NJM2719 Low Noise, High-Speed Dual Operational Amplifier ■PACKAGE OUTLINE ■ GENERAL DESCRIPTION The NJM2719 is a dual high speed voltage feedback operational amplifier specifically optimized for low voltage noise. A voltage noise specification of 2.5nV/√Hz Typ. (at f =100kHz), a unity gain of 100MHz combine to make the NJM2719 an ideal choice for I/Q baseband amplifier, RFID reader application and other in wireless communication system desighns. The NJM2719 is available in the 8-pin SO package (DMP8) with standard pinouts. For compact layouts, the dual is also available in a tiny dual fine pitch 8-pin package (SSOP8, TVSP8). ■ FEATURES ●Low Noise ●Unity Gain Bandwidth ●Phase Margin ●Slew Rate ●Output Rail-to-Rail ●Operating Voltage ●Bipolar Technology ●Package Outline ■ APPLICATION ●Wireless Communication Equipment ●I/Q Baseband Application ●RFID Reader Application ●Active Filter ●ADC/DAC Buffer ●Ultrasound Amplifier NJM2719M (DMP8) NJM2719V (SSOP8) NJM2719RB1 (TVSP8) Vni = 2.5nV/√Hz typ. at f=100kHz Vni = 3nV/√Hz typ. at f=10kHz fT = 100MHz typ. at V+/V- = ±5V fT = 90MHz typ. at V+/V- = ±2.5V Φm = 60deg typ. 60V/µs typ. at V+/V- = ±5V 35V/µs typ. at V+/V- = ±2.5V VOH ≥ +4.7V, VOL ≤ -4.8V at V+/V- = ±5V VOH ≥ +2.4V, VOL ≤ -2.4V at V+/V- = ±2.5V ±2.5V ~ ±5V DMP8 [NJM2719M] SSOP8 [NJM2719V] TVSP8 [NJM2719RB1] ■ PIN CONFIGURATION ( Top View ) A OUTPUT 1 A -INPUT 2 A +INPUT 3 V- 4 - + + - 8 V+ 7 B OUTPUT 6 B -INPUT 5 B +INPUT DMP8 [NJM2719M] SSOP8 [NJM2719V] TVSP8 [NJM2719RB1] Ver.2011-02-04 -1- NJM2719 ■ ABSOLUTE MAXIMUM RATINGS (Ta=25˚C) PARAMETER SYMBOL RATINGS UNIT Supply Voltage V+ +5.5 V Common Mode Input Voltage Range VICM ±5.5 (Note1) V Differential Input Voltage Range VID ±3 V Power Dissipation PD 370 [DMP8],310 [SSOP8], 400[TVSP8] mW 470[DMP8](Note2),410[SSOP8](Note2), 510[TVSP8] (Note2) mW Operating Temperature Range T opr -40 to +85 ˚C Storage Temperature Range T st g -50 to +150 ˚C (Note 1) The output voltage of normal operation will be the Output Voltage Swing of electrical characteristics. (Note 2) On the PCB " EIA/JEDEC (76.2x114.3x1.6mm, two layers, FR-4) " (Note 3) Do not exceed "Power dissipation: PD" in which power dissipation in IC is shown by the absolute maximum rating. Refer to following Figure 1 for a permissible loss when ambient temperature (Ta) is Ta ≥25oC. Figure1A: Power Dissipation – Ambient Temperature Figure1B: Power Dissipation – Ambient Temperature Pakage typ Pakage typ (1)SSOP8 : ΔPD= -2.5(m W/°C) (2)SSOP8[tw o layer] : ΔPD= -3.4(m W/°C) (3)TVSP8 : ΔPD= -3.2(m W/°C) (4)TVSP8[tw o layer] : ΔPD= -4.0(m W/°C) 600 (4) (1)DMP8 (2)DMP8[tw o layer] 600 500 500 (2) 400 (1) : ΔPD= -3.0(m W/°C) : ΔPD= -3.8(m W/°C) 400 (3) 300 (1) Power Dissipation P D (mW) Power Dissipation P D (mW) (2) 200 0 0 25 50 Ambient Temperature (deg) -2- 200 100 100 0 300 75 100 0 25 50 75 100 Ambient Temperature (deg) Ver.2011-02-04 NJM2719 ■ OPERATING VOLTAGE (Ta=25˚C) PARAMETER SYMBOL Supply Voltage + TEST CONDITION MIN. TYP. MAX. UNIT (Note3) ±2.25 - ±5.5 V - V /V ■ ELECTRICAL CHARACTERISTICS ●DC CHARACTERISTICS (V+/V−=±2.5V, Ta=25˚C) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Supply Current Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Offset Current Voltage Gain Common Mode Rejection Ratio Supply Voltage Rejection Ratio Icc VIO ΔVio/ΔT IB IIO Av CMR SVR VOH1 No Signal Rs=50Ω Rs=50Ω 68 82 84 +2.3 11 1 10 2.9 0.2 91 92 97 +2.4 14 9 25 2 - mA mV µV/deg µA µA dB dB dB +2.2 - -2.4 +2.3 -2.3 -2.3 -2.2 +1.2 - - - - -2 Maximum Output Voltage 1 Maximum Output Voltage 2 Common Mode Input Voltage Range VOL1 VOH2 VOL2 RL = 1kΩ to 0V, Vo = ±1V -2V ≤ VCM ≤ +1.2V ±2.25V ≤ V+/V- ≤ ±5V RL = 1kΩ to 0V Isource =4mA, +Input =+0.1V, -Input =-0.1V Isink =4mA, +Input =-0.1V, -Input =+0.1V VICM+ CMR≥82dB VICM- V V V ●AC CHARACTERISTICS (V+/V−=±2.5V, Ta=25˚C) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Unity Gain fT Av=+40dB, Rf =1.98kΩ, Rg =20Ω, RL =1kΩ to 0V, CL =5pF - 90 - MHz - 60 - deg - 10 - dB VNI2 f =100kHz f =10kHz - 2.5 3 - nV/√Hz Equivalent Input Noise Current INI f =100kHz - 3 - pA/√Hz Channel Separation CS f =1MHz, Vin =0.2Vpp, Av =+1, RL =1kΩ to 0V, CL =5pF - 70 - dB UNIT Phase Margin φm Gain Margin Gm Equivalent Input Noise Voltage VNI1 ●TRANSIENT CHARACTERISTICS (V+/V−=±2.5V, Ta=25˚C) PARAMETER Slew Rate 1 Slew Rate 2 SYMBOL TEST CONDITION MIN. TYP. MAX. +SR1 Av =0dB, RL =1kΩ to 0V, CL =5pF, Vout =2Vpp - 35 - - 35 - Av =+6dB, RL =1kΩ to 0V, CL =5pF, Vout =2Vpp - 30 - - 30 - Av =+6dB, RL =1kΩ to 0V, CL =5pF, Vout =0.2Vpp, 10% to 90% - 8.3 - - 8.3 - -SR1 +SR2 -SR2 V/μs V/μs Rise Time tr Fall Time tf Power Band Width PBW Av =+6dB, RL =1kΩ to 0V, CL =5pF, Vout =2Vpp, HD2 ≤-40dB, HD3 ≤-40dB - 3 - MHz Total Harmonic Distortion THD Av =+6dB, RL =1kΩ to 0V, CL =5pF, f =10kHz, Vout =2Vpp - 0.1 - % Second Harmonic HD2 Third Harmonic HD3 Settling time (1%) ts1 Settling time (0.1%) ts2 Ver.2011-02-04 Av =+6dB, RL =1kΩ to 0V, CL =5pF, f =1MHz, Vout =2Vpp Av =+6dB, RL =1kΩ to 0V, CL =5pF, Vout =2Vpp - -50 - - -50 - - 100 - - 110 - ns dBc ns -3- NJM2719 ●DC CHARACTERISTICS (V+/V−=±5V, Ta=25˚C) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Supply Current Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Offset Current Voltage Gain Common Mode Rejection Ratio Supply Voltage Rejection Ratio Icc VIO ΔVio/ΔT IB IIO Av CMR SVR VOH1 No Signal Rs=50Ω Rs=50Ω 70 82 84 +4.6 14 1 10 2.9 0.2 91 92 97 +4.7 17 9 25 2 - mA mV µV/deg µA µA dB dB dB +4.5 - -4.8 +4.6 -4.7 -4.7 -4.6 +3.7 - - - - -4.5 Maximum Output Voltage 1 Maximum Output Voltage 2 Common Mode Input Voltage Range VOL1 VOH2 VOL2 RL = 1kΩ to 0V, Vo = ±1V -4.5V ≤ VCM ≤ +3.7V ±2.25V ≤ V+/V- ≤ ±5V RL = 1kΩ to 0V Isource =5mA, +Input =+0.1V, -Input =-0.1V Isink =5mA, +Input =-0.1V, -Input =+0.1V VICM+ CMR≥82dB VICM- V V V ●AC CHARACTERISTICS (V+/V−=±5V, Ta=25˚C) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Unity Gain fT Av=+40dB, Rf =1.98kΩ, Rg =20Ω, RL =1kΩ to 0V, CL =5pF - 100 - MHz - 60 - deg - 10 - dB VNI2 f =100kHz f =10kHz - 2.5 3 - nV/√Hz Equivalent Input Noise Current INI f =100kHz - 3 - pA/√Hz Channel Separation CS f =1MHz, Vin =0.2Vpp, Av =+1, RL =1kΩ to 0V, CL =5pF - 70 - dB UNIT Phase Margin φm Gain Margin Gm Equivalent Input Noise Voltage VNI1 ●TRANSIENT CHARACTERISTICS (V+/V−=±5V, Ta=25˚C) PARAMETER Slew Rate 1 Slew Rate 2 SYMBOL TEST CONDITION MIN. TYP. MAX. +SR1 Av =0dB, RL =1kΩ to 0V, CL =5pF, Vout =5Vpp - 60 - - 60 - Av =+6dB, RL =1kΩ to 0V, CL =5pF, Vout =5Vpp - 55 - - 55 - Av =+6dB, RL =1kΩ to 0V, CL =5pF, Vout =0.2Vpp, 10% to 90% - 8 - - 8 - -SR1 +SR2 -SR2 V/μs V/μs Rise Time tr Fall Time tf Power Band Width PBW Av =+6dB, RL =1kΩ to 0V, CL =5pF, Vout =2Vpp, HD2 ≤-40dB, HD3 ≤-40dB - 4 - MHz Total Harmonic Distortion THD Av =+6dB, RL =1kΩ to 0V, CL =5pF, f =10kHz, Vout =2Vpp - 0.1 - % -4- Second Harmonic HD2 Third Harmonic HD3 Settling time (1%) ts1 Settling time (0.1%) ts2 Av =+6dB, RL =1kΩ to 0V, CL =5pF, f =1MHz, Vout =2Vpp Av =+6dB, RL =1kΩ to 0V, CL =5pF, Vout =2Vpp - -50 - - -50 - - 90 - - 110 - ns dBc ns Ver.2011-02-04 NJM2719 ■ TYPICAL CHARACTERISTICS Closed-Loop Gain/Phase vs. Frequency (Temperature) Equivalent Input Voltage Noise vs. Frequency - 225 50 Gain 40 180 30 15 10 10 0 0 -45 T a=-40°C Phase -90 -20 0 100 T a=25°C 10k 1k -40 100k 100k Unity Gain Frequency Response (Load Capacitance) + 1M + 20 15 15 0 5 Gain [dB] CL=20pF -5 -10 -10 -15 -15 10M 100M 1G T a=-40°C 0 CL=10pF 1M - 10 CL=50pF -5 1G V /V =±2.5V, RS=50Ω, RL=1kΩ, CL=5pF 20 5 -180 10M 100M Frequency [Hz] Unity Gain Frequency Response (Temperature) - V /V =±2.5V, RS=50Ω, RL=1kΩ, Ta=25°C 10 -135 T a=85°C Frequency [Hz] Gain [dB] 45 T a=85°C -30 -20 100k 90 T a=25°C -10 5 135 T a=-40°C 20 Gain [dB] Equivalent Input Voltage Noise [nV/√Hz] 20 + V /V =±2.5V, RS=50Ω, RF=2kΩ, RG=20Ω, RL=1kΩ, CL=5pF - Phase [deg] + V /V =±2.5V, RS=50Ω, RF=2kΩ, RG=20Ω, Ta=25°C Ta=25°C Ta=85°C -20 100k 1M Frequency [Hz] 10M 100M 1G Frequency [Hz] Channel Separation vs. Frequency Unity Gain Frequency Response (Supply Voltage) V+/V-=±2.5V, VO=0.2Vpp, GV=0dB, RL=1kΩ, CL=5pF, RS=50Ω, RL=1kΩ, CL=5pF, Ta=25°C 20 120 Channel Separation [dB] 15 Gain [dB] 10 + - V /V =±5V 5 0 -5 -10 + - V /V =±2.5V -15 -20 100k 1M 10M Frequency [Hz] Ver.2011-02-04 100M 1G 100 80 60 40 20 0 100k 1M 10M Frequency [Hz] 100M -5- NJM2719 Transinet Response (Load Capacitance) Transient Response (Load Capacitance) V+/V-=±2.5V,f=4MHz,VO=2VPP,GV=1,RT=50Ω, RL=1kΩ,Ta=25°C V+/V-=±5V,f=4MHz,VO=5VPP,GV=1,RT=50Ω, RL=1kΩ,Ta=25°C input 2V/div. 1V/div. input CL=20pF CL=20pF CL=5pF output CL=5pF output 50ns/div 50ns/div Transient Response (Temperature) + Transeint Response (Temperature) - + V /V =±5V,f=4MHz,VO=5VPP,GV=1,RT=50Ω, RL=1kΩ, CL=5pF V /V =±2.5V,f=4MHz,VO=2VPP,GV=1,RT=50Ω, RL=1kΩ, CL=5pF input 1V/div. input 2V/div. - T a=85°C Ta=85°C Ta=25°C output T a=25°C output T a=-40°C Ta=-40°C 50ns/div 50ns/div Supply Current vs. Supply Voltage Supply Current vs. Temperature GV=0dB, Ta=25°C GV=0dB, VICM=0V 25 18 14 Supply Current [mA] Supply Current [mA] 16 12 10 8 6 4 20 + - V /V =±5V 15 + - V /V =±2.5V 10 5 2 0 0 0 1 2 3 4 Supply Voltage [±V] -6- 5 6 -50 -25 0 25 50 75 100 125 150 Temperature [°C] Ver.2011-02-04 NJM2719 Maximum Output Voltage vs. Supply Voltage (Temperature) VIN=±0.2V,RL=1kΩ Maximum Output Voltage vs. Load Resistance (Temperature) V+/V-=±2.5V,VIN=±0.2V 2 Maximum Output Voltage [V] Maximum Output Voltage [V] 3 T a=85°C 1 0 T a=-40°C T a=25°C -1 -2 -3 10 100 1000 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 10000 Ta=-40°C T a=85°C Ta=25°C Ta=-40°C Ta=85°C 0 1 2 Maximum Output Voltage vs. Output Current (Temperature) T a=85°C 2 Maximum Output Voltage [V] Maximum Output Voltage [V] T a=25°C Ta=25°C 0 T a=-40°C -1 -2 -3 10 20 30 40 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 50 Ta=25°C T a=85°C 30 40 Ta=-40°C 0 10 20 50 Output Current [mA] Input Offset Voltage vs. Temperature VICM=0V 10.0 10.0 8.0 8.0 Input Offset Voltage vs. Input Common-mode Voltage (Temperature) + V /V =±2.5V 6.0 + Input Offset Voltage [mV] 6.0 Input Offset Voltage [mV] 6 T a=85°C Output Current [mA] - V /V =±5V 4.0 2.0 0.0 -2.0 + - V /V =±2.5V -4.0 4.0 Ta=-40°C 2.0 0.0 -2.0 Ta=25°C -4.0 -6.0 -6.0 -8.0 -8.0 Ta=85°C -10.0 -10.0 -50 -25 0 25 50 Temperature [°C] Ver.2011-02-04 5 V+/V-=±5V,VIN=±0.2V 3 0 4 Maximum Output Voltage vs. Output Current (Temperature) V+/V-=±2.5V,VIN=±0.2V T a=85°C 3 Supply Voltage [±V] Load Resistance [Ω] 1 Ta=25°C 75 100 125 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 Input Common-mode Voltage [V] -7- NJM2719 Supply Voltage Rejection Ratio vs. Temperature Open-loop Voltage Gain vs. Temperature VOUT=-1V to +1V, RL=1kΩ + + - V /V =±2.25V to ±5V 120 120 - Supply Voltage Rejection Ratio [dB] V /V =±5V Open-loop Voltage Gain [dB] 100 80 + - V /V =±2.5V 60 40 20 100 80 60 40 20 0 0 -50 -25 0 25 50 75 100 -50 125 -25 0 Common-mode Rejection Ratio vs. Temperature + - 100 125 VICM=0V V+/V-=±5V 1.5 Input Offset Current [μA] 80 - V /V =±2.5V 60 40 20 1.0 0.5 + - V /V =±5V 0.0 -0.5 + - V /V =±2.5V -1.0 -1.5 0 -2.0 -50 -25 0 25 50 Temperature [°C] -8- 75 2.0 100 + 50 Input Offset Voltage vs. Temperature + V /V =V +0.5V to V -1.3V 120 Common-mode Rejection Ratio [dB] - 25 Temperature [°C] Temperature [°C] 75 100 125 -50 -25 0 25 50 75 100 125 Temperature [°C] Ver.2011-02-04 NJM2719 ■ APPLICATION ●Stability Generally, when driving a large capacitive load in low closed-loop gain or unity-gain configurations, circuit stability is reduced. In the case of using the NJM2719 for these configurations, it is necessary to care about unwanted oscillation. An effective way to improve stability and to avoid oscillation is to add an isolation resistor as shown in Figure 1. Figure 2 shows required resistor values (RISO) for stability versus load capacitances (CL) in the unity-gain configuration (Figure 1). To ensure the stability, add a larger isolation resistor in Figure 2. (Resistor values in Figure2 are reference values when parasitic capacitance of an evaluation board is minimized.) 25 Supply Voltage ±5V R ISO VIN VOUT + RISO [Ω] 20 15 Supply Voltage ±2.5V 10 CL 5 Figure 1. 0 0 20 40 60 80 100 CL [pF] Figure 2. Required Isolation Resistor values for stability, RISO[Ω], versus Capacitive Loads, CL[pF]. (GV=0dB) Ver.2011-02-04 -9- NJM2719 ■ NOTE [CAUTION] The specifications on this data book are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this data book are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 10 - Ver.2011-02-04