PT8A2803 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 500mA Li-ion/Polymer Battery Charger Features Description • The PT8A2803 is a fully integrated single-cell Liion/Polymer battery charger. The charger operates in a constant-current-constant-voltage (CC/CV) charging profile without employing external FETs and blocking diodes. • • • • • • • • • A Constant-Current / Constant-Voltage Linear Charger for Single-Cell Li-ion/Polymer Batteries Integrated Pass Element and Current Sensor Highly-Integrated, Requiring No External FETs or Blocking Diode ±0.5% 4.2V Voltage Accuracy at Room Temperature. ±1% All Temperatures. (Available with 4.1V and 4.36V options upon request) Programmable Charge Current 50mA to 500mA Programmable End-Of-Charge Current by Current Recharge Algorithm Pre-Charge for Fully Discharged Batteries Less Than 1µA Leakage Current Of the Battery when No Input Power Attached or Charger Disabled Power Present and Charge Status Indications Thermal Regulation on Charging Current to Prevent Over-Heat Available with 8-pin 2x3mm TDFN Package The fast charge current and end-of-charge (EOC) current can be easily programmed by modifying two external resistors. When the battery is deeply discharged to lower than 2.8V, the charger firstly pre-charges the battery with typically 20% of the programmable fast charge current. When the charge current is reduced to the programmed EOC current level (almost works completely in a constant-voltage (CV) mode), an EOC indication is displayed through the CHG pins. PT8A2803 is protected by thermal regulation technology to prevent the IC from over-heat during charging. Applications Two status indication pins ( PPR and CHG ), which are both implemented as an open-drain outputs, can be used to drive LEDs or work as logic interface to a microprocessor. When no adapter is attached or when the charger is disabled, the leakage current from battery cell is less than 1µA typically. • Cell-phones, PDA, MP3, MP4, PMP Ordering Information • Standalone Chargers • • Bluetooth Applications Ordering No. Package PT8A2803ZEE Lead free and Green 8-pin TDFN Notes: z E = Pb-free and Green z Adding X Suffix= Tape/Reel PT0324-1 12-03-0002 1 03/06/12 PT8A2803 500mA Li-ion/Polymer Battery Charger ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Block Diagram BAT VIN VOS VREF POR VBAT PPR VREF Charge Control EN CHG 200K DIE TEMP GND 115°C EN IREF IMIN Figure 1 Block diagram of PT8A2803 Pin Assignment VIN 1 8 BAT PPR 2 7 IREF CHG 3 6 IMIN EN 4 5 GND TDFN 2x3mm Pin Description Pin 1 2 3 4 5 6 7 8 I/O I/O O O I I/O I I O Name VIN PPR CHG EN GND IMIN IREF BAT Descriptions Supply Input. Power Present Active-Low Open Drain Power Status Indicator Charge Active-Low Open Drain Charge Status Indicator Enable Active-Low Input Ground End-Of-Charge Current Setting Input Charge Current Setting Input Battery Terminal 12-03-0002 PT0324-1 2 03/06/12 PT8A2803 500mA Li-ion/Polymer Battery Charger ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Functional Description The PT8A2803 charges a single-cell Li-ion/Polymer battery with a programmable constant current (CC) or a constant voltage (CV) algorithm. The fast charge current (ICHG) can be programmed by setting an external resistor RIREF (see Figure 3/4) while constant voltage is factory-trimmed at 4.2V (4.1V or 4.36V) options area available upon request). If the battery voltage was deeply discharged to lower than 2.55V, PT8A2803 firstly pre-charges the battery with 20% of the programmed fast charge current. Normally, the battery voltage rises gradually during CC charge phase. When the battery voltage reaches almost 4.2V, the charger enters the constant-voltage (CV) charging mode and begins to regulate the battery voltage at 4.2V while diminishing the charging current gradually. When charging current is reduced to an amount smaller than the programmed End-Of-Charge (EOC) current level, the charger gives out a “full-charge” indication through the CHG pin, but the charger still continues to regulate the battery voltage at 4.2V with safe & small current. Figure 2 shows the typical charge profile with the EOC/reset event. PT8A2803 employs current recharge algorithm. The end-of charge (EOC) current level can be easily programmed with an external resistor RIMIN (see Figure 3/4). The CHG signal turns to LOW when pre-charge starts and rises to HIGH when EOC is reached. After reaching EOC, the charge current has to rise to typically 76% ICHG before the CHG signal will turn on again, as shown in Figure 2. The current surge after EOC can be caused by a load connected to the battery. When the die temperature reaches 115°C (typically) during charging, a thermal regulation function is employed to reduce the charge current accordingly to maintain the temperature from increasing furthermore. This is an important function to achieve safe operation especially when the printed circuit board (PCB) is not effective in leaking out heat generated by the linear charger. PPR Indication The PPR pin is implemented as an open-drain output to provide a power-good indication of the input power source such as an AC adapter. When the input voltage is higher than the POR (Power-On Reset) threshold, the PPR pin turns on the internal open-drain MOSFET to indicate a logic LOW signal. The PPR indication is designed to be independent on the chip enable ( EN -pin) input. When the internal open-drain FET is turned off, the PPR pin should leak less than 1µA current. When turned on, the PPR pin should be able to sink at least 10mA current under all operating conditions. The PPR pin can be used to drive an LED (see Figure 3) or worked as logic interface to a microprocessor (see Figure 4). CHG Indication The CHG pin is implemented as an open-drain output to give a logic LOW when a charge cycle begins and turn HIGH when an end-of-charge (EOC) condition is reached. This pin is designed with a sinking ability of more than 10mA so as to drive an LED. When the charger is disabled through EN -pin, the CHG outputs a high impedance. The CHG pin can also be used to interface with a microprocessor. EN Input The chip is enabled by a logic LOW signal applied to the EN pin. This pin is realized with a 200kΩ internal pull-down resistor such that even the EN pin is left floating, the input is equivalent to logic LOW and the chip is enabled by default. Similarly, the chip is disabled when the EN pin receives a logic HIGH signal. The threshold for HIGH is given in the ES (Electrical Specifications). Power-Good Range The input voltage is considered as power good when it meets the following three conditions: 1. VIN > VPOR 2. VIN - VBAT > VOS IMIN Indication The IMIN pin can be used to program the End-of-Charge (EOC) current by connecting a resistor between this pin and the GND pin. The programming is defined by the following equation: IMIN (mA) = 4180/ RIMIN Where RIMIN is usually in kΩ. Where the VOS is the offset voltage to determine if the battery voltage is even higher than the input voltage. All VPOR and VOS are realized with sufficient hysteresis, as given in the Electrical Specification table. All charging activities are disabled when the input voltage falls out of the power-good range. Input and Output Comparator Obviously, when the input source voltage is lower than the battery voltage, no charging activity could be started and the charger will disable the internal pass element to prevent battery leakage. Charge begins when the input voltage is higher than the battery voltage by a defined offset voltage (VOS). This scheme also ensures that the charger is completely turned off when the input power is removed from the charger. IREF Pin The IREF pin is for fast charge-current programming. By connecting a resistor between this pin and the GND pin, the fast charge current limit is determined by the following equation: ICHG (mA) = 4400/RIREF Where RIREF is in kΩ. The actual charge current is guaranteed to have 10% accuracy of ICHG with the charge current set at 150mA. 12-03-0002 PT0324-1 3 03/06/12 PT8A2803 500mA Li-ion/Polymer Battery Charger ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 4.2V battery voltage, constant current could still be maintained when the input voltage is below 4.62V. BAT pin Always connect the BAT pin to a single-cell Li-ion/Polymer battery in parallel with a 1µF (or larger) X5R ceramic capacitor for decoupling and guaranteeing system stability. When the EN pin is pulled to logic HIGH, the BAT output is disabled. The PT8A2803 relies on a battery for stability and is not guaranteed to be stable if the battery is not connected. Thermal Foldback The bottom big exposed pad in TDFN package is used for thermal foldback. For reducing the chip ambient temperature as much as possible, it is recommended to connect as much copper as possible to this pad either on the component layer or other layers through thermal vias. The thermal regulation function starts to reduce the charge current when the internal temperature reaches a typical value of 115°C. Dropout Voltage When the input voltage is low while the battery voltage is high, the charging current may not be maintained according to the equation IMIN (mA) = 4180/RIMIN due to a limited internal onresistance (RDS(ON)) of the internal pass element. The worst resistance of the pass FET is about 1.2Ω at the maximum operating temperature, thus if tested with 500mA current and V CC Mode CV Mode Added loading Battery Voltage 4.2V 2.55V Charging Current A ICHG IRECHG IPRE IMIN CHG EOC (LED OFF) Charging (LED ON) Recharge (LED ON) Figure 2 PT8A2803 Typical Charge Profile 12-03-0002 PT0324-1 4 03/06/12 PT8A2803 500mA Li-ion/Polymer Battery Charger ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Maximum Ratings Storage Temperature........................................................................................................................ -65oC to +150oC Supply Voltage to Ground Potential (VIN PT8A2803)........................................................... -0.3V to+7.0V Supply Voltage to Ground Potential (IMIN/IREF/BAT/ CHG / EN / PPR )............... 0.3V to+7.0V Thermal Resistance (Typical for DFN Package) .................................................. θJA (°C/W)=59, θJC (°C/W)=4.5 Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sec-tions of this specification is not implied. Exposureto absolute maximum rating conditions for extended periods may affect reliability. Recommended Operating Conditions Sym Parameter Min Typ Max Unit VIN Programmable Current TA Operating Voltage Operating temperature 4.3 50 -30 - 5.5 500 +85 V mA °C Electrical Specifications Typical values are at VIN=5V and TA =25°C. All maximum and minimum values are at TA = -30°C to +85°C, unless otherwise noted. Parameter Sym Conditions Min Typ Max Units POWER-ON RESET Rising POR Threshold VPOR 3.9 4.3 V VBAT=3.0V, use PPR to indicate the 3.3 3.1 3.6 4.15 V Falling POR Threshold VPOR output VIN-VBAT OFFSET VOLTAGE Rising Edge VOS 90 150 mV VBAT=4.0V, use CHG pin to indicate the Falling Edge VOS 10 50 mV comparator output STANDBY CURRENT BAT pin sink current ISTBY Charger disabled or the input is floating 1 µA DC Supply Current IDC Charger disabled 300 400 µA DC Supply Current IDC Charger enabled 500 700 µA VOLTAGE REGULATION Output voltage VCH 4.3V < VIN<5.5V Charge current=20mA 4.158 4.20 4.242 V VBAT=3.8V, charge current=0.5A, RIREF 0.6 Ω Power FET “ON” Resistance RDS(ON) =8kΩ CHARGE CURRENT 135 150 165 Constant Charge Current ICHG RIREF=29.4kΩ, VBAT = 2.8–4.0V mA 18 25 32 Precharge Charge Current IPRE RIREF=29.4kΩ, VBAT = 2.4V mA 20 30 40 End of Charge Current IMIN RIMIN=137kΩ mA 90 100 130 EOC Rising Threshold IRECHG RIREF =29.4kΩ mA PRECHARGE CHARGE THRESHOLD Precharge Threshold Voltage VPRE 2.45 2.55 2.65 V Precharge Voltage Hysteresis VPREHYS 40 100 150 mV INTERNAL TEMPERATURE MONITORING Thermal regulation threshold (Note) TFOLD 100 115 130 °C LOGIC INPUT AND OUTPUTS VENH 1.3 V EN Pin Logic Input High VENL 0.5 V EN Pin Logic Input Low R 100 200 400 kΩ Pin Internal Pull Down Resistance EN EN VCHG=1V 10 20 mA ICHGOL CHG Pin Sink Current When LOW VCHG=5.5V 1 µA CHG Pin Leakage Current When HIGH ICHGOH VPPR=1V 10 20 mA IPPROL PPR Pin Sink Current When LOW VPPR=5.5V 1 µA PPR Pin Leakage Current When HIGH IPPROH Note: This parameter is guaranteed by design, not tested. 12-03-0002 PT0324-1 5 03/06/12 PT8A2803 500mA Li-ion/Polymer Battery Charger ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Application Circuit VIN DC IN C1 R2 D2 2 R1 D1 3 OFF 4 ON VIN 8 VBAT PT8A2803 1 PPR CHG EN 7 IREF 6 IMIN BATTERY RIREF C2 RIMIN 5 GND Figure 3 PT8A2803 Typical Application Circuit to Indication LEDs Component Description for Figure 3 Description 1µF X5R ceramic cap 1µF X5R ceramic cap 29.4kΩ, 1% for 150mA charge current 294kΩ, 1% for 15mA EOC current 300Ω, 5% LEDs for indication Part C1 C2 RIREF RIMIN R1, R2 D1, D2 VIN DC IN C1 BAT R2 2 R1 3 MCU 4 MCU VIN PPR CHG VBAT PT8A2803 1 MCU EN IREF IMIN GND 8 7 6 BAT RIREF BATTERY C2 RIMIN 5 OFF ON Figure 4 PT8A2803 Typical Application Circuit Interfacing to a MCU Part C1 C2 RIREF RIMIN R1, R2 Component Description for Figure 4 Description 1µF X5R ceramic cap 1µF X5R ceramic cap 29.4kΩ, 1% for 150mA charge current 294kΩ, 1% for 15mA EOC current 100kΩ, 5% 12-03-0002 PT0324-1 6 03/06/12 PT8A2803 500mA Li-ion/Polymer Battery Charger ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Application Information Input Capacitor Selection The input capacitor is employed to decouple the power supply from load transients and suppress noise from power lines. Typically, a 1µF X5R ceramic capacitor is recommended to be placed very close between the VIN pin and GND pin to stabilize the operation during the start up, especially when the input supply is passing the POR threshold and the VIN-BAT comparator offset voltage. Once passing through the POR threshold, there is a voltage hysteresis to provide sufficient guard band from noise or load transient to trigger the system to reset. Output Capacitor Selection The criterion for selecting the output capacitor is to maintain the stability of the charger as well as to bypass any transient load current. Typically, a minimum capacitance of 1µF X5R ceramic capacitor is recommended and sufficient for stabilizing the system. For systems that may happen to occasionally see high load transients, the output capacitor may be increased to further bypass any ripples so caused. Charge Current Limit During the constant-current (CC) charging mode, the charging current is primarily determined by ICHG as calculated in previous formula. However, the actual charge current is the CC mode could also be limited by other factors as described by below Figure 5. When the input (VIN) and output (VBAT) voltage are too close to each other, the on-resistance of the internal pass element may limit the amount of current that passes through it. For example, the solid curve describes a typical case in which the battery voltage is 4.0V and the charge current (ICHG) is set at 350mA. When the input voltage is sufficiently higher than the battery voltage but has not increased the die temperature over the thermal limit yet, the charging current is accurately regulated at 350mA. Figure 5: PT8A2803 Charge Current Limits In CC Mode When the input voltage is reduced (or the battery voltage is increases towards the input voltage), the charge current is limited by the on-resistance of the pass element. Therefore, it is recommended to employ sufficiently high input voltage for applications that require constant charging current over the entire charging period. But for applications that needs to minimize the heat dissipation, a current-limiting adapter maybe applied to maintain constant charging current at whole charging phase. In addition, if the input voltage increases, the charge current may also be reduced due to the thermal foldback function. The high voltage drop across the pass element increases the power dissipation therein and thus causing the die temperature to increase significantly. Layout Guidance The PT8A2803 employs thermally-enhanced DFN package, which have an exposed thermal pad at its bottom side. It is recommended to connect as much copper as possible between the exposed pad and PCB to make it effective in dissipating the heat away from the die. For applications requiring high charging current, the thermal impedance should be further reduced by employing more layers of copper to connect with the exposed pad through thermal via. Input Power Sources PT8A2803 works with different types of AC/DC adapter or USB port (any type) with no special requirements. For PT8A2803, it works with input voltage ranges from 4.3V to 5.5V for normal operation but the maximum input voltage is 7V. 12-03-0002 PT0324-1 7 03/06/12 PT8A2803 500mA Li-ion/Polymer Battery Charger ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Mechanical Information ZEE (Lead free and Green TDFN 2x3mm) X.XX X.XX DENOTES DIMENSIONS IN MILLIMETERS Note: 1) Controlling dimensions in millimeters. Pericom Semiconductor Corporation y 1-800-435-2336 y www.pericom.com 12-03-0002 PT0324-1 8 03/06/12