing Requirements (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.17 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode) Symbol Parameter Standard Min. Max. Unit tc(UP) TAiOUT input cycle time 2000 ns tw(UPH) TAiOUT input high (“H”) pulse width 1000 ns tw(UPL) TAiOUT input low (“L”) pulse width 1000 ns tsu(UP-TIN) TAiOUT input setup time 400 ns th(TIN-UP) TAiOUT input hold time 400 ns i = 0 to 4 Table 5.18 Timer A Input (Two-Phase Pulse Input in Event Counter Mode) Symbol tc(TA) Parameter TAiIN input cycle time Standard Min. Max. Unit 800 ns tsu(TAIN-TAOUT) TAiOUT input setup time 200 ns tsu(TAOUT-TAIN) TAiIN input setup time 200 ns i = 0 to 4 Table 5.19 Timer B Input (Count Source Input in Event Counter Mode) Symbol Parameter Standard Min. Max. Unit tc(TB) TBiIN input cycle time (counted on one edge) 100 ns tw(TBH) TBiIN input high (“H”) pulse width (counted on one edge) 40 ns tw(TBL) TBiIN input low (“L”) pulse width (counted on one edge) 40 ns tc(TB) TBiIN input cycle time (counted on both edges) 200 ns tw(TBH) TBiIN input high (“H”) pulse width (counted on both edges) 80 ns tw(TBL) TBiIN input low (“L”) pulse width (counted on both edges) 80 ns i = 0 to 5 Table 5.20 Timer B Input (Pulse Period Measurement Mode) Symbol Parameter Standard Min. Max. Unit tc(TB) TBiIN input cycle time 400 ns tw(TBH) TBiIN input high (“H”) pulse width 200 ns tw(TBL) TBiIN input low (“L”) pulse width 200 ns i = 0 to 5 Table 5.21 Timer B Input (Pulse Width Measurement Mode) Symbol Parameter Standard Min. Max. Unit tc(TB) TBiIN input cycle time 400 ns tw(TBH) TBiIN input high (“H”) pulse width 200 ns tw(TBL) TBiIN input low (“L”) pulse width 200 ns i = 0 to 5 Rev.1.10 Jul 15, 2007 Page 42 of 65 M32C/8A Group VCC1 = VCC2 = 5V Timing Requirements (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.22 A/D Trigger Input Symbol Parameter Standard Min. Max. Unit tc(AD) ADTRG input cycle time (required for trigger) 1000 ns tw(ADL) ADTRG input low (“L”) pulse width 125 ns Table 5.23 Serial Interface Symbol Parameter Standard Min. Max. Unit tc(CK) CLKi input cycle time 200 ns tw(CKH) CLKi input high (“H”) pulse width 100 ns tw(CKL) CLKi input low (“L”) pulse width 100 ns td(C-Q) TXDi output delay time th(C-Q) TXDi output hold time tsu(D-C) RXDi input setup time 30 ns th(C-D) RXDi input hold time 90 ns 80 0 ns ns i=0 to 4 Table 5.24 External Interrupt INTi Input (Edge Sensitive) Symbol Parameter Standard Min. Max. Unit tw(INH) INTi input high (“H”) pulse width 250 ns tw(INL) INTi input low (“L”) pulse width 250 ns i=0 to 5 Rev.1.10 Jul 15, 2007 Page 43 of 65 M32C/8A Group VCC1 = VCC2 = 5V Timing Requirements (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.25 Microprocessor Mode Symbol Parameter Standard Min. Max. Unit tac1(RD-DB) Data input access time (RD standard) (note 1) ns tac1(AD-DB) Data input access time (AD standard, CS standard) (note 1) ns (note 1) ns (note 1) ns tac2(RD-DB) tac2(AD-DB) Data input access time (RD standard, when accessing a space with the multiplexed bus) Data input access time (AD standard, when accessing a space with the multiplexed bus) tsu(DB-BCLK) Data input setup time 26 ns tsu(RDY-BCLK) RDY input setup time 26 ns 30 ns ns tsu(HOLD-BCLK) HOLD input setup time Data input hold time 0 th(BCLK-RDY) RDY input hold time 0 ns th(BCLK-HOLD) HOLD input hold time 0 ns td(BCLK-HLDA) HLDA output delay time th(RD-DB) 25 ns NOTE: 1. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equations. Insert wait states or lower the operation frequency, f(BCLK), if the calculated value is negative. tac1(RD-DB) = Rev.1.10 109 × m f(BCLK) × 2 - 35 [ns] (if external bus cycle is aφ + bφ, m = (b × 2) + 1) tac1(AD-DB) = 109 × n f(BCLK) tac2(RD-DB) = 109 × m f(BCLK) × 2 - 35 [ns] (if external bus cycle is aφ + bφ, m = (b × 2) - 1) tac2(AD-DB) = 109 × p f(BCLK) × 2 - 35 [ns] (if external bus cycle is aφ + bφ, p = {(a + b - 1) × 2} + 1) Jul 15, 2007 - 35 [ns] (if external bus cycle is aφ + bφ, n = a + b) Page 44 of 65 M32C/8A Group VCC1 = VCC2 = 5V Switching Characteristics (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.26 Microprocessor Mode (when accessing external memory space) Symbol Measurement Condition Parameter Standard Min. Max. td(BCLK-AD) Address output delay time th(BCLK-AD) Address output hold time (BCLK standard) -3 ns Address output hold time (RD standard)(3) 0 ns th(WR-AD) Address output hold time (WR standard)(3) (note 1) td(BCLK-CS) Chip-select signal output delay time th(BCLK-CS) Chip-select signal output hold time (BCLK standard) -3 ns Chip-select signal output hold time (RD standard)(3) 0 ns th(WR-CS) Chip-select signal output hold time (WR standard)(3) td(BCLK-RD) RD signal output delay time th(BCLK-RD) RD signal output hold time td(BCLK-WR) WR signal output delay time th(BCLK-WR) WR signal output hold time -5 ns td(DB-WR) Data output delay time (WR standard) (note 2) ns th(WR-DB) Data output hold time (WR standard)(3) (note 1) ns tw(WR) WR output width (note 2) ns th(RD-AD) th(RD-CS) 18 Unit ns 18 See Figure 5.2 (note 1) 109 f(BCLK) × 2 -5 109 f(BCLK) × 2 - 10 [ns] th(WR-CS) = 109 f(BCLK) × 2 - 10 [ns] 18 2. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equations. td(DB-WR) = tw(WR) = 109 × m f(BCLK) 109 × n f(BCLK) × 2 - 20 [ns] (if external bus cycle is aφ + bφ, m = b) - 15 [ns] (if external bus cycle is aφ + bφ, n = (b × 2) - 1) 3. tc [ns] is added when recovery cycle is inserted. Rev.1.10 Jul 15, 2007 Page 45 of 65 ns ns - 10 [ns] th(WR-AD) = ns ns 18 NOTES: 1. Values, which depend on BCLK frequency, can be obtained from the following equations. th(WR-DB) = ns ns M32C/8A Group VCC1 = VCC2 = 5V Switching Characteristics (VCC1 = VCC2 = 4.2 to 5.5 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.27 Microprocessor Mode (when accessing external memory space with multiplexed bus) Symbol Measurement Condition Parameter td(BCLK-AD) Address output delay time th(BCLK-AD) Address output hold time (BCLK standard) Standard Min. Max. 18 Unit ns -3 ns Address output hold time (RD standard)(5) (note 1) ns th(WR-AD) Address output hold time (WR standard)(5) (note 1) td(BCLK-CS) Chip-select signal output delay time th(BCLK-CS) Chip-select signal output hold time (BCLK standard) th(RD-AD) ns 18 ns -3 ns Chip-select signal output hold time (RD standard)(5) (note 1) ns th(WR-CS) Chip-select signal output hold time (WR standard)(5) (note 1) td(BCLK-RD) RD signal output delay time th(BCLK-RD) RD signal output hold time td(BCLK-WR) WR signal output delay time th(BCLK-WR) WR signal output hold time -5 ns td(DB-WR) Data output delay time (WR standard) (note 2) ns th(WR-DB) Data output hold time (WR standard)(5) (note 1) ns td(BCLK-ALE) ALE signal output delay time (BCLK standard) th(BCLK-ALE) ALE signal output hold time (BCLK standard) -2 ns td(AD-ALE) ALE signal output delay time (address standard) (note 3) ns th(ALE-AD) ALE signal output hold time (address standard) (note 4) ns tdz(RD-AD) Address output float start time th(RD-CS) ns 18 See Figure 5.2 -5 ns ns 18 18 8 ns ns ns NOTES: 1. Values, which depend on BCLK frequency, can be obtained from the following equations. th(RD-AD) = 109 f(BCLK) × 2 - 10 [ns] th(WR-AD) = 109 f(BCLK) × 2 - 10 [ns] th(RD-CS) = 109 f(BCLK) × 2 - 10 [ns] th(WR-CS) = 109 f(BCLK) × 2 - 10 [ns] th(WR-DB) = 109 f(BCLK) × 2 - 10 [ns] 2. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equation. td(DB-WR) = 109 × m f(BCLK) × 2 - 25 [ns] (if external bus cycle is aφ + bφ, m = (b × 2) - 1) 3. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equation. td(AD-ALE) = 109 × n f(BCLK) × 2 - 20 [ns] (if external bus cycle is aφ + bφ, n = a) 4. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equation. th(ALE-AD) = 109 × n f(BCLK) × 2 - 10 [ns] (if external bus cycle is aφ + bφ, n = a) 5. tc [ns] is added when recovery cycle is inserted. Rev.1.10 Jul 15, 2007 Page 46 of 65 M32C/8A Group P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 30 pF Note 1 NOTE: 1. P11 to P15 are provided in the 144-pin package only. Figure 5.2 Rev.1.10 P0 to P15 Measurement Circuit Jul 15, 2007 Page 47 of 65 M32C/8A Group VCC1=VCC2=5V tc XIN input tr tf tw(H) tw(L) tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) TAiOUT input (counter increment/ decrement select input) In event counter mode th(TIN-UP) TAiIN input (count on falling edge) tsu(UP-TIN) TAiIN input (count on rising edge) In event counter mode with two-phase pulse tc(TA) TAiIN input tsu(TAIN-TAOUT) TAiOUT input tsu(TAIN-TAOUT) tsu(TAOUT-TAIN) tsu(TAOUT-TAIN) tc(TB) tw(TBH) TBiIN input tw(TBL) tc(AD) tw(ADL) ADTRG input tc(CK) tw(CKH) CLKi tw(CKL) th(C-Q) TXDi td(C-Q) tsu(D-C) RXDi tw(INL) INTi input tw(INH) NMI input 2 CPU clock cycles + 300 ns or more ("L" width) Figure 5.3 Rev.1.10 VCC1 = VCC2 = 5 V Timing Diagram (1) Jul 15, 2007 Page 48 of 65 2 CPU clock cycles + 300 ns or more th(C-D) M32C/8A Group VCC1=VCC2=5V Microprocessor Mode BCLK RD (Separate bus) WR, WRL, WRH (Separate bus) RD (Multiplexed bus) WR, WRL, WRH (Multiplexed bus) RDY Input tsu(RDY-BCLK) th(BCLK-RDY) BCLK tsu(HOLD-BCLK) HOLD Input th(BCLK-HOLD) HLDA Output td(BCLK-HLDA) P0, P1, P2, P3, P4, P5_0 to P5_2 td(BCLK-HLDA) Hi-Z Measurement Conditions -VCC1 = VCC2 = 4.2 to 5.5 V -Input high and low voltage: VIH = 4.0 V, VIL = 1.0 V -Output high and low voltage: VOH = 2.5 V, VOL = 2.5 V Figure 5.4 Rev.1.10 VCC1 = VCC2 = 5 V Timing Diagram (2) Jul 15, 2007 Page 49 of 65 M32C/8A Group Microprocessor Mode (when accessing an external memory space) VCC1=VCC2=5V Read Timing (1φ + 1φ Bus Cycle) BCLK th(BCLK-CS) td(BCLK-CS) -3ns.min 18ns.max(1) CSi th(RD-CS) tcyc 0ns.min td(BCLK-AD) th(BCLK-AD) 18ns.max(1) -3ns.min ADi BHE th(RD-AD) 0ns.min td(BCLK-RD) 18ns.max RD th(BCLK-RD) -5ns.min tac1(RD-DB)(2) tac1(AD-DB)(2) DB Hi-Z tsu(DB-BCLK) th(RD-DB) 26ns.min(1) 0ns.min NOTES: 1. Values guaranteed only when the MCU is used stand-alone. A maximum of 35 ns is guaranteed for td(BCLK-AD) + tsu(DB-BCLK). 2. Varies with operation frequency: tac1(RD-DB) = (tcyc / 2 x m - 35) ns.max (if external bus cycle aφ + bφ, m = (b x 2) + 1) tac1(AD-DB) = (tcyc x n - 35) ns.max (if external bus cycle aφ + bφ, n = a + b) Write Timing (1φ + 1φ Bus Cycle) BCLK th(BCLK-CS) td(BCLK-CS) -3ns.min 18ns.max CSi tcyc th(WR-CS)(3) td(BCLK-AD) 18ns.max th(BCLK-AD) -3ns.min ADi BHE td(BCLK-WR) th(WR-AD)(3) 18ns.max tw(WR)(3) WR,WRL,WRH th(BCLK-WR) -5ns.min td(DB-WR)(3) th(WR-DB)(3) DBi NOTES: Measurement Conditions: 3. Varies with operation frequency: - VCC1 = VCC2 = 4.2 to 5.5 V td(DB-WR) = (tcyc x m - 20) ns.min - Input high and low voltage: VIH = 2.5 V, VIL = 0.8 V (if external bus cycle aφ + bφ, m = b) - Output high and low voltage: VOH = 2.0 V, VOL = 0.8 V th(WR-DB) = (tcyc / 2 - 10) ns.min th(WR-AD) = (tcyc / 2 - 10) ns.min th(WR-CS) = (tcyc / 2 - 10) ns.min 109 tw(WR) = (tcyc / 2 x n - 15) ns.min tcyc= f(BCLK) (if external bus cycle aφ + bφ, n = (b x 2) - 1) Figure 5.5 Rev.1.10 VCC1 = VCC2 = 5 V Timing Diagram (3) Jul 15, 2007 Page 50 of 65 M32C/8A Group Microprocessor Mode (when accessing an external memory space with the multiplexed bus) VCC1=VCC2=5V Read Timing (2φ + 2φ Bus Cycle) BCLK td(BCLK-ALE) 18ns.max th(BCLK-ALE) -2ns.min ALE td(BCLK-CS) 18ns.max th(BCLK-CS) -3ns.min tcyc th(RD-CS)(1) CSi ADi /DBi tsu(DB-BCLK) 26ns.min th(ALE-AD)(1) td(AD-ALE)(1) Address Data input tdz(RD-AD) 8ns.max td(BCLK-AD) 18ns.max Address th(RD-DB) 0ns.min th(BCLK-AD) -3ns.min tac2(RD-DB)(1) ADi BHE th(RD-AD)(1) tac2(AD-DB)(1) td(BCLK-RD) 18ns.max RD th(BCLK-RD) -5ns.min NOTES: 1. Varies with operation frequency: t d(AD-ALE) = (tcyc / 2 x n - 20) ns.min (if external bus cycle aφ + bφ, n = a) t h(ALE-AD) = (tcyc / 2 x n - 10) ns.min (if external bus cycle aφ + bφ, n = a) t h(RD-AD) = (tcyc / 2 - 10) ns.min, t h(RD-CS) = (tcyc / 2 - 10) ns.min t ac2(RD-DB) = (tcyc / 2 x m - 35) ns.max (if external bus cycle aφ + bφ, m = (b x 2) - 1) t ac2(AD-DB) = (tcyc / 2 x p - 35) ns.max (if external bus cycle aφ + bφ, p = {(a + b - 1) x 2} + 1) Write Timing (2φ + 2φ Bus Cycle) BCLK td(BCLK-ALE) 18ns.max th(BCLK-ALE) -2ns.min ALE td(BCLK-CS) 18ns.max tcyc th(BCLK-CS) -3ns.min th(WR-CS)(2) CSi td(AD-ALE)(2) th(ALE-AD)(2) Address ADi /DBi Data output td(DB-WR)(2) td(BCLK-AD) 18ns.max Address th(WR-DB)(2) th(BCLK-AD) -3ns.min ADi BHE td(BCLK-WR) 18ns.max WR,WRL,WRH th(BCLK-WR) -5ns.min th(WR-AD)(2) NOTES: 1. Varies with operation frequency: t d(AD-ALE) = (tcyc / 2 x n - 20) ns.min (if external bus cycle aφ + bφ, n = a) t h(ALE-AD) = (tcyc / 2 x n - 10) ns.min (if external bus cycle aφ + bφ, n = a) t h(WR-AD) = (tcyc / 2 - 10) ns.min, t h(WR-CS) = (tcyc / 2 - 10) ns.min t h(WR-DB) = (tcyc / 2 - 10) ns.min t d(DB-WR) = (tcyc / 2 x m - 25) ns.min (if external bus cycle aφ + bφ, m = (b x 2) - 1) Measurement Conditions: 109 - VCC1 = VCC2 = 4.2 to 5.5 V tcyc= - Input high and low voltage VIH = 2.5 V, VIL = 0.8 V f(BCLK) - Output high and low voltage VOH = 2.0 V, VOL = 0.8 V Figure 5.6 Rev.1.10 VCC1 = VCC2 = 5 V Timing Diagram (4) Jul 15, 2007 Page 51 of 65 M32C/8A Group VCC1 = VCC2 = 3.3 V Table 5.28 Electrical Characteristics (1) (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C, f(CPU) = 24 MHz unless otherwise specified) Symbol VOH Parameter Output high “H” voltage Condition P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7(1) IOH = -1 mA P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7,P10_0 to P10_7, P14_0 to P14_6, P15_0 to P15_7(1) XOUT XCOUT VOL IOH = -0.1 mA Hysteresis Jul 15, 2007 VCC2 VCC1 - 0.6 VCC1 2.7 VCC1 V V 2.5 V Low drive capability No load applied 1.6 V IOL = 1 mA 0.5 V IOL = 0.1 mA 0.5 V High drive capability No load applied 0 V Low drive capability No load applied 0 V HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INT0 to INT5, ADTRG, CTS0 to CTS4, CLK0 to CLK4, TA0OUT to TA4OUT, NMI, KI0 to KI3, RXD0 to RXD4, SCL0 to SCL4, SDA0 to SDA4 0.2 1.0 V RESET 0.2 1.8 V NOTE: 1. P11 to P15 are provided in the 144-pin package only. Rev.1.10 VCC2 - 0.6 Unit No load applied XOUT VT+ - VT- Standard Typ. Max. High drive capability Output low P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, “L” voltage P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7,P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(1) XCOUT Min. Page 52 of 65 M32C/8A Group VCC1 = VCC2 = 3.3 V Table 5.29 Electrical Characteristics (2) (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C, f(CPU) = 24 MHz unless otherwise specified) Symbol Standard Parameter Condition IIH Input high P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, “H” current P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(1), XIN, RESET, CNVSS, BYTE VI = 3 V 4.0 μA IIL Input low “L” current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(1), XIN, RESET, CNVSS, BYTE VI = 0V -4.0 μA RPULLUP Pull-up resistance P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7,P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_0 to P14_6, P15_0 to P15_7(1) VI=0V 500 kΩ RfXIN Feedback resistance XIN 3.0 MΩ RfXCIN Feedback resistance XCIN 20.0 MΩ VRAM RAM data retention voltage In stop mode Min. 40 Typ. 70 Max. 2.0 Unit V NOTE: 1. P11 to P15 are provided in the 144-pin package only. Table 5.30 Electrical Characteristics (3) (VCC1 = VCC2 = 3.3 V, VSS = 0 V, Topr = 25°C) Symbol Parameter ICC Rev.1.10 Power supply current Condition ROMless version Jul 15, 2007 f(CPU) = 24 MHz f(CPU) = 16 MHz f(CPU) = 8 MHz f(CPU) = f(Ring) In on-chip oscillator low-power consumption mode f(CPU) = 32 kHz In low-power consumption mode f(CPU) = f(Ring) After entering wait mode from on-chip oscillator low-power consumption mode Stop mode (while clock is stopped) Stop mode (while clock is stopped) Topr = 85°C Page 53 of 65 Standard Unit Min. Typ. Max. 22 33 mA 15 mA 9 mA 1 mA 25 μA 45 μA 0.8 5 50 μA μA M32C/8A Group VCC1 = VCC2 = 3.3 V Table 5.31 A/D Conversion Characteristics (VCC1 = VCC2 = AVCC = VREF = 3.0 to 3.6 V, VSS = AVSS = 0 V, Topr = -20 to 85°C, f(CPU) = 24MHz unless otherwise specified) Symbol Parameter Measurement Condition Standard Min. Typ. Max. Unit − Resolution VREF = VCC1 10 Bits INL Integral nonlinearity error (8-bit) VREF = VCC1 = VCC2 = 3.3 V ±2 LSB DNL Differential nonlinearity error (8-bit) ±1 LSB − Offset error (8-bit) ±2 LSB − Gain error (8-bit) ±2 LSB 40 kΩ RLADDER Resistor ladder VREF = VCC1 time(1)(2) 8 μs 4.9 tCONV 8-bit conversion VREF Reference voltage 3 VCC1 V VIA Analog input voltage 0 VREF V NOTES: 1. The value when φAD frequency is at 10 MHz. Keep φAD frequency at 10 MHz or less. If f(CPU) (=fAD) is 24 MHz, divide f(CPU) by 3 to make it 8 MHz. The conversion time in this case is 6.1 μs. 2. S&H not available. Table 5.32 Symbol D/A Conversion Characteristics (VCC1 = VCC2 = VREF = 3.0 to 3.6 V, VSS = AVSS = 0 V at Topr = -20 to 85°C, f(CPU) = 24MHz unless otherwise specified) Parameter − Resolution − Absolute accuracy tsu Setup time RO Output resistance IVREF Reference power supply input current Measurement Condition Standard Min. Typ. Max. 4 (note 1) 10 Unit 8 Bits 1.0 % 3 μs 20 kΩ 1.0 mA NOTE: 1. Measurement when one D/A converter is used, and the DAi register (i = 0, 1) of the unused D/A converter is set to 00h. The current flown into the resistor ladder in the A/D converter is excluded. IVREF flows even if VCUT bit in the AD0CON1 register is set to 0 (VREF not connected) Rev.1.10 Jul 15, 2007 Page 54 of 65 M32C/8A Group VCC1 = VCC2 = 3.3 V Timing Requirements (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.33 External Clock Input Symbol Parameter Standard Min. Max. Unit tc External clock input cycle time 41 ns tw(H) External clock input high (“H”) pulse width 18 ns tw(L) External clock input low (“L”) pulse width 18 ns tr External clock rise time 5 ns tf External clock fall time 5 ns Table 5.34 Timer A Input (Count Source Input in Event Counter Mode) Symbol Parameter Standard Min. Max. Unit tc(TA) TAiIN input cycle time 100 ns tw(TAH) TAiIN input high (“H”) pulse width 40 ns tw(TAL) TAiIN input low (“L”) pulse width 40 ns i = 0 to 4 Table 5.35 Timer A Input (Gate Signal Input in Timer Mode) Symbol Parameter Standard Min. Max. Unit tc(TA) TAiIN input cycle time 400 ns tw(TAH) TAiIN input high (“H”) pulse width 200 ns tw(TAL) TAiIN input low (“L”) pulse width 200 ns i = 0 to 4 Table 5.36 Timer A Input (External Trigger Input in One-Shot Timer Mode) Symbol Parameter Standard Min. Max. Unit tc(TA) TAiIN input cycle time 200 ns tw(TAH) TAiIN input high (“H”) pulse width 100 ns tw(TAL) TAiIN input low (“L”) pulse width 100 ns i = 0 to 4 Table 5.37 Timer A Input (External Trigger Input in Pulse Width Modulation Mode) Symbol Parameter Standard Min. Max. Unit tw(TAH) TAiIN input high (“H”) pulse width 100 ns tw(TAL) TAiIN input low (“L”) pulse width 100 ns i = 0 to 4 Rev.1.10 Jul 15, 2007 Page 55 of 65 M32C/8A Group VCC1 = VCC2 = 3.3 V Timing Requirements (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.38 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode) Symbol Parameter Standard Min. Max. Unit tc(UP) TAiOUT input cycle time 2000 ns tw(UPH) TAiOUT input high (“H”) pulse width 1000 ns tw(UPL) TAiOUT input low (“L”) pulse width 1000 ns tsu(UP-TIN) TAiOUT input setup time 400 ns th(TIN-UP) TAiOUT input hold time 400 ns i = 0 to 4 Table 5.39 Timer A Input (Two-Phase Pulse Input in Event Counter Mode) Symbol Parameter Standard Min. Max. Unit 2 μs tsu(TAIN-TAOUT) TAiOUT input setup time 500 ns tsu(TAOUT-TAIN) TAiIN input setup time 500 ns tc(TA) TAiIN input cycle time i = 0 to 4 Table 5.40 Timer B Input (Count Source Input in Event Counter Mode) Symbol Parameter Standard Min. Max. Unit tc(TB) TBiIN input cycle time (counted on one edge) 100 ns tw(TBH) TBiIN input high (“H”) pulse width (counted on one edge) 40 ns tw(TBL) TBiIN input low (“L”) pulse width (counted on one edge) 40 ns tc(TB) TBiIN input cycle time (counted on both edges) 200 ns tw(TBH) TBiIN input high (“H”) pulse width (counted on both edges) 80 ns tw(TBL) TBiIN input low (“L”) pulse width (counted on both edges) 80 ns i = 0 to 5 Table 5.41 Timer B Input (Pulse Period Measurement Mode) Symbol Parameter Standard Min. Max. Unit tc(TB) TBiIN input cycle time 400 ns tw(TBH) TBiIN input high (“H”) pulse width 200 ns tw(TBL) TBiIN input low (“L”) pulse width 200 ns i = 0 to 5 Table 5.42 Timer B Input (Pulse Width Measurement Mode) Symbol Parameter Standard Min. Max. Unit tc(TB) TBiIN input cycle time 400 ns tw(TBH) TBiIN input high (“H”) pulse width 200 ns tw(TBL) TBiIN input low (“L”) pulse width 200 ns i = 0 to 5 Rev.1.10 Jul 15, 2007 Page 56 of 65 M32C/8A Group VCC1 = VCC2 = 3.3 V Timing Requirements (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.43 A/D Trigger Input Symbol Parameter Standard Min. Max. Unit tc(AD) ADTRG input cycle time (required for trigger) 1000 ns tw(ADL) ADTRG input low (“L”) pulse width 125 ns Table 5.44 Serial Interface Symbol Parameter Standard Min. Max. Unit tc(CK) CLKi input cycle time 200 ns tw(CKH) CLKi input high (“H”) pulse width 100 ns tw(CKL) CLKi input low (“L”) pulse width 100 ns td(C-Q) TXDi output delay time th(C-Q) TXDi output hold time 0 80 ns ns tsu(D-C) RXDi input setup time 30 ns th(C-D) RXDi input hold time 90 ns i=0 to 4 Table 5.45 External Interrupt INTi Input (Edge Sensitive) Symbol Parameter Standard Min. Max. Unit tw(INH) INTi input high (“H”) pulse width 250 ns tw(INL) INTi input low (“L”) pulse width 250 ns i=0 to 5 Rev.1.10 Jul 15, 2007 Page 57 of 65 M32C/8A Group VCC1 = VCC2 = 3.3 V Timing Requirements (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.46 Microprocessor Mode Symbol Parameter Standard Min. Max. Unit tac1(RD-DB) Data input access time (RD standard) (note 1) ns tac1(AD-DB) Data input access time (AD standard, CS standard) (note 1) ns (note 1) ns (note 1) ns tac2(RD-DB) tac2(AD-DB) Data input access time (RD standard, when accessing a space with the multiplexed bus) Data input access time (AD standard, when accessing a space with the multiplexed bus) tsu(DB-BCLK) Data input setup time 30 ns tsu(RDY-BCLK) RDY input setup time 40 ns 60 ns ns tsu(HOLD-BCLK) HOLD input setup time Data input hold time 0 th(BCLK-RDY) RDY input hold time 0 ns th(BCLK-HOLD) HOLD input hold time 0 ns td(BCLK-HLDA) HLDA output delay time th(RD-DB) 25 ns NOTE: 1. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equations. Insert wait states or lower the operation frequency, f(BCLK), if the calculated value is negative. tac1(RD-DB) = Rev.1.10 109 × m f(BCLK) × 2 - 35 [ns] (if external bus cycle is aφ + bφ, m = (b × 2) + 1) tac1(AD-DB) = 109 × n f(BCLK) tac2(RD-DB) = 109 × m f(BCLK) × 2 - 35 [ns] (if external bus cycle is aφ + bφ, m = (b × 2) - 1) tac2(AD-DB) = 109 × p f(BCLK) × 2 - 35 [ns] (if external bus cycle is aφ + bφ, p = {(a + b - 1) × 2} + 1) Jul 15, 2007 - 35 [ns] (if external bus cycle is aφ + bφ, n = a + b) Page 58 of 65 M32C/8A Group VCC1 = VCC2 = 3.3 V Switching Characteristics (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.47 Microprocessor Mode (when accessing external memory space) Symbol Measurement Condition Parameter Standard Min. Max. td(BCLK-AD) Address output delay time th(BCLK-AD) Address output hold time (BCLK standard) 0 ns Address output hold time (RD standard)(3) 0 ns th(WR-AD) Address output hold time (WR standard)(3) (note 1) td(BCLK-CS) Chip-select signal output delay time th(BCLK-CS) Chip-select signal output hold time (BCLK standard) 0 ns Chip-select signal output hold time (RD standard)(3) 0 ns th(WR-CS) Chip-select signal output hold time (WR standard)(3) td(BCLK-RD) RD signal output delay time th(BCLK-RD) RD signal output hold time td(BCLK-WR) WR signal output delay time th(BCLK-WR) WR signal output hold time 0 ns td(DB-WR) Data output delay time (WR standard) (note 2) ns th(WR-DB) Data output hold time (WR standard)(3) (note 1) ns tw(WR) WR output width (note 2) ns th(RD-AD) th(RD-CS) 18 Unit ns 18 See Figure 5.2 (note 1) 109 f(BCLK) × 2 -3 109 f(BCLK) × 2 - 10 [ns] th(WR-CS) = 109 f(BCLK) × 2 - 10 [ns] 18 2. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equations. td(DB-WR) = tw(WR) = 109 × m f(BCLK) 109 × n f(BCLK) × 2 - 20 [ns] (if external bus cycle is aφ + bφ, m = b) - 15 [ns] (if external bus cycle is aφ + bφ, n = (b × 2) - 1) 3. tc [ns] is added when recovery cycle is inserted. Rev.1.10 Jul 15, 2007 Page 59 of 65 ns ns - 20 [ns] th(WR-AD) = ns ns 18 NOTES: 1. Values, which depend on BCLK frequency, can be obtained from the following equations. th(WR-DB) = ns ns M32C/8A Group VCC1 = VCC2 = 3.3 V Switching Characteristics (VCC1 = VCC2 = 3.0 to 3.6 V, VSS = 0 V, Topr = -20 to 85°C unless otherwise specified) Table 5.48 Microprocessor Mode (when accessing external memory space with multiplexed bus) Symbol Parameter Measurement Condition Standard Min. Max. 18 Unit td(BCLK-AD) Address output delay time th(BCLK-AD) Address output hold time (BCLK standard) 0 ns th(RD-AD) Address output hold time (RD standard)(5) (note 1) ns th(WR-AD) Address output hold time (WR standard)(5) (note 1) ns td(BCLK-CS) Chip-select signal output delay time th(BCLK-CS) Chip-select signal output hold time (BCLK standard) 0 ns th(RD-CS) Chip-select signal output hold time (RD standard)(5) (note 1) ns th(WR-CS) Chip-select signal output hold time (WR standard)(5) (note 1) ns td(BCLK-RD) RD signal output delay time th(BCLK-RD) RD signal output hold time td(BCLK-WR) WR signal output delay time th(BCLK-WR) WR signal output hold time td(DB-WR) Data output delay time (WR standard) 18 18 See Figure 5.2 standard)(5) th(WR-DB) Data output hold time (WR td(BCLK-ALE) ALE signal output delay time (BCLK standard) th(BCLK-ALE) ALE signal output hold time (BCLK standard) td(AD-ALE) -3 ns ns ns ns 18 ns 0 ns (note 2) ns (note 1) ns 18 ns -2 ns ALE signal output delay time (address standard) (note 3) ns th(ALE-AD) ALE signal output hold time (address standard) (note 4) tdz(RD-AD) Address output float start time ns 8 ns NOTES: 1. Values, which depend on BCLK frequency, can be obtained from the following equations. th(RD-AD) = 109 f(BCLK) × 2 - 10 [ns] th(WR-AD) = 109 f(BCLK) × 2 - 10 [ns] th(RD-CS) = 109 f(BCLK) × 2 - 10 [ns] th(WR-CS) = 109 f(BCLK) × 2 - 10 [ns] th(WR-DB) = 109 f(BCLK) × 2 - 20 [ns] 2. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equation. td(DB-WR) = 109 × m f(BCLK) × 2 - 25 [ns] (if external bus cycle is aφ + bφ, m = (b × 2) - 1) 3. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equation. td(AD-ALE) = 109 × n f(BCLK) × 2 - 20 [ns] (if external bus cycle is aφ + bφ, n = a) 4. Values, which depend on BCLK frequency and external bus cycles, can be obtained from the following equation. th(ALE-AD) = 109 × n f(BCLK) × 2 - 10 [ns] (if external bus cycle is aφ + bφ, n = a) 5. tc [ns] is added when recovery cycle is inserted. Rev.1.10 Jul 15, 2007 Page 60 of 65 M32C/8A Group VCC1=VCC2=3.3V tc XIN input tr tf tw(H) tw(L) tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) TAiOUT input (counter increment/ decrement select input) In event counter mode th(TIN-UP) TAiIN input (count on falling edge) tsu(UP-TIN) TAiIN input (count on rising edge) In event counter mode with two-phase pulse tc(TA) TAiIN input tsu(TAIN-TAOUT) TAiOUT input tsu(TAIN-TAOUT) tsu(TAOUT-TAIN) tsu(TAOUT-TAIN) tc(TB) tw(TBH) TBiIN input tw(TBL) tc(AD) tw(ADL) ADTRG input tc(CK) tw(CKH) CLKi tw(CKL) th(C-Q) TXDi td(C-Q) tsu(D-C) RXDi tw(INL) INTi input tw(INH) NMI input 2 CPU clock cycles + 300 ns or more ("L" width) Figure 5.7 Rev.1.10 2 CPU clock cycles + 300 ns or more VCC1 = VCC2 = 3.3 V Timing Diagram (1) Jul 15, 2007 Page 61 of 65 th(C-D) M32C/8A Group VCC1=VCC2=3.3V Microprocessor Mode BCLK RD (Separate bus) WR, WRL, WRH (Separate bus) RD (Multiplexed bus) WR, WRL, WRH (Multiplexed bus) RDY Input tsu(RDY-BCLK) th(BCLK-RDY) BCLK tsu(HOLD-BCLK) HOLD Input th(BCLK-HOLD) HLDA Output td(BCLK-HLDA) P0, P1, P2, P3, P4, P5_0 to P5_2 td(BCLK-HLDA) Hi-Z Measurement Conditions -VCC1 = VCC2 = 3.0 to 3.6 V -Input high and low voltage: VIH = 2.4 V, VIL = 0.6 V -Output high and low voltage: VOH = 1.5 V, VOL = 1.5 V Figure 5.8 Rev.1.10 VCC1 = VCC2 = 3.3 V Timing Diagram (2) Jul 15, 2007 Page 62 of 65 M32C/8A Group Microprocessor Mode (when accessing an external memory space) VCC1=VCC2=3.3V Read Timing (1φ + 1φ Bus Cycle) BCLK th(BCLK-CS) 0ns.min td(BCLK-CS) 18ns.max(1) CSi th(RD-CS) 0ns.min tcyc td(BCLK-AD) th(BCLK-AD) 0ns.min 18ns.max(1) ADi BHE th(RD-AD) 0ns.min td(BCLK-RD) 18ns.max RD th(BCLK-RD) -3ns.min tac1(RD-DB)(2) tac1(AD-DB)(2) DB Hi-Z tsu(DB-BCLK) 30ns.min(1) th(RD-DB) 0ns.min NOTES: 1. Values guaranteed only when the MCU is used stand-alone. A maximum of 35 ns is guaranteed for td(BCLK-AD) + tsu(DB-BCLK). 2. Varies with operation frequency: tac1(RD-DB) = (tcyc / 2 x m - 35) ns.max (if external bus cycle a φ + bφ, m = (b x 2) + 1) tac1(AD-DB) = (tcyc x n - 35) ns.max (if external bus cycle a φ + bφ, n = a + b) Write Timing (1φ + 1φ Bus Cycle) BCLK th(BCLK-CS) 0ns.min td(BCLK-CS) 18ns.max CSi tcyc th(WR-CS)(3) td(BCLK-AD) 18ns.max th(BCLK-AD) 0ns.min ADi BHE td(BCLK-WR) 18ns.max th(WR-AD)(3) tw(WR)(3) WR,WRL,WRH th(BCLK-WR) 0ns.min td(DB-WR)(3) th(WR-DB)(3) DBi NOTES: Measurement Conditions: 3. Varies with operation frequency: - VCC1 = VCC2 = 3.0 to 3.6 V td(DB-WR) = (tcyc x m - 20) ns.min - Input high and low voltage: VIH = 1.5 V, VIL = 0.5 V (if external bus cycle aφ + bφ, m = b) - Output high and low voltage: VOH = 1.5 V, VOL = 1.5 V th(WR-DB) = (tcyc / 2 - 20) ns.min th(WR-AD) = (tcyc / 2 - 10) ns.min th(WR-CS) = (tcyc / 2 - 10) ns.min 109 tw(WR) = (tcyc / 2 x n - 15) ns.min tcyc= f(BCLK) (if external bus cycle aφ + bφ, n = (b x 2) - 1) Figure 5.9 Rev.1.10 VCC1 = VCC2 = 3.3 V Timing Diagram (3) Jul 15, 2007 Page 63 of 65 M32C/8A Group Microprocessor Mode (when accessing an external memory space with the multiplexed bus) VCC1=VCC2=3.3V Read Timing (2φ + 2φ Bus Cycle) BCLK td(BCLK-ALE) 18ns.max th(BCLK-ALE) -2ns.min ALE td(BCLK-CS) 18ns.max th(BCLK-CS) 0ns.min tcyc th(RD-CS)(1) CSi ADi /DBi tsu(DB-BCLK) 30ns.min th(ALE-AD)(1) td(AD-ALE)(1) Address Data input tdz(RD-AD) 8ns.max td(BCLK-AD) 18ns.max Address th(RD-DB) 0ns.min th(BCLK-AD) 0ns.min tac2(RD-DB)(1) ADi BHE th(RD-AD)(1) tac2(AD-DB)(1) td(BCLK-RD) 18ns.max RD th(BCLK-RD) -3ns.min NOTES: 1. Varies with operation frequency: t d(AD-ALE) = (tcyc / 2 x n - 20) ns.min (if external bus cycle a φ + bφ, n = a) t h(ALE-AD) = (tcyc / 2 x n - 10) ns.min (if external bus cycle a φ + bφ, n = a) t h(RD-AD) = (tcyc / 2 - 10) ns.min, t h(RD-CS) = (tcyc / 2 - 10) ns.min t ac2(RD-DB) = (tcyc / 2 x m - 35) ns.max (if external bus cycle a φ + bφ, m = (b x 2) - 1) t ac2(AD-DB) = (tcyc / 2 x p - 35) ns.max (if external bus cycle a φ + bφ, p = {(a + b - 1) x 2} + 1) Write Timing (2φ + 2φ Bus Cycle) BCLK td(BCLK-ALE) 18ns.max th(BCLK-ALE) -2ns.min ALE td(BCLK-CS) 18ns.max tcyc th(BCLK-CS) 0ns.min th(WR-CS)(2) CSi td(AD-ALE)(2) th(ALE-AD)(2) Address ADi /DBi Data output td(DB-WR)(2) td(BCLK-AD) 18ns.max Address th(WR-DB)(2) th(BCLK-AD) 0ns.min ADi BHE td(BCLK-WR) 18ns.max WR,WRL,WRH th(BCLK-WR) 0ns.min th(WR-AD)(2) NOTES: 1. Varies with operation frequency: t d(AD-ALE) = (tcyc / 2 x n - 20) ns.min (if external bus cycle a φ + bφ, n = a) t h(ALE-AD) = (tcyc / 2 x n - 10) ns.min (if external bus cycle a φ + bφ, n = a) t h(WR-AD) = (tcyc / 2 - 10) ns.min, t h(WR-CS) = (tcyc / 2 - 10) ns.min t h(WR-DB) = (tcyc / 2 - 20) ns.min t d(DB-WR) = (tcyc / 2 x m - 25) ns.min (if external bus cycle a φ + bφ, m = (b x 2) - 1) Measurement Conditions: 109 - VCC1 = VCC2 = 3.0 to 3.6 V tcyc= - Input high and low voltage VIH = 1.5 V, VIL = 0.5 V f(BCLK) - Output high and low voltage VOH = 1.5 V, VOL = 1.5 V Figure 5.10 Rev.1.10 VCC1 = VCC2 = 3.3 V Timing Diagram (4) Jul 15, 2007 Page 64 of 65 M32C/8A Group Appendix 1. Package Dimensions JEITA Package Code P-LQFP144-20x20-0.50 RENESAS Code PLQP0144KA-A Previous Code 144P6Q-A / FP-144L / FP-144LV MASS[Typ.] 1.2g HD *1 D 108 73 109 NOTE) 1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET. 72 bp E c HE c1 b1 *2 Reference Symbol Terminal cross section Index mark c 36 A 1 ZD ZE 37 A2 144 D E A2 HD HE A A1 bp b1 c c1 A1 F L L1 *3 e y JEITA Package Code P-LQFP100-14x14-0.50 RENESAS Code PLQP0100KB-A bp e x y ZD ZE L L1 Detail F x Previous Code 100P6Q-A / FP-100U / FP-100UV Dimension in Millimeters Min Nom Max 19.9 20.0 20.1 19.9 20.0 20.1 1.4 21.8 22.0 22.2 21.8 22.0 22.2 1.7 0.05 0.1 0.15 0.17 0.22 0.27 0.20 0.09 0.145 0.20 0.125 0° 8° 0.5 0.08 0.10 1.25 1.25 0.35 0.5 0.65 1.0 MASS[Typ.] 0.6g HD *1 D 51 75 NOTE) 1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET. 50 76 bp HE Reference Dimension in Millimeters Symbol c c1 *2 E b1 D E A2 HD HE A A1 bp b1 c c1 Terminal cross section 100 ZE 26 1 25 Index mark ZD y e *3 bp A1 c A A2 F L x L1 Detail F Rev.1.10 Jul 15, 2007 Page 65 of 65 e x y ZD ZE L L1 Min Nom Max 13.9 14.0 14.1 13.9 14.0 14.1 1.4 15.8 16.0 16.2 15.8 16.0 16.2 1.7 0.05 0.1 0.15 0.15 0.20 0.25 0.18 0.09 0.145 0.20 0.125 8° 0° 0.5 0.08 0.08 1.0 1.0 0.35 0.5 0.65 1.0 REVISION HISTORY Rev. Date Rev.1.00 Apr 01, 2007 Rev.1.10 Jul 15, 2007 M32C/8A Group Datasheet Description Page Summary − First Edition issued 6 - 144-pin package added - Table “Product list” revised A-1 Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes: 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document. 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples. 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations. 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com ) 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document. 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products. 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above. 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems (2) surgical implantations (3) healthcare intervention (e.g., excision, administration of medication, etc.) (4) any other purposes that pose a direct threat to human life Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications. 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges. 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment. 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas. 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries. http://www.renesas.com RENESAS SALES OFFICES Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145 Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510 © 2007. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .7.0