Datasheet

PT8A2803
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
500mA Li-ion/Polymer Battery Charger
Features
Description
•
The PT8A2803 is a fully integrated single-cell Liion/Polymer battery charger. The charger operates in a
constant-current-constant-voltage (CC/CV) charging
profile without employing external FETs and blocking
diodes.
•
•
•
•
•
•
•
•
•
A Constant-Current / Constant-Voltage Linear
Charger for Single-Cell Li-ion/Polymer Batteries
Integrated Pass Element and Current Sensor
Highly-Integrated, Requiring No External FETs or
Blocking Diode
±0.5% 4.2V Voltage Accuracy at Room
Temperature. ±1% All Temperatures. (Available
with 4.1V and 4.36V options upon request)
Programmable Charge Current 50mA to 500mA
Programmable End-Of-Charge Current by Current
Recharge Algorithm
Pre-Charge for Fully Discharged Batteries
Less Than 1µA Leakage Current Of the Battery
when No Input Power Attached or Charger Disabled
Power Present and Charge Status Indications
Thermal Regulation on Charging Current to Prevent
Over-Heat
Available with 8-pin 2x3mm TDFN Package
The fast charge current and end-of-charge (EOC) current
can be easily programmed by modifying two external
resistors. When the battery is deeply discharged to lower
than 2.8V, the charger firstly pre-charges the battery
with typically 20% of the programmable fast charge
current. When the charge current is reduced to the
programmed EOC current level (almost works
completely in a constant-voltage (CV) mode), an EOC
indication is displayed through the CHG pins.
PT8A2803 is protected by thermal regulation technology
to prevent the IC from over-heat during charging.
Applications
Two status indication pins ( PPR and CHG ), which are
both implemented as an open-drain outputs, can be used
to drive LEDs or work as logic interface to a
microprocessor. When no adapter is attached or when
the charger is disabled, the leakage current from battery
cell is less than 1µA typically.
•
Cell-phones, PDA, MP3, MP4, PMP
Ordering Information
•
Standalone Chargers
•
•
Bluetooth Applications
Ordering No.
Package
PT8A2803ZEE
Lead free and Green 8-pin TDFN
Notes:
z
E = Pb-free and Green
z
Adding X Suffix= Tape/Reel
PT0324-1
12-03-0002
1
03/06/12
PT8A2803
500mA Li-ion/Polymer Battery Charger
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Block Diagram
BAT
VIN
VOS
VREF
POR
VBAT
PPR
VREF
Charge Control
EN
CHG
200K
DIE
TEMP
GND
115°C
EN
IREF
IMIN
Figure 1 Block diagram of PT8A2803
Pin Assignment
VIN
1
8
BAT
PPR
2
7
IREF
CHG
3
6
IMIN
EN
4
5
GND
TDFN 2x3mm
Pin Description
Pin
1
2
3
4
5
6
7
8
I/O
I/O
O
O
I
I/O
I
I
O
Name
VIN
PPR
CHG
EN
GND
IMIN
IREF
BAT
Descriptions
Supply Input.
Power Present Active-Low Open Drain Power Status Indicator
Charge Active-Low Open Drain Charge Status Indicator
Enable Active-Low Input
Ground
End-Of-Charge Current Setting Input
Charge Current Setting Input
Battery Terminal
12-03-0002
PT0324-1
2
03/06/12
PT8A2803
500mA Li-ion/Polymer Battery Charger
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Functional Description
The PT8A2803 charges a single-cell Li-ion/Polymer battery with a programmable constant current (CC) or a constant voltage (CV)
algorithm. The fast charge current (ICHG) can be programmed by setting an external resistor RIREF (see Figure 3/4) while
constant voltage is factory-trimmed at 4.2V (4.1V or 4.36V) options area available upon request). If the battery voltage was deeply
discharged to lower than 2.55V, PT8A2803 firstly pre-charges the battery with 20% of the programmed fast charge current.
Normally, the battery voltage rises gradually during CC charge phase. When the battery voltage reaches almost 4.2V, the charger
enters the constant-voltage (CV) charging mode and begins to regulate the battery voltage at 4.2V while diminishing the charging
current gradually. When charging current is reduced to an amount smaller than the programmed End-Of-Charge (EOC) current
level, the charger gives out a “full-charge” indication through the CHG pin, but the charger still continues to regulate the battery
voltage at 4.2V with safe & small current. Figure 2 shows the typical charge profile with the EOC/reset event.
PT8A2803 employs current recharge algorithm. The end-of charge (EOC) current level can be easily programmed with an external
resistor RIMIN (see Figure 3/4). The CHG signal turns to LOW when pre-charge starts and rises to HIGH when EOC is reached.
After reaching EOC, the charge current has to rise to typically 76% ICHG before the CHG signal will turn on again, as shown in
Figure 2. The current surge after EOC can be caused by a load connected to the battery.
When the die temperature reaches 115°C (typically) during charging, a thermal regulation function is employed to reduce the
charge current accordingly to maintain the temperature from increasing furthermore. This is an important function to achieve safe
operation especially when the printed circuit board (PCB) is not effective in leaking out heat generated by the linear charger.
PPR Indication
The PPR pin is implemented as an open-drain output to
provide a power-good indication of the input power source
such as an AC adapter. When the input voltage is higher than
the POR (Power-On Reset) threshold, the PPR pin turns on the
internal open-drain MOSFET to indicate a logic LOW signal.
The PPR indication is designed to be independent on the chip
enable ( EN -pin) input. When the internal open-drain FET is
turned off, the PPR pin should leak less than 1µA current.
When turned on, the PPR pin should be able to sink at least
10mA current under all operating conditions. The PPR pin can
be used to drive an LED (see Figure 3) or worked as logic
interface to a microprocessor (see Figure 4).
CHG Indication
The CHG pin is implemented as an open-drain output to give a
logic LOW when a charge cycle begins and turn HIGH when
an end-of-charge (EOC) condition is reached. This pin is
designed with a sinking ability of more than 10mA so as to
drive an LED. When the charger is disabled through EN -pin,
the CHG outputs a high impedance. The CHG pin can also be
used to interface with a microprocessor.
EN Input
The chip is enabled by a logic LOW signal applied to the EN
pin. This pin is realized with a 200kΩ internal pull-down
resistor such that even the EN pin is left floating, the input is
equivalent to logic LOW and the chip is enabled by default.
Similarly, the chip is disabled when the EN pin receives a
logic HIGH signal. The threshold for HIGH is given in the ES
(Electrical Specifications).
Power-Good Range
The input voltage is considered as power good when it meets
the following three conditions:
1. VIN > VPOR
2. VIN - VBAT > VOS
IMIN Indication
The IMIN pin can be used to program the End-of-Charge
(EOC) current by connecting a resistor between this pin and
the GND pin. The programming is defined by the following
equation:
IMIN (mA) = 4180/ RIMIN
Where RIMIN is usually in kΩ.
Where the VOS is the offset voltage to determine if the battery
voltage is even higher than the input voltage. All VPOR and
VOS are realized with sufficient hysteresis, as given in the
Electrical Specification table. All charging activities are
disabled when the input voltage falls out of the power-good
range.
Input and Output Comparator
Obviously, when the input source voltage is lower than the
battery voltage, no charging activity could be started and the
charger will disable the internal pass element to prevent
battery leakage. Charge begins when the input voltage is
higher than the battery voltage by a defined offset voltage
(VOS). This scheme also ensures that the charger is
completely turned off when the input power is removed from
the charger.
IREF Pin
The IREF pin is for fast charge-current programming. By
connecting a resistor between this pin and the GND pin, the
fast charge current limit is determined by the following
equation:
ICHG (mA) = 4400/RIREF
Where RIREF is in kΩ. The actual charge current is guaranteed
to have 10% accuracy of ICHG with the charge current set at
150mA.
12-03-0002
PT0324-1
3
03/06/12
PT8A2803
500mA Li-ion/Polymer Battery Charger
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4.2V battery voltage, constant current could still be
maintained when the input voltage is below 4.62V.
BAT pin
Always connect the BAT pin to a single-cell Li-ion/Polymer
battery in parallel with a 1µF (or larger) X5R ceramic
capacitor for decoupling and guaranteeing system stability.
When the EN pin is pulled to logic HIGH, the BAT output is
disabled. The PT8A2803 relies on a battery for stability and is
not guaranteed to be stable if the battery is not connected.
Thermal Foldback
The bottom big exposed pad in TDFN package is used for
thermal foldback. For reducing the chip ambient temperature
as much as possible, it is recommended to connect as much
copper as possible to this pad either on the component layer or
other layers through thermal vias. The thermal regulation
function starts to reduce the charge current when the internal
temperature reaches a typical value of 115°C.
Dropout Voltage
When the input voltage is low while the battery voltage is high,
the charging current may not be maintained according to the
equation IMIN (mA) = 4180/RIMIN due to a limited internal onresistance (RDS(ON)) of the internal pass element. The worst
resistance of the pass FET is about 1.2Ω at the maximum
operating temperature, thus if tested with 500mA current and
V
CC
Mode
CV
Mode
Added loading
Battery Voltage
4.2V
2.55V
Charging Current
A
ICHG
IRECHG
IPRE
IMIN
CHG
EOC
(LED
OFF)
Charging
(LED ON)
Recharge
(LED ON)
Figure 2 PT8A2803 Typical Charge Profile
12-03-0002
PT0324-1
4
03/06/12
PT8A2803
500mA Li-ion/Polymer Battery Charger
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maximum Ratings
Storage Temperature........................................................................................................................ -65oC to +150oC
Supply Voltage to Ground Potential (VIN PT8A2803)........................................................... -0.3V to+7.0V
Supply Voltage to Ground Potential (IMIN/IREF/BAT/ CHG / EN / PPR )............... 0.3V to+7.0V
Thermal Resistance (Typical for DFN Package) .................................................. θJA (°C/W)=59,
θJC (°C/W)=4.5
Note:
Stresses greater than those listed under
MAXIMUM RATINGS may cause
permanent damage to the device. This is a
stress rating only and functional operation
of the device at these or any other conditions above those indicated in the
operational sec-tions of this specification is
not implied. Exposureto absolute maximum
rating conditions for extended periods may
affect reliability.
Recommended Operating Conditions
Sym
Parameter
Min
Typ
Max
Unit
VIN
Programmable Current
TA
Operating Voltage
Operating temperature
4.3
50
-30
-
5.5
500
+85
V
mA
°C
Electrical Specifications
Typical values are at VIN=5V and TA =25°C. All maximum and minimum values are at TA = -30°C to +85°C, unless otherwise
noted.
Parameter
Sym
Conditions
Min
Typ Max Units
POWER-ON RESET
Rising POR Threshold
VPOR
3.9
4.3
V
VBAT=3.0V, use PPR to indicate the 3.3
3.1
3.6
4.15
V
Falling POR Threshold
VPOR
output
VIN-VBAT OFFSET VOLTAGE
Rising Edge
VOS
90 150
mV
VBAT=4.0V, use CHG pin to indicate the
Falling Edge
VOS
10
50
mV
comparator output
STANDBY CURRENT
BAT pin sink current
ISTBY
Charger disabled or the input is floating
1
µA
DC Supply Current
IDC
Charger disabled
300
400 µA
DC Supply Current
IDC
Charger enabled
500
700 µA
VOLTAGE REGULATION
Output voltage
VCH
4.3V < VIN<5.5V Charge current=20mA 4.158 4.20 4.242 V
VBAT=3.8V, charge current=0.5A, RIREF
0.6
Ω
Power FET “ON” Resistance
RDS(ON)
=8kΩ
CHARGE CURRENT
135
150
165
Constant Charge Current
ICHG
RIREF=29.4kΩ, VBAT = 2.8–4.0V
mA
18
25
32
Precharge Charge Current
IPRE
RIREF=29.4kΩ, VBAT = 2.4V
mA
20
30
40
End of Charge Current
IMIN
RIMIN=137kΩ
mA
90
100
130
EOC Rising Threshold
IRECHG
RIREF =29.4kΩ
mA
PRECHARGE CHARGE THRESHOLD
Precharge Threshold Voltage
VPRE
2.45
2.55 2.65
V
Precharge Voltage Hysteresis
VPREHYS
40
100 150
mV
INTERNAL TEMPERATURE MONITORING
Thermal regulation threshold (Note)
TFOLD
100
115 130
°C
LOGIC INPUT AND OUTPUTS
VENH
1.3
V
EN Pin Logic Input High
VENL
0.5
V
EN Pin Logic Input Low
R
100
200
400
kΩ
Pin
Internal
Pull
Down
Resistance
EN
EN
VCHG=1V
10
20
mA
ICHGOL
CHG Pin Sink Current When LOW
VCHG=5.5V
1
µA
CHG Pin Leakage Current When HIGH ICHGOH
VPPR=1V
10
20
mA
IPPROL
PPR Pin Sink Current When LOW
VPPR=5.5V
1
µA
PPR Pin Leakage Current When HIGH IPPROH
Note: This parameter is guaranteed by design, not tested.
12-03-0002
PT0324-1
5
03/06/12
PT8A2803
500mA Li-ion/Polymer Battery Charger
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Application Circuit
VIN
DC IN
C1
R2
D2
2
R1
D1
3
OFF
4
ON
VIN
8
VBAT
PT8A2803
1
PPR
CHG
EN
7
IREF
6
IMIN
BATTERY
RIREF
C2
RIMIN
5
GND
Figure 3 PT8A2803 Typical Application Circuit to Indication LEDs
Component Description for Figure 3
Description
1µF X5R ceramic cap
1µF X5R ceramic cap
29.4kΩ, 1% for 150mA charge current
294kΩ, 1% for 15mA EOC current
300Ω, 5%
LEDs for indication
Part
C1
C2
RIREF
RIMIN
R1, R2
D1, D2
VIN
DC IN
C1
BAT
R2
2
R1
3
MCU
4
MCU
VIN
PPR
CHG
VBAT
PT8A2803
1
MCU
EN
IREF
IMIN
GND
8
7
6
BAT
RIREF
BATTERY
C2
RIMIN
5
OFF
ON
Figure 4 PT8A2803 Typical Application Circuit Interfacing to a MCU
Part
C1
C2
RIREF
RIMIN
R1, R2
Component Description for Figure 4
Description
1µF X5R ceramic cap
1µF X5R ceramic cap
29.4kΩ, 1% for 150mA charge current
294kΩ, 1% for 15mA EOC current
100kΩ, 5%
12-03-0002
PT0324-1
6
03/06/12
PT8A2803
500mA Li-ion/Polymer Battery Charger
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Application Information
Input Capacitor Selection
The input capacitor is employed to decouple the power supply from load transients and suppress noise from power lines. Typically,
a 1µF X5R ceramic capacitor is recommended to be placed very close between the VIN pin and GND pin to stabilize the operation
during the start up, especially when the input supply is passing the POR threshold and the VIN-BAT comparator offset voltage.
Once passing through the POR threshold, there is a voltage hysteresis to provide sufficient guard band from noise or load transient
to trigger the system to reset.
Output Capacitor Selection
The criterion for selecting the output capacitor is to maintain the stability of the charger as well as to bypass any transient load
current. Typically, a minimum capacitance of 1µF X5R ceramic capacitor is recommended and sufficient for stabilizing the system.
For systems that may happen to occasionally see high load transients, the output capacitor may be increased to further bypass any
ripples so caused.
Charge Current Limit
During the constant-current (CC) charging mode, the charging current is primarily determined by ICHG as calculated in previous
formula. However, the actual charge current is the CC mode could also be limited by other factors as described by below Figure 5.
When the input (VIN) and output (VBAT) voltage are too close to each other, the on-resistance of the internal pass element may
limit the amount of current that passes through it. For example, the solid curve describes a typical case in which the battery voltage
is 4.0V and the charge current (ICHG) is set at 350mA. When the input voltage is sufficiently higher than the battery voltage but has
not increased the die temperature over the thermal limit yet, the charging current is accurately regulated at 350mA.
Figure 5: PT8A2803 Charge Current Limits In CC Mode
When the input voltage is reduced (or the battery voltage is increases towards the input voltage), the charge current is limited by
the on-resistance of the pass element. Therefore, it is recommended to employ sufficiently high input voltage for applications that
require constant charging current over the entire charging period. But for applications that needs to minimize the heat dissipation,
a current-limiting adapter maybe applied to maintain constant charging current at whole charging phase.
In addition, if the input voltage increases, the charge current may also be reduced due to the thermal foldback function. The high
voltage drop across the pass element increases the power dissipation therein and thus causing the die temperature to increase
significantly.
Layout Guidance
The PT8A2803 employs thermally-enhanced DFN package, which have an exposed thermal pad at its bottom side. It is
recommended to connect as much copper as possible between the exposed pad and PCB to make it effective in dissipating the heat
away from the die. For applications requiring high charging current, the thermal impedance should be further reduced by
employing more layers of copper to connect with the exposed pad through thermal via.
Input Power Sources
PT8A2803 works with different types of AC/DC adapter or USB port (any type) with no special requirements. For PT8A2803, it
works with input voltage ranges from 4.3V to 5.5V for normal operation but the maximum input voltage is 7V.
12-03-0002
PT0324-1
7
03/06/12
PT8A2803
500mA Li-ion/Polymer Battery Charger
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mechanical Information
ZEE (Lead free and Green TDFN 2x3mm)
X.XX
X.XX
DENOTES DIMENSIONS
IN MILLIMETERS
Note:
1) Controlling dimensions in millimeters.
Pericom Semiconductor Corporation y 1-800-435-2336 y www.pericom.com
12-03-0002
PT0324-1
8
03/06/12