NJRC NJM2719

NJM2719
Low Noise, High-Speed Dual Operational Amplifier
■PACKAGE OUTLINE
■ GENERAL DESCRIPTION
The NJM2719 is a dual high speed voltage feedback operational
amplifier specifically optimized for low voltage noise.
A voltage noise specification of 2.5nV/√Hz Typ. (at f =100kHz), a
unity gain of 100MHz combine to make the NJM2719 an ideal
choice for I/Q baseband amplifier, RFID reader application and
other in wireless communication system desighns.
The NJM2719 is available in the 8-pin SO package (DMP8) with
standard pinouts. For compact layouts, the dual is also available in
a tiny dual fine pitch 8-pin package (SSOP8, TVSP8).
■ FEATURES
●Low Noise
●Unity Gain Bandwidth
●Phase Margin
●Slew Rate
●Output Rail-to-Rail
●Operating Voltage
●Bipolar Technology
●Package Outline
■ APPLICATION
●Wireless Communication Equipment
●I/Q Baseband Application
●RFID Reader Application
●Active Filter
●ADC/DAC Buffer
●Ultrasound Amplifier
NJM2719M
(DMP8)
NJM2719V
(SSOP8)
NJM2719RB1
(TVSP8)
Vni = 2.5nV/√Hz typ. at f=100kHz
Vni = 3nV/√Hz typ. at f=10kHz
fT = 100MHz typ. at V+/V- = ±5V
fT = 90MHz typ. at V+/V- = ±2.5V
Φm = 60deg typ.
60V/µs typ. at V+/V- = ±5V
35V/µs typ. at V+/V- = ±2.5V
VOH ≥ +4.7V, VOL ≤ -4.8V at V+/V- = ±5V
VOH ≥ +2.4V, VOL ≤ -2.4V at V+/V- = ±2.5V
±2.5V ~ ±5V
DMP8 [NJM2719M]
SSOP8 [NJM2719V]
TVSP8 [NJM2719RB1]
■ PIN CONFIGURATION
( Top View )
A OUTPUT
1
A -INPUT
2
A +INPUT
3
V-
4
- +
+ -
8
V+
7
B OUTPUT
6
B -INPUT
5
B +INPUT
DMP8 [NJM2719M]
SSOP8 [NJM2719V]
TVSP8 [NJM2719RB1]
Ver.2011-02-04
-1-
NJM2719
■ ABSOLUTE MAXIMUM RATINGS (Ta=25˚C)
PARAMETER
SYMBOL
RATINGS
UNIT
Supply Voltage
V+
+5.5
V
Common Mode Input Voltage Range
VICM
±5.5 (Note1)
V
Differential Input Voltage Range
VID
±3
V
Power Dissipation
PD
370 [DMP8],310 [SSOP8], 400[TVSP8]
mW
470[DMP8](Note2),410[SSOP8](Note2),
510[TVSP8] (Note2)
mW
Operating Temperature Range
T opr
-40 to +85
˚C
Storage Temperature Range
T st g
-50 to +150
˚C
(Note 1) The output voltage of normal operation will be the Output Voltage Swing of electrical characteristics.
(Note 2) On the PCB " EIA/JEDEC (76.2x114.3x1.6mm, two layers, FR-4) "
(Note 3) Do not exceed "Power dissipation: PD" in which power dissipation in IC is shown by the absolute maximum rating.
Refer to following Figure 1 for a permissible loss when ambient temperature (Ta) is Ta ≥25oC.
Figure1A: Power Dissipation – Ambient Temperature
Figure1B: Power Dissipation – Ambient Temperature
Pakage typ
Pakage typ
(1)SSOP8
: ΔPD= -2.5(m W/°C)
(2)SSOP8[tw o layer] : ΔPD= -3.4(m W/°C)
(3)TVSP8
: ΔPD= -3.2(m W/°C)
(4)TVSP8[tw o layer] : ΔPD= -4.0(m W/°C)
600
(4)
(1)DMP8
(2)DMP8[tw o layer]
600
500
500
(2)
400
(1)
: ΔPD= -3.0(m W/°C)
: ΔPD= -3.8(m W/°C)
400
(3)
300
(1)
Power Dissipation P D (mW)
Power Dissipation P D (mW)
(2)
200
0
0
25
50
Ambient Temperature (deg)
-2-
200
100
100
0
300
75
100
0
25
50
75
100
Ambient Temperature (deg)
Ver.2011-02-04
NJM2719
■ OPERATING VOLTAGE (Ta=25˚C)
PARAMETER
SYMBOL
Supply Voltage
+
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
(Note3)
±2.25
-
±5.5
V
-
V /V
■ ELECTRICAL CHARACTERISTICS
●DC CHARACTERISTICS (V+/V−=±2.5V, Ta=25˚C)
PARAMETER
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
Supply Current
Input Offset Voltage
Input Offset Voltage Drift
Input Bias Current
Input Offset Current
Voltage Gain
Common Mode Rejection Ratio
Supply Voltage Rejection Ratio
Icc
VIO
ΔVio/ΔT
IB
IIO
Av
CMR
SVR
VOH1
No Signal
Rs=50Ω
Rs=50Ω
68
82
84
+2.3
11
1
10
2.9
0.2
91
92
97
+2.4
14
9
25
2
-
mA
mV
µV/deg
µA
µA
dB
dB
dB
+2.2
-
-2.4
+2.3
-2.3
-2.3
-2.2
+1.2
-
-
-
-
-2
Maximum Output Voltage 1
Maximum Output Voltage 2
Common Mode
Input Voltage Range
VOL1
VOH2
VOL2
RL = 1kΩ to 0V, Vo = ±1V
-2V ≤ VCM ≤ +1.2V
±2.25V ≤ V+/V- ≤ ±5V
RL = 1kΩ to 0V
Isource =4mA, +Input =+0.1V, -Input =-0.1V
Isink =4mA, +Input =-0.1V, -Input =+0.1V
VICM+
CMR≥82dB
VICM-
V
V
V
●AC CHARACTERISTICS (V+/V−=±2.5V, Ta=25˚C)
PARAMETER
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
Unity Gain
fT
Av=+40dB,
Rf =1.98kΩ, Rg =20Ω,
RL =1kΩ to 0V, CL =5pF
-
90
-
MHz
-
60
-
deg
-
10
-
dB
VNI2
f =100kHz
f =10kHz
-
2.5
3
-
nV/√Hz
Equivalent Input Noise Current
INI
f =100kHz
-
3
-
pA/√Hz
Channel Separation
CS
f =1MHz, Vin =0.2Vpp,
Av =+1, RL =1kΩ to 0V, CL =5pF
-
70
-
dB
UNIT
Phase Margin
φm
Gain Margin
Gm
Equivalent Input Noise Voltage
VNI1
●TRANSIENT CHARACTERISTICS (V+/V−=±2.5V, Ta=25˚C)
PARAMETER
Slew Rate 1
Slew Rate 2
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
+SR1
Av =0dB, RL =1kΩ to 0V, CL =5pF,
Vout =2Vpp
-
35
-
-
35
-
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
Vout =2Vpp
-
30
-
-
30
-
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
Vout =0.2Vpp, 10% to 90%
-
8.3
-
-
8.3
-
-SR1
+SR2
-SR2
V/μs
V/μs
Rise Time
tr
Fall Time
tf
Power Band Width
PBW
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
Vout =2Vpp, HD2 ≤-40dB, HD3 ≤-40dB
-
3
-
MHz
Total Harmonic Distortion
THD
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
f =10kHz, Vout =2Vpp
-
0.1
-
%
Second Harmonic
HD2
Third Harmonic
HD3
Settling time (1%)
ts1
Settling time (0.1%)
ts2
Ver.2011-02-04
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
f =1MHz, Vout =2Vpp
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
Vout =2Vpp
-
-50
-
-
-50
-
-
100
-
-
110
-
ns
dBc
ns
-3-
NJM2719
●DC CHARACTERISTICS (V+/V−=±5V, Ta=25˚C)
PARAMETER
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
Supply Current
Input Offset Voltage
Input Offset Voltage Drift
Input Bias Current
Input Offset Current
Voltage Gain
Common Mode Rejection Ratio
Supply Voltage Rejection Ratio
Icc
VIO
ΔVio/ΔT
IB
IIO
Av
CMR
SVR
VOH1
No Signal
Rs=50Ω
Rs=50Ω
70
82
84
+4.6
14
1
10
2.9
0.2
91
92
97
+4.7
17
9
25
2
-
mA
mV
µV/deg
µA
µA
dB
dB
dB
+4.5
-
-4.8
+4.6
-4.7
-4.7
-4.6
+3.7
-
-
-
-
-4.5
Maximum Output Voltage 1
Maximum Output Voltage 2
Common Mode
Input Voltage Range
VOL1
VOH2
VOL2
RL = 1kΩ to 0V, Vo = ±1V
-4.5V ≤ VCM ≤ +3.7V
±2.25V ≤ V+/V- ≤ ±5V
RL = 1kΩ to 0V
Isource =5mA, +Input =+0.1V, -Input =-0.1V
Isink =5mA, +Input =-0.1V, -Input =+0.1V
VICM+
CMR≥82dB
VICM-
V
V
V
●AC CHARACTERISTICS (V+/V−=±5V, Ta=25˚C)
PARAMETER
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
Unity Gain
fT
Av=+40dB,
Rf =1.98kΩ, Rg =20Ω,
RL =1kΩ to 0V, CL =5pF
-
100
-
MHz
-
60
-
deg
-
10
-
dB
VNI2
f =100kHz
f =10kHz
-
2.5
3
-
nV/√Hz
Equivalent Input Noise Current
INI
f =100kHz
-
3
-
pA/√Hz
Channel Separation
CS
f =1MHz, Vin =0.2Vpp,
Av =+1, RL =1kΩ to 0V, CL =5pF
-
70
-
dB
UNIT
Phase Margin
φm
Gain Margin
Gm
Equivalent Input Noise Voltage
VNI1
●TRANSIENT CHARACTERISTICS (V+/V−=±5V, Ta=25˚C)
PARAMETER
Slew Rate 1
Slew Rate 2
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
+SR1
Av =0dB, RL =1kΩ to 0V, CL =5pF,
Vout =5Vpp
-
60
-
-
60
-
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
Vout =5Vpp
-
55
-
-
55
-
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
Vout =0.2Vpp, 10% to 90%
-
8
-
-
8
-
-SR1
+SR2
-SR2
V/μs
V/μs
Rise Time
tr
Fall Time
tf
Power Band Width
PBW
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
Vout =2Vpp, HD2 ≤-40dB, HD3 ≤-40dB
-
4
-
MHz
Total Harmonic Distortion
THD
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
f =10kHz, Vout =2Vpp
-
0.1
-
%
-4-
Second Harmonic
HD2
Third Harmonic
HD3
Settling time (1%)
ts1
Settling time (0.1%)
ts2
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
f =1MHz, Vout =2Vpp
Av =+6dB, RL =1kΩ to 0V, CL =5pF,
Vout =2Vpp
-
-50
-
-
-50
-
-
90
-
-
110
-
ns
dBc
ns
Ver.2011-02-04
NJM2719
■ TYPICAL CHARACTERISTICS
Closed-Loop Gain/Phase vs. Frequency (Temperature)
Equivalent Input Voltage Noise vs.
Frequency
-
225
50
Gain
40
180
30
15
10
10
0
0
-45
T a=-40°C
Phase
-90
-20
0
100
T a=25°C
10k
1k
-40
100k
100k
Unity Gain Frequency Response (Load Capacitance)
+
1M
+
20
15
15
0
5
Gain [dB]
CL=20pF
-5
-10
-10
-15
-15
10M
100M
1G
T a=-40°C
0
CL=10pF
1M
-
10
CL=50pF
-5
1G
V /V =±2.5V, RS=50Ω, RL=1kΩ, CL=5pF
20
5
-180
10M
100M
Frequency [Hz]
Unity Gain Frequency Response (Temperature)
-
V /V =±2.5V, RS=50Ω, RL=1kΩ, Ta=25°C
10
-135
T a=85°C
Frequency [Hz]
Gain [dB]
45
T a=85°C
-30
-20
100k
90
T a=25°C
-10
5
135
T a=-40°C
20
Gain [dB]
Equivalent Input Voltage Noise [nV/√Hz]
20
+
V /V =±2.5V, RS=50Ω, RF=2kΩ, RG=20Ω,
RL=1kΩ, CL=5pF
-
Phase [deg]
+
V /V =±2.5V, RS=50Ω, RF=2kΩ, RG=20Ω, Ta=25°C
Ta=25°C
Ta=85°C
-20
100k
1M
Frequency [Hz]
10M
100M
1G
Frequency [Hz]
Channel Separation vs. Frequency
Unity Gain Frequency Response (Supply Voltage)
V+/V-=±2.5V, VO=0.2Vpp, GV=0dB,
RL=1kΩ, CL=5pF,
RS=50Ω, RL=1kΩ, CL=5pF, Ta=25°C
20
120
Channel Separation [dB]
15
Gain [dB]
10
+
-
V /V =±5V
5
0
-5
-10
+
-
V /V =±2.5V
-15
-20
100k
1M
10M
Frequency [Hz]
Ver.2011-02-04
100M
1G
100
80
60
40
20
0
100k
1M
10M
Frequency [Hz]
100M
-5-
NJM2719
Transinet Response (Load Capacitance)
Transient Response (Load Capacitance)
V+/V-=±2.5V,f=4MHz,VO=2VPP,GV=1,RT=50Ω,
RL=1kΩ,Ta=25°C
V+/V-=±5V,f=4MHz,VO=5VPP,GV=1,RT=50Ω,
RL=1kΩ,Ta=25°C
input
2V/div.
1V/div.
input
CL=20pF
CL=20pF
CL=5pF
output
CL=5pF
output
50ns/div
50ns/div
Transient Response (Temperature)
+
Transeint Response (Temperature)
-
+
V /V =±5V,f=4MHz,VO=5VPP,GV=1,RT=50Ω,
RL=1kΩ, CL=5pF
V /V =±2.5V,f=4MHz,VO=2VPP,GV=1,RT=50Ω,
RL=1kΩ, CL=5pF
input
1V/div.
input
2V/div.
-
T a=85°C
Ta=85°C
Ta=25°C
output
T a=25°C
output
T a=-40°C
Ta=-40°C
50ns/div
50ns/div
Supply Current vs. Supply Voltage
Supply Current vs. Temperature
GV=0dB, Ta=25°C
GV=0dB, VICM=0V
25
18
14
Supply Current [mA]
Supply Current [mA]
16
12
10
8
6
4
20
+
-
V /V =±5V
15
+
-
V /V =±2.5V
10
5
2
0
0
0
1
2
3
4
Supply Voltage [±V]
-6-
5
6
-50 -25
0
25
50
75 100 125 150
Temperature [°C]
Ver.2011-02-04
NJM2719
Maximum Output Voltage vs.
Supply Voltage (Temperature)
VIN=±0.2V,RL=1kΩ
Maximum Output Voltage vs.
Load Resistance (Temperature)
V+/V-=±2.5V,VIN=±0.2V
2
Maximum Output Voltage [V]
Maximum Output Voltage [V]
3
T a=85°C
1
0
T a=-40°C
T a=25°C
-1
-2
-3
10
100
1000
6
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6
10000
Ta=-40°C
T a=85°C
Ta=25°C
Ta=-40°C
Ta=85°C
0
1
2
Maximum Output Voltage vs.
Output Current (Temperature)
T a=85°C
2
Maximum Output Voltage [V]
Maximum Output Voltage [V]
T a=25°C
Ta=25°C
0
T a=-40°C
-1
-2
-3
10
20
30
40
6
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6
50
Ta=25°C
T a=85°C
30
40
Ta=-40°C
0
10
20
50
Output Current [mA]
Input Offset Voltage vs. Temperature
VICM=0V
10.0
10.0
8.0
8.0
Input Offset Voltage vs. Input Common-mode
Voltage (Temperature)
+ V /V =±2.5V
6.0
+
Input Offset Voltage [mV]
6.0
Input Offset Voltage [mV]
6
T a=85°C
Output Current [mA]
-
V /V =±5V
4.0
2.0
0.0
-2.0
+
-
V /V =±2.5V
-4.0
4.0
Ta=-40°C
2.0
0.0
-2.0
Ta=25°C
-4.0
-6.0
-6.0
-8.0
-8.0
Ta=85°C
-10.0
-10.0
-50
-25
0
25
50
Temperature [°C]
Ver.2011-02-04
5
V+/V-=±5V,VIN=±0.2V
3
0
4
Maximum Output Voltage vs.
Output Current (Temperature)
V+/V-=±2.5V,VIN=±0.2V
T a=85°C
3
Supply Voltage [±V]
Load Resistance [Ω]
1
Ta=25°C
75
100
125
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
Input Common-mode Voltage [V]
-7-
NJM2719
Supply Voltage Rejection Ratio vs.
Temperature
Open-loop Voltage Gain vs. Temperature
VOUT=-1V to +1V, RL=1kΩ
+
+
-
V /V =±2.25V to ±5V
120
120
-
Supply Voltage Rejection Ratio [dB]
V /V =±5V
Open-loop Voltage Gain [dB]
100
80
+
-
V /V =±2.5V
60
40
20
100
80
60
40
20
0
0
-50
-25
0
25
50
75
100
-50
125
-25
0
Common-mode Rejection Ratio vs.
Temperature
+
-
100
125
VICM=0V
V+/V-=±5V
1.5
Input Offset Current [μA]
80
-
V /V =±2.5V
60
40
20
1.0
0.5
+
-
V /V =±5V
0.0
-0.5
+
-
V /V =±2.5V
-1.0
-1.5
0
-2.0
-50
-25
0
25
50
Temperature [°C]
-8-
75
2.0
100
+
50
Input Offset Voltage vs. Temperature
+
V /V =V +0.5V to V -1.3V
120
Common-mode Rejection Ratio [dB]
-
25
Temperature [°C]
Temperature [°C]
75
100
125
-50
-25
0
25
50
75
100
125
Temperature [°C]
Ver.2011-02-04
NJM2719
■ APPLICATION
●Stability
Generally, when driving a large capacitive load in low closed-loop gain or unity-gain configurations, circuit stability is
reduced. In the case of using the NJM2719 for these configurations, it is necessary to care about unwanted oscillation.
An effective way to improve stability and to avoid oscillation is to add an isolation resistor as shown in Figure 1.
Figure 2 shows required resistor values (RISO) for stability versus load capacitances (CL) in the unity-gain configuration
(Figure 1). To ensure the stability, add a larger isolation resistor in Figure 2. (Resistor values in Figure2 are reference
values when parasitic capacitance of an evaluation board is minimized.)
25
Supply Voltage ±5V
R ISO
VIN
VOUT
+
RISO [Ω]
20
15
Supply Voltage ±2.5V
10
CL
5
Figure 1.
0
0
20
40
60
80
100
CL [pF]
Figure 2. Required Isolation Resistor values for
stability, RISO[Ω], versus Capacitive Loads,
CL[pF]. (GV=0dB)
Ver.2011-02-04
-9-
NJM2719
■ NOTE
[CAUTION]
The specifications on this data book are only given for information,
without any guarantee as regards either mistakes or omissions. The
application circuits in this data book are described only to show
representative usages of the product and not intended for the
guarantee or permission of any right including the industrial rights.
- 10 -
Ver.2011-02-04