MIC5374/84

MIC5374/84
Triple 200mA µCap LDO and 1mA
RTC LDO in 2.5mm x 2.5mm Thin MLF®
General Description
Features
The MIC5374/84 is a four output device with three 200mA
LDOs and a real time clock (RTC) 1mA LDO which is ideal
for application processor support in mobile platforms. The
MIC5374 provides independent control active high enables
for each of the 200mA LDOs with an additional always-on
RTC LDO. The MIC5384 provides active low enables.
Both the MIC5374 and MIC5384 are available in the tiny
2.5mm x 2.5mm Thin MLF® package.
The MIC5374/84 is designed for high input ripple rejection
(high PSRR) and provides low output noise making it ideal
for powering sensitive RF circuitry such as GPS, WiFi, and
Bluetooth applications. The MIC5374/84 also incorporates
a power-on-reset (POR) supervisor with adjustable delay
time set by an external capacitor, and an independent
input pin to monitor any voltage level. Once high, the POR
output can be asserted low again by enabling the manual
reset (MR) pin. When the MR pin is restored low, the POR
output will re-time the delay set by the external delay
capacitor.
The MIC5374/84 operates with very small ceramic output
capacitors to reduce board space and component cost. It
is available in various fixed output voltages. The
MIC5374/84 has a junction temperature range from −40°C
to 125°C.
Datasheets and support documentation can be found on
Micrel’s web site at: www.micrel.com.
•
•
•
•
•
•
•
•
•
•
•
1.7V to 5.5V input supply voltage range
Output current - 200mA LDO1/2/3, 1mA LDO4
LDO4 – Ultra low 8µA IBIAS for RTC support
High output accuracy (±2%)
Independent enable pins
POR with user-defined voltage monitoring
− POR voltage input
− Adjustable delay time
− Manual reset pin
Low dropout voltage – 170mV at 150mA
High PSRR − 55dB at 1kHz on each LDO
Stable with tiny ceramic output capacitors
2.5mm x 2.5mm Thin MLF 16-pin package
Thermal-shutdown and current-limit protection
Applications
•
•
•
•
Mobile phones
GPS receivers
Application co-processors
PDAs and handheld devices
Typical Application
Typical MIC5374-xxxYMT Circuit
(Active High Enable)
Typical MIC5384-xxxYMT Circuit
(Active Low Enable)
MLF and MicroLeadFrame are registered trademarks of Amkor Technology, Inc.
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
September 2012
M9999-091712
Micrel, Inc.
MIC5374/84
Ordering Information
Part Number
Mark
Code
Output Voltage(1)
Junction
Temperature
Range
Package
Lead Finish(2)
MIC5374-MG44YMT
MG44
2.8V/1.8V/1.2/1.2V
–40° to +125°C
16-Pin 2.5mm x 2.5mm Thin MLF
Pb-free
MIC5374-SJG1YMT
SJG1
3.3V/2.5V/1.8V/1.0V
–40° to +125°C
16-Pin 2.5mm x 2.5mm Thin MLF
Pb-free
MIC5384-MG44YMT
Z1U
2.8V/1.8V/1.2/1.2V
–40° to +125°C
16-Pin 2.5mm x 2.5mm Thin MLF
Pb-free
MIC5384-SJG1YMT
Z5U
3.3V/2.5V/1.8V/1.0V
–40° to +125°C
16-Pin 2.5mm x 2.5mm Thin MLF
Pb-free
Note:
1.
Other voltage options available. Contact Micrel for details.
2.
Lead finish is NiPdAu. Mold compound material is halogen free.
Pin Configuration
MIC5374
16-Pin 2.5mm x 2.5mm Thin MLF (MT)
(Top View)
September 2012
MIC5384
16-Pin 2.5mm x 2.5mm Thin MLF (MT)
(Top View)
2
M9999-091712
Micrel, Inc.
MIC5374/84
Pin Description
Pin Number
Pin Name
1
OUT1
Pin Function
2
INLDO1/2
3
OUT2
Regulator Output – LDO2.
4
BIAS
Internal Bias Supply Voltage. Must be de-coupled to ground with a 0.1µF capacitor.
5
POR_IN
6
POR
Power-on-Reset Output. Open drain.
7
DLY
POR Delay Capacitor. Connect capacitor to ground to set POR delay time.
8
MR
Manual Reset Input. Manually resets output of POR and delay generator. Do not leave floating.
Regulator Output - LDO1.
Supply Input (LDO1/2).
Input to POR. Connect directly to output voltage or input voltage that is to be monitored for a 0.9V
reference, or connect a resistor divider network to this pin to program the POR monitoring voltage.
9
OUT4
10
INLDO4
Supply Input (LDO4). Ultra-low IQ RTC LDO. 1.7V to 5.5V input voltage range.
11
INLDO3
Supply Input (LDO3).
12
OUT3
Regulator Output – LDO3.
13
GND
Ground.
14
EN3 or /EN3
15
EN2 or /EN2
16
EN1 or /EN1
HS Pad
EPAD
September 2012
Regulator Output - LDO4.
LDO3 Enable Input. EN (MIC5374): Active High Input. Logic High = On; Logic Low = Off;
/EN (MIC5384): Active Low Input. Logic High = Off; Logic Low = On. Do not leave floating.
LDO2 Enable Input. EN (MIC5374): Active High Input. Logic High = On; Logic Low = Off;
/EN (MIC5384): Active Low Input. Logic High = Off; Logic Low = On; Do not leave floating.
LDO1 Enable Input. EN (MIC5374): Active High Input. Logic High = On; Logic Low = Off;
/EN (MIC5384): Active Low Input. Logic High = Off; Logic Low = On; Do not leave floating.
Exposed Heat Sink Pad. Connect to GND.
3
M9999-091712
Micrel, Inc.
MIC5374/84
Absolute Maximum Ratings(1)
Operating Ratings(4)
Supply Voltage (VINLDO1/2, INLDO3, INLDO4) ............ −0.3V to +6V
Bias Supply Voltage (VBIAS)............................. −0.3V to +6V
Enable Input Voltage (VEN1, EN2, EN3)................. −0.3V to +6V
POR Output Voltage (POR) ............................ −0.3V to +6V
POR Input Voltage (POR_IN) ......................... −0.3V to +6V
MR Voltage (MR) ............................................ −0.3V to +6V
DLY Voltage (DLY).......................................... −0.3V to +6V
Power Dissipation .................................. Internally Limited(2)
Lead Temperature (soldering, 10s)............................ 260°C
Storage Temperature (Ts) .........................–60°C to +150°C
ESD Rating(3) ................................................. ESD Sensitive
Supply Voltage(5) (VINLDO1/2, INLDO3, INLDO4) ........ +1.7V to VBIAS
Bias Supply Voltage (VBIAS).......................... +2.5V to +5.5V
Enable Input Voltage (VEN1, EN2, EN3)..................... 0V to VBIAS
POR Output Voltage (POR) .............................. 0V to +5.5V
POR Input Voltage (POR_IN) ............................. 0V to VBIAS
MR Voltage (MR) ................................................ 0V to VBIAS
DLY Voltage (DLY).............................................. 0V to VBIAS
Junction Temperature (TJ) ........................ –40°C to +125°C
Junction Thermal Resistance
2.5 x 2.5 Thin MLF 16L (θJA)............................100°C/W
Electrical Characteristics(6)
(MIC5374) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = VEN1 = VEN2 = VEN3 = 5.5V (ON);
(MIC5384) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = 5.5V; V/EN1 = V/EN2 = V/EN3 = GND (ON);
IOUT1 = IOUT2 = IOUT3 = IOUT4 = 100µA; COUT1 = COUT2 = COUT3 = COUT4 =1µF; TA = 25°C.
Bold values indicate –40°C ≤ TJ ≤ +125°C, unless noted.
Parameter
Conditions
Min.
Typ.
Max.
Units
Output Voltage Accuracy
(LDO1/2/3)
Variation from nominal VOUT1, 2, 3
−2.0
+2.0
Variation from nominal VOUT1, 2, 3
−3.0
+3.0
Output Voltage Accuracy
(LDO4 - RTC Support)
Variation from nominal VOUT4
−4.0
+4.0
Variation from nominal VOUT4
−5.0
+5.0
Line Regulation
VIN = VOUT +1V to 5.5V; IOUT = 100µA
0.02
0.3
IOUT = 100µA to 150mA; LDO1/2/3
0.3
1
IOUT = 100µA to 1mA; LDO4
0.05
1
IOUT = 50mA; VOUT ≥ 2.8V
60
115
IOUT = 150mA; VOUT ≥ 2.8V
170
330
IOUT = 50mA; VOUT < 2.8V
85
145
IOUT = 150mA; VOUT < 2.8V
275
450
EN1 or EN2 or EN3 = ON; Not including IBIAS
10
20
LDO4; EN1 = EN2 = EN3 = OFF; Not including IBIAS
3
8
EN1 or EN2 or EN3 = ON; with LDO4 ON
42
70
EN1 = EN2 = EN3 = ON; with LDO4 ON
106
170
Shutdown Input Ground Current
EN1 = EN2 = EN3 = OFF
0.04
2
µA
Shutdown Bias Current
EN1 = EN2 = EN3 = OFF; with LDO4 ON
8
13
µA
Ripple Rejection
f = 1kHz; COUT = 1.0µF
55
Load Regulation
Dropout Voltage
Input Ground Current
Input Bias Current
Current Limit
VOUT = 0V; LDO1/2/3
VOUT = 0V; LDO4
%
%
%/V
%
mV
µA
µA
dB
200
350
700
2
12
50
mA
Notes:
1.
Exceeding the absolute maximum rating may damage the device.
2.
The maximum allowable power dissipation of any TA (ambient temperature) is PD(max) = (TJ(max) – TA) / θJA. Exceeding the maximum allowable power
dissipation will result in excessive die temperature and the regulator will go into thermal shutdown.
3.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kΩ in series with 100pF.
4.
The device is not guaranteed to function outside its operating rating.
5.
For VIN range of 1.7V to 2.5V, output current is limited to 30mA.
6.
Specification for packaged product only.
September 2012
4
M9999-091712
Micrel, Inc.
MIC5374/84
Electrical Characteristics(6) (Continued)
(MIC5374) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = VEN1 = VEN2 = VEN3 = 5.5V (ON);
(MIC5384) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = 5.5V; V/EN1 = V/EN2 = V/EN3 = GND (ON);
IOUT1 = IOUT2 = IOUT3 = IOUT4 = 100µA; COUT1 = COUT2 = COUT3 = COUT4 =1µF; TA = 25°C.
Bold values indicate –40°C ≤ TJ ≤ +125°C, unless noted.
Parameter
Conditions
Output Voltage Noise
COUT = 1µF,10Hz to 100kHz; IOUT = 150mA
Enable Input Voltage
Min.
Typ.
1.2
VIL ≤ 0.2V
0.01
VIH ≥ 1.2V
0.01
Turn-On Time
COUT = 1µF
80
VPOR
POR Output Low Voltage
DLY Pin Current Source
VDLY = 0V
Enable Input Current
DLY Pin Voltage Threshold
IPOR
POR Output Leakage Current, VPOR OFF
VTH
POR Undervoltage Threshold
Units
µVRMS
0.2
(MIC5374) LDO OFF; (MIC5384) LDO ON
(MIC5374) LDO ON; (MIC5384) LDO OFF
Max.
200
V
µA
200
µs
0.2
V
0.75
1.25
2
µA
1.13
1.25
1.38
V
0.873
0.9
1
µA
0.927
V
VHYS
POR Voltage Threshold Hysteresis
34
mV
IPOR_IN
POR Input Pin Leakage Current
1
µA
Thermal Shutdown
155
°C
Thermal-Shutdown Hysteresis
10
°C
September 2012
5
M9999-091712
Micrel, Inc.
MIC5374/84
Typical Characteristics
LDO1 Output Voltage
vs. Input Voltage
3.40
3.40
3.10
IOUT = 100µA
3.00
2.90
2.80
VBIAS = VIN1/2
2.70
VOUT _NOM = 3.3V
2.60
3.30
3.20
3.10
IOUT = 50mA
3.00
2.90
2.80
VBIAS = VIN1/2
2.70
VOUT_NOM = 3.3V
2.60
COUT = 1.0µF
2.5
3
3.5
4
4.5
5
3
LDO2 Output Voltage
vs. Input Voltage
4
4.5
5
IOUT = 100µA
2.40
2.35
VBIAS = VIN
VOUT _NOM = 2.5V
2.25
4
4.5
2.45
IOUT = 50mA
2.40
2.35
VBIAS = VIN
2.30
VOUT_NOM = 2.5V
5
3
OUTPUT VOLTAGE (V)
1.75
1.70
1.65
1.60
IOUT = 100µA
1.55
1.50
1.45
VBIAS = 5.5V
VOUT_NOM = 1.8V
1.40
1.35
3.5
4
4.5
5
COUT = 1.0µF
2.2
2.7
3.2
3.7
4.2
4.7
INPUT VOLTAGE (V)
September 2012
2.45
IOUT = 150mA
2.40
2.35
VBIAS = VIN
2.30
VOUT_NOM = 2.5V
COUT = 1.0µF
2.5
3
1.70
1.65
IOUT = 50mA
1.60
1.55
1.50
1.45
5.2
5.7
VBIAS = 5.5V
VOUT_NOM = 1.8V
COUT = 1.0µF
1.7
2.2
2.7
3.2
3.7
4.2
4.7
INPUT VOLTAGE (V)
6
3.5
4
4.5
5
5.5
LDO3 Output Voltage
vs. Input Voltage
1.90
1.85
5.2
1.80
1.75
1.70
1.65
1.60
1.55
IOUT = 150mA
1.50
1.45
1.40
VBIAS = 5.5V
VOUT_NOM = 1.8V
COUT = 1.0µF
1.35
1.30
1.30
1.7
5.5
INPUT VOLTAGE (V)
1.80
1.75
1.40
1.35
1.30
5
2.50
5.5
LDO3 Output Voltage
vs. Input Voltage
1.90
1.85
1.85
1.80
4.5
LDO2 Output Voltage
vs. Input Voltage
INPUT VOLTAGE (V)
LDO3 Output Voltage
vs. Input Voltage
4
2.20
2.5
5.5
3.5
2.25
COUT = 1.0µF
INPUT VOLTAGE (V)
1.90
3
2.55
OUTPUT VOLTAGE (V)
3.5
VOUT_NOM = 3.3V
COUT = 1.0µF
2.60
2.20
2.20
3
VBIAS = VIN1/2
2.70
INPUT VOLTAGE (V)
2.50
2.25
COUT = 1.0µF
2.5
2.80
2.5
OUTPUT VOLTAGE (V)
2.50
2.30
2.90
5.5
2.55
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
3.5
LDO2 Output Voltage
vs. Input Voltage
2.60
2.55
2.45
IOUT = 150mA
3.00
INPUT VOLTAGE (V)
INPUT VOLTAGE (V)
2.60
3.10
2.50
2.5
5.5
3.20
2.60
COUT = 1.0µF
2.50
2.50
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
3.20
LDO1 Output Voltage
vs. Input Voltage
3.40
3.30
3.30
OUTPUT VOLTAGE (V)
LDO1 Output Voltage
vs. Input Voltage
5.7
1.7
2.2
2.7
3.2
3.7
4.2
4.7
5.2
5.7
INPUT VOLTAGE (V)
M9999-091712
Micrel, Inc.
MIC5374/84
Typical Characteristics (Continued)
LDO4 Output Voltage
vs. Input Voltage
1.10
1.10
1.08
IOUT = 100µA
3.38
1.04
1.02
1.00
0.98
0.96
VBIAS = 5.5V
0.94
VOUT_NOM = 1.0V
0.92
COUT = 1.0µF
0.90
1.06
IOUT = 1mA
1.04
1.02
1.00
0.98
0.96
VBIAS = 5.5V
0.94
VOUT _NOM = 1.0V
0.92
COUT = 1.0µF
0.90
2.2
2.7
3.2
3.7
4.2
4.7
5.2
5.7
1.7
INPUT VOLTAGE (V)
3.36
OUTPUT VOLTAGE (V)
VIN = 4.2V
3.32
3.30
3.28
3.26
3.24
VOUT_NOM = 3.3V
3.22
COUT = 1.0µF
3.7
4.2
4.7
5.2
2.60
3.30
3.28
3.26
VBIAS = VIN1/2
3.24
VOUT_NOM = 3.3V
3.22
COUT = 1.0µF
0
LDO2 Output Voltage
vs. Output Current
2.60
2.56
2.56
OUTPUT VOLTAGE (V)
2.58
VIN = 3.6V
2.52
2.50
2.48
2.42
COUT = 1.0µF
2.40
50
100
150
OUTPUT CURRENT (mA)
September 2012
COUT = 1.0µF
200
20 40 60 80 100 120 140 160 180 200
LDO2 Output Voltage
vs. Output Current
2.56
VIN = 3.0V
2.54
2.52
2.50
2.48
2.46
VBIAS = VIN1/2
2.44
VOUT_NOM = 2.5V
2.42
COUT = 1.0µF
0
50
100
150
200
OUTPUT CURRENT (mA)
LDO3 Output Voltage
vs. Output Current
1.90
1.88
VIN = 5.5V
2.54
2.52
2.50
2.48
2.46
VBIAS = VIN1/2
2.44
VOUT_NOM = 2.5V
2.42
COUT = 1.0µF
1.86
VIN = 2.5V
1.84
1.82
1.80
1.78
1.76
VBIAS = VIN3
1.74
VOUT_NOM = 1.8V
1.72
COUT = 1.0µF
1.70
2.40
0
VOUT_NOM = 3.3V
3.22
20 40 60 80 100 120 140 160 180 200
LDO2 Output Voltage
vs. Output Current
VOUT_NOM = 2.5V
3.24
2.40
OUTPUT CURRENT (mA)
2.44
VBIAS = VIN1/2
3.26
2.60
VIN = 5.5V
OUTPUT CURRENT (mA)
VBIAS = VIN1/2
3.28
OUTPUT CURRENT (mA)
3.32
20 40 60 80 100 120 140 160 180 200
2.46
3.30
2.58
3.34
2.58
2.54
3.32
0
3.20
3.20
0
VIN = 3.6V
3.34
3.20
5.7
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
3.38
3.36
VBIAS = VIN1/2
3.2
LDO1 Output Voltage
vs. Output Current
3.40
3.38
3.34
2.7
3.36
INPUT VOLTAGE (V)
LDO1 Output Voltage
vs. Output Current
3.40
2.2
OUTPUT VOLTAGE (V)
1.7
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
1.06
LDO1 Output Voltage
vs. Output Current
3.40
1.08
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
LDO4 Output Voltage
vs. Input Voltage
0
50
100
150
OUTPUT CURRENT (mA)
7
200
0
50
100
150
200
OUTPUT CURRENT (mA)
M9999-091712
Micrel, Inc.
MIC5374/84
Typical Characteristics (Continued)
1.90
1.88
1.88
1.86
1.86
OUTPUT VOLTAGE (V)
VIN = 3.6V
1.84
1.82
1.80
1.78
1.76
VBIAS = VIN3
1.74
VOUT_NOM = 1.8V
1.72
COUT = 1.0µF
1.70
VIN = 5.5V
1.84
1.82
1.80
1.78
1.76
VBIAS = VIN3
1.74
VOUT_NOM = 1.8V
1.72
COUT = 1.0µF
100
150
200
0
50
OUTPUT CURRENT (mA)
1.10
1.08
1.06
1.06
VIN = 3.0V
1.02
1.00
0.98
VBIAS = 3.0V
0.94
VOUT_NOM = 1.0V
0.92
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
LDO4 Output Voltage
vs. Output Current
0.96
1.04
0.98
0.96
VBIAS = 5.5V
0.94
VOUT_NOM = 1.0V
1.90
2.50
2.48
2.46
VOUT_NOM = 2.5V
COUT = 1.0µF
2.40
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
IOUT = 50mA
2.52
20
40
60
80
TEMPERATURE (°C)
September 2012
0.92
COUT = 1.0µF
100 120
LDO1 Output Voltage
vs. Temperature
IOUT = 100µA
IOUT = 50mA
3.34
3.32
3.30
3.28
3.26
3.24
-40 -20
0
20
1.82
1.80
1.78
1.76
VOUT_NOM = 1.8V
IOUT = 150mA
COUT = 1.0µF
1.72
60
80
100 120
LDO4 Output Voltage
vs. Temperature
1.08
1.84
40
TEMPERATURE (°C)
1.10
IOUT = 50mA
VOUT_NOM = 3.3V
COUT = 1.0µF
IOUT = 150mA
3.20
IOUT = 100µA
1.86
1.74
3.36
2.5 3 3.5 4 4.5 5
1.70
0
VOUT _NOM = 1.0V
3.22
COUT = 1.0µF
0 0.5 1 1.5 2
1.88
-40 -20
VBIAS = 3.0V
0.94
3.40
1.00
LDO3 Output Voltage
vs. Temperature
2.42
0.96
OUTPUT CURRENT (mA)
VIN = 5.5V
LDO2 Output Voltage
vs. Temperature
IOUT = 150mA
0.98
3.38
OUTPUT CURRENT (mA)
2.54
1.00
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
LDO4 Output Voltage
vs. Output Current
OUTPUT CURRENT (mA)
IOUT = 100µA
VIN = 1.7V
1.02
200
0.90
2.58
2.44
150
1.02
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2.56
100
0.92
COUT = 1.0µF
0.90
2.60
1.04
OUTPUT CURRENT (mA)
1.08
1.04
1.06
0.90
OUTPUT VOLTAGE (V)
50
LDO4 Output Voltage
vs. Output Current
1.08
1.70
0
1.10
1.10
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
1.90
LDO3 Output Voltage
vs. Output Current
OUTPUT VOLTAGE (V)
LDO3 Output Voltage
vs. Output Current
IOUT = 100µA
1.06
1.04
1.02
1.00
0.98
0.96
0.94
IOUT = 5mA
VOUT_NOM = 1.0V
COUT = 1.0µF
0.92
0.90
-40 -20
0
20
40
60
80
TEMPERATURE (°C)
8
100 120
-40 -20
0
20
40
60
80
100 120
TEMPERATURE (°C)
M9999-091712
Micrel, Inc.
MIC5374/84
600
550
500
450
400
350
300
250
200
150
100
50
0
VBIAS = VIN1/2
VOUT_NOM = 3.3V
COUT = 1µF
2.5
3
3.5
4
4.5
5
LDO2 Current Limit
vs. Input Voltage
600
550
500
450
400
350
300
250
200
150
100
50
0
5.5
VBIAS = VIN1/2
VOUT_NOM = 2.5V
COUT = 1µF
2.5
3
INPUT VOLTAGE (V)
3.5
4
4.5
5
500
20
15
VBIAS = 5.5V
VOUT_NOM = 1.0V
COUT = 1µF
LDO1/2/3 Current Limit
vs. Temperature
3.2
3.7
4.2
4.7
350
300
250
200
150
VBIAS = VIN = 4.3V
100
VOUT_NOM = 3.3V
5.2
140
VBIAS = 4.3V
120
80
0
20
40
60
80
VOUT_NOM = 3.3V
COUT = 1µF
IOUT = 50mA
60
40
VBIAS = 4.3V
160
VOUT_NOM = 2.5V
COUT = 1µF
IOUT = 50mA
80
40
20
0
0
-40 -20
0
20
40
60
80 100 120
TEMPERATURE (°C)
September 2012
5.5
30
COUT = 1µF
25
20
15
10
-20
0
20
40
60
80
100 120
TEMPERATURE (°C)
LDO2 Dropout Voltage
vs. Temperature
200
120
5
VBIAS = VIN = 4.3V
-40
100 120
320
IOUT = 150mA
160
100
240
IOUT = 150mA
4.5
VOUT_NOM = 1.0V
TEMPERATURE (°C)
LDO1 Dropout Voltage
vs. Temperature
4
0
-40 -20
5.7
DROPOUT VOLTAGE (mV)
DROPOUT VOLTAGE (mV)
180
3.5
5
COUT = 1µF
INPUT VOLTAGE (V)
200
3
LDO4 Current Limit
vs. Temperature
35
DROPOUT VOLTAGE (mV)
2.7
VOUT_NOM = 1.8V
COUT = 1µF
40
0
2.2
VBIAS = VIN3
INPUT VOLTAGE (V)
400
50
0
1.7
300
250
200
150
100
50
0
2.5
CURRENT LIMIT (mA)
CURRENT LIMIT (mA)
CURRENT LIMIT (mA)
25
5
600
550
500
450
400
350
5.5
450
10
LDO3 Current Limit
vs. Input Voltage
INPUT VOLTAGE (V)
LDO4 Current Limit
vs. Input Voltage
30
CURRENT LIMIT (mA)
LDO1 Current Limit
vs. Input Voltage
CURRENT LIMIT (mA)
CURRENT LIMIT (mA)
Typical Characteristics (Continued)
280
LDO3 Dropout Voltage
vs. Temperature
IOUT = 150mA
240
VBIAS = 4.3V
200
160
VOUT_NOM = 1.8V
IOUT = 50mA
COUT = 1µF
120
80
40
0
-40 -20
0
20
40
60
80 100 120
TEMPERATURE (°C)
9
-40 -20
0
20
40
60
80 100 120
TEMPERATURE (°C)
M9999-091712
Micrel, Inc.
MIC5374/84
Typical Characteristics (Continued)
20
18
35
GROUND CURRENT (µA)
30
25
20
15
10
VIN = VBIAS = 3.6V
EN1 or EN2 or EN3 = ON
5
14
12
VBIAS = VIN = 3.6V
8
6
4
VBIAS = 2.5V, VIN = 1.7V
2
25
50
75
100
125
0
150
1
2
LDO4 Total Ground
Current vs. Input Voltage
INPUT GROUND CURRENT (µA)
GROUND CURRENT (µA)
16
14
12
10
8
VBIAS = VIN4
EN1 = EN2 = EN3 = OFF
Including IBIAS
No Load
4
2
5
6
7
8
9
0
20
2
2.5
3
3.5
4
4.5
5
16
14
12
10
8
6
VBIAS = 5.5V
4
VIN = VOUT + 1V
EN1 or EN2 or EN3= ON
2
5.5
25
50
75
100
125
LDO1/2/3 Input Ground
Current vs. Input Voltage
LDO4 Input Ground
Current vs. Input Voltage
10
GROUND CURRENT (µA)
16
14
12
10
8
6
VBIAS = 5.5V
EN1 or EN2 or EN3 = ON
No Load
4
4.5
INPUT VOLTAGE (V)
September 2012
5
5.5
VBIAS = 5.5V
8
VIN = VOUT + 1V
EN1 = EN2 = EN3 = OFF
7
5
5.5
6
5
4
3
2
1
8
7
0
1
2
3
4
5
6
7
8
9
10
LDO1/2/3 Input Ground
Current vs. Temperature
20
6
5
4
3
2
18
16
VBIAS = 5.5V
EN1 or EN2 or EN3 = ON
No Load
14
12
10
8
6
4
2
0
0
3.5
4.5
OUTPUT CURRENT (mA)
1
0
4
9
150
VBIAS = 5.5V
EN1 = EN2 = EN3 = OFF
No Load
9
3
3.5
0
0
18
2.5
3
LDO4 Input Ground
Current vs. Output Current
10
18
OUTPUT CURRENT (mA)
2
VBIAS = VIN1/2 = VIN3
EN1 or EN2 or EN3 = ON
Including IBIAS
No Load
10
INPUT VOLTAGE (V)
INPUT VOLTAGE (V)
4
15
2.5
0
1.5
20
0
10
LDO1/2/3 Input Ground
Current vs. Output Current
20
18
6
4
25
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
20
3
INPUT GROUND CURRENT (µA)
0
30
5
Including IBIAS
0
0
GROUND CURRENT (µA)
35
16
10
LDO1/2/3 Total Ground
Current vs. Input Voltage
40
VBIAS = VIN = 5.5V
INPUT GROUND CURRENT (µA)
TOTAL GROUND CURRENT(µA)
40
LDO4 Total Ground Current
vs. Output Current
GROUND CURRENT (µA)
LDO1/2/3 Total Ground
Current vs. Output Current
2.5
3
3.5
4
4.5
INPUT VOLTAGE (V)
10
5
5.5
-40
-20
0
20
40
60
80
100 120
TEMPERATURE (°C)
M9999-091712
Micrel, Inc.
MIC5374/84
Typical Characteristics (Continued)
5
4
4
3
3
2
2
VBIAS = 5.5V
EN1 = EN2 = EN3 = OFF
No Load
1
1
50
BIAS GROUND CURRENT (µA)
40
35
30
25
20
15
VBIAS = 5.5V
10
VIN = VOUT + 1V
EN1 or EN2 or EN3= ON
5
-40
-20
50
0
20
40
60
80
OUTPUT CURRENT (mA)
LDO1/2/3 Bias Ground
Current vs. Temperature
LDO4 Bias Ground
Current vs. Temperature
35
30
25
20
15
VBIAS = 5.5V
10
VIN = VOUT + 1V
EN1 or EN2 or EN3= ON
5
20
BIAS GROUND CURRENT (µA)
40
0
-20
0
20
40
60
80
14
12
10
8
6
VBIAS = 5.5V
4
VIN = VOUT + 1V
EN1 = EN2 = EN3 = OFF
2
0
2
4
5
6
7
8
9
10
10
Noise (10Hz- 100kHz) = 200µVrms
16
1
14
12
10
8
6
VBIAS = 5.5V
4
0.1
VIN = 3.8V
VOUT = 2.8V
COUT = 1µF
0.01
CBIAS = 0.1µF
Load = 150mA
VIN = VOUT + 1V
EN1 = EN2 = EN3 = OFF
2
0.001
-40
-20
0
TEMPERATURE (°C)
20
40
60
80
10
100 120
100
LDO2 Output Noise
Spectral Density
1,000
10,000
100,000
FREQUENCY (Hz)
TEMPERATURE (°C)
LDO2 Output Noise
Spectral Density
10
3
LDO1 Output Noise
Spectral Density
18
100 120
1
OUTPUT CURRENT (mA)
0
-40
16
20 40 60 80 100 120 140 160 180 200
TEMPERATURE (°C)
45
18
0
0
100 120
LDO4 Bias Ground Current
vs. Output Current
20
0
0
BIAS GROUND CURRENT (µA)
45
NOISE uV/√Hz
INPUT GROUND CURRENT (µA)
5
LDO1/2/3 Bias Ground
Current vs. Output Current
BIAS GROUND CURRENT (µA)
LDO4 Input Ground
Current vs. Temperature
LDO3 Output Noise
Spectral Density
10
10
Noise (10Hz - 100kHz) = 160µVrms
Noise (10Hz - 100kHz) = 144µVrms
Noise (10Hz - 100kHz) = 125µVrms
VIN = 4.0V
VOUT = 1.8V
0.1
1
NOISE uV/√Hz
NOISE uV/√Hz
NOISE uV/√Hz
1
1
VIN = 4.0V
0.1
VOUT = 1.8V
COUT = 1µF
COUT = 1µF
CBIAS = 0.1µF
Load = 100µA
CBIAS = 0.1µF
Load = 150mA
10
100
1,000
10,000
FREQUENCY (Hz)
September 2012
100,000
VIN = 4.3V
VOUT = 1.2V
0.01
COUT = 1µF
CBIAS = 0.1µF
Load = 100µA
0.01
0.01
0.1
0.001
10
100
1,000
10,000
FREQUENCY (Hz)
11
100,000
10
100
1,000
10,000
100,000
FREQUENCY (Hz)
M9999-091712
Micrel, Inc.
MIC5374/84
Typical Characteristics (Continued)
LDO3 Output Noise
Spectral Density
-100
-90
-90
-80
-80
-70
-70
Noise (10Hz - 100kHz) = 105µVrms
PSRR (dB)
NOISE uV/√Hz
1
0.1
VIN = 3.9V
0.01
-60
-40
COUT =1µF
-30
CBIAS = 0.1µF
Load = 150mA
-20
1,000
10,000
FREQUENCY (Hz)
-60
-40
VIN = 4.3V
-20
VOUT = 3.3V
VOUT = 3.3V
-10
COUT = 1µF
COUT = 1µF
0
0
100,000
`
-50
-30
VIN = 4.3V
-10
0.001
100
`
-50
VOUT = 1.2V
10
LDO1 PSRR (IOUT = 150mA)
LDO1 PSRR (IOUT = 100µA)
-100
PSRR (dB)
10
10
LDO2 PSRR (IOUT = 100µA)
100
1000
10000
FREQUENCY(Hz)
100000
10
1000000
-90
-80
-80
-80
-70
-70
-70
-50
-30
-30
VIN = 3.6V
-20
VOUT = 2.5V
-10
COUT = 1µF
`
-50
-40
100
-10
1000
10000
FREQUENCY(Hz)
100000
1000000
-50
-40
VIN = 3.6V
VIN = 3.6V
-20
VOUT = 2.5V
VOUT = 1.8V
-10
COUT = 1µF
COUT = 1µF
0
0
10
1000000
-60
-30
-20
0
100000
-90
-60
-40
10000
-100
PSRR(dB)
PSRR (dB)
-90
PSRR (dB)
-100
`
1000
FREQUENCY(Hz)
LDO3 PSRR (IOUT = 100µA)
LDO2 PSRR (IOUT = 150mA)
-100
-60
100
10
10
100
1000
10000
FREQUENCY(Hz)
100000
1000000
100
1000
10000
100000 1000000
FREQUENCY (Hz)
LDO3 PSRR (IOUT = 150mA)
-100
-90
PSRR (dB)
-80
-70
-60
`
-50
-40
-30
VIN = 3.3V
-20
VOUT = 1.8V
-10
COUT = 1µF
0
10
100
1000
10000
100000
1000000
FREQUENCY(Hz)
September 2012
12
M9999-091712
Micrel, Inc.
MIC5374/84
Functional Characteristics
September 2012
13
M9999-091712
Micrel, Inc.
MIC5374/84
Functional Characteristics (Continued)
September 2012
14
M9999-091712
Micrel, Inc.
MIC5374/84
Functional Characteristics (Continued)
September 2012
15
M9999-091712
Micrel, Inc.
MIC5374/84
Functional Diagrams
MIC5374 Block Diagram
MIC5384 Block Diagram
September 2012
16
M9999-091712
Micrel, Inc.
MIC5374/84
Pin Descriptions
INLDO
The LDO input pins INLDO1/2, INLDO3 and INLDO4
provide the input power to the linear regulators LDO1,
LDO2, LDO3 and LDO4. The input operating voltage
range is from 1.7V to 5.5V. For input voltages from 1.7V
to 2.5V the output current must be limited to 30mA each.
Due to line inductance a 1µF capacitor placed close to
the INLDO pins and the GND pin is recommended.
Please refer to layout recommendations.
A delay can be added by placing a capacitor from the
DLY pin to ground.
POR_IN
The power-on-reset input (POR_IN) pin compares any
voltage to an internal 0.9V reference. This function can
be used to monitor any of the LDO outputs or any
external voltage rail. When the monitored voltage is
greater than 0.9V, the POR_IN flag will internally trigger
a 1.25µA source current to charge the external capacitor
at the DLY pin. A resistor divider network may be used
to divide down the monitored voltage to be compared
with the 0.9V at the POR_IN. This resistor network can
change the trigger point to any voltage level. A small
decoupling capacitor is recommended between POR_IN
and ground to reject high frequency noise that might
interfere with the POR circuit. Do not leave the POR_IN
pin floating.
BIAS
The BIAS pin provides power to the internal reference
and control sections of the MIC5374/84. A 0.1µF
ceramic capacitor must be connected from BIAS to GND
for clean operation.
EN (MIC5374)
The enable pins EN1, EN2 and EN3 provide logic level
control for the outputs OUT1, OUT2 and OUT3,
respectively. A logic high signal on an enable pin
activates the respective LDO. A logic low signal on an
enable pin deactivates the respective LDO. Do not leave
the EN pins floating, as it would leave the regulator in an
unknown state.
DLY
The delay (DLY) pin is used to set the POR delay time.
Adding a capacitor to this pin adjusts the delay of the
POR signal. When the POR_IN flag is triggered, a
constant 1.25µA current begins to charge the external
capacitor tied to the DLY pin. When the capacitor
reaches 1.25V the POR flag will be pulled high by the
external pull up resistor. Equation 1 illustrates how to
calculate the charge time is shown:
/EN (MIC5384)
The enable pins /EN1, /EN2 and /EN3 provide logic level
control for the outputs OUT1, OUT2 and OUT3,
respectively. A logic high signal on an enable pin
deactivates the respective LDO. A logic low signal on an
enable pin activates the respective LDO. Do not leave
the EN pins floating, as it would leave the regulator in an
unknown state.
⎛ 1.25V x C DLY
t DELAY (s) = ⎜⎜
⎝ 1.25 x10 −6
Eq. 1
The delay time (t) is in seconds, the delay voltage is
1.25V internally, and the external delay capacitance
(CDLY) is in microfarads. For a 1µF delay capacitor, the
delay time will be 1 second. A capacitor at the DLY pin is
recommended when the POR function is used in order to
prevent unexpected triggering of the POR signal in noisy
systems.
OUT
OUT1, OUT2, OUT3 and OUT4 are the output pins of
each LDO. A minimum of 1µF capacitor be placed as
close as possible to each of the OUT pins. A minimum
voltage rating of 6.3V is recommended for each
capacitor.
GND
The ground (GND) pin is the ground path for the control
circuitry and the power ground for all LDOs. The current
loop for the ground should be kept as short as possible.
Refer to the layout recommendations for more details.
MR
The manual reset (MR) pin resets the output of POR and
DLY generator regardless if the monitored voltage is in
regulation or not. Applying a voltage greater than 1.2V
on the MR pin will cause the POR voltage to be pulled
low. When a voltage below 0.2V is applied to the MR
pin, the internal 1.25µA will begin to charge the DLY pin
until it reaches 1.25V. When the DLY pin reaches
1.25V, the POR voltage will be pulled high by the
external pull up resistor. Do not leave the MR pin
floating.
POR
The power-on-reset (POR) pin is an open drain output. A
resistor (10kΩ to 100kΩ) can be used for a pull up to
either the input or the output voltage of the regulator.
POR is pulled high by the external pull up resistor when
the voltage at DLY reaches 1.25V.
September 2012
⎞
⎟⎟
⎠
17
M9999-091712
Micrel, Inc.
MIC5374/84
Application Information
No Load Stability
Unlike many other voltage regulators, the MIC5374/84
will remain stable and in regulation with no load.
MIC5374/84 is a four output device with three 200mA
LDOs and a 1mA RTC LDO. The MIC5374/84
incorporates a POR function with the capability to
monitor any voltage using POR_IN. The monitored
voltage can be set to any voltage threshold level to
trigger the POR flag. A delay on the POR flag may also
be set with an external capacitor at the DLY pin. All the
LDOs have current limit and thermal shutdown
protection to prevent damage from fault conditions.
MIC5374 has active high enables while the MIC5384 has
active low enables.
Thermal Considerations
The MIC5374/84 is designed to provide three outputs up
to 200mA each of continuous current in a very small
package. Maximum ambient operating temperature can
be calculated based on the output current and the
voltage drop across the part. For example if the input
voltages are 3.6V and the output voltages are 3.3V,
2.5V, and 1.8V each with an output current = 150mA.
The actual power dissipation of the regulator circuit can
be determined using Equation 2:
RTC LDO
LDO4 is an always-on RTC LDO used for application
processor support and can provide 1mA of output
current. Power must be provided to the INLDO4 and
BIAS pins to keep LDO4 enabled.
PD = (VINLDO1/2 – VOUT1) I OUT1 +
(VINLDO1/2 – VOUT2) I OUT2 +
Input Capacitor
The MIC5374/84 is a high-performance, high-bandwidth
device. An input capacitor of 1µF from the input pin to
ground is required to provide stability. Low-ESR ceramic
capacitors provide optimal performance in small board
area. Additional high-frequency capacitors, such as
small valued NPO dielectric type capacitors, help filter
out high-frequency noise and are good practice in any
RF-based circuit. X5R or X7R dielectrics are
recommended for the input capacitor. Y5V dielectrics
lose most of their capacitance over temperature and are
therefore not recommended.
(VINLDO3 – VOUT3) I OUT3 +
(VINLDO4 – VOUT4) I OUT4 + VIN x IGND
As the MIC5374/84 is a CMOS device, the ground current
is typically <100µA over the load range, the power
dissipation contributed by the ground current is < 1% and
may be ignored for this calculation. Since LDO4 only
supplies 1mA of current, it can also be ignored for this
calculation, illustrated in Equation 3:
PD ≈ (3.6V – 3.3V)150mA+(3.6V-2.5V)150mA+
(3.6V-1.8V)150mA
Output Capacitor
The MIC5374/84 requires an output capacitor of 1µF or
greater to maintain stability. The design is optimized for
use with low-ESR ceramic chip capacitors. High-ESR
capacitors may cause high-frequency oscillation. The
output capacitor can be increased, but performance has
been optimized for a 1µF ceramic output capacitor and
does not improve significantly with larger capacitance.
X7R and X5R dielectric ceramic capacitors are
recommended
because
of
their
temperature
performance. X7R capacitors change capacitance by
15% over their operating temperature range and are the
most stable type of ceramic capacitors. Z5U and Y5V
dielectric capacitors change value by as much as 50%
and 60% respectively over their operating temperature
ranges. To use a ceramic chip capacitor with Y5V
dielectric the value must be much higher than an X7R
ceramic capacitor to ensure the same minimum
capacitance over the equivalent operating temperature
range.
September 2012
Eq. 2
PD ≈ 0.48W
Eq. 3
To determine the maximum ambient operating
temperature of the package, use the junction to ambient
thermal resistance of the device and the following
Equation 4:
⎛ TJ(MAX) − TA
PD(MAX) = ⎜⎜
θ JA
⎝
⎞
⎟
⎟
⎠
Eq. 4
TJ(MAX) = 125°C
θJA = 100°C/W
18
M9999-091712
Micrel, Inc.
MIC5374/84
Substituting PD for PD(max) and solving for the ambient
operating temperature will give the maximum operating
conditions for the regulator circuit.
The maximum power dissipation must not be exceeded
for proper operation.
For example, when operating the MIC5374-SJG1YMT at
an input voltage of 3.6V and 150mA load on LDO1,
LDO2 and LDO3 with a minimum layout footprint, the
maximum ambient operating temperature TA can be
determined as in Equation 5:
0.48W = (125°C – TA) / (100°C/W)
TA = 77°C
Eq. 5
Therefore the maximum ambient operating temperature
of 77°C is allowed in a 2.5mm x 2.5mm Thin MLF
package for the voltage options specified and at the
maximum load of 150mA on each output. For a full
discussion of heat sinking and thermal effects on voltage
regulators, refer to the “Regulator Thermals” section of
Micrel’s Designing with Low-Dropout Voltage Regulators
handbook. This information can be found on Micrel's
website at:
http://www.micrel.com/_PDF/other/LDOBk_ds.pdf
September 2012
19
M9999-091712
Micrel, Inc.
MIC5374/84
Typical Circuit (MIC5374-xxxxYMT)
Bill of Materials
Item
Part Number
C1
C1005X5R1A104K
C2, C3, C4, C5,
C6, C7, C8
C1005X5R1A105K
C9
Optional
C10
C1005C0G1H151J
Manufacturer
TDK
(1)
TDK
Description
Qty.
Capacitor, 0.1µF Ceramic, 10V, X5R, Size 0402
1
Capacitor, 1µF Ceramic, 10V, X5R, Size 0402
7
1
TDK
(2)
Vishay
Capacitor, 150pF Cermaic, 50V, C0G, Size 0402
1
R4
CRCW0402100KFKED
100kΩ, 1%, 0402
1
R5, R6
Optional
Vishay
Optional
2
R10
CRCW040210KFKED
Vishay
10kΩ, 1%, 0402
1
U1
MIC5374-xxxxYMT
High-Performance Active High Enable Triple
200mA LDO with 1mA RTC LDO
1
Micrel, Inc.(3)
Notes:
1.
TDK: www.tdk.com.
2.
Vishay: www.vishay.com.
3.
Micrel, Inc.: www.micrel.com.
September 2012
20
M9999-091712
Micrel, Inc.
MIC5374/84
Typical Circuit (MIC5384-xxxxYMT)
Bill of Materials
Item
Part Number
C1
C1005X5R1A104K
C2, C3, C4, C5,
C6, C7, C8
C1005X5R1A105K
C9
Optional
C10
C1005C0G1H151J
R4
CRCW0402100KFKED
R5, R6
Optional
R10
CRCW040210KFKED
U1
MIC5384-xxxxYMT
Manufacturer
TDK
(1)
TDK
Description
Qty.
Capacitor, 0.1µF Ceramic, 10V, X5R, Size 0402
1
Capacitor, 1µF Ceramic, 10V, X5R, Size 0402
7
1
TDK
Capacitor, 150pF Cermaic, 50V, C0G, Size 0402
1
100kΩ, 1%, 0402
1
Vishay
Optional
2
Vishay
10kΩ, 1%, 0402
1
High-Performance Active Low Enable Triple 200mA
LDO with 1mA RTC LDO
1
Vishay(2)
Micrel, Inc.(3)
Notes:
1.
TDK: www.tdk.com.
2.
Vishay: www.vishay.com.
3.
Micrel, Inc.: www.micrel.com.
September 2012
21
M9999-091712
Micrel, Inc.
MIC5374/84
PCB Layout Recommendations
Recommended Top Layout
Recommended Bottom Layout
September 2012
22
M9999-091712
Micrel, Inc.
MIC5374/84
Package Information
16-Pin 2.5mm x 2.5mm Thin MLF (MT)
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This
information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry,
specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability
whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully
indemnify Micrel for any damages resulting from such use or sale.
© 2010 Micrel, Incorporated.
September 2012
23
M9999-091712