MUSES8820 High Quality Audio Dual Operational Amplifier Q GENERAL DESCRIPTION QPACKAGE OUTLINE The MUSES8820 is a high quality audio operational amplifier, which is optimized for high-end audio and professional audio applications. It is the best for audio preamplifiers, active filters, and line amplifiers with excellent sound. QFEATURES MUSES8820D (DIP8) MUSES8820E (SOP8) Vopr = ±3.5V to ±16V 4.5nV/√Hz at f=1kHz 0.3mV typ. 3mV max. 100nA typ. 500nA max. at Ta=25°C 110dB typ. 5V/µs typ. ●Operating Voltage ●Output noise ●Input Offset Voltage ●Input Bias Current ●Voltage Gain ●Slew Rate ●Bipolar Technology ●Package Outline DIP8, SOP8 JEDEC 150mil Q PIN CONFIGURATION PIN FUNCTION 1 2 3 4 8 7 -+ + - 6 5 1. A OUTPUT 2. A -INPUT 3. A +INPUT 4. V5. B +INPUT 6. B -INPUT 7. B OUTPUT 8.V+ MUSES and this logo are trademarks of New Japan Radio Co., Ltd. Ver.2013-12-06 -1- MUSES8820 QABSOLUTE MAXIMUM RATINGS (Ta=25°C) PARAMETER SYMBOL RATING UNIT Supply Voltage V+/V- ±18 V Common Mode Input Voltage VICM ±15 (Note1) V Differential Input Voltage VID ±30 V Power Dissipation PD Output Current IO ±50 mA Operating Temperature Range T opr -40 to +85 °C Storage Temperature Range T stg -50 to +150 °C DIP8 : 870 SOP8 : 900(Note2) mW (Note1) For supply Voltages less than ±15 V, the maximum input voltage is equal to the Supply Voltage. (Note2) Mounted on the EIA/JEDEC standard board (114.3×76.2×1.6mm, two layer, FR-4). QRECOMMENDED OPERATING CONDITION (Ta=25°C) PARAMETER Supply Voltage SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT V+/V- - ±3.5 - ±16 V MIN. TYP. MAX. UNIT QELECTRIC CHARACTERISTICS DC CHARACTERISTICS (V+/V-=±15V, Ta=25°C unless otherwise specified) PARAMETER SYMBOL TEST CONDITION Operating Current I cc No Signal, R L =∞ - 8.0 12.0 mA Input Offset Voltage V IO Rs≤10kΩ (Note3) - 0.3 3.0 mV Input Bias Current IB (Note3, 4) - 100 500 nA Input Offset Current I IO (Note3, 4) - 5 200 nA Voltage Gain AV R L ≥2kΩ, V o =±10V Rs≤10kΩ 90 110 - dB Common Mode Rejection Ratio CMR V ICM =±12V (Note5) Rs≤10kΩ 80 110 - dB Supply Voltage Rejection Ratio SVR V + /V - =±3.5 to ±16.0V Rs≤10kΩ (Note3, 6) 80 110 - dB Max Output Voltage V OM R L =2kΩ ±12 ±13.5 - V Input Common Mode Voltage Range V ICM CMR≥80dB ±12 ±13.5 - V (Note3) Measured at VICM=0V (Note4) Written by the absolute rate. (Note5) CMR is calculated by specified change in offset voltage. (VICM=0V to +12V and VICM=0V to −12V) (Note6) SVR is calculated by specified change in offset voltage. (V+/V−=±3.5V to ±16V) -2- Ver.2013-12-06 MUSES8820 AC CHARACTERISTICS (V+/V-=±15V, Ta=25°C unless otherwise specified) PARAMETER Gain Bandwidth Product SYMBOL GB TEST CONDITION MIN. TYP. MAX. UNIT f=10kHz - 11 - MHz Unity Gain Frequency fT AV=+100, RS=100Ω, RL=2kΩ, CL=10pF - 5.8 - MHz Phase Margin φM AV=+100, RS=100Ω, RL=2kΩ,CL=10pF - 48 - deg Input Noise Voltage1 V NI f=1kHz, AV=+100, RS=100Ω,RL=∞ - 4.5 - nV/√Hz Input Noise Voltage2 V N2 f=1kHz, AV=+10 RS =2.2kΩ, RIAA, 30kHz LPF - 0.8 1.4 µVrms Total Harmonic Distortion THD f=1kHz, AV=+10, RL=2kΩ, Vo=5Vrms - 0.001 - % Channel Separation CS f=1kHz, AV=-+100, RS=1kΩ, RL=2kΩ - 140 - dB Positive Slew Rate +SR AV=1, VIN=2Vp-p, RL=2kΩ, CL=10pF - 5 - V/µs Negative Slew Rate -SR AV=1, VIN=2Vp-p, RL=2kΩ, CL=10pF - 5 - V/µs Ver.2013-12-06 -3- MUSES8820 QApplication Notes •Package Power, Power Dissipation and Output Power IC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called Power Dissipation PD. The dependence of the MUSES8820 PD on ambient temperature is shown in Fig 1. The plots are depended on following two points. The first is PD on ambient temperature 25°C, which is the maximum power dissipation. The second is 0W, which means that the IC cannot radiate any more. Conforming the maximum junction temperature Tjmax to the storage temperature Tstg derives this point. Fig.1 is drawn by connecting those points and conforming the PD lower than 25°C to it on 25°C. The PD is shown following formula as a function of the ambient temperature between those points. Dissipation Power PD = Tjmax - Ta [W] (Ta=25°C to Ta=150°C) θja Where, θja is heat thermal resistance which depends on parameters such as package material, frame material and so on. Therefore, PD is different in each package. While, the actual measurement of dissipation power on MUSES8820 is obtained using following equation. (Actual Dissipation Power) = (Supply Current Icc) X (Supply Voltage V+ – V-) – (Output Power Po) The MUSES8820 should be operated in lower than PD of the actual dissipation power. To sustain the steady state operation, take account of the Dissipation Power and thermal design. PD [mW] SOP8 900 870 DIP8 -40 25 Ta [deg] 85 (Topr max.) 150 (Tstg max.) Fig.1 Power Dissipations vs. Ambient Temperature on the MUSES8820 -4- Ver.2013-12-06 MUSES8820 QTYPICAL CHARACTERISTICS Total Harmonic Distortion+Noise vs. Output Amplitude (Frequency) Total Harmonic Distortion+Noise vs. Output Amplitude (Frequency) + 10 10 1 1 0.1 20kHz 0.01 0.001 - V /V =±15V,Av=+10, Rg=1k,Rf=9.1k, RL=2k,Ta=25°C THD+Noise [%] THD+Noise [%] V+/V-=±16V,Av=+10, Rg=1k,Rf=9.1k, RL=2k,Ta=25°C 0.1 20kHz 0.01 0.001 1kHz 1kHz 20Hz 20Hz 100Hz 0.0001 0.01 0.1 1 100Hz 10 0.0001 0.01 0.1 Output Amplitude [Vrms] 1 10 Output Amplitude [Vrms] Total Harmonic Distortion + Noise vs. Output Amplitude (Frequency) Equivalent Input Voltage Noise vs. Frequency V+/V-=±3.5V,Av=+10, Rg=1k,Rf=9.1k, RL=2k,Ta=25°C V /V =±16V,AV=+100,RS=100Ω,RL=∞,Ta=25ºC + 10 - 20 Voltage Noise [nV/√Hz] THD+Noise [%] 1 20kHz 0.1 0.01 1kHz 20Hz 100Hz 0.001 0.0001 0.01 15 10 5 0 0.1 1 10 1 10 Output Amplitude [Vrms] Equivalent Input Voltage Noise vs. Frequency + - + V /V =±15V,AV=+100,RS=100Ω,RL=∞,Ta=25ºC 10,000 - V /V =±3.5V,AV=+100,RS=100Ω,RL=∞,Ta=25ºC 20 15 15 Voltage Noise [nV/√Hz] Voltage Noise [nV/√Hz] 1,000 Equivalent Input Voltage Noise vs. Frequency 20 10 5 0 10 5 0 1 10 100 Frequency [Hz] Ver.2013-12-06 100 Frequency [Hz] 1,000 10,000 1 10 100 1,000 10,000 Frequency [Hz] -5- MUSES8820 Channel Separation vs. Frequency + Channel Separation vs. Frequency - + V /V =±15V, AV=-100, RS=1k, RL=2k, Vo=5Vrms, Ta=25°C -120 -120 -130 -130 Channel Separation[dB] -140 -150 -160 -140 -150 -160 -170 -170 -180 -180 100 1k 10k 100k 10 100 Frequency[Hz] V+/V-=±16V, AV=+100, RS=100, RT=50, RL=2k,CL=10p VIN=-30dBm,Vicm=0V -120 60 Voltage Gain [dB] Channel Separation[dB] -40ºC 40 -140 -150 -160 -170 -180 120 20 60 -50ºC Phase 0 0 -20 -60 -40 -120 -60 100 1k 10k 100k 1 10 Frequency[Hz] V+/V-=±15V, AV=+100, RS=100, RT=50, RL=2k, CL=10p VIN=-30dBm, VICM=0V 60 60 120 60 Phase 0 -20 -60 -40 -60 10 100 1k Frequency [kHz] 10k -40ºC 40 Voltage Gain [dB] -40ºC -50ºC 1 -180 100000 180 Ta=25ºC Gain 20 0 10000 V+/V-=±3.5V, AV=+100, RS=100, RT=50, RL=2k,CL=10p VIN=-30dBm,Vicm=0V 180 Phase Shift [deg] 40 1000 Closed-Loop Gain/Phase vs. Frequency(Temperature) Ta=25ºC Gain 100 Frequency [kHz] Closed-Loop Gain/Phase vs. Frequency(Temperature) Voltage Gain [dB] 180 Ta=25ºC Gain -130 10 100k Closed-Loop Gain/Phase vs. Frequency(Temperature) - V /V =±3.5V,AV=-100,RS=1k,RL=2k,Vo=1Vrms, Ta=25°C -6- 10k Frequency[Hz] Channel Separation vs. Frequency + 1k Phase Shift [deg] 10 120 20 60 -50ºC Phase 0 0 -20 -60 -120 -40 -120 -180 100k -60 1 10 100 1000 10000 Phase Shift [deg] Channel Separation[dB] V /V =±16V,AV=-100, RS=1k, RL=2k, Vo=5Vrms, Ta=25°C - -180 100000 Frequency [kHz] Ver.2013-12-06 MUSES8820 Transient Response (Temperature) + Slew Rate vs. Temperature - + V /V =±16V,VIN=2VP-P,f=100kHz PulseEdge=10nsec,Gv=0dB,CL=10p,RL=2k - V /V =±16V,VIN=2VP-P,f=100kHz PulseEdge=10nsec,Gv=0dB,CL=10p,RL=2k 6 2 6 Input 5 1 4 0 3 -1 Fall -2 85°C -40°C 1 -3 0 -4 -1 Slew Rate [V/µsec] Ta=25°C 2 Input Voltage[V] Output Voltage [V] 5 4 Rise 3 2 1 -5 Output Voltage -2 -6 -2 -1 0 1 2 3 4 5 6 7 8 0 9 -50 -25 0 Time [µsec] 50 75 + 6 2 125 150 125 150 6 4 0 3 -1 -2 85°C -40°C -3 0 -4 -1 -5 Fall 5 Slew Rate [V/µsec] 1 Input Voltage[V] Output Voltage [V] 5 1 150 - Input Ta=25°C 125 V /V =±15V,VIN=2VP-P,f=100kHz PulseEdge=10nsec,Gv=0dB,CL=10p,RL=2k - V /V =±15V,VIN=2VP-P,f=100kHz PulseEdge=10nsec,Gv=0dB,CL=10p,RL=2k 2 100 Slew Rate vs. Temperature Transient Response (Temperature) + 25 Temperature [°C] 4 Rise 3 2 1 Output Voltage -2 0 -6 -2 -1 0 1 2 3 4 5 6 7 8 -50 9 -25 0 Time [µsec] 50 75 100 Slew Rate vs. Temperature Transient Response (Temperature) + 25 Temperature [°C] + - V /V =±3.5V,VIN=2VP-P,f=100kHz PulseEdge=10nsec,Gv=0dB,CL=10p,RL=2k - V /V =±3.5V,VIN=2VP-P,f=100kHz PulseEdge=10nsec,Gv=0dB,CL=10p,RL=2k 6 2 6 1 4 0 3 -1 Ta=25°C 2 -2 85°C -40°C 1 -3 0 -4 -1 -5 Fall 5 Slew Rate [V/µsec] 5 Input Voltage[V] Output Voltage [V] Input 4 3 Rise 2 1 Output Voltage -2 -6 -2 -1 0 1 2 3 4 5 Time [µsec] Ver.2013-12-06 6 7 8 9 0 -50 -25 0 25 50 75 100 Temperature [°C] -7- MUSES8820 Supply Current vs Supply Voltage (Temperature) Supply Current vs. Temperature GV=0dB,Vicm=0V 12 (Supply Voltage) GV=0dB, VICM=0V 12 10 -40°C 10 Supply Current [mA] Supply Current [mA] Ta=25°C 8 6 4 85°C V+/V-=±15V ±16V 8 6 ±3.5V 4 2 2 0 0 0 2 4 6 8 10 12 14 + Supply Voltage [V /V ] 16 -50 18 Input Offset Voltage vs. Supply Voltage (Temperature) Input Offset Voltage [mV] Supply Voltage Rejection Ratio[dB] 120 2 85°C Ta=25°C -40°C 1 0 -1 -2 0 25 50 75 100 125 150 Temperature [ºC] Supply Voltage Rejection Ratio vs. Temperature + VICM=0V, V /V =±3.5V to ±16V VICM=0V,Vin=0V 3 -25 100 80 60 40 20 -3 0 0 2 4 6 8 10 12 14 16 18 -50 -25 0 Supply Voltage [V+/V-] 25 + 500 400 400 Input Bias Current [nA] Input Bias Current [nA] 500 V+/V-=±15V ±3.5V 200 - 300 -40°C 85°C Ta=25°C 200 100 100 0 0 -50 -25 0 25 50 75 Temperature [°C] -8- 100 125 150 V /V =±16V Vicm=0V ±16V 75 Input Bias Current vs. Input Common-Mode Voltage (Temperature) Input Bias Current vs. Temperature (Supply Voltage) 300 50 Temperature [°C] 100 125 150 -16 -12 -8 -4 0 4 8 12 16 Common-Mode Voltage [V] Ver.2013-12-06 MUSES8820 Input Bias Current vs. Input Common-Mode Voltage (Temperature) + Input Bias Current vs. Input Common-Mode Voltage (Temperature) - + 400 400 300 - V /V =±3.5V 500 85°C Input Bias Current [nA] Input Bias Current [nA] V /V =±15V 500 -40°C Ta=25°C 200 100 300 -40°C 85°C Ta=25°C 200 100 0 0 -16 -12 -8 -4 0 4 8 12 16 -4 -3 Common-Mode Voltage [V] -2 -1 0 1 2 3 Input Offset Current vs. Temperature (Supply Voltage) Input Offset Voltage vs. Output Voltage (Temperature) Vicm=0V V /V =±15V, RL=2kΩ to 0V 200 4 Common-Mode Voltage [V] + - 3 ±16V V+/V-=±15V 100 2 Input Offset Voltage [mV] Input Offset Current [nA] 150 50 0 -50 ±3.5V -100 -40°C Ta=25°C 1 0 -1 -2 -150 -200 -3 -50 -25 0 25 50 75 100 125 150 -16 -12 -8 Temperature [°C] + -4 0 4 8 12 16 Output Voltage [V] Open-Loop Voltage Gain vs. Temperature Open-Loop Voltage Gain vs. Temperature - + RL=2kΩ to 0V, V /V =±16V, Vo=-11V to +11V - RL=2kΩ to 0V, V /V =±15V, Vo=-10V to +10V 120 120 110 110 Open-Loop Voltage Gain [dB] Open-Loop Voltage Gain [dB] 85°C 100 90 80 70 60 100 90 80 70 60 -50 -25 0 25 50 75 Temperature [°C] Ver.2013-12-06 100 125 150 -50 -25 0 25 50 75 100 125 150 Temperature [°C] -9- MUSES8820 Open-Loop Voltage Gain vs. Temperature + Common-Mode Rejection Ratio vs. Temperature (Input Common-Mode Voltage) - RL=2kΩ to 0V, V /V =±3.5V, Vo=-1V to +1V + Common-Mode Rejection Ratio [dB] Open-Loop Voltage Gain [dB] 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 130 110 100 90 70 60 150 -50 Vicm=0V to +12V 110 100 90 Vicm=-12V to 0V 70 75 100 125 150 - 130 120 110 Vicm=0V to +1V 100 90 80 70 Vicm=-1V to 0V 60 -50 -25 0 25 50 75 100 125 150 -50 -25 0 Temperature [°C] 12 Maximum Output Voltage [V] -40°C 8 25°C 0 -4 85°C -8 75 100 125 150 V+/V-=±15V, GV=open, RL to 0V 16 12 4 50 Maximum Output Voltage vs. Load Resistance (Temperature) V+/V-=±16V, GV=open, RL to 0V 16 25 Temperature [°C] Maximum Output Voltage vs. Load Resistance (Temperature) Maximum Output Voltage [V] 50 + 60 -12 -40°C 8 25°C 4 0 -4 85°C -8 -12 -16 -16 10 100 1000 10000 Load Resistance [Ω] - 10 - 25 V /V =±3.5V 140 Common-Mode Rejection Ratio [dB] Common-Mode Rejection Ratio [dB] 0 Common-Mode Rejection Ratio vs. Temperature (Input Common-Mode Voltage) - 130 80 -25 Temperature [°C] V /V =±15V 120 Vicm=-13V to 0V 80 Common-Mode Rejection Ratio vs. Temperature (Input Common-Mode Voltage) 140 Vicm=0V to +13V 120 Temperature [°C] + - V /V =±16V 140 120 100000 10 100 1000 10000 100000 Load Resistance [Ω] Ver.2013-12-06 MUSES8820 Maximum Output Voltage vs. Load Resistance (Temperature) 16 GV=open,RL=2k,RL to 0V 16 12 12 -40°C Maximum Output Voltage [V] Maximum Output Voltage [V] Maximum Output Voltage vs. Temperature (Supply Voltage) V+/V-=±15V, GV=open, RL to 0V 8 25°C 4 0 -4 85°C -8 -12 ±15V 8 ±3.5V 4 0 -4 -8 V+/V-=±16V -12 -16 10 100 1000 10000 100000 -16 -50 Load Resistance [Ω] -25 0 25 50 75 100 125 150 Temperature [°C] Gain Bandwidth Product vs. Temperature Unity Gain Frequency vs. Temperature RT=50, f=10kHz, RL=2k, CL=10pF, Vin=-50dBm AV=+100, RS=100, RT=50, RL=2k,CL=10pF,Vin=-30dBm 18 10 + - Unity Gain Frequency [MHz] Gain Bandwidth Product [MHz] 9 15 V /V =±15V GV=80dB, Rs=10 12 + - V /V =±16V GV=80dB, Rs=10 9 6 + - V /V =±3.5V GV=66dB, Rs=50 3 8 V+/V-=±15V 7 6 ±16V 5 4 ±3.5V 3 2 1 0 0 -50 -25 0 25 50 75 100 125 150 Temperature [ºC] -50 -25 0 25 50 75 100 125 150 Temperature [ºC] Phase Margin vs. Temperature GV=+100, RS=100, RT=50, RL=2k, CL=10pF, Vin=-30dBm Phase Mergin [deg] 90 V+/V-=±15V 60 ±16V 30 ±3.5V 0 -50 -25 0 25 50 75 100 125 150 Temperature [ºC] Ver.2013-12-06 - 11 - MUSES8820 MEMO [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 12 - Ver.2013-12-06