PowerBlox™

PowerBlox™
Synchronous Step-Down Regulators
Non Synchronous Step-Down Regulators
2009
EXAR CORPORATION
Exar PowerBlox™ family of synchronous and non synchronous step-down regulators provides a fully integrated single chip solution for pointof-load applications with high current output requirements. The high input voltage range and operating switching frequency options allow the
PowerBlox™ family to fit in a wide range of applications and power architectures by enabling step-down DC to DC conversions from various
intermediate power bus levels while providing a highly efficient and performing solution in the most compact footprint.
Exar’s PowerBlox™ Family
Feature
Advantage
Benefit
High current density
Reduced solution footprint for high current load
Allows positioning of the power solution close to the load
High efficiency
Minimizes power overhead and power losses
Reduces heat dissipation requirements
Wide conversion range at high frequency Single stage smallest solution possible at any input voltage Reduces cost and complexity
Scalability
Common platform for wide range of applications
Short design time
Ultra Small Solution – Highest Current Density
High Efficiency and Performance
Packing up to 12 Amps
in 28mm², Exar’s unique
package
technology
produces the industry’s
smallest 12A regulator.
With
integrated
high
performance, low resistance
FETs, the PowerBlox™
family achieves up to 95%
efficiency.
The part is packaged in a
custom DFN package with
three integrated heat sinks
for outstanding thermal
management.
Even at full load, the
family is able to maintain
an impressive level of
efficiency, thus minimizing
heat dissipation and energy
usage.
Ease of Use
Low Duty Cycle - Wide Input Voltage Range
PowerBlox™ enables and simplifies the creation of a power system or point
of load. This device family is scalable to easily reuse the same design as the
power and output current requirements increase. It is easily configurable for
various power up sequencing requirements.
PowerBlox™ family supports input voltage from 2.5V up to 28V. A wide duty
cycle range capability allows for output voltages from near the Vin rail down to
0.8V. Exar’s technology supports minimum on-time down to 40ns.
Part
Output
Frequency
Number Current
Operating
Voltage
Min. Max.
Output
Voltage
Output Voltage
Range
Min.
Max.
Accuracy Efficiency Package Features
Synchronous
26-pin DFN UVLO, OTP, Soft Start
Short Circuit Protection /Auto Restart
SP7650
3A
300KHz
2.5V
28V
Adj.
0.8V
27V
1.0%
95%
SP7656
3A
600KHz
4.5V
29V
Adj.
0.6V
28V
1.0%
89%
SP7661
3A
600KHz
3.0V
22V
Adj.
0.8V
20.2V
1.0%
92%
Synchronous
26-pin DFN UVLO, OTP, Soft Start, Current Limiting
Short Circuit Protection /Auto Restart
SP7651
3A
900KHz
2.5V
20V
Adj.
0.8V
19V
1.0%
92%
Synchronous
26-pin DFN UVLO, OTP, Soft Start
Short Circuit Protection /Auto Restart
SP7653
3A
1300KHz
2.5V
20V
Adj.
0.8V
19V
1.0%
91%
Synchronous
26-pin DFN UVLO, OTP, Soft Start
Short Circuit Protection /Auto Restart
SP7652
6A
600KHz
2.5V
28V
Adj.
0.8V
27V
1.0%
92%
Synchronous
26-pin DFN UVLO, OTP, Soft Start
Short Circuit Protection /Auto Restart
SP7663
6A
600KHz
3.0V
22V
Adj.
0.8V
20.2V
1.0%
91%
Synchronous
26-pin DFN UVLO, OTP, Soft Start, Current Limiting
Short Circuit Protection /Auto Restart
SP7655
8A
300KHz
2.5V
28V
Adj.
0.8V
27V
1.0%
95%
Synchronous
26-pin DFN UVLO, OTP, Soft Start
Short Circuit Protection /Auto Restart
SP7662
12A
300KHz
3.0V
22V
Adj.
0.8V
20.2V
1.0%
93%
Synchronous
26-pin DFN UVLO, OTP, Soft Start, Current Limiting
Short Circuit Protection /Auto Restart
8-pin SO8
Non synchronous
UVLO, Current Limiting, Softstart
Intenal Compensation
Typical Application
12 Amperes – 3.3V output voltage using Exar’s SP7662ER-L
Input Voltage Rail (V)
Output Voltage (V)
0.9
1.0
1.1
1.5
1.8
2.5
SP7650
SP7651
SP7653
SP7652
SP7655
SP7650
SP7651
SP7653
SP7652
SP7655
SP7650
SP7651
SP7653
SP7652
SP7655
SP7650
SP7651
SP7653
SP7652
SP7655
SP7650
SP7651
SP7653
SP7652
SP7655
2.8
SP7650
SP7651
SP7653
SP7652
SP7655
SP7650
SP7651
SP7653
SP7652
SP7655
SP7650
SP7651
SP7653
SP7652
SP7655
SP7650
SP7651
SP7653
SP7652
SP7655
SP7650
SP7651
SP7653
SP7652
SP7655
SP7650
SP7651
SP7653
SP7652
SP7655
3.3
SP7650
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
5.0
SP7650
SP7656
SP7661
SP7651
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7655
SP7662
SP7650
SP7656
SP7661
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7655
SP7662
SP7650
SP7656
SP7661
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7655
SP7662
SP7650
SP7656
SP7661
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7650
SP7656
SP7661
SP7651
SP7653
SP7652
SP7663
SP7655
SP7662
SP7656
SP7655
SP7656
SP7655
SP7656
SP7655
SP7656
SP7652
SP7655
SP7656
SP7652
SP7655
SP7656
SP7652
SP7655
SP7656
SP7652
SP7655
9.6
12
SP7650
SP7656
SP7655
SP7662
SP7650
SP7656
SP7655
SP7662
SP7650
SP7656
SP7655
SP7662
SP7650
SP7656
SP7655
SP7662
SP7650
SP7656
SP7655
SP7662
18
24
3A Solution
6A Solution
2.5
2.8
3.3
5.0
9.6
12
18
Power
power design made easy
SP765x and SP766x
requires 5V bias supply
8A Solution
SP765x requires
5V bias supply
12A Solution
SP7656
SP7652
SP7655
PowerLab - Online Design Tool
Exar’s PowerLab interactive online design tool helps create an optimized design solution complete with schematics, component values and
simulation curves from a set of custom specifications. Click the PowerLab icon on the Exar website to start and finish your design today!
Power
power design made easy
http://www.exar.com/powerlab
Evaluation Boards
Design Solutions
Evaluation boards for all PowerBlox™ family of devices are available
along with their user manual.
DS05
DS06
DS33
DS39
DS40
DS44
DS46
DS47
DS52
DS57
DS58
DS61
DS63
DS65
SP7653 converts 5V input to 1.2V output at 2.5A
SP7655 converts 24V input to 12V output at 8A
Solution converts up to 28V input to drive LEDs to 6A
Providing 48W (6A at 8V) from 12V input using PowerBlox™
Converting 12V input to 1.2V output processor core voltage
at up to 8A using PowerBlox™
Converting up to 16V input to 2.5V output with PowerBlox™
Improve efficiency and extend input voltage range of
PowerBlox™ with application of external Vcc bias voltage
High performance 3A output PowerBlox™ provides high
performance over wide input voltage range
Application of charge pump to utilize PowerBlox™ at only 3V
input
Using PowerBlox™ with up to 16V input for providing 3A LED
drive current using only 0.5 inch²
PowerBlox™ handles very low duty cycle: 22V input with 1.2V
output to 8A
SP7662 PowerBlox™ provides 12A LED drive current from a 15V
nominal DC input
SP7663 PowerBlox™ creates 5V at 4A supply off adapter 12V
secondary
SP7651 PowerBlox™ creates 2A peak current off adapter 12V
secondary
Application Notes
Design Solutions and Application Notes
are available for download at
http://www.exar.com/
ANP04
ANP05
ANP06
ANP15
CAD layout recommendations for the PowerBlox™ family
Thermal resistance on SP765x devices
PowerBlox™ in distributed power architectures
Voltage mode control: the modulator in continuous current
mode (CCM) of operations
ANP25 PowerBlox™ thermal analysis
ANP27 An alternative to POLA modules: PowerBlox™
Applications
• Distributed Power Architectures
• Point of Load Converters
• Point of Load Modules
• FPGA, DSPs and Processors Power Supplies
Actual Size
Markets
• Telecom and Networking Equipment
• Set-Top Boxes
• Cable Modems
• Medical Equipment
• Video Processing and Interface Products
Distributed Power Architecture
PowerBlox™ Family Features
- 3A, 6A, 8A and 12A Synchronous Buck Regulators
- Integrated High and Low Side FETs
- 2.5V up to 28V Wide Input Voltage Conversions
- As Low as 0.8V Output Voltage
- 300Khz to 1.3MHz Operating Frequency
- Up to 95% Efficiency
- Type II & III Compensation
- Multiple Sequencing Options
- Short Circuit, Programmable UVLO and Thermal Protection
- PowerLab Online Design Creation Tool
- 7mm X 4mm DFN-26
Feature Options
• Programmable Current Limiting
• Single Input Voltage Rail Operations
Powering Up Sequence
Complex power-up sequencing and protocols eliminates the need for sequencing ICs and simplifies the system design while reducing the
overall solution costs.
Sequential Power Up
5.0V
Vout1
3.3V
Vout2
1.8V
Vout3
t1 t2
t3
Vout1 powers up first then triggers Vout2 which powers up and triggers Vout3
Time
Simultaneous Power Up
5.0V
Vout1
Same slew rate
3.3V
Vout2
1.8V
Vout3
t
All converters begin their soft start cycle simultaneously with the same slew rate
Time
Ratiometric Power Up
5.0V
Vout1
Slew rate 1
3.3V
Vout2
Slew rate 2
1.8V
Vout3
Slew rate 3
t
Time
All supplies are turned on simultaneously and reach their respective output voltages at the same time
NORTH AMERICA
Exar Corporation, Fremont, CA, USA
Exar Corporation, Palatine, IL, USA
Exar Corporation, Billerica, MA, USA
Exar Corporation, Raleigh, NC, USA
Exar Corporation, Center Valley, PA, USA
Exar Corporation, Dallas, TX, USA
Exar Corporation, Atlanta, GA, USA
Exar IC Canada Corporation, Montreal, Quebec, Canada
EUROPE
Exar SARL, Paris, France
Exar GmbH, Munich, Germany
Exar Ltd, London, United Kingdom
Exar SRL, Milano, Italy
JAPAN
Exar Japan Corporation, Tokyo, Japan
ASIA PACIFIC
Exar Corporation Beijing Representative Office, Beijing, China
Exar Corporation Shanghai Representative Office, Shanghai, China
Exar Corporation Shenzhen Representative Office, Shenzhen, China
Exar Korea Co. Ltd., Seoul, Korea
Exar Pte Ltd., Singapore
Exar Corporation Taiwan Branch Office, Taipei, Taiwan
www.exar.com
Exar is a trademark of EXAR Corporation. All other trademarks and registered trademarks are property of their respective owners.
XRPWRBLXBRO-0309 ©2009 EXAR Corporation