M21012V Quad Multi-Rate Video Reclocker (SD-SDI, HD-SDI, 2x HD-SDI interim device) Data Sheet 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Preliminary Information M21012V Quad Multi-Rate Video Reclocker (SD-SDI, HD-SDI, 2x HD-SDI interim device) Contents Quad Multi-Rate Video Reclocker (SD-SDI, HD-SDI, 2x HD-SDI interim device). . . . . . . . . . . . . . . . . . . . . . 4 Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 1. M21012V Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 M21012V Pin List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 1: Power Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 2: High-speed Signal Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 3: Control / Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 2. M21012V Pinout Diagram (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 General Specifications: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 4: Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 5: Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 6: Power DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Input/Output Level Specifications:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 7: CMOS I/O Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 8: High-Speed Input Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 9: PCML (Positive Current Mode Logic) Output Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . 11 Table 10: LVPECL (Low Voltage Positive Emitter Coupled Logic) Output Electrical Specifications. . . . . . . 11 Table 11: Adaptive Input Equalization Performance Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 12: Output Pre-Emphasis Performance Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 RCLK Performance Specifications: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 13: Reference Clock Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 14: RCLK High-Speed Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 15: RCLK Output Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 16: RCLK Alarm Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Preliminary Information Page 2 of 29 M21012V Quad Multi-Rate Video Reclocker (SD-SDI, HD-SDI, 2x HD-SDI interim device) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Internal Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 High-Speed I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 17: Output Interface and Level Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 18: Output Interface and Recommended AVDD_I/O Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 RCLK Reference Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Multifunction Pins Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 19: Multifunction Pins Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Multifunction pins: Two-Wire Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Multifunction pins: JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 21: Multifunction Pins for JTAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 20: Multifunction Pins for Two-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Feature Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Input Deterministic Jitter Attenuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Output Pre-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 RCLK Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 RCLK Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Multi-Rate RCLK Bit Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 22: Valid Input Data Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Serial Interface Register Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 23: Register Table Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 24: Register Table Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 General and Global Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Individual RCLK Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 3. 68 Pin Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 4. 72 Pin Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Preliminary Information Page 3 of 29 M21012V Quad Multi-Rate Video Reclocker (SD-SDI, HD-SDI, 2x HD-SDI interim device) Key Features • Four independent reclockers, each running between 143 Mbps and 3.0 Gbps Applications • Serial Digital Video Applications (SD-SDI, HD-SDI, 2x HD-SDI) • Signal conditioning features for superior performance on trace lengths of up to 60" • Video Routers • Video Editors • Input interface to CML, and LVPECL • Video Muxes/Demuxes • Typical Total Power Consumption as low as 405 mW with all channels running • Video Repeaters • SMPTE 292M and 256M compliant • Cable Equalization Product Description The M21012V is a high-performance quad multi-rate video reclocker (RCLK) array, optimized for multi-lane video applications. Each RCLK operates independently at bit rates between 143 Mbps and 3.0 Gbps, allowing maximum flexibility in system design. Signal conditioning features include adaptive input equalization and output pre-emphasis, allowing robust reception and transmission of signals to other devices up to 60" away. User-selectable input interface types allow DC-coupled input to CML and LVPECL. The outputs can also be DC-coupled to CML and LVPECL. Frequency acquisition is accomplished with an external reference clock. The built-in frequency synthesizer allows multi-rate operation, while operating with a single reference clock. The device can be controlled through an I2C interface. The I2C interface allows complete control of the device features. Ordering Information Name Number Quad Multi-Rate Video Reclocker (SD-SDI, HD-SDI, 2x HD-SDI interim device) Package Data M21012V-11P 72-terminal, 10 mm, MLF Revision History Revision A 21012V-DSH-001-A, 7/11/03 Date 07/11/03 Comments Original release. Mindspeed Technologies™ Preliminary Information Page 4 of 29 Cout0P/N Cout1P/N Cout2P/N Cout3P/N - xRegu _En Selectable CML, LVPECL Output Buffer + Pre- Emphasis xJTAG _En Voltage Regulator Dout0P/N Dout1P/N Dout2P/N Dout3P/N RefClkP/N VddT0/1 Din3P/N JTAG RCLK Array Din2P/N Input Buffer Din1P/N VddT2/3 Din0P/N Adapative Input Equalization Multifunction Pin Array Serial Interface xLOL [3:0] xRST Out_Mode[1:0] CTRL_Mode[1:0] MF[11:0] M21012V Figure 1. M21012V Block Diagram 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 5 of 29 M21012V M21012V Pin List Table 1: Power Pins Pin Name Vss AVDD_I/O AVDD_Core DVDD_I/O DVDD_Core Function Type Chip ground Analog I/O positive supply Analog core positive supply Digital I/O positive supply Digital core positive supply Power Power Power Power Power Notes: 1. If internal regulator is enabled, connect all of the AVDD_Core and/or DVDD_Core pins together to a common floating plane and bypass to Vss. If internal regulator is NOT enabled, it is recommended that all AVDD_Core pins be tied to a plane at 1.2V, that is bypassed to ground. DVDD_Core can be tied to this plane or separately decoupled. 2. Chip ground (Vss) is not brought out to pins, it is brought out to paddle at the bottom of the package. Table 2: High-speed Signal Pins Pin Name Function Din0P/N Din1P/N Din2P/N Din3P/N VddT0/1 VddT2/3 Dout0P/N Dout1P/N Dout2P/N Dout3P/N Cout0P/N Cout1P/N Cout2P/N Cout3P/N Serial data input for RCLK 0 Serial data input for RCLK 1 Serial data input for RCLK 2 Serial data input for RCLK 3 Termination pin for Din0/1 Termination pin for Din2/3 Serial data output for RCLK 0 Serial data output for RCLK 1 Serial data output for RCLK 2 Serial data output for RCLK 3 Serial clock output for RCLK 0 Serial clock output for RCLK 1 Serial clock output for RCLK 2 Serial clock output for RCLK 3 Default Type 50 Ω pull up to AVddT0/1 50 Ω pull up to AVddT0/1 50 Ω pull up to AVddT2/3 50 Ω pull up to AVddT2/3 Terminate to AVDD_I/O Terminate to AVDD_I/O 50 Ω pull up to AVDD_I/O 50 Ω pull up to AVDD_I/O 50 Ω pull up to AVDD_I/O 50 Ω pull up to AVDD_I/O 50 Ω pull up to AVDD_I/O 50 Ω pull up to AVDD_I/O 50 Ω pull up to AVDD_I/O 50 Ω pull up to AVDD_I/O I-CML/LVPECL I-CML/LVPECL I-CML/LVPECL I-CML/LVPECL Power Power O-CML/LVPECL O-CML/LVPECL O-CML/LVPECL O-CML/LVPECL O-CML/LVPECL O-CML/LVPECL O-CML/LVPECL O-CML/LVPECL Table 3: Control / Interface Pins Pin Name MF[11:0] CTRL_Mode[1:0] Out_Mode[1:0] xRST xJTAG_En xRegu_En RefClkP/N xLOL[0] xLOL[1] xLOL[2] xLOL[3] 21012V-DSH-001-A, 7/11/03 Function Multifunction pins for serial interface, and JTAG Enable serial interface Selects output data format (00b = PCML) Hardware reset (L = reset) Enable JTAG testing blocks (L = enable). JTAG pins device of MF Enables built-in voltage regulator (L = enable) Reference clock differential inputs Loss of lock for RCLK 0 (L = LOL) Loss of lock for RCLK 1 (L = LOL) Loss of lock for RCLK 2 (L = LOL) Loss of lock for RCLK 3 (L = LOL) Mindspeed Technologies™ Default Type Internal pull up Internal pull up Internal pull down Internal pull up Internal pull up I-CMOS I-CMOS I-CMOS I-CMOS I-CMOS Internal pull down Internal pull down No internal pull up/down No internal pull up/down No internal pull up/down No internal pull up/down I-CMOS I-AC Coupled O-Open Drain O-Open Drain O-Open Drain O-Open Drain Page 6 of 29 Dout3N Dout3P AVDD_Core Cout2N AVDD_Core Cout2P Dout2N Dout2P AVDD_I/O AVDD_I/O Dout1N Dout1P AVDD_Core Cout1N Cout1P AVDD_Core Dout0N Dout0P M21012V Cout0N 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 1 54 2 53 Cout3P Cout0P 3 52 Cout3N MF[0] 4 51 MF[9] MF[1] 5 50 MF[8] AVDD_I/O AVDD_I/O CTRL_Mode[1] 9 46 N/C DVDD_I/O 10 45 RefClkP DVDD_Core 11 44 RefClkN MF[10] 12 43 Out_Mode[1] MF[4] 13 42 Out_Mode[0] MF[5] 14 41 MF[7] MF[6] 15 40 xRST MF[11] 16 39 xLOL[3] 38 37 26 27 28 29 30 31 32 33 34 35 36 xLOL[2] xLOL[1] Din3N Din1P xRegu_En VddT0/1 DVDD_Core AVDD_Core Din0P xLOL[0] 17 18 19 20 21 22 23 24 25 Din0N xJTAG_En Din3P N/C AVDD_Core 47 DVDD_Core 8 VddT2/3 CTRL_Mode[0] AVDD_I/O N/C Din2N 48 Din2P 7 AVDD_Core 49 MF[3] AVDD_Core 6 N/C Din1N MF[2] Figure 2. M21012V Pinout Diagram (Top View) 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 7 of 29 M21012V General Specifications: Table 4: Absolute Maximum Ratings Symbol Parameter DVDD_I/O AVDD_I/O AVDD_Core2 DVDD_Core2 Tst ESD ESD ESD Digital I/O power Analog I/O power Analog core power Digital core power Storage temperature Human body model (low-speed pins) Human body model (high-speed pins) Charged device model Minimum Maximum Units 0 0 0 0 –65 1500 1000 150 3.6 3.6 1.5 1.5 +150 — — — V V V V °C V V V Notes: 1. No damage. 2. Apply voltage to core pins only if internal regulator is disabled. If enabled, pins should be floating with by-pass to Vss. Table 5: Recommended Operating Conditions Parameter DVDD_I/O: Digital I/O power AVDD_I/O: Analog I/O power AVDD_Core: Analog core power DVDD_Core: Digital core power Ambient temperature Junction to ambient thermal resistance Notes Symbol Minimum Typical Maximum Units 3 3 1, 3 1, 3 2 2 DVDD_I/O AVDD_I/O AVDD_Core DVDD_Core Ta θja — — — — -40 — 1.8/2.5/3.3 1.8/2.5/3.3 1.2 1.2 — 24 — — — — 85 — V V V V C C/W Notes: 1. Only if AVDD_Core and DVDD_Core are provided from external source and internal regulator is disabled xRegu_En = H. 2. Based on preliminary evaluations. 3. Typical value +/- 5% is acceptable. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 8 of 29 M21012V Table 6: Power DC Electrical Specifications Symbol Idd Pdiss Pdiss Idd_core Idd_io Pdiss Pdiss Idd Pdiss Idd Pdiss Parameter Case 1: current consumption for output swing = 500 mV CML, internal regulator = on, clock outputs = off Power dissipation at 1.8V Power dissipation at 3.3V Case 2: output swing = 500 mV CML, internal regulator = off, clock outputs = off Core current consumption Input/Output buffers current consumption Power dissipation at 1.2V core, 1.8V I/O Power dissipation at 1.2V core, 3.3V I/O Case 3: current consumption for output swing = 1600 mV LVPECL, internal regulator = on, clock outputs = off Power dissipation at 3.3V Case 4: current consumption for output swing = 1600 mV LVPECL, internal regulator = on, clock outputs = on Power dissipation at 3.3V Notes Minimum Typical Maximum Units 1 — 310 360 mA — — — — 560 1.0 650 1.2 mW W — 300 60 470 560 mA mA mW mW 1 — — — — 260 50 405 480 1 — 420 480 mA 2 — 1.4 1.6 W 1 — 610 700 mA 2 — 2.0 2.3 W Notes: 1. Specified at recommended operating conditions – see Table 5. 2. Exceeds maximum permissible junction temperature at 85C ambient. Thermal design, such as airflow, needs to be considered for this case. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 9 of 29 M21012V Input/Output Level Specifications: Table 7: CMOS I/O Electrical Specifications Symbol Parameter Notes Minimum Typical Maximum Units VOH VOL IOH IOL VIH VIL IIH IIL tr tf Output logic high IOH = –3 mA Output logic low IOL = 24 mA Output current (logic high) Output current (logic low) Input logic high Input logic low Input current (logic high) Input current (logic low) Output rise time (20-80%) Output fall time (20-80%) Input capacitance of MF10 & MF11 in two-wire serial mode 2 2 — — — — — — — — 0.8 x DVDD_I/O — –10 0 0.75 x DVDD_I/O 0 –100 –100 — — DVDD_I/O 0.0 — — — — — — — — — 0.2 x DVDD_I/O 0 10 3.6 0.25 x DVDD_I/O 100 100 5 5 V V mA mA V V µA µA ns ns 3 — — 10 pF C2wire Notes: 1. Specified at recommended operating conditions – see Table 5. 2. DVDD_I/O can be chosen independently from AVDD_I/O. 3. Two-wire serial output mode can drive 500 pF. Table 8: High-Speed Input Electrical Specifications Parameter Notes Minimum Typical Maximum Units — 3,4 — — — 143 50 Vss — Vss-400 — — — — — 3000 2000 AVDD_I/O AVDD_I/O + 400 — Mbps mV mV mV mV — — — 600 mV — — — 5 6 45 — — — — 50 –15.0 –5.0 — — 55 — — 25 70 Ω dB dB mA mA Input bit rate Input differential voltage (P-P) Input common-mode voltage Maximum input high voltage Minimum input low voltage Maximum common-mode voltage to VddTx/y voltage difference Input termination to VddTx/y Input return loss (40 MHz to 2.5 GHz) Input return loss (2.5 GHz to 5 GHz) Maximum DC input current: long-term Maximum DC input current: temporary Notes: 1. Specified at recommended operating conditions - see Table 5. 2. Designed for seamless interface to PCML. 3. Example 1200 mVpp differential = 600 mVpp for each single-ended terminal. 4. Minimum input level defined as error free operation at 10-12 BER. 5. Computed as the current through 50 ohms from the voltage difference between the input voltage common mode to VddTx/y. 6. Temporary defined as no damage when shorted to Vss for no longer than 1 year. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 10 of 29 M21012V Table 9: PCML (Positive Current Mode Logic) Output Electrical Specifications Parameter Notes Minimum Typical Maximum Units — — — 2 — 2 — 2 — — — 143 — AVDD_I/O – 25 500 AVDD_I/O – 25 900 AVDD_I/O – 25 1100 45 — — — 100 — 600 — 1000 — 1200 50 –15.0 –5.0 3000 130 AVDD_I/O 700 AVDD_I/O 1100 AVDD_I/O 1300 55 — — Mbps ps mV mV mV mV mV mV Ω dB dB Output bit rates Rise/Fall time (20-80%) for all levels Low swing: output logic high Low swing: differential Medium swing: output logic high Medium swing: differential High swing: output logic high High swing: differential Output termination to AVDD_I/O Output return loss (40 MHz to 2.5 GHz) Output return loss (2.5 GHz to 5 GHz) Notes: 1. Specified at recommended operating conditions – see Table 5. 2. Example 1200 mV P-P differential = 600 mV P-P for each single-ended terminal. 3. All output swings defined with pre-emphasis off. Table 10: LVPECL (Low Voltage Positive Emitter Coupled Logic) Output Electrical Specifications Parameter Notes Minimum Typical Maximum Units — — 2 2 — — — 143 — AVDD_I/O – 1.0 1400 45 — — — 100 AVDD_I/O – 0.95 1600 50 –15.0 –5.0 3000 130 AVDD_I/O – 0.81 1800 55 — — Mbps ps V mV Ω dB dB Output bit rates Rise/Fall time (20-80%) Output logic high Differential swing Output termination to AVDD_I/O Output return loss (40 MHz to 2.5 GHz) Output return loss (2.5 GHz to 5 GHz) Notes: 1. Specified at recommended operating conditions – see Table 5. 2. Specifications apply for AVDD_I/O = 3.3V only. 3. All output swings defined with pre-emphasis off. Table 11: Adaptive Input Equalization Performance Specifications Parameter Input bit rates Maximum error-free distance on FR4 at 2.97 Gbps Maximum error-free distance on FR4 at 1.485 Gbps Adaptive equalization response time Notes Minimum Typical Maximum Units — 2, 3 2, 3 5 1 — — — — — — 10 3.0 60 72 — Gbps in in µs Notes: 1. Specified at recommended operating conditions – see Table 5. 2. Performance measured on standard FR4 backplane such as standards provided by TYCO for 10GE XAUI. 3. Measured with PCML driver WITHOUT output pre-emphasis at a minimum launch voltage of 900 mVpp output swing at beginning of line. Error-free for BER < 10-12. 4. Combined adaptive equalization + output pre-emphasis performance will be better than individual performance, but less than the sum of the two lengths. 5. Input equalization has biggest effect for bit-rates greater than 1 Gbps. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 11 of 29 M21012V Table 12: Output Pre-Emphasis Performance Specifications Parameter Output bit rates Maximum error-free distance on FR4 at 2.97 Gbps Maximum error-free distance on FR4 at 1.485 Gbps Notes Minimum Typical Maximum Units — 2 2 1 — — — — — 3.0 40 60 Gbps in in Notes: 1. Specified at recommended operating conditions – see Table 5. 2. Performance measured on standard FR4 backplane such as standards provided by TYCO for 10GE XAUI. 3. Measured with PCML receiver without input equalization, using PCML output driver at 1200 mVpp output swing at beginning of line. Error-free for BER < 10-12. 4. Combined adaptive equalization + output pre-emphasis performance will be better than individual performance, but less than the sum of the two lengths. 5. Output Pre-emphasis equalization has biggest effect for bit-rates greater than 1 Gbps. RCLK Performance Specifications: Table 13: Reference Clock Input Parameter Input frequency (Refclk_ctrl[3:1] = 000b) Input frequency (Refclk_ctrl[3:1] = 001b) Input frequency (Refclk_ctrl[3:1] = 010b) Input frequency (Refclk_ctrl[3:1] = 011b) Input frequency (Refclk_ctrl[3:1] = 100b) Input frequency (Refclk_ctrl[3:1] = 101b) Input frequency (Refclk_ctrl[3:1] = 110b) Input differential voltage (P-P) Input common-mode voltage Input frequency stability tolerance Differential termination Internal pull-down to Vss Maximum DC input current Notes Minimum Typical Maximum Units — — — — — — — 2,3 3 — 3 — — 10 20 40 80 120 160 320 100 250 — — — — 14.14 — — — — — — — — — 100 100K — 25 50 100 200 300 400 800 1600 AVDD_I/O 100 — — 15 MHz MHz MHz MHz MHz MHz MHz mV mV ppm Ω Ω mA Notes: 1. Specified at recommended operation conditions - see Table 5. 2. Example 1200 mVpp differential = 600 mVpp for each single-ended terminal. 3. Input can accept a CMOS single-ended input when differential N terminal is connected to P-side common mode, or decoupled with large enough capacitor. CMOS input will then see an effective 100 Ohm load. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 12 of 29 M21012V Table 14: RCLK High-Speed Performance Parameter Notes Minimum Typical Maximum Units — — — — — — 2,3,6 2,4 5 5 2 1 500 250 167 125 — — — — — — 2 0.4 3.0 1.5 750 375 250 188 — — 100 50 Gbps Gbps Mbps Mbps Mbps Mbps ms ms ns ns Input data rate for divider ratio = 1 Input data rate for divider ratio = 2 Input data rate for divider ratio = 4 Input data rate for divider ratio = 8 Input data rate for divider ratio = 12 Input data rate for divider ratio = 16 Initialization time Frequency acquisition time Phase lock time with 100 ppm delta F Phase lock time with 0 ppm delta F Notes: 1. Specified at recommended operating conditions – see Table 5. 2. Assume that reference is within +/-100 ppm of desired data-rate. 3. Time after power up, reset, or bit-rate change. 4. Time from application of valid data to lock within +/-20% of lock phase. 5. Defined as when phase settles to within 20% of lock phase. 6. After reset (master or soft), initialization takes place, then frequency acquisition. Table 15: RCLK Output Performance Parameter Output data jitter (rms) Output data jitter (pp) Falling-edge-of-clock to data-transition delay Output clock jitter (rms) Output clock jitter (pp) Notes Minimum Typical Maximum Units 2 2 3 2 2 — — -25 — — — — — — — 14 80 25 14 80 mUI mUI ps mUI mUI Notes: 1. Specified at recommended operating conditions – see Table 5. 2. Measured with output pre-emphasis disabled, input equalization disabled. 3. Specified for positive clock output. Table 16: RCLK Alarm Performance Parameter Notes Minimum Typical Maximum Units xLOL decision time xLOL assertion frequency threshold (xLOL = H to L) xLOL de-assertion frequency threshold (xLOL = L to H) 2 2,3 10 ±185 420 ±1950 3275 ±250000 µs ppm 2,3 ±120 ±1450 ±250000 ppm Notes: 1. Specified at recommended operating conditions – see Table 5. 2. Actual values are set with the LOL windows, the typical values are the default values. Minimum and maximum values represent the dynamic range. 3. Assume that reference is +/-100 ppm of operating frequency. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 13 of 29 M21012V Pin Descriptions Conventions Throughout this data sheet, physical pins will be denoted in bold italic print. An array of pins can be called by each individual pin name (e.g. MF0, MF1, MF2, MF3, and MF6) or as an array (e.g. MF[6,3:0]). The M21012V control is accessed through registers that employ an 8-bit address and an 8-bit data scheme. Registers are denoted in italic print (e.g. Testregister) and individual bits within the register will be called out as Testregister[4:3] to denote the 4th and 3rd bits of the register Testregister, where bit 0 is the LSB and bit 7 is the MSB. Many functions of the device are bit mapped within a register; if the status of the other bits are uncertain, it is recommended that the user reads the value from the register before writing, to assure only the desired bits change. Writing in the same value to the bits within a register does not cause glitches to the unchanged features. The address for the registers as well as its functions can be found in detail in Table 23 and Table 24. The purpose of the text descriptions is to highlight the features of the registers. If there is a conflict, Table 23 and Table 24 take precedence over the text description. For redundant items, such as the RCLK number, the registers will have a nomenclature of Testreg_0 for RCLK 0, Testreg_1 for RCLK 1, and so on. For general reference, the text will denote such registers as Testreg_N where N can vary from 0 to 3. Numbers not immediately followed by a ‘b’ or ‘h’ are decimal values, whereas numbers immediately followed by a ‘b’ (e.g. 010b) are binary values, and numbers immediately followed by an ‘h’ (e.g. A1h) are hexadecimal values. RCLK circuits are mapped to input channels. Reset Upon application of power, the M21012V automatically generates a master reset. At any time, forcing xRST = L causes the M21012V to enter the master reset state. A master reset can also be initiated through the registers in the serial interface control mode by writing AAh to Mastreset. Once a master reset is initiated, all registers are returned to the default values, the internal state machines cleared, and all RCLK reset to the out-of-lock condition. After a reset, the register Mastreset will automatically return to the default value of 00h. Each individual RCLK can be soft reset by setting RCLK_ctrlA_N[7] = 1b where N = 0 for RCLK#0, N = 1 for RCLK#1 and so on. The bit should be returned to 0b for normal operation. In this case, the registers that determine the RCLK operation options such as bit rate, window sizes, etc., remain unchanged and only the RCLK state-machine is reset, resulting in an out-of lock condition. Internal Voltage Regulator The digital and analog core is designed to run at 1.2V, however, for operation from 1.8 to 3.3V, an internal linear regulator is provided. xRegu_En = L enables the voltage regulator which uses AVDD_I/O and DVDD_I/O to generate the required 1.2V for AVDD_Core and DVDD_Core. In this mode, the AVDD_Core and DVDD_Core pins should be connected to a floating DC low inductance PCB plane and AC bypassed to Vss using standard decoupling techniques. If desired, AVDD_Core and DVDD_Core can be separated into individual planes. If 1.2V is available, it can be connected directly to AVDD_Core and DVDD_Core, to save power, by bypassing the internal linear regulator with xRegu_En = H. In this case, it is recommended that the AVDD_Core and DVDD_Core pins be tied together to a common PCB plane, and bypassed to Vss with standard decoupling techniques. High-Speed I/O Pins The high-speed input data interface can support PCML and LVPECL. The high-speed serial differential data enters the quad RCLK via DinP/N[3:0]. Inputs 0 and 1 are internally terminated with 50Ω to VddT0/1 and inputs 2 and 3 are terminated with 50Ω to VddT2/3. For single-ended use, terminate the negative input pin to the common-mode voltage of the positive input. In all cases, VddTx/y must be a low-impedance node, since it is shared between inputs, which requires either a low impedance plane or bypass capacitors. The M21012V supports two high-speed output modes. The I/O interface is set with Out_Mode[1:0] as shown in Table 17. In the serial interface mode, the Out_ctrl_N[7:6] register is used to set the data level, and Out_Mode[1:0] is used to set the interface type. In the serial mode, the data output can be enabled with Out_ctrl_N[2] = 1b (default) and the output data polarity can be flipped by setting Out_ctrl_N[3] = 1b (default: no inversion). Output data polarity flip is an internal function that would have the same effect as switching the P and N terminals. The serial data options are summarized in Table 17 and detailed in Table 23 and Table 24. For the clock output in the serial interface control mode, the output interface and level is controlled by the same register as the data while the clock output can be enabled with Out_ctrl_N[1] = 1b (default disabled) and the output clock polarity can be flipped by setting Out_ctrl_N[0] = 1b (default: no inversion). 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 14 of 29 M21012V The recommended AVDD_I/O for the different outputs is also shown in Table 18. Non-standard lower swing modes for LVPECL are provided for lower power dissipation, when desired. Table 17: Output Interface and Level Mapping Register Out_ctrl_N[7:6] PCML Mode Out_Mode[1:0] = 00b LVPECL Mode Out_Mode[1:0] = 10b 00b 01b 10b 11b Off 500 mV 900 mV 1200 mV Off 900 mV 1200 mV Standard: 1600 mV Table 18: Output Interface and Recommended AVDD_I/O Range Output Logic AVDD_I/O Range (V) Off PCML @ 500 mV PCML @ 900 mV PCML @ 1200 mV LVPECL 1.8 - 3.3 1.8 - 3.3 1.8 - 3.3 1.8 - 3.3 3.3 RCLK Reference Frequency The RCLK frequency acquisition can be accomplished when an external reference is applied to RefClkP/N to enable the frequency reference acquisition (FRA) mode in the RCLK. PCML, LVTTL, CMOS are examples of the wide variety of interfaces supported for the reference clock. The inputs contain a DC-coupled 100Ω differential termination between RefClkP and RefClkN along with a 100 KΩ pull down on each terminal to Vss. After this termination/pull-down block, the reference is ACcoupled internally. The common-mode and allowable voltage swings are specified in Table 13. In the FRA mode, the RefClkP/N common-mode must be above 250 mV, which may require external pull-ups, in the case of external AC-coupling. Multifunction Pins Overview The M21012V is designed to be an extremely versatile device, with many user selectable options in the RCLK and I/O, to optimize performance. All of these options can be accessed and controlled through the serial interface. The serial interface supported by this device is a two-wire interface that is compatible with industry standard I2C, and shall be referred to as the two-wire interface. The serial interface I/O pins and address pins are mapped to the multifunction pins (MF[11:0]). Another feature of the multifunction pins is to support JTAG testing of this device during PCB manufacturing. The various control and test modes of this device are selected with three pins: CTRL_Mode[1:0], and xJTAG_En. xJTAG_En = L overrides CTRL_Mode[1:0], and puts the device in JTAG test mode, while xJTAG_En = H allows CTRL_Mode[1:0] to set the M21012V in the serial interface control mode, as summarized in Table 19. Table 19: Multifunction Pins Mode Select Pin JTAG Test Mode 2-Wire Serial xJTAG_En CTRL_Mode[1:0] L don’t care H 01b Multifunction pins: Two-Wire Serial Interface The two-wire interface is compatible with the I2C standard. The M21012V supports the read/write slave-only mode; 7-bit device address field width, and supports the standard data rate of 100 Kbps, fast mode of 400 Kbps, and high-speed mode of 3.4 Mbps. The 7-bit address for the device is determined with MF[6:0], which allows for a maximum of 128 unique addresses for this device. SDA (MF11) and SCL (MF10) can drive a maximum of 500 pF each at the maximum bit rate. During the write mode from the master to the M21012V, data is latched into the internal M21012V registers on the rising edge of SCL, during the acknowledge phase (ACK) of communication. Table 20 summarizes the multifunction pins for the two-wire serial mode. For information on timing, please refer to the I 2C bus specifications. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 15 of 29 M21012V Table 20: Multifunction Pins for Two-Wire Interface Pin Function MF0 MF1 MF2 MF3 MF4 MF5 MF6 MF10 MF11 Addr0 Addr1 Addr2 Addr3 Addr4 Addr5 Addr6 SCL SDA Description 7-bit address: Addr0 is LSB, Addr6 is MSB Clock input (open drain) Data input/output (open drain) Multifunction pins: JTAG The M21012V supports JTAG external boundary scan, which includes all of the high-speed I/O, as well as the traditional digital I/O. Table 21: Multifunction Pins for JTAG Pin Function Description MF8 MF9 MF10 MF11 TMS TDI TCK TDO Test select Test data input Test clock Test data output 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 16 of 29 M21012V Feature Descriptions General Objective The objective of this section is to explain the various functions of the M21012V, as well as to provide a summary of the registers associated with each of the functions. Please refer to Table 23 for a summary of the register bits and addresses, and Table 24 for the detailed definition of each bit in the registers. If the text description differs from Table 23 or Table 24, Table 24 takes precedence. Input Deterministic Jitter Attenuators Each of the four input channels contains an independent adaptive input equalizer (AIE) that automatically determines the best input equalizer setting for minimum bit error rate (BER), over a given interconnect. For the AIE, the address N is mapped to the input channel. Upon input of valid data, reset, or LOL=H, the AIE starts its optimization from the beginning. The input equalization settings have been optimized for a variety of back-plane PCB applications, such as board traces and cables. For a PCB, the input equalization settings have been specified to operate up to 60” at 2.97 Gbps on FR4, and up to 72” on FR4 at 1.485 Gbps. The equalizer has similar high performance on Nelco-13, Arlon 25, Rogers 3003, 4003C, 4340, GeTek PCB materials, and Gore twinaxial cables. The input equalizer was designed to compensate for the effects of typical backplane interconnects, which have bandwidths of hundreds of MHz to a few GHz, thus, the equalizers are not expected to make a significant difference in performance with the bit rates in the lower end of the multi-rate range. Another component of input deterministic jitter is ISI due to DC offsets. By default, a DC servo-like circuit is enabled to correct for this type of deterministic jitter, and can be disabled by setting Ineq_ctrl_N[4] = 0b. The DC servo can also be used to track changes in the common mode for single-ended operation. Output Pre-Emphasis Each of the four output channels contains an independent output pre-emphasis circuit that can be used to select the optimal pre-emphasis level. The pre-emphasis settings have been optimized for a variety of backplane PCB applications. For the PCB, the settings have been specified to operate up to 40” at 2.97 Gbps on FR4, and up to 60” on FR4 at 1.485 Gbps. Like the input equalizer settings, the output pre-emphasis has similar high performance on Nelco-13, Arlon 25, Rogers 3003, 4003C, 4340, GeTek PCB materials, and Gore twinaxial cables. The pre-emphasis level is selected, for each output channel, with Preemp_ctrl_N[2:0], and the default value of 000b corresponds to pre-emphasis disabled. The pre-emphasis circuit tracks the bit rate throughout the multi-rate range, however, like the input equalizer, it is designed to compensate for the bandwidth limitations of the interconnect, and may not have the desired effects at the low end of the multi-rate range. The output pre-emphasis is available for both data interface formats and levels. Selection of output level and format was discussed previously in the Pin Descriptions: High-Speed I/O Pins section. RCLK Overview The M21012V contains 4 multi-rate RCLKs, that can each operate at independent bit rates. When the RCLK achieves phase lock onto the incoming data stream, the RCLK removes the incoming random jitter above its loop bandwidth, as well as any deterministic jitter remaining from the two input deterministic jitter attenuators (AIE & DC servo). The M21012V output data has extremely low jitter, due to retiming with a very low jitter generation RCLK. The output pre-emphasis option allows for compensation of interconnect deterministic jitter, generated up to the next downstream device. Clock outputs are also provided and typically used to drive laser/modulator drivers with an external clock input, typically used for parallel optics module applications. Each RCLK is capable of multi-rate operation which is achieved by a combination of built in VCO frequency dividers (VCD), Data Rate Dividers (DRD), and a wide VCO tuning range (Fmin = 2.0 GHz, Fmax = 3.0 GHz). As a result, the allowed input data range is Fmin / DRDmax to Fmax / DRDmin. Although the ranges are not continuous, the ranges are deliberately chosen to cover all typical video applications. RCLK Features All of the RCLKs are reset upon xRST = L, Mastreset = AAh, or upon power up. A soft reset through RCLK_ctrlA_N[7] = 1b resets the individual RCLK state machine, and presets the RCLK to an out-of-lock condition, however, the register contents that are related to RCLK setup are unchanged. It is required to force a soft reset if the bit rate is dynamically changed. The soft reset register bit needs to be cleared for proper operation. A reset during operation will cause bit errors, until the RCLK achieves phase lock. By default, all of the RCLKs are active and powered up for normal operation. By setting RCLK_ctrlB_N[7:6] = 11b, a RCLK can be bypassed and powered down, to allow for non-standard bit rates, or to save power when the RCLK is not required at lower bit rates. When RCLK_ctrlB_N[7:6] = 01b, the RCLK is bypassed so the output data is not re-timed but active (VCO locked to the input data). In the last mode with RCLK_ctrlB_N[7:6] = 10b, the RCLK is powered down, and all signals along the input and output paths are also powered down, to save power. In this case, the input data does not reach the output. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 17 of 29 M21012V To prevent the propagation of noise in the case where there is a LOL condition, the RCLK contains an auto-inhibit feature, which is enabled by default. When LOL is active, the output of the RCLK is fixed at a logic high state (DoutP = H, DoutN = L). This feature can be disabled by setting RCLK_ctrlA_N[3] = 0b, which allows RCLK_ctrlA_N[5] to either force an inhibit (1b) or to never inhibit (0b). In some back-plane applications, the optimal data sampling point is not in the middle of the data eye. By default, the RCLK achieves phase lock very near the center of the eye. For optimal performance (jitter tolerance), the actual sampling point can be adjusted with Phadj_ctrl_N[3:0]. The adjustment range is from –122.5 mUI to +122.5 mUI with 17.5 mUI steps. Multi-Rate RCLK Bit Rate Selection For multi-rate operation, the first step is to determine the desired bit rate range. The input data range must be bracketed by DFmin = Fvco,min/DRD to DFmax = Fvco,max/DRD. DFmax/min are the maximum/minimum data input frequencies, DRD is the data rate divider setting with RCLK_ctrlB_N[3:0], and Fvco,min/Fvco,max are the minimum/maximum VCO frequencies, which are 2.0 GHz and 3.0 GHz respectively. The valid data rates are shown in Table 22. Table 22: Valid Input Data Ranges Parameter Data Rate Divider (DRD=1): RCLK_ctrlB_N[3:0] = 0000b Data Rate Divider (DRD=2): RCLK_ctrlB_N[3:0] = 0001b Data Rate Divider (DRD=4): RCLK_ctrlB_N[3:0] = 0010b Data Rate Divider (DRD=8): RCLK_ctrlB_N[3:0] = 0011b Data Rate Divider (DRD=12): RCLK_ctrlB_N[3:0] = 0100b Data Rate Divider (DRD=16): RCLK_ctrlB_N[3:0] = 0101b DFmin DFmax Units 2.0 1.0 500 250 167 125 3.0 1.5 750 375 250 188 GHz GHz MHz MHz MHz MHz It is important to note the difference between the VCO frequency (Fvco), and the data rate frequency (DF). Fvco is always between 2 GHz to 3.0 GHz, while DF is the input data rate. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 18 of 29 M21012V Serial Interface Register Details Table 23: Register Table Summary Addr Register Name d7: MSB d6 d5 d4 d3 d2 d1 d0: LSB MSPD Int ref_divr[2] rst chipcode[3] revcode[3] LOL_3 MSPD Int ref_divr[1] rst chipcode[2] revcode[2] LOL_2 reserved ref_divr[0] rst chipcode[1] revcode[1] LOL_1 clear_alm MSPD Int rst chipcode[0] revcode[0] LOL_0 MSPD Int data_rate[2] VCO_divr[2] dataout_en preemph[2] MSPD Int] phase_adj[2] narwin_LOL[1] MSPD Int data_rate[1] VCO_divr[1] clkout_en preemph[1] MSPD Int phase_adj[1] narwin_LOL[0] MSPD Int data_rate[0] VCO_divr[0] clk_pol_flip preemph[0] MSPD Int phase_adj[0] widwin_LOL[0] Common Registers 00h 04h 05h 06h 07h 30h Globctrl Refclk_ctrl Mastreset Chipcode Revcode Alarm_LOL powerup reserved rst chipcode[7] revcode[7] MSPD Int MSPD Int reserved rst chipcode[6] revcode[6] MSPD Int MSPD Int reserved rst chipcode[5] revcode[5] MSPD Int M0h M1h M2h M3h M4h M5h M6h M9h RCLK_ctrlA_N RCLK_ctrlB_N RCLK_ctrlC_N Out_ctrl_N Preemp_ctrl_N Ineq_ctrl_N Phadj_ctrl_N LOL_ctrl_N softreset RCLKmode[1] VCO_divr[7] outlvl[1] reserved reserved i_trim[1] tacq_LOL[2] MSPD Int RCLKmode[0] VCO_divr[6] outlvl[0] MSPD Int MSPD Int i_trim[0] tacq_LOL[1] MSPD Int reserved rst chipcode[4] revcode[4] MSPD Int Per channel registers (N = RCLK#, M = N + 4) inh_force MSPD Int VCO_divr[5] reserved MSPD Int MSPD Int r_sel[1] tacq_LOL[0] MSPD Int reserved VCO_divr[4] reserved MSPD Int en_DCservo r_sel[0] narwin_LOL[3] autoinh_en data_rate[3] VCO_divr[3] data_pol_flip MSPD Int en_ad_eq phase_adj[3] narwin_LOL[2] Notes: 1. N = 0h for RCLK 0, N = 1h for RCLK 1,..., N = 3h for RCLK 3. 2. M = 4h for RCLK 0, M = 5h for RCLK 1,..., M = 7h for RCLK 3. For example RCLK 0 starts at address 40h, RCLK 1 at 50h, RCLK 2 at 60h, RCLK 3 at 70h. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 19 of 29 M21012V Table 24: Register Table Details Nomenclature: 1) Reserved bits: bits that exist and reserved for future use by Mindspeed. 2) Bits not defined and not reserved: bits that do not exist. 3) Do not write to reserved or undefined bits – operation not guaranteed. 4) MSPD Internal: defines an internal function. Must always write the default value to MSPD internal bits. When in doubt, read back default value after reset. General and Global Control Registers 00h: Global Control Globctrl [7] powerup [6:2] MSPD Internal [1] Reserved [0] clear_alm Powers up the IC by enabling the current references. 1b: Power up the IC [Default] 0b: Power down the IC Default [00000b] Reserved (Default = 0b) Clears the Alarm_LOL alarm registers (write-only). 1b: Clear alarms 0b: Normal operation - latch alarm bits [Default] Note: upon writing a 1b to this bit, it clears the registers, and user needs to write a 0b to enable the normal state. 04h: External Reference Divider Control (RFD) Refclk_ctrl [7:4] Reserved [3:1] ref_divr [0] MSPD Internal Reserved (Default = 0b) Sets the divider ratio to scale down RefClkP/N. 000b: RefClkP/N by 1 001b: RefClkP/N by 2 010b: RefClkP/N by 4 011b: RefClkP/N by 8 100b: RefClkP/N by 12 101b: RefClkP/N by 16 110b: RefClkP/N by 32 Default = 0b 05h: Master Chip Reset Mastreset [7:0] rst Same feature as hardware xRST. Resets entire IC (write-only). AAh: Reset upon write to this register with AAh 00h: Normal operation [Default] All other values are ignored. 06h: Chip Electronic ID Chipcode [7:0] chipcode This read-only register determines the chipcode of this IC (12h: M21012V). 07h: Chip Revision Code Revcode 21012V-DSH-001-A, 7/11/03 [7:0] revcode This read-only register contains the revision of the device. Format is A.B where A is the main revision and B is the sub revision. Default value is 10h for revision 1.0. Mindspeed Technologies™ Page 20 of 29 M21012V 30h: RCLK Loss of Lock Register Alarm Status Alarm_LOL [7:4] MSPD Internal [3:0] LOL Default = 0000b Latched loss of lock alarm status (read-only). 1b = loss of RCLK lock, 0b = normal operation [3]: RCLK 3 [2]: RCLK 2 [1]: RCLK 1 [0]: RCLK 0 After a clear (Globctrl[0]=1), the register is cleared and 1) will latch any new alarms that make a L to H transition and 2) set any pre-existing alarm conditions to H. Individual RCLK Control Multiple Instance Conventions Notes: 1. N = 0h for RCLK 0, N = 1h for RCLK 1,..., N = 3h for RCLK 3. 2. M = 4h for RCLK 0, M = 5h for RCLK 1,..., M = 7h for RCLK 3. For example RCLK 0 starts at address 40h, RCLK 1 at 50h, RCLK 2 at 60h, RCLK 3 at 70h. M0h: RCLK N Control Register A RCLK_ctrlA_N [7] softreset [6] MSPD Internal [5] inh_force [4] MSPD Internal [3] autoinh_en [2:0] MSPD Internal 21012V-DSH-001-A, 7/11/03 Resets individual RCLK N (setup registers remain unchanged; need to softreset after rate change). 0b: Normal operation [Default] 1b: Reset single RCLK only Default = 0b Manual control of the output inhibit if RCLK_ctrlA_N[3] = 0b. 0b: Normal operation [Default] 1b: Forced inhibit Default = 0b Auto inhibit of the output (DoutP = H, DoutN = L) if RCLK N has a LOL condition. 0b: Auto inhibit disabled, RCLK_ctrlA_N[5] determines inhibit force state 1b: Auto inhibit enabled [Default] Default = 101b Mindspeed Technologies™ Page 21 of 29 M21012V M1h: RCLK N Control Register B RCLK_ctrlB_N [7:6] RCLKmode [5] MSPD Internal [4] Reserved [3:0] data_rate Determines state of the PLL. 00b: RCLK powered up and active [Default] 01b: RCLK powered up and bypassed 10b: RCLK powered down (no signal through) 11b: RCLK powered down and bypassed Default = 0b Reserved (Default = 0b) Data rate divider (DRD): this divides down the VCO frequency to match the input data rate. 0000b: VCO/1 [Default] 0001b: VCO/2 0010b: VCO/4 0011b: VCO/8 0100b: VCO/12 0101b: VCO/16 Please consult Fvco,max and Fvco,min to determine frequency range of each DRD ratio. M2h: RCLK N Control Register C RCLK_ctrlC_N 21012V-DSH-001-A, 7/11/03 [7:0] VCO_divr VCO comparison divider (VCD): this divider divides down the VCO, to compare it with the divided down reference. Binary value reflects the divider ratio. 1h: Minimum value (VCO /1) FFh: Maximum value (VCO / 255) Mindspeed Technologies™ Page 22 of 29 M21012V M3h: Output Buffer Control for RCLK N Out_ctrl_N [7:6] outlvl [5:4] Reserved [3] data_pol_flip [2] dataout_en [1] clkout_en [0] clk_pol_flip Determines the output swing of a data and/or clock buffer for RCLK N. In PCML mode: 00b: Power down 01b: 500 mV 10b: 900 mV [Default] 11b: 1200 mV For LVPECL, the output swing is increased to: 00b: Power down 01b: 900 mV 10b: Standard (low specification side) 1200 mV [Default] 11b: Standard (Nominal) 1600 mV Reserved (Default = 00b) Flips the polarity of the output data. 0b: Normal [Default] 1b: Polarity flip Enables the data output driver N. 1b: Data output enabled to level specified in Out_ctrl_N[7:6] [Default] 0b: Data output disabled and powered down Enables the clock output driver N. 1b: Clock output enabled to level specified in Out_ctrl_N[7:6] 0b: Clock output disabled and powered down [Default] Flips the polarity of the output clock. 0b: Normal [Default] 1b: Polarity flip M4h: Output Buffer Pre-Emphasis Control for RCLK N Preemp_ctrl_N 21012V-DSH-001-A, 7/11/03 [7] Reserved [6:3] MSPD Internal [2:0] preemph Reserved (Default = 0b) Default = 1000b Selects the digital pre-emphasis level. 111b: 200% 110b: 150% 101b: 100% 100b: 75% 011b: 50% 010b: 37.5% 001b: 25% 000b: Pre-emphasis off [Default] Mindspeed Technologies™ Page 23 of 29 M21012V M5h: Input Buffer Equalization Control for RCLK N Ineq_ctrl_N [7] Reserved [6:5] MSPD Internal [4] en_DCservo [3] en_ad_eq [2:0] MSPD Internal Reserved (Default = 0b) Default = 00b Enables DC servo in the input channel to remove offset based deterministic jitter. 0b: DC servo Dj attenuator off 1b: DC servo Dj attenuator on [Default] Enables adaptive input equalization mode. 0b: Adaptive input equalization disabled 1b: Adaptive input equalization enabled [Default] Default = 000b M6h: RCLK N Static Phase Offset (Data Sampling Point) Adjust Phadj_ctrl_N [7:6] i_trim [5:4] r_sel [3:0] phase_adj 21012V-DSH-001-A, 7/11/03 Adjusts the charge-pump current. 00b: 0.65x 01b: 0.8x 10b: Nominal [Default] 11b: 1.15x Adjusts the resistor of the RCLK loop filter. 00b: 0.8x 01b: Nominal [Default] 10b: 4x Adjusts the static phase offset of the data. 1111b: -122.5 mUI 1110b: -105 mUI 1101b: -87.5 mUI 1100b: -70 mUI 1011b: -52.5 mUI 1010b: -35 mUI 1001b: -17.5 mUI 1000b: 0 mUI 0000b: 0 mUI [Default] 0001b: 17.5 mUI 0010b: 35 mUI 0011b: 52.5 mUI 0100b: 70 mUI 0101b: 87.5 mUI 0110b: 105 mUI 0111b: 122.5 mUI Mindspeed Technologies™ Page 24 of 29 M21012V M9h RCLK N FRA LOL Window Control LOL_ctrl_N [7:5] tacq_LOL [4:1] narwin_LOL [0] widwin_LOL 21012V-DSH-001-A, 7/11/03 Sets the value for the LOL reference window. Code Value 000b 128 001b 256 010b 512 011b 1024 100b 2048 101b 4096 [Default] 110b 8192 111b 16384 Sets the narrow LOL window for the LOL = H to LOL = L transition (transition to in lock threshold). Code Value 0000b 2 0001b 3 0010b 4 0011b 6 [Default] 0100b 8 0101b 12 0110b 16 0111b 24 1000b 9 1001b 10 1010b 11 1011b 12 1100b 13 1101b 14 1110b 15 1111b 32 Sets the wide LOL window for the LOL = L to LOL = H transition (transition to out of lock threshold). Narrow Wide Wide Code Code 0b Code 1b 0000b 3 8 0001b 4 12 0010b 6 16 0011b 8 24 0100b 12 32 0101b 16 32 0110b 24 32 0111b 32 32 1000b 12 32 1001b 12 32 1010b 12 32 1011b 16 32 1100b 16 32 1101b 16 32 1110b 16 32 1111b 32 32 0b: [Default] Mindspeed Technologies™ Page 25 of 29 M21012V 10 2X 0.10 A C A 0.08 C D A A1 D/2 A2 D1 A3 D1/2 2X N 0.10 2 3 E/2 E1/2 E E1 C B 1 5 6 0.80 DIA. 0.10 C B 2X 0 B 0.10 C TOP VIEW A C 2X SEATING PLANE SIDE VIEW 4 b 4X P CL 0.10 C A B M SEE DETAIL "A" FOR PIN #1 ID AND TIE BAR MARK OPTION D2 D2/2 PIN1 ID 0.20 R. e N 4X P TERMINAL TIP 1 0.45 2 FOR ODD TERMINAL/SIDE 3 C C CL E2 (Ne-1)Xe REF. e E2/2 TERMINAL TIP FOR EVEN TERMINAL/SIDE 0.25 MIN. L 4 e 0.25 MIN (Nd-1)Xe REF. SEATING PLANE b A1 11 SECTION "C-C" BOTTOM VIEW SCALE: NONE Figure 3. 68 Pin Package Drawing Figure shows drawing for 68 pin package, see Figure 4 for 72 pin dimensions. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 26 of 29 M21012V STANDARD DETAIL "A" - PIN #1 ID AND TIE BAR MARK OPTION S Y M B O L e N Nd Ne L b Q D2 E2 PITCH VARIATION D N O NOM. MIN. 0.30 0.18 0.00 T MAX. 0.50 BSC 72 18 18 0.40 0.23 0.20 E 3 3 3 0.50 0.30 0.45 MIN EXPOSED PAD VARIATIONS NOTES: C 5.85 COMMON DIMENSIONS MIN. NOM. A A1 A2 A3 0.00 - 0.85 0.01 0.65 0.20 REF. N O MAX. 0.90 0.05 0.70 T E 11 10.00 BSC 9.75 BSC 10.00 BSC 9.75 BSC D D1 E E1 0 P R 4 12 SEE EXPOSED PAD VARIATION:C SEE EXPOSED PAD VARIATION:C SYMBOLS S Y M B O L 0.24 0.13 0.42 0.17 D2 NOM MAX MIN E2 NOM MAX 6.00 6.15 5.85 6.00 6.15 12˚ 0.60 0.23 12 NOTE 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM(.012 INCHES MAXIMUM) 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. - 1994. 3. N IS THE NUMBER OF TERMINALS. Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION & 4. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION. BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 5. THE PIN #1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY. 6. EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL. 7. ALL DIMENSIONS ARE IN MILLIMETERS. 8. THE SHAPE SHOWN ON FOUR CORNERS ARE NOT ACTUAL I/O. 9. PACKAGE WARPAGE MAX 0.08mm. 10. APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING. 11. APPLIED ONLY FOR TERMINALS. 12. Q AND R APPLIES ONLY FOR STRAGHT TIEBAR SHAPES. Figure 4. 72 Pin Package Dimensions 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Page 27 of 29 M21012V Quad Multi-Rate Video Reclocker (SD-SDI, HD-SDI, 2x HD-SDI interim device) © 2002, 2003 Mindspeed Technologies™, as a wholly owned subsidiary and the Internet infrastructure business of Conexant Systems, Inc. All Rights are Reserved. Information in this document is provided in connection with Mindspeed Technologies, Inc. "Mindspeed" products. These materials are provided by Mindspeed as a service to its customers and may be used for informational purposes only. Mindspeed assumes no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and product descriptions at any time, without notice. Mindspeed makes no commitment to update the information contained herein. Mindspeed shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Mindspeed Terms and Conditions of Sale for such products, Mindspeed assumes no liability whatsoever. THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Mindspeed further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. Mindspeed shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials. Mindspeed products are not intended for use in medical, life saving or life sustaining applications. Mindspeed customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to fully indemnify Mindspeed for any damages resulting from such improper use or sale. The following are trademarks of Mindspeed Technologies, Inc. the symbol M1, Mindspeed™, and "Build It First™" Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners. For additional disclaimer information, please consult Mindspeed Technologies Legal Information posted at: http://www.mindspeed.com/, which is incorporated by reference. Reader Response: Mindspeed Technologies, Inc. strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions to mailto:[email protected]. For technical questions, or to talk to a field applications engineer contact your local Mindspeed™ sales office listed below. For literature send email request to [email protected]. 21012V-DSH-001-A, 7/11/03 Mindspeed Technologies™ Preliminary Information Page 28 of 29 Headquarters Newport Beach Mindspeed Technologies 4000 MacArthur Boulevard, East Tower Newport Beach, CA 92660 Phone: (949) 579-3000 Fax: (949) 579-3200 www.mindspeed.com 21012V-DSH-001-A, 7/11/03 Mindspeed™ Technologies Preliminary Information Page 29 of 29