ALUMINUM ELECTROLYTIC CAPACITORS Application Guidelines for Aluminum Electrolytic Capacitors 1. Circuit Design (1) Please make sure the application and mounting conditions to which the capacitor will be exposed to are within the conditions specified in catalog or alternate product specification (Referred to as specification here after). (2) Operating temperature and applied ripple current shall be within the specification. q The capacitor shall not be used in an ambient temperature which exceeds the operating temperature specified in the specification. w Do not apply excessive current which exceeds the allowable ripple current. (3) Appropriate capacitors which comply with the life requirement of the products should be selected when designing the circuit. (4) Aluminum electrolytic capacitors are polarized. Make sure that no reverse voltage or AC voltage is applied to the capacitors. Please use bi-polar capacitors for a circuit that can possibly see reversed polarity. Note: Even bi-polar capacitors can not be used for AC voltage application. (5) For a circuit that repeats rapid charging / discharging of electricity, an appropriate capacitor that is capable of enduring such a condition must be used. Welding machines and photo flash are a few examples of products that contain such a circuit. In addition, rapid charging / discharging may be repeated in control circuits for servomotors, In which the circuit voltage fluctuates substantially. For appropriate choice of capacitors for circuit that repeat rapid charging / discharging, please consult Nichicon. If excess a rush current due to drastic charge/dis-charge was applied to conductive polymer aluminum solid electrolytic capacitors, it may cause a short circuit or an increase in leakage current. Therefore, Please do not apply a rush current that is larger than 10A. ( 6 ) Make sure that no excess voltage (that is, higher than the rated voltage) is applied to the capacitor. q Please pay attention so that the peak voltage, which is DC voltage overlapped by ripple current, will not exceed the rated voltage. w In the case where more than 2 aluminum electrolytic capacitors are used in series, please make sure that applied voltage will be lower than rated voltage and the voltage be will applied to each capacitor equally using a balancing resistor in parallel with the capacitors. Please do not use conductive polymer alminum solid electrolytic capacitors for the application listed below, since the solidorganicpolymeraluminum electrolytic capacitor cannot reach it's maximum performance. 1) Coupling circuits 2) R-C timing circuit 3) High impedance voltage retention circuit 4) Circuits, which extremely low voltage in compared to the rated voltage is only applie 5) Circuits, which are greatly affected by leakage currents for special use such as multiple parts used in a series, please contact us for recommendations. ( 7 ) Aluminum electrolytic capacitors must be electrically isolated as follows: The aluminum case and the cathode foil are connected by the unstable resistance of a naturally formed oxide layer inside the aluminum case and the electrolyte. q (a) Case and negative terminal (except axial leaded part such as JIS configuration 02 type) (b) Case and positive terminal (c) Case and circuit pattern w (a) Auxialiary terminal of can type such as JIS style symbol 693, 694 or 695 and negative and positive terminal, including the circuit pattern. e Case and both terminals of a bi-polarized capacitor. CAT.8100D ALUMINUM ELECTROLYTIC CAPACITORS ( 8 ) Outer sleeve of the capacitor is not guaranteed as an electrical insulator. Do not use a standard sleeve on a capacitor in applications that require the electrical insulation. When the application requires special insulation, please contact our sales office for details. ( 9 ) Capacitors may fail if they are used under the following conditions: q Environmental (climatic) conditions (a) Being exposed to water, high temperature & high humidity atmosphere, or condensation of moisture. (b) Being exposed to oil or an atmosphere that is filled with particles of oil. (c) Being exposed to salty water or an atmosphere that is filled with particles of salt. (d) In an atmosphere filled with toxic gasses (such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, bromine, methyl bromide, ammonia, etc.). (e) Being exposed to direct sunlight, ozone, ultraviolet ray, or radication. ( f ) Being exposed to acidic or alkaline solutions. w Under severe conditions where vibration and/or mechanical shock exceed the applicable ranges of the specifications. (10) When designing a P.C. board, please pay attention to the following: q Have the hole spacing on the P.C. board match the lead spacing of the capacitor. w There should not be any circuit pattern or circuit wire above the capacitor pressure relief vent. e Unless otherwise specified, following clearance should be made above the pressure relief vent. Case Diameter Clearance Required φ 6.3 to 16mm 2mm or more φ 18 to 35mm 3mm or more φ 40mm or more 5mm or more r In case the vent side is placed toward P.C. board (such as end seal vented parts), make a corresponding hole on the P.C. board to release the gas when vent is operated. The hole should be made to match the capacitor vent position. t Screw terminal capacitors must be installed with their end seal side facing up. When you install a screw terminal capacitor lying down, the upper side must be the pressure relief vent or a positive terminal. (11) The main chemical solution of the electrolyte and the separator paper used in the capacitors are combustible. The electrolyte is conductive. When it comes in contact with the P.C. board, there is a possibility of pattern corrosion or short circuit between the circuit pattern which could result in smoking or catching fire. Do not locate any circuit pattern beneath the capacitor end seal. (12) Do not design a circuit board so that heat generating components are placed near an aluminum electrolytic capacitor or reverse side of P.C. board (under the capacitor). (13) Please refer to the pad size layout recommendations in our catalog when designing in surface mount capacitors. (14) Electrical characteristics may vary depending on changes in temperature and frequency. Please consider this variation when you design circuits. (15) When you mount capacitors on the double-sided P.C. boards, do not place capacitors on circuit patterns or over on unused holes. (16) The torque for terminal screw or brackets screws shall be within the specified value on Nichicon's drawings. (17) When you install more than 2 capacitors in parallel, consider the balance of current flowing through the capacitors. EspeciaIIy, When a solid conductive poIymer aluminum electroIytic capacitor and a standard aIuminum electroIytic capacitor are conected in parallel, special consideration must be given. (18) If more than 2 aluminum electrolytic capacitors are used in series, make sure the applied voltage will be lower than the rated voltage and that voltage will be applied to each capacitor equally using a balancing resistor in parallel with each capacitor. CAT.8100D ALUMINUM ELECTROLYTIC CAPACITORS 2. Mounting ( 1 ) Once a capacitor has been assembled in the set and power applied, Even if a capacitor is discharged, an electric potential(restriking voltage) may exist between the terminals. ( 2 ) Electric potential between positive and negative terminal may exist as a result of returned electromotive force, so please discharge the capacitor using a 1kΩ resistor. ( 3 ) Leakage current of the parts that have been stored for more than 2 years may increase. If leakage current has increased, please perform a voltage treatment using 1kΩ resistor. ( 4 ) Please confirm ratings before installing capacitors on the P.C. board. ( 5 ) Please confirm polarity before installing capacitors on the P.C. board. ( 6 ) Do not drop capacitors on the floor, nor use a capacitor that was dropped. ( 7 ) Do not damage the capacitor while installing. ( 8 ) Please confirm that the lead spacing of the capacitor matches the hole spacing of the P.C. board prior to installation. ( 9 ) Snap-in can type capacitor such as JIS style symbol 692, 693, 694 and 695 type should be installed tightly to the P.C. board (allow no gap between the P.C. board an bottom of the capacitor). (10) Please pay attention that the clinch force is Please make sure that the clinch force is not applied on the main body of the condenser when capacitors are placed and fixed by an automatic insertion machine. (11) Please pay attention to that the mechanical shock to the capacitor by suction nozzle of the automatic insertion machine or automatic mounter, or by product checker,or by centering mechanism. (12) Hand soldering. q Soldering condition shall be confirmed to be within the specification. w If it is necessary that the leads must be formed due to a mismatch of the lead space to hole space on the board, bend the lead prior to soldering without applying too much stress to the capacitor. e If you need to remove parts which were soldered, please melt the solder enough so that stress is not applied to lead. r Please pay attention so that solder iron does not touch any portion of capacitor body. (13) Flow soldering (Wave solder) qAluminum capacitor body must not be submerged into the solder bath. Aluminum capacitors must be mounted on the "top side" of the P.C. board and only allow the bottom side of the P.C. board to come in contact with the solder. w Soldering condition must be confirmed to be within Nichicon specification. Solder temperature: 260 5oC Immersing lead time:10 1 second, Thickness of P.C. board : 1.6mm. e Please avoid having flux adhere to any portion except the terminal. r Please avoid contact between other components and the aluminum capacitor. (14) Reflow soldering (SMD only) qSoldering condition must be confirmed to be within Nichicon specification.(Please refer to page19) w When an infrared heater is used, please pay attention to the extent of heating since the absorption rate of infrared, will vary due to difference in the color of the capacitor body, material of the sleeve and capacitor size. CAT.8100D ALUMINUM ELECTROLYTIC CAPACITORS (15) Soldeing flux There are non-halogen types of flux that do not contain ionic halides, but contain many non-ionic halides. When these non-ionic halides infiltrate the capacitor, they cause a chemical reaction that is just as harmful as the use of cleaning agents. Use soldering flux that dose not contain non-ionic halides. (16) Shrinkage,bulging and/or cracking could be seen on the outer sleeve of the capacitor when capacitors are kept in for more than 2 minutes at 150 °c ambient temperature during soldering at reflow process or resin curing process. Applying high temperature gas or heat ray to capacitor can cause the same phenomenon. (17) Do not tilt lay down or twist the capacitor body after the capacitor are soldered to the P.C. board. (18) Do not carry the P.C. board by grasping the soldered capacitor. (19) Please do not allow anything to touch the capacitor after soldering. If P.C. board are stored in a stack, please make sure P.C. board or the other components do not touch the capacitor. The capacitors shall not be effected by any radiated heat from the soldered P.C. board or other components after soldering. (20) Recommended Cleaning Condition Applicable : Any type, any ratings. Cleaning Agents Based Alcohole solvent cleaning agent Isopropyl Alcohol Based water solvent cleaning agent Premium alcohole solvent type Pine Alpha ST-100S NEWPOLE B-12 Surfactant type Clean Through 750HS, 750HN, 750K, 750J Cleaning Conditions : Total cleaning time shall be no greater than 5 minutes by immersion, ultrasonic or other method. (Temperature of the cleaning agent shall be 60oC maximun.) After the board cleaning has been completed, the capacitors should be dried using hot air for a minimumn of 10 minutes. If the cleaning solution is infiltrated between the case and the sleeve, the sleeve might soften and swell when hot air temperature is too high. Therefore, hot air temperature should not exceed softening temperature(80oC) of the sleeve. Insufficient dries after water rinse may cause appearance problems, such as sleeve shrinking, bottom-plate bulging. ln addition, a monitoring of the contamination of cleaning agents (electric conductivity, pH, specific gravity, water content, etc.) must be implemented. After the cleaning, do not keep the capacitors in an atmosphere containing the cleaning agent or in an air tight container. In addition regarding jet washing, please use caution since the sleeve may expand cause of the angle and / or the strength of the water jet. Depending on the cleaning method, the marking on a capacitor may be erased or blurred. Consult Nichicon before using a cleaning method or a cleaning agent other than those recommended. The use of hydro-chlorofluorocarbon (HCFC) is expected to be banned in the future and Nichicon does not recommend the use of HCFC as a cleaning agent considering its impact on the environment. When it is absolutely necessary to use HCFC, cleaning is possible under the following conditions: CAT.8100D ALUMINUM ELECTROLYTIC CAPACITORS Cleaning Agent AK-225AES CF, CJ, CK, CG, Conductive Polymer Aluminum Chip (SMD) Type CS, CV, CX, CR Solid Electrolytic Capacitors Miniature Type LF, LE, LG, Miniature Type Large Can Type Applicable Series Aluminum Electrolytic Capacitors LS, LV, LX Cleaning Conditions Chip (SMD) Type ZD, ZR, ZE, ZG, ZS, ZP, ZT, WX, WR, WJ, WP, WT, WZ, WF, WG, UP, UT, UA, UL, CB, CW, CD, CL, CM, UD, WD, UB(50V or less), WH, CJ, CZ, CX, UR, WS, UX (100V or less ), UQ, UN, UE, BC, UG (100V or less) UJ (100V or less) Ultra-Miniature Type MA, MP, MT, MF, SA, SR, SP, ST, SF Standard Products VK(100V or less ) VR(100V or less ) VY(100V or less ) VZ(100V or less ) RS(100V or less ) RZ(100V or less ) RU(100V or less ) RY(100V or less ) VP, EP High-Reliability Type PM (100V or less ) PW (100V or less ) TT,PA,HV, HD, HE, HW PJ (100V or less ) PS (100V or less ) PV,PX,BT (100V or less ) BW, BX (100V or less ) For Special Circuit KL VX 02 type (100V or less ) For Audio Use KA, KZ, FG, KT, KW, FW, SW, MW, ES, DB Standard Products LS (100V or less ) High-Reliability Type GU (100V or less ) GY Within 5 minutes, total cleaning time by immersion, vapor spray, or ultrasonic and such. For SMD and ultra-miniature type, within 2 minutes total cleaning time. (Temp. of agent: 40 oC or below) Please contact us about the FPCAP. (21) Fixing Material and Coating Material 1) Do not use any affixing or coating materials, which contain halide substance. 2) Remove flux and any contamination, which remains in the gap between the end seal and PC board. 3) Please dry the cleaning agent on the PC board before using affixing or coating materials. 4) Please do not apply any material all around the end seal when using affixing or coating materials. There are variations of cleaning agents, fixing and coating materials, so please contact those manufacture or our sales office to make sure that the material would not cause any problems. (22) Others Wooden package material may be subjected to fumigation by a halogen(e.g. methyl bromide) before they are exported in order to protect them against pests. If devices with aluminum electrolytic capacitors or capacitors themselves are directly fumigated or packed with the pallet that is fumigated, the capacitors may internaIly corrode due to the halogen contents of fumigation agents. 3. In the equipment ( 1 ) Do not directly touch terminal by hand. ( 2 ) Do not short between terminals with conductor, nor spill conductible liquid such as alkaline or acidic solution on or near the capacitor. ( 3 ) Please make sure that the ambient conditions where the set is installed not have any of the following conditions: CAT.8100D ALUMINUM ELECTROLYTIC CAPACITORS q Being exposed to water, high temperature & high humidity atmosphere, or condensation of moisture. w Being exposed to oil or an atmosphere that is filled with particles of oil. e Being exposed to salty water or an atmosphere that is filled with particles of salt. r In an atmosphere filled with toxic gasses (such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, bromine, methyl bromide, ammonia, etc.). t Being exposed to acidic or alkaline solutions. y Since shrinkage, bulging and/or crack could be seen on outer sleeve of capacitor when capacitors are used in atmosphere where condensation of moisture occures, please confirm their adaptation before the use. The condensation of moisture could occure when temperature cycling test /Rapid change of temperature test is performed, in this case, aforementioned sleeve problem could be seen. 4. Maintenance Inspection ( 1 ) Please periodically inspect the aluminum capacitors that are installed in industrial equipment. The following items should be checked: q Appearance : Remarkable abnormality such as vent operation, leaking electrolyte etc. w Electrical characteristic: Capacitance, dielectric loss tangent, leakage current, and items specified in the specification. 5. In an Emergency ( 1 ) If you see smoke due to operation of safety vent, turn off the main switch or pull out the plug from the outlet. ( 2 ) Do not bring your face near the capacitor when the pressure relief vent operates. The gasses emitted from that are over 100oC. If the gas gets into your eyes, please flush your eyes immediately in pure water. If you breathe the gas, immediately wash out your mouth and throat with water. Do not ingest electrolyte. If your skin is exposed to electrolyte, please wash it away using soap and water. 6. Storage ( 1 ) lt is recommended to keep capacitors between the ambient temperatures of 5oC to 35oC and a relative humidity of 75% or below. ( 2 ) Please make sure the ambient storage conditions will be free from the conditions that are listed in clause 1. "Circuit Design" at (9). In order to maintain the satisfactory soldering condition for conductive polymer aluminum solid electrolytic capacitors, the following items must be strictly adhered to. 1) Parts should be stored sealed in a bag until they are actually used. 2) Once the sealed bag is cut open, all the parts should be used at one time. If not, then the remaining parts should be places in a bag and sealed with tape. 3) In order to maintain a good solderability of the parts, shelf life of parts should not exceed 1 year. CAT.8100D ALUMINUM ELECTROLYTIC CAPACITORS 7. Disposal ( 1 )Take either of the following methods in disposing of capacitors. q Make a hole in the capacitor body or crush capacitors and incinerate them. w If incineration is not applicable, hand them over to a waste disposal agent and have them buried in a landfilI. ( 2 )When removing a capacitor from the circuit board or when disposing of capacitor please ensure that the capacitor is properly discharged. The above mentioned material according to EIAJ RCR - 2367B (issued in March, 2002), titled "Guideline of notabilia for aluminum electrolyic capacitors for use in electronic equipment". Please refer to the book for details. ESR, Impedance Measuring Point Radial lead type ESR should be measured at both of the terminal ends closest to the capacitor body. Chip type ESR should be measured at both of the terminal ends closest where the terminals protrude through the plastic platform. Type numbering system 1 1 2 3 4 5 6 7 8 9 10 11 Type Series name Rated voltage Rated capacitance Capacitance Configuration tolerance See pages 29, 95 to 97 12 13 14 Size code See pages 31 to 364 See pages 31 to 364 Conductive polymer type (CA32,04) Aluminum electrolytic capacitors Chip type Radial lead type (CE32,04) U Aluminum electrolytic capacitors Axial lead type (CE02) T Aluminum electrolytic capacitors Can type (CE621,622,692, 694,695,331) L P Rated voltage (V) 2.5 4 5.5 6.3 10. 16. 20. 25. 35. 50. 63. 80 100 110 Code 0E 0G 0L 0J 1A 1C 1D 1E 1V 1H 1J 1K 2A 2Q Rated voltage (V) 125 160 180 200 220 250 315 350 400 420 450 500 550 630 Code 2B 2C 2Z 2D 2P 2E 2F 2V 2G W6 2W 2H 2L 2J Capacitance Code (µF) 0.1 0R1 0.47 R47 1 010 2.2 2R2 22 220 220 221 2200 222 22000 223 Cap. tol. (%) ±10 ±20 –10 to +30 –10 to +50 Special Code K M Q T A Miniature Type Taped, lead cut / formed See pages 20 to 22 Large Can Type Specification code 1 Please contact us about the FPCAP. CAT.8100D OVERSEAS FACTORY PRODUCTION ITEMS LIST Conductive Polymer Aluminum Solid Electrolytic Capacitors Type Conductive Polymer Aluminum Classification Surface Mount Type Solid Electrolytic Capacitors (FPCAP) Series PS, PA, HS, HA, SS, SA, SB, FS, FA, SL FPCAP ELECTRONICS (SUZHOU) CO., LTD. NICHICON ELECTRONICS (SUQIAN) CO., LTD. ™ ™ ™ ™ NS, R7, R5, L8, E5, Radial Lead Type S8, F8, NU, NE, S6, HT However, please contact us because there may be a series, size that cannot be produced at a given factory. CAT.8100D