PowerBlox™ Synchronous Step-Down Regulators Non Synchronous Step-Down Regulators 2009 EXAR CORPORATION Exar PowerBlox™ family of synchronous and non synchronous step-down regulators provides a fully integrated single chip solution for pointof-load applications with high current output requirements. The high input voltage range and operating switching frequency options allow the PowerBlox™ family to fit in a wide range of applications and power architectures by enabling step-down DC to DC conversions from various intermediate power bus levels while providing a highly efficient and performing solution in the most compact footprint. Exar’s PowerBlox™ Family Feature Advantage Benefit High current density Reduced solution footprint for high current load Allows positioning of the power solution close to the load High efficiency Minimizes power overhead and power losses Reduces heat dissipation requirements Wide conversion range at high frequency Single stage smallest solution possible at any input voltage Reduces cost and complexity Scalability Common platform for wide range of applications Short design time Ultra Small Solution – Highest Current Density High Efficiency and Performance Packing up to 12 Amps in 28mm², Exar’s unique package technology produces the industry’s smallest 12A regulator. With integrated high performance, low resistance FETs, the PowerBlox™ family achieves up to 95% efficiency. The part is packaged in a custom DFN package with three integrated heat sinks for outstanding thermal management. Even at full load, the family is able to maintain an impressive level of efficiency, thus minimizing heat dissipation and energy usage. Ease of Use Low Duty Cycle - Wide Input Voltage Range PowerBlox™ enables and simplifies the creation of a power system or point of load. This device family is scalable to easily reuse the same design as the power and output current requirements increase. It is easily configurable for various power up sequencing requirements. PowerBlox™ family supports input voltage from 2.5V up to 28V. A wide duty cycle range capability allows for output voltages from near the Vin rail down to 0.8V. Exar’s technology supports minimum on-time down to 40ns. Part Output Frequency Number Current Operating Voltage Min. Max. Output Voltage Output Voltage Range Min. Max. Accuracy Efficiency Package Features Synchronous 26-pin DFN UVLO, OTP, Soft Start Short Circuit Protection /Auto Restart SP7650 3A 300KHz 2.5V 28V Adj. 0.8V 27V 1.0% 95% SP7656 3A 600KHz 4.5V 29V Adj. 0.6V 28V 1.0% 89% SP7661 3A 600KHz 3.0V 22V Adj. 0.8V 20.2V 1.0% 92% Synchronous 26-pin DFN UVLO, OTP, Soft Start, Current Limiting Short Circuit Protection /Auto Restart SP7651 3A 900KHz 2.5V 20V Adj. 0.8V 19V 1.0% 92% Synchronous 26-pin DFN UVLO, OTP, Soft Start Short Circuit Protection /Auto Restart SP7653 3A 1300KHz 2.5V 20V Adj. 0.8V 19V 1.0% 91% Synchronous 26-pin DFN UVLO, OTP, Soft Start Short Circuit Protection /Auto Restart SP7652 6A 600KHz 2.5V 28V Adj. 0.8V 27V 1.0% 92% Synchronous 26-pin DFN UVLO, OTP, Soft Start Short Circuit Protection /Auto Restart SP7663 6A 600KHz 3.0V 22V Adj. 0.8V 20.2V 1.0% 91% Synchronous 26-pin DFN UVLO, OTP, Soft Start, Current Limiting Short Circuit Protection /Auto Restart SP7655 8A 300KHz 2.5V 28V Adj. 0.8V 27V 1.0% 95% Synchronous 26-pin DFN UVLO, OTP, Soft Start Short Circuit Protection /Auto Restart SP7662 12A 300KHz 3.0V 22V Adj. 0.8V 20.2V 1.0% 93% Synchronous 26-pin DFN UVLO, OTP, Soft Start, Current Limiting Short Circuit Protection /Auto Restart 8-pin SO8 Non synchronous UVLO, Current Limiting, Softstart Intenal Compensation Typical Application 12 Amperes – 3.3V output voltage using Exar’s SP7662ER-L Input Voltage Rail (V) Output Voltage (V) 0.9 1.0 1.1 1.5 1.8 2.5 SP7650 SP7651 SP7653 SP7652 SP7655 SP7650 SP7651 SP7653 SP7652 SP7655 SP7650 SP7651 SP7653 SP7652 SP7655 SP7650 SP7651 SP7653 SP7652 SP7655 SP7650 SP7651 SP7653 SP7652 SP7655 2.8 SP7650 SP7651 SP7653 SP7652 SP7655 SP7650 SP7651 SP7653 SP7652 SP7655 SP7650 SP7651 SP7653 SP7652 SP7655 SP7650 SP7651 SP7653 SP7652 SP7655 SP7650 SP7651 SP7653 SP7652 SP7655 SP7650 SP7651 SP7653 SP7652 SP7655 3.3 SP7650 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 5.0 SP7650 SP7656 SP7661 SP7651 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7655 SP7662 SP7650 SP7656 SP7661 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7655 SP7662 SP7650 SP7656 SP7661 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7655 SP7662 SP7650 SP7656 SP7661 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7650 SP7656 SP7661 SP7651 SP7653 SP7652 SP7663 SP7655 SP7662 SP7656 SP7655 SP7656 SP7655 SP7656 SP7655 SP7656 SP7652 SP7655 SP7656 SP7652 SP7655 SP7656 SP7652 SP7655 SP7656 SP7652 SP7655 9.6 12 SP7650 SP7656 SP7655 SP7662 SP7650 SP7656 SP7655 SP7662 SP7650 SP7656 SP7655 SP7662 SP7650 SP7656 SP7655 SP7662 SP7650 SP7656 SP7655 SP7662 18 24 3A Solution 6A Solution 2.5 2.8 3.3 5.0 9.6 12 18 Power power design made easy SP765x and SP766x requires 5V bias supply 8A Solution SP765x requires 5V bias supply 12A Solution SP7656 SP7652 SP7655 PowerLab - Online Design Tool Exar’s PowerLab interactive online design tool helps create an optimized design solution complete with schematics, component values and simulation curves from a set of custom specifications. Click the PowerLab icon on the Exar website to start and finish your design today! Power power design made easy http://www.exar.com/powerlab Evaluation Boards Design Solutions Evaluation boards for all PowerBlox™ family of devices are available along with their user manual. DS05 DS06 DS33 DS39 DS40 DS44 DS46 DS47 DS52 DS57 DS58 DS61 DS63 DS65 SP7653 converts 5V input to 1.2V output at 2.5A SP7655 converts 24V input to 12V output at 8A Solution converts up to 28V input to drive LEDs to 6A Providing 48W (6A at 8V) from 12V input using PowerBlox™ Converting 12V input to 1.2V output processor core voltage at up to 8A using PowerBlox™ Converting up to 16V input to 2.5V output with PowerBlox™ Improve efficiency and extend input voltage range of PowerBlox™ with application of external Vcc bias voltage High performance 3A output PowerBlox™ provides high performance over wide input voltage range Application of charge pump to utilize PowerBlox™ at only 3V input Using PowerBlox™ with up to 16V input for providing 3A LED drive current using only 0.5 inch² PowerBlox™ handles very low duty cycle: 22V input with 1.2V output to 8A SP7662 PowerBlox™ provides 12A LED drive current from a 15V nominal DC input SP7663 PowerBlox™ creates 5V at 4A supply off adapter 12V secondary SP7651 PowerBlox™ creates 2A peak current off adapter 12V secondary Application Notes Design Solutions and Application Notes are available for download at http://www.exar.com/ ANP04 ANP05 ANP06 ANP15 CAD layout recommendations for the PowerBlox™ family Thermal resistance on SP765x devices PowerBlox™ in distributed power architectures Voltage mode control: the modulator in continuous current mode (CCM) of operations ANP25 PowerBlox™ thermal analysis ANP27 An alternative to POLA modules: PowerBlox™ Applications • Distributed Power Architectures • Point of Load Converters • Point of Load Modules • FPGA, DSPs and Processors Power Supplies Actual Size Markets • Telecom and Networking Equipment • Set-Top Boxes • Cable Modems • Medical Equipment • Video Processing and Interface Products Distributed Power Architecture PowerBlox™ Family Features - 3A, 6A, 8A and 12A Synchronous Buck Regulators - Integrated High and Low Side FETs - 2.5V up to 28V Wide Input Voltage Conversions - As Low as 0.8V Output Voltage - 300Khz to 1.3MHz Operating Frequency - Up to 95% Efficiency - Type II & III Compensation - Multiple Sequencing Options - Short Circuit, Programmable UVLO and Thermal Protection - PowerLab Online Design Creation Tool - 7mm X 4mm DFN-26 Feature Options • Programmable Current Limiting • Single Input Voltage Rail Operations Powering Up Sequence Complex power-up sequencing and protocols eliminates the need for sequencing ICs and simplifies the system design while reducing the overall solution costs. Sequential Power Up 5.0V Vout1 3.3V Vout2 1.8V Vout3 t1 t2 t3 Vout1 powers up first then triggers Vout2 which powers up and triggers Vout3 Time Simultaneous Power Up 5.0V Vout1 Same slew rate 3.3V Vout2 1.8V Vout3 t All converters begin their soft start cycle simultaneously with the same slew rate Time Ratiometric Power Up 5.0V Vout1 Slew rate 1 3.3V Vout2 Slew rate 2 1.8V Vout3 Slew rate 3 t Time All supplies are turned on simultaneously and reach their respective output voltages at the same time NORTH AMERICA Exar Corporation, Fremont, CA, USA Exar Corporation, Palatine, IL, USA Exar Corporation, Billerica, MA, USA Exar Corporation, Raleigh, NC, USA Exar Corporation, Center Valley, PA, USA Exar Corporation, Dallas, TX, USA Exar Corporation, Atlanta, GA, USA Exar IC Canada Corporation, Montreal, Quebec, Canada EUROPE Exar SARL, Paris, France Exar GmbH, Munich, Germany Exar Ltd, London, United Kingdom Exar SRL, Milano, Italy JAPAN Exar Japan Corporation, Tokyo, Japan ASIA PACIFIC Exar Corporation Beijing Representative Office, Beijing, China Exar Corporation Shanghai Representative Office, Shanghai, China Exar Corporation Shenzhen Representative Office, Shenzhen, China Exar Korea Co. Ltd., Seoul, Korea Exar Pte Ltd., Singapore Exar Corporation Taiwan Branch Office, Taipei, Taiwan www.exar.com Exar is a trademark of EXAR Corporation. All other trademarks and registered trademarks are property of their respective owners. XRPWRBLXBRO-0309 ©2009 EXAR Corporation