KSZ8692MPB/KSZ8692XPB Integrated Networking and Communications Controller Rev. 3.0 General Description The KSZ8692MPB/KSZ8692XPB is a highly integrated System-on-Chip (SoC) containing an ARM 922T 32-bit processor and a rich set of peripherals to address the costsensitive, high-performance needs of a wide variety of high bandwidth networking and communications applications. Features ARM 922T High-Performance Processor Core ∑ 250 MHz ARM 922T RISC processor core ∑ 8KB I-cache and 8KB D-cache ∑ Configurable Memory Management Unit (MMU) for Linux and WinCE Memory Controller ∑ 8/16-bit external bus interface for FLASH, ROM, SRAM, and external I/O ∑ NAND FLASH controller with boot option ∑ 200MHz 16-bit DDR controller ∑ Two JEDEC Specification JESD82-1 compliant differential clock drivers for a glueless DDR interface solution Ethernet Interfaces ∑ Two Ethernet (10/100 Mbps) MACs ∑ MII interface ∑ Fully compliant with IEEE 802.3 Ethernet standards PCI Interface ∑ Version PCI 2.3 ∑ 32-bit 33/66MHz ∑ Integrated PCI Arbiter supports three external masters for KSZ8692MPB and one external master for KSZ8692XPB ∑ Configurable as Host bridge or Guest device ∑ Glueless Support for mini-PCI or CardBus devices SDIO/SD Host Controller (for KSZ8692MPB only) ∑ Meets SD Host Controller Standard Specification Version 1.0 ∑ Meets SDIO card specification Version 1.0 DMA Controllers ∑ Dedicated DMA channels for PCI, USB, SDIO and Ethernet ports. Peripherals ∑ Four high-speed UART ports up to 5Mbps ∑ Two programmable 32-bit timers with watchdog timer capability ∑ Interrupt Controller ∑ Twenty GPIO ports ∑ One shared SPI/I2C interface ∑ One I2S port Debugging ∑ ARM9 JTAG debug interface ∑ JTAG Boundary Scan Support Power Management ∑ CPU and system clock speed step-down options ∑ Ethernet port Wake-on-LAN ∑ DDR and PCI power down Operating Voltage ∑ 1.3V power for core ∑ 3.3V power for I/O ∑ 2.5V or 2.6V power for DDR memory interface Reference Hardware and Software Evaluation Kit ∑ Hardware evaluation Kit ∑ Software Evaluation Kit includes WinCE BSP, Open WRT BSP, Linux based SOHO Router packages Dual High-Speed USB 2.0 Interfaces ∑ Two USB2.0 ports with integrated PHY ∑ Can be configured as 2-port host, or host + device Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com August 2009 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Block Diagram Note: SDIO block for KSZ8692MPB only. Figure 1. KSZ8692MPB/XPB Block Diagram August 2009 2 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Applications ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ Ordering Information Enhanced residential gateways High-end printer servers USB device servers IP-based multimedia systems Voice-over-Internet Protocol (VoIP) systems Set-top box Industrial control Wireless Access Points or Mesh Nodes Part Number KSZ8692MPB KSZ8692MPBI (1) (2) KSZ8692XPB Temp. Range Package Lead Finish 0°C to 70°C 400-Pin PBGA Pb-Free -40°C to 85°C 400-Pin PBGA Pb-Free 0°C to 70°C 400-Pin PBGA Pb-Free Notes: 1. Industrial version of KSZ8692MPB. 2. Support for one PCI Master. No SDIO. Revision History Revision Date Summary of Changes 1.0 10/14/08 Initial Release 2.0 3/10/09 Power Sequencing, Added A1 (PMEN) to pin list, 1.3V Supply for Core, Power Consumption table 3.0 8/10/09 DDR Data Width Changed to 16-bit August 2009 3 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Contents System Level Applications ..............................................................................................................................................................6 Functional Description.....................................................................................................................................................................7 ARM High-Performance Processor ............................................................................................................................................9 FLASH/ROM/SRAM Memory and External I/O Interface ..........................................................................................................9 NAND Flash Memory Interface.................................................................................................................................................11 DDR Controller ..........................................................................................................................................................................12 SDIO/SD Host Controller (for KSZ8692MPB only) ..................................................................................................................15 USB 2.0 Interface ......................................................................................................................................................................16 PCI Interface..............................................................................................................................................................................17 Ethernet MAC Ports (Port 0 = WAN, Port 1 = LAN).................................................................................................................17 Wake-on-LAN........................................................................................................................................................................17 Link Change ..........................................................................................................................................................................18 Wake-up Packet....................................................................................................................................................................18 Magic Packet.........................................................................................................................................................................18 IPv6 Support..........................................................................................................................................................................19 DMA Controller ..........................................................................................................................................................................19 UART Interface ..........................................................................................................................................................................19 Timers and Watchdog ...............................................................................................................................................................19 GPIO ..........................................................................................................................................................................................19 I2C..............................................................................................................................................................................................20 SPI..............................................................................................................................................................................................20 I2S ..............................................................................................................................................................................................20 Interrupt Controller.....................................................................................................................................................................20 Power-up Strapping Options.........................................................................................................................................................33 Absolute Maximum Ratings .........................................................................................................................................................36 Operating Ratings .........................................................................................................................................................................36 Electrical Characteristics ...............................................................................................................................................................36 Timing Specifications.....................................................................................................................................................................37 Signal Location Information...........................................................................................................................................................40 Package Information......................................................................................................................................................................41 August 2009 4 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB List of Figures Figure 1. KSZ8692MPB/XPB Block Diagram................................................................................................................................2 Figure 2. Peripheral Options and Examples .................................................................................................................................6 Figure 3. KSZ8692MPB Functional Block Diagram......................................................................................................................7 Figure 4. KSZ8692XPB Functional Block Diagram ......................................................................................................................8 Figure 10. Burst DDR Read Timing ..............................................................................................................................................14 Figure 12. USB 2.0 Configuration as Two-Port Host ...................................................................................................................16 Figure 13. USB 2.0 Configuration as Host + Device....................................................................................................................16 Figure 14. Reset Circuit.................................................................................................................................................................21 Figure 15. Power and Clocks........................................................................................................................................................21 Figure 16. Reset Timing ................................................................................................................................................................37 Figure 17. Static Memory Read Cycle..........................................................................................................................................37 Figure 18. Static Memory Write Cycle ..........................................................................................................................................38 Figure 19. External I/O Read and Write Cycles ...........................................................................................................................38 Figure 20. Ball Grid Array Map .....................................................................................................................................................40 Figure 21. 400-Pin PBGA..............................................................................................................................................................41 List of Tables Table 1. Reset Timing Parameters ..............................................................................................................................................37 Table 2. Programmable Static Memory Timing Parameters ......................................................................................................38 Table 3. External I/O Memory Timing Parameters......................................................................................................................39 Table 4. Programmable External I/O Timing Parameters...........................................................................................................39 August 2009 5 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB System Level Applications Figure 2. Peripheral Options and Examples August 2009 6 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Functional Description The KSZ8692MPB/KSZ8692XPB is a highly integrated embedded application controller that is designed to provide a single-chip solution for a wide range of applications that require high-speed networking, multiple I/O controllers and interface to standard peripherals. It features a powerful 32-bit ARM RISC processor, DDR memory controller, FLASH/ROM/SRAM/External I/O interface, NAND memory controller, two Ethernet MACs, two USB 2.0 ports, PCI 2.3 bus interface, SDIO interface (for KSZ8692MPB only), and a large number of standard peripherals including UARTs, I2C, I2S, SPI, MIB counters, Station Manager, timers, interrupt controller and GPIOs. Figure 3. KSZ8692MPB Functional Block Diagram August 2009 7 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Figure 4. KSZ8692XPB Functional Block Diagram August 2009 8 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB ARM High-Performance Processor The KSZ8692MPB/KSZ8692XPB is built around the 16/32-bit ARM922T RISC processor designed by Advanced RISC Machines. The ARM922T is a scalable, high-performance processor that was developed for highly integrated SoC applications. Its simple, elegant, and fully static design is particularly suited to cost-effective and power-sensitive embedded systems. It also offers a separate 8KB D-cache and 8KB I-cache that reduces memory access latency.16-bit thumb instruction sets are supported to minimize memory footprint. The ARM processor core can be programmed to maximum of 250MHz for highest possible performance. The Advanced Microprocessor Bus Architecture/Advanced High Performance Bus (AMBA AHB) is a 32-bit wide ARM system bus to which is connected the processor, the register ports of the DDR memory controller, the FLASH/ROM/SRAM/External I/O controller, the NAND memory controller, the Ethernet MACs, the PCI bridge, the USB ports and the SDIO controller (for KSZ8692MPB only). The ARM processor is the master of AHB and responsible for configuring the operational characteristics of each AHB device via their individual register port. The AHB is programmable up to 166MHz for maximum system bus performance. AHB interfaces to devices are shown in the functional block diagram. Also connected to AHB is the ARM Advanced Peripheral Bus or APB bridge which is attached the standard peripherals. The APB Bridge transparently converts the AHB accesses into slower APB accesses. The ARM processor is the master of APB bridge and responsible for configuring the operational characteristics and transfer of data for each APB attached peripheral. APB interfaces to standard peripherals are shown in functional block diagram. ∑ ∑ ∑ ∑ ∑ ∑ ∑ 250MHz ARM922T RISC processor core 166MHz AMBA Bus 2.0 16-bit thumb instruction sets 8KB D-cache and 8KB I-cache Supports Little-Endian mode Configurable MMU Power saving options include clock down of both processor core and AMBA AHB FLASH/ROM/SRAM Memory and External I/O Interface The KSZ8692MPB/KSZ8692XPB memory controller provides glueless interface for static memory, i.e., ROM, SRAM, and NOR Flash and three banks of external I/O. NOR Flash bank0 can be configured by power-up strap option to operate as boot bank from a 8 or 16 bit device. ∑ Glueless connection to two banks of FLASH/ROM/SRAM memory with programmable 8 or 16 bit data width and programmable access timing ∑ Support for AMD/Intel like Flash ∑ Automatic address line mapping for 8 or 16-bit accesses on Flash, ROM, and SRAM interfaces ∑ Supports three external I/O banks with programmable 8 or 16 bit data width and programmable access timing ∑ Total 64MB address space for two banks of FLASH/ROM/SRAM and and three banks of external I/O The memory interface for the static memory has a special automatic address mapping feature. This allows the designer to connect address bit 0 on the memory to ADDR[0] on the KSZ8692MPB/KSZ8692XPB and address bit 1 on the memory to ADDR[1] on the KSZ8692MPB/KSZ8692XPB, regardless of whether the designer is trying to achieve half word or byte addressing. The KSZ8692MPB/KSZ8692XPB memory controller performs the address mapping internally. This gives the designer the flexibilty to use 8 or 16 bit data width devices interchangeably on the same PCB (see Figure 4). For external I/O, however, the designer still needs to resolve the address mapping (see Figure 5). August 2009 9 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Figure 4. Static Memory Interface Examples Figure 5. External I/O Interface Examples August 2009 10 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB NAND Flash Memory Interface The KSZ8692MPB/KSZ8692XPB NAND controller provides interface to external NAND Flash memory. A total of two banks are supported. NAND Flash bank0 can be configured by power-up strap option to operate as boot bank. Both NAND Flash banks share data bus with FLASH/ROM/SRAM memory banks. ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ Glueless connection to two banks with programmable 8 or 16 bit data width and programmable access timing Hardware ECC not supported Small page size 512 + 16 bytes Large page size 2048 + 64 bytes Large and small block size Boot option with automatic page crossing where pages are automatically opened sequentially by hardware Boot option with two 8-bit device in parallel to form a 16-bit bank Boot option with bank0 and bank1 as active banks in cascade Support for following device densities: _ 64Mbit _ 128Mbit _ 256Mbit _ 512Mbit _ 1Gbit _ 2Gbit _ 4Gbit _ 8Gbit The following figures illustrate examples of NAND Flash bank configuration: Figure 6. 8-bit NAND Interface Examples August 2009 11 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Figure 7. 16-bit NAND Interface Examples DDR Controller The KSZ8692MPB/KSZ8692XPB DDR memory controller provides interface for accessing external Double Data Rate Synchronous DRAM. In addition, the KSZ8692MPB/KSZ8692XPB provides two integrated DDR differential clock drivers for a complete glueless DDR interface solution. ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ Up to 200MHz clock frequency (400 MHz data rate) Supports one 16-bit data width bank Up to 128 MB of addressable space is available with 12 columns and 14 row address lines Supports all DDR device densities up to 1Gb Supports all DDR device data width x8 and x16 Configurable DDR RAS and CAS timing parameters Two integrated JEDEC Specification JESD82-1 compliant differential clock drivers for a glueless DDR interface solution JEDEC Specification SSTL_2 I/Os August 2009 12 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB A dedicated internal PLL provides clocking to the DDR memory controller and the two differential clock drivers. This PLL is programmable up to 200MHz and independent of AHB and ARM processor core clocks. Figures 8 and 9 illustrate examples of bank configurations. Addr[13:0] Controls ADDR[13:0] A[13:0] Controls CSN/RASN/CASN/WEN/DM/DQS DATA[15:0] Data[15:0] D[15:0] SoC DDR device Clk[1:0] Clk#[1:0] Clk0 Clk#0 SDICLK SDOCLK Figure 8. Single 16-bit DDR Memory Device Interface Example Addr[13:0] Controls ADDR[13:0] A[13:0] Controls CSN/RASN/CASN/WEN/DM/DQS DATA[7:0] Data[15:0] SoC D[7:0] DDR device Clk0 Clk[1:0] Clk#[1:0] Clk#0 SDICLK SDOCLK A[13:0] Controls DATA[15:8] D[7:0] DDR device Clk1 Clk#1 Figure 9. Two 8-bit DDR Memory Devices Interface Example August 2009 13 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB DDR memory controller access to memory bank is typically of the burst type. Figures 10 and 11 are examples of burst read and write cycles. Figure 10. Burst DDR Read Timing Figure 11. Burst DDR Write Timing August 2009 14 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB SDIO/SD Host Controller (for KSZ8692MPB only) Integrated SDIO/SD host controller provides interface for removable mass storage memory card and I/O devices. ∑ Meets SD Host Controller Standard Specification Version 1.0 ∑ Meets SD memory card spec 1.01 . MMC spec 3.31 ∑ Meets SDIO card specification version 1.0 ∑ 1or 4 bit mode supported ∑ Card detection-insertion/removal ∑ Line Status LED driver ∑ Password protection of cards ∑ Supports read wait control, suspend/resume operation ∑ Support multi block read and write ∑ Up to 12.5 Mbytes per second read and write rates using 4 parallel line for full speed card. ∑ Dedicated DMA or programmed I/O data transfer August 2009 15 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB USB 2.0 Interface Integrated dual USB 2.0 interface can be configured as 2-port host, or host + device. Figures 12 and 13 illustrate examples of USB 2.0 interface applications. ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ Compliant with USB Specification Revision 2.0 Compliant with Open Host Controller Interface (OHCI) Specification Rev 1.0a Compliant with Enhanced Host Controller Interface (EHCI) Specification Rev 1.0 Root hub with 2 (max) downstream facing ports which are shared by OHCI and EHCI host controller cores All downstream facing ports can handle High-Speed (480Mbps), Full-Speed (12Mbps), and Low-Speed (1.5Mbps) transaction OTG not supported Integrated 45-ohm termination, 1.5K pull-up and 15K pull-down resistors Support endpoint zero, and up to 6 configurable endpoints (IN/OUT, isochronous/ control/ interrupt/ bulk) One isochronous endpoint (IN or OUT) Dedicated DMA Channel for each port Figure 12. USB 2.0 Configuration as Two-Port Host Figure 13. USB 2.0 Configuration as Host + Device August 2009 16 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB PCI Interface The KSZ8692MPB/KSZ8692XPB integrates a PCI-to-AHB bridge solution for interfacing with 32-bit PCI, including miniPCI, and cardbus devices where it is common for 802.11x-based Wireless products. The PCI-AHB bridge supports two modes of operation in the PCI bus environment; host bridge mode and guest bridge mode. In the host bridge mode, the ARM processor acts as the host of the entire system. It configures other PCI devices and coordinates their transactions, including initiating transactions between the PCI devices and AHB bus subsystem. An on-chip PCI arbiter is included to determine the PCI bus ownership among up to three PCI master devices. In guest bridge mode, all of the I/O registers are programmed by either the external host CPU on the PCI bus or the local ARM host processor through the AHB bus and the KSZ8692MPB/KSZ8692XPB can be configured by either the ARM or the PCI host CPU. In guest bridge mode, the on-chip PCI arbiter is disabled. In both cases, the KSZ8692MPB/KSZ8692XPB memory subsystem is accessible from either the PCI host or the ARM processor. Communications between the external host CPU and the ARM processor is accomplished through message passing or through shared memory. ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ Compliant to PCI revision 2.3 Support 33 and 66MHz, 32-bit data PCI bus Support 32-bit miniPCI or cardbus devices Supports both regular and memory-mapped I/O on the PCI interface AHB bus and PCI bus operate at independent clock domains Supports big endian and little endian on AHB PCI bus Round Robin arbiter for three external masters (for KSZ8692MPB only) PCI bus arbiter for one external master (for KSZ8692XPB only) Supports high speed bus request and bus parking Dedicated DMA channel for bulk data transfer to/from DDR memory Ethernet MAC Ports (Port 0 = WAN, Port 1 = LAN) The KSZ8692MPB/KSZ8692XPB integrates two Ethernet controllers that operate at 10 and 100 Mbps. Each controller has an interface that operates as MII to an external 10/100 PHY to complete Ethernet network connectivity. An integrated 25 MHz clock eliminates external crystal or oscillator requirement for PHY to reduce cost. Integrated 2-pin (MDC & MDIO) Station Manager allows ARM processor to access PHY registers and pass control and status parameters. Wake-on-LAN is supported as part of the power management mechanism. Each port has a dedicated MIB counter to accumulate statistics for received and transmitted traffic. ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ IEEE 802.3 compliant MAC layer function MII interface compliant to Clause 22.2.4.5 of the IEEE 802.3u Specification 10/100 Mbps half and full-duplex operation Automatic CRC generation and checking Automatic error packet discard Supports IPv4 Header and IPv4/IPv6 TCP/UDP checksum generation to offload host CPU Supports IPv4 Header and IPv4/IPv6 TCP/UDP checksum error detection Supports 32 rules ACL filtering Maximum frame length support is 2000 Byte at WAN port and 9K-byte at LAN port Contains large independent receive and transmit FIFOs (8KB receive / 8KB transmit at WAN and 24KB receive / 22KB transmit at LAN) for back-to-back packet receive, and guaranteed no-under run packet transmit ∑ Data alignment logic and scatter gather capability ∑ Configurable as MAC or PHY mode ∑ Separate transmit and receive DMA channels for each port Wake-on-LAN Wake-up frame events are used to wake the system whenever meaningful data is presented to the system over the network. Examples of meaningful data include the reception of a Magic Packet, a management request from a remote administrator, or simply network traffic directly targeted to the local system. In all of these instances, the network device is pre-programmed by the policy owner or other software with information on how to identify wake frames from other network traffic. August 2009 17 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB A wake-up event is a request for hardware and/or software external to the network device to put the system into a powered state. A wake-up signal is caused by: 1. Detection of a change in the network link state 2. Receipt of a network wake-up frame 3. Receipt of a Magic Packet There are also other types of wake-up events that are not listed here as manufacturers may choose to implement these in their own way. Link Change Link status wake events are useful to indicate a change in the network’s availability, especially when this change may impact the level at which the system should re-enter the sleeping state. For example, a change from link off to link on may 1 trigger the system to re-enter sleep at a higher level (D2 versus D3 ) so that wake frames can be detected. Conversely, a transition from link on to link off may trigger the system to re-enter sleep at a deeper level (D3 versus D2) since the network is not currently available. Wake-up Packet Wake-up packets are certain types of packets with specific CRC values that a system recognizes to as a ‘wake up’ frame. The KSZ8692MPB/KSZ8692XPB supports up to four user defined wake-up frames as detailed below: 1. Wake-up frame 0 is defined in registers 0x00-0x0A of Bank 4 and is enabled by bit 0 in wakeup frame control register. 2. Wake-up frame 1 is defined in registers 0x00-0x0A of Bank 5 and is enabled by bit 1 in wakeup frame control register. 3. Wake-up frame 2 is defined in registers 0x00-0x0A of Bank 6 and is enabled by bit 2 in wakeup frame control register. 4. Wake-up frame 4 is defined in registers 0x00-0x0A of Bank 7 and is enabled by bit 3 in wakeup frame control register. Magic Packet Magic Packet technology is used to remotely wake up a sleeping or powered off PC or device on a LAN. This is accomplished by sending a specific packet of information, called a Magic Packet frame, to a node on the network. When a PC or device capable of receiving the specific frame goes to sleep, it enables the Magic Packet RX mode in the LAN controller, and when the LAN controller receives a Magic Packet frame, it will alerts the system to wake up. Magic Packet is a standard feature integrated into the KSZ8692MPB/KSZ8692XPB. The controller implements multiple advanced power-down modes including Magic Packet to conserve power and operate more efficiently. Once the KSZ8692MPB/KSZ8692XPB has been put into Magic Packet Enable mode, it scans all incoming frames addressed to the node for a specific data sequence, which indicates to the controller this is a Magic Packet (MP) frame. A Magic Packet frame must also meet the basic requirements for the LAN technology chosen, such as Source Address (SA), or Destination Address (DA), which may be the receiving station’s IEEE address or a multicast or broadcast address and CRC. The specific sequence consists of 16 duplications of the IEEE address of this node, with no breaks or interruptions. This sequence can be located anywhere within the packet, but must be preceded by a synchronization stream. The synchronization stream allows the scanning state machine to be much simpler. The synchronization stream is defined as 6 bytes of XoffFFh. The device will also accept a broadcast frame, as long as the 16 duplications of the IEEE address match the address of the machine to be awakened. Example: If the IEEE address for a particular node on a network is 11h 22h, 33h, 44h, 55h, 66h, the LAN controller would be scanning for the data sequence (assuming an Ethernet frame): DESTINATION SOURCE – MISC - .: FF FF FF FF FF FF - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 11 22 33 44 55 66 - MISC - CIRC. 1 References to D0, D1, D2, and D3 are power management states defined in a similar fashion to the way they are defined for PCI. For more information, refer to the PCI specification at www.pcisig.com/specifications/conventional/pcipm1.2.pdf. August 2009 18 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB There are no further restrictions on a Magic Packet frame. For instance, the sequence could be in a TCP/IP packet or an IPX packet. The frame may be bridged or routed across the network without affecting its ability to wake-up a node at the frame’s destination. If the LAN controller scans a frame and does not find the specific sequence shown above, it discards the frame and takes no further action. If the KSZ8692MPB/KSZ8692XPB controller detects the data sequence, however, it then alerts the device’s power management circuitry to wake up the system. IPv6 Support The KSZ8692MPB/KSZ8692XPB provides the following IPv6 support in the hardware: ∑ Generates the checksum for IPv6 TCP/UDP packets based on register configuration (LAN MAC DMA Transmit Control Register and WAN MAC DMA Transmit Control Register) or Transmit Descriptor 1 (TDES1). The register setting is static configuration and the TDES1 setting is packet-based configuration. ∑ Filters IPv6 packets with TCP/UDP errors (LAN MAC DMA Receive Control Register and WAN MAC DMA Receive Control Register). ∑ Supports up to 8 Source IP or Destination IP-based filtering (LAN/WAN Access Control List) Refer to the Register Description Document for more details. DMA Controller Integrated DMA controller connects data port of two Ethernet MACs, two USB 2.0 ports, PCI 2.3 bus interface, and SDIO interface (for KSZ8692MPB only) via dedicated channels to DDR memory controller for moving large amounts of data without significant ARM processor intervention. A typical DMA channel usage is to move data from these interfaces into DDR memory. The data in the memory is processed by the ARM processor and driven back by the DMA channel to the external interface. Additionally, the ARM processor itself has a dedicated DMA channel to access the DDR memory controller. Flash/ROM/SRAM, NAND controller, and peripherals do not have dedicated DMA channel and therefore, depend on the ARM processor for transfer of data to DDR memory. DMA channel interfaces are shown in the functional block diagram on page 8 and 9. The arbitration of all requests from DMA channels are handled by the DDR memory controller and pipelined for best performance. The memory controller supports programmable bandwidth allocation for each DMA channel, thus enabling the designer to optimize I/O resource utilization of memory. UART Interface The KSZ8692MPB/KSZ8692XPB support four independent, high-speed UARTs; UART1, UART2, UART3 and UART4. The UART ports enhance the system availability for legacy serial communication application and console port display. UART1, UART2, UART3 and UART4 support maximum baud rate of 5 Mbps including standard rates. The higher rates allow for Bluetooth and GSM applications. UART1 supports CTSN, DSRN, DCDN modem control pins in addition to RXD and TXD data pins. For UART2, UART3, UART4 only CTSN and RTSN control pins in addition to RXD and TXD data pins are supported. Timers and Watchdog Two programmable 32-bit timers with one capable of watchdog timer function. These timers can operate in a very flexible way. The host can control the timeout period as well as the pulse duration. Both timers can be enabled with interrupt capability. When the watchdog timer is programmed and the timer setting expires, the KSZ8692MPB/KSZ8692XPB resets itself and also asserts WRSTO to reset other devices in the system. GPIO Twenty general purpose I/O (GPIO) are individually programmable as input or output. Some GPIO ports are programmable for alternate function as listed below: ∑ ∑ ∑ ∑ ∑ Four GPIO programmable as inputs for external interrupts Two GPIO programmable as 32-bit timers output Six GPIO programmable as CTSN and RTSN control pins for UART2, UART3, UART4 One GPIO programmable as SDIO Line Status LED driver (for KSZ8692MPB only) One GPIO programmable as ARM CPU interrupt line activity. August 2009 19 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB See Signal Description list for detailed GPIO map. I2C The I2C interface is a 2-pin (SCL & SDA) generic serial bus interface for both control and data. The KSZ8692MPB/KSZ8692XPB supports master mode I2C interface. To increase the firmware efficiency, KSZ8692MPB/KSZ8692XPB is equipped with hardware assisted logic to take care I2C bus sequence and protocol. ∑ ∑ ∑ ∑ Supports one master (KSZ8692MPB/KSZ8692XPB) in the system 8-bit or 10-bit addressing Up to 8 byte burst for read and write Programmable SCL clock rate for up to 400kHz The I2C interface shares the same pins with the SPI interface. SPI The Serial Peripheral Interface (SPI) is a synchronous serial data link that provides communication with external devices. ∑ ∑ ∑ ∑ ∑ ∑ ∑ 8- to 16-bit Programmable Data Length Programmable Serial Clock Phase and Polarity Programmable Active Level of Chip Select (CS) Programmable Delays between Two Active CS Programmable Delays between Consecutive Transfers without Removing CS st Programmable Delays between Assertion CS and 1 SPCK Programmable SPI clock (SPCK) rate in the range of AMBA System Clock (SYSCLK) divided by a value between 16 and 65536 The SPI interface shares the same pins with the I2C interface. I2S I2S provides programmable 16-, 18-, 20-, 24-bit resolution audio for two (stereo) channels playback and recording. Interrupt Controller Interrupt controller handles external and internal interrupt sources. – Normal or fast interrupt mode (IRQ, FIQ) supported – Prioritized interrupt handling August 2009 20 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB System Level Interfaces The following figures illustrate the high-level system connections to the KSZ8692MPB/KSZ8692XPB. Note that these figures are for illustration purpose only. The system designer must refer to Evaluation Design Kit for actual circuit implementation. Figure 14. Reset Circuit Figure 15. Power and Clocks According to some DDR device manufacturer’s electrical specification, DDR400 devices operating at 200 MHz require a 2.6V power supply. DDR333 and DDR266 devices require 2.5V power supply. Power to the SoC DDR Memory Controller must be based on DDR device power requirement specification. August 2009 21 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Signal Descriptions by Group Pin Number Pin Name Pin Type Pin Description System Interface R5 RESETN I Reset, asserted Low. RESETN will force the KSZ8692MPB/KSZ8692XPB to reset ARM9 CPU and all functional blocks. Once asserted, RESETN must remain asserted for a minimum duration of 256 system clock cycles. When in the reset state, all the output pins are put into Tri-state and all open drain signals are floated. N5 WRSTO O Watchdog Timer Reset Output When the Watchdog Timer expires, this signal will be asserted for at least 200 msec. W1 XCLK2 I System Clock Input 2. External crystal or clock input 2. The clock frequency should be 25MHz ± 100ppm. Y1 XCLK1 I System Clock Input 1. Used with XCLK1 pin when other polarity of crystal is needed. This is unused for a normal clock input. H19 CLK25MHz O 25MHz output to external PHY Y15, Y14 DDCLKO[1:0] O DDR Clock Out [1:0]. Output of the internal system clock, it is also used as the clock signal for DDR interface. W15, W14 DDCLKON[1:0] O The negative of differential pair of DDR Clock Out [1:0]. Output of the internal system clock, it is also used as the clock signal for DDR interface. U13 SDCLKEO O Clock Enable output for SDRAM (for Power Down Mode) T7, U7 VREF I Reference Voltage for SSTL interface. Must be half of the voltage for the DDR VDD supply. See EIA/JEDEC standard EIA/JESD8-9 (Stub series terminated logic for 2.5V, SSTL_2) W3 SDOCLK O DDR Clock Out for loopback from De-skew PLL Y3 SDICLK I DDR Clock In from loopback to De-skew PLL. This pin must connect to SDOCLK with appropriate de-skew length. See Engineering Evaluation Design Kit for detailed implementation. Y17, Y16 DDCLKO[3:2] O Factory Reserved W17, W16 DDCLKON[3:2] O Factory Reserved O SRAM Address Bus. NAND/SRAM/ROM/EXIO Interface L2, K1, K2, J3, H5, H4, J2, H3, J1, H2, G5, H1, G3, G4, G2, F1, G1, F2, F3, F5, F4, E1, E2, E3 August 2009 SADDR[23..0] The 24-bit address bus covers 16M word memory space of ROM/SRAM/FLASH, and 16M byte external I/O banks. This address bus is shared between ROM/SRAM/FLASH/EXTIO devices. 22 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Pin Number Pin Name Pin Type T2, U1, L5, N4, P3, R2, T1, M4, K5, N3, P2, R1, L4, M3, P1, K4 SDATA[15..0] Ipu/O L3 ECS2 Pin Description SRAM DATA Bus. Bidirectional Bus for 16-bit DATA In and DATA Out. The KSZ8692MPB/KSZ8692XPB also supports 8-bit data bus for ROM/SRAM/FLASH/EXTIO cycles. This data bus is shared between NAND, ROM/SRAM/FLASH/EXTIO devices. O External I/O Chip Select 2, asserted Low. Three External I/O banks are provided for external memory-mapped I/O operations. Each I/O bank stores up to 16Kbytes. ECSN signals indicate which of the three I/O banks is selected. N1 ECS1 O External I/O Chip Select 1, asserted Low. Three External I/O banks are provided for external memory-mapped I/O operations. Each I/O bank stores up to 16Kbytes. ECSN signals indicate which of the three I/O banks is selected. M2 ECS0 O External I/O Chip Select 0, asserted Low. Three External I/O banks are provided for external memory-mapped I/O operations. Each I/O bank stores up to 16Kbytes. ECSN signals indicate which of the three I/O banks is selected. K3 RCSN1 O ROM/SRAM/FLASH(NOR) Chip select 1, asserted Low. The KSZ8692MPB/KSZ8692XPB can access up to two external ROM/SRAM/FLASH memory banks. The RCSN pins can be controlled to map the CPU addresses into physical memory banks. L1 RCSN0 O ROM/SRAM/FLASH(NOR) Chip select 0, asserted Low. The KSZ8692MPB/KSZ8692XPB can access up to two external ROM/SRAM/FLASH memory banks. The RCSN pins can be controlled to map the CPU addresses into physical memory banks. This bank is configurable as boot option N2 EWAITN I External Wait asserted Low. This signal is asserted when an external I/O device or ROM/SRAM/FLASH(NOR) bank needs more access cycles than those defined in the corresponding control register. M1 EROEN Ipd/O (WRSTPLS) J5 ERWEN1 ROM/SRAM/FLASH(NOR) and EXTIO Output Enable, asserted Low. When asserted, this signal controls the output enable port of the specified ROM/SRAM/FLASH memory and EXTIO device. O ROM/SRAM/FLASH(NOR) and EXTIO Write Byte Enable, asserted Low. When asserted, this signal controls the byte write enable of the memory device SDATA[15..8] for ROM/SRAM/FLASH and EXTIO access. J4 ERWEN0 Ipd/O ROM/SRAM/FLASH(NOR) and EXTIO Write Byte Enable, asserted Low. When asserted, this signal controls the byte write enable of the memory device SDATA[7..0 or 15..0] for ROM/SRAM/FLASH and EXTIO access. R3 NCLE Ipd/O U2 NALE Ipd/O NAND command Latch Enable NCLE controls the activating path for command sent to NAND flash. NAND Address Latch Enable NALE controls the activating path for address sent to NAND flash. T3 NCEN1 O NAND Bank Chip Enable 1, asserted low NAND device bank 1 selection control. August 2009 23 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Pin Number Pin Name Pin Type V3 NCEN0 O Pin Description NAND Bank Chip Enable 0, asserted low NAND device bank 0 selection control. This bank is configurable as boot option R4 NREN Ipu/O NAND Read Enable, asserted low T4 NWEN Ipu/O NAND Write Enable, asserted low U3 NWPN Ipu/O NAND Write Protection, asserted low P4, U4 NRBN[1:0] I NAND Ready/Busy, asserted low for busy. T17, V18, U17, T16, W20, W19, Y20, Y19, W18, V17, U16, T15, Y18, V16 DADDR[13..0] O DDR Address Bus. W8, Y8, Y7, W7, V7, Y6, W6, V6, Y5, V5, W5, U5, T5, Y4, V4, W4 DDATA[15..0] I/O DDR Data Bus. T13, V14 BA[1:0] O DDR Bank Address. U14 CSN O DDR Chip Select, asserted Low. DDR Interface Chip select pins for DDR, the KSZ8692MPB/KSZ8692XPB supports only one DDR bank. T14 RASN O DDR Row Address Strobe, asserted Low. The Row Address Strobe pin for DDR. U15 CASN O DDR Column Address Strobe, asserted Low. The Column Address Strobe pin for DDR. V15 WEN O U8, T6 DM[1:0] O DDR Write Enable, asserted Low. The write enable signal for DDR. DDR Data Input/Output Mask Data Input/Output mask signals for DDR. DM is sampled High and is an output mask signal for write accesses and an output enable signal for read accesses. Input data is masked during a Write cycle. DM0 corresponds to DDATA[7:0], DM1 corresponds to DDATA[15:8]. V8, U6 DQS[1:0] I/O DDR only Data Strobe Input with read data, output with write data. DQS0 corresponds to DDATA[7:0], DQS1 corresponds to DDATA[15:8]. V13, U11, V12, W13, Y13, W12, V11, U10, V10, Y11, W10, U9, Y10, V9, W9, Y9 August 2009 DDATA[31..16] I/O Factory Reserved 24 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Pin Number Pin Name Pin Type Pin Description T12, Y12 DM[3:2] O Factory Reserved U12, W11 DQS[3:2] I/O Factory Reserved P0_RXC Ipd/O Ethernet Port 0 M16 MAC mode MII: input RX clock PHY mode MII: output RX clock P18, N17, P17, N16 P0_RXD[3:0] I RX data[3:0] N18 P0_RXDV I MII mode: RX data valid P19 P0_RXER I MII mode: RX error M17 P0_CRS I MAC mode MII: input carrier sense P20 P0_COL I MAC mode MII: input collision M18 P0_TXC Ipd/O MAC mode MII: input TX clock PHY mode MII: output TX clock L17, M19, N20, N19 P0_TXD[3:0] O TX data[3:0] L16 P0_TXEN O MII: TX enable P1_RXC Ipd/O Ethernet Port 1 K19 MAC mode MII: input RX clock PHY mode MII: output RX clock L20, L19, L18, M20 P1_RXD[3:0] I RX data[3:0] K16 P1_RXDV I MII mode: RX data valid K17 P1_RXER I MII mode: RX error K18 P1_CRS I MAC mode MII: input carrier sense K20 P1_COL I MAC mode MII: input collision J17 P1_TXC Ipd/O MAC mode MII: input TX clock PHY mode MII: output TX clock H20, J19, J18, J20 P1_TXD[3:0] O TX data[3:0] output. J16 P1_TXEN O MII: TX enable G19 U1P I/O (analog) USB port 1 differential + signal G20 U1M I/O (analog) USB port 1 differential - signal F19 U2P I/O (analog) USB port 2 differential + signal F20 U2M I/O (analog) USB port 2 differential - signal G17 USBXI I (analog) Crystal in for USB PLL G18 USBXO O (analog) Crystal out for USB PLL H16 USBREXT I (analog) Connect to an external resistor 3.4K ohm to GND G16 USBTEST O (analog) USB analog test output (factory reserved) USB Interface August 2009 25 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Pin Number Pin Name Pin Type G15 USBCFG I Pin Description USB port 2 configuration “1” = port 2 is host “0” = port 2 is device ( port 1 is always host) F18 USBHOVC0 I Over current sensing input for Host Controller downstream port 1 F15 USBHOVC1 I Over current sensing input for Host Controller downstream port 2 F17 USBHPWR0 Ipu/O (open drain) Power switching control output for downstream port 1; open drain output F16 USBHPWR1 Ipu/O (open drain) Power switching control output for downstream port 2; open drain output SDIO Interface (for KSZ8692MPB only) D14 KCMD Ipd/O SD 4-bit mode: Command line SD 1-bit mode: Command line C18 KCLK Ipd/O C15 KDATA3 I/O SDIO/SD Clock SD 4-bit mode : data line 3 SD 1-bit mode : not used C16 KDATA2 I/O SD 4-bit mode : data line 2 or read wait (optional) SD 1-bit mode : read wait (optional) E13 KDATA1 I/O SD 4-bit mode : data line 1 or interrupt (optional) SD 1-bit mode : interrupt C17 KDATA0 I/O SD 4-bit mode : data line 0 SD 1-bit mode : data line C14 KSDCDN I Active low used for Card Detection D13 KSDWP I Active high used for Card write protection General Purpose I/O B14 SLED/GPIO[19] I/O SDIO Line Status LED output (for KSZ8692MPB only) or General Purpose I/O Pin[19] B15 CPUINTN/ GPIO[18] I/O Internal CPU interrupt request or General Purpose I/O Pin[18] B16, B17, B18, D18, E15, D19 GPIO[17:12] I/O General Purpose I/O Pin[17:12] F14 UART 4 RTSN /GPIO[11] I/O UART 4 RTS or general purpose I/O Pin[11] E16 UART 4 CTSN /GPIO[10] I/O UART 4 CTS or general purpose I/O Pin[10] E17 UART 3 RTSN /GPIO[9] I/O UART 3 RTS or general purpose I/O Pin[9] E19 UART 3 CTSN /GPIO[8] I/O UART 3 CTS or general purpose I/O Pin[8] E20 UART 2 RTSN /GPIO[7] I/O UART 2 RTS or general purpose I/O Pin[7] E18 UART 2 CTSN /GPIO[6] I/O UART 2 CTS or general purpose I/O Pin[6] August 2009 As CPUINTN, any interrupt generated to ARM CPU asserts logic low on this pin. Useful for software development. 26 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Pin Number Pin Name Pin Type Pin Description U20, U19 TOUT[1:0]/ GPIO[5:4] I/O Timer 1/0 out or General Purpose I/O Pin[5:4] V20, T18, V19, U18 EINT[3:0]/ GPIO[3:0] I/O External Interrupt Request or General Purpose I/O Pin[3:0] SCKIN I I2S Interface C20 External crystal or clock input for I2S clock The maximum supported frequency is 49.2MHz D20 SCKOUT O External crystal out for I2S clock C19 I2S_MCLK O I2S master clock out This clock is of same frequency as SCKIN B20 I2S_BCLK O I2S bit clock out B19 I2S_LRCLK O Left/right select A19 I2S_SDO O Serial data out A20 I2S_SDI I Serial data in MDIO/MDC Interface H18 MDC Ipu/O Clock for station management H17 MDIO Ipu/O Serial data for station management E14 SPCK_SCL Ipu/O SPI mode: master clock Output D17 SPMOSI_SDA Ipu/O I2C/SPI Interface I2C mode: serial clock output SPI mode: master data out, slave data in I2C mode: serial data D16 SPMISO I D15 SPICS Ipu/O SPI master data in, slave data out F13 SPI_RDY I Micrel SPI mode ready signal I PCI Reset, asserted Low SPI chip select PCI Interface Signals C3 PRSTN In Host Bridge Mode, the PCI Reset pin is an input. This pin as well as the reset pin of all the devices on the PCI bus could be driven by WRSTO. In Guest Bridge Mode, this pin is input. The system reset to drive this pin. B2 PCLK I PCI Bus Clock input. This signal provides the timing for the PCI bus transactions. This signal is used to drive the PCI bus interface and the internal PCI logic. All PCI bus signals are sampled on the rising edges of the PCLK. PCLK can operate from 20MHz to 33MHz, or 66MHz. E4 GNT3N O PCI Bus Grant 3 Assert Low. In Host Bridge Mode, this is an output signal from the internal PCI arbiter to grant PCI bus access to the master driving REQ3N. In Guest Bridge Mode, this is unused. (No connect for KSZ8692XPB) August 2009 27 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Pin Number Pin Name Pin Type Pin Description D4 GNT2N O PCI Bus Grant 2 Assert Low. In Host Bridge Mode, this is an output signal from the internal PCI arbiter to grant PCI bus access to the master driving REQ2N. In Guest Bridge Mode, this is unused. (No connect for KSZ8692XPB) B1 GNT1N O PCI Bus Grant 1 Assert Low. In Host Bridge Mode, this is an output signal from the internal PCI arbiter to grant PCI bus access to the master driving REQ1N. In Guest Bridge Mode, this is an output signal to indicate to the external PCI bus arbiter that KSZ8692MPB/KSZ8692XPB is requesting access to the PCI bus. D3 REQ3N I PCI Bus Request 3 Assert Low. In Host Bridge Mode, this is an input signal from the external PCI device to request for PCI bus access In Guest Bridge Mode, this is unused. (No connect for KSZ8692XPB) E6 REQ2N I PCI Bus Request 2 Assert Low. In Host Bridge Mode, this is an input signal from the external PCI device to request for PCI bus access In Guest Bridge Mode, this is unused. (No connect for KSZ8692XPB) C1 REQ1N I PCI Bus Request 1 Assert Low. In Host Bridge Mode, this is an input signal from the external PCI device to request for PCI bus access In Guest Bridge Mode, this signal comes from the external arbiter to indicate that the bus is granted to KSZ8692MPB/KSZ8692XPB. B3, E7, D6, A2, B4, A3, D7, C5, C6, B5, A4, A5, B6, E8, C7, D8, D10, B10, A11, B11, C11, A12, E11, D11, B12, A13, C12, B13, F12, C13, D12, E12 August 2009 PAD[31..0] I/O 32-bit PCI address and data lines Addresses and data bits are multiplexed on the same pins. During the first clock cycle of a PCI transaction, the PAD bus contains the first clock cycle of a PCI transaction, the PAD bus contains the physical address. During subsequent clock cycles, these lines contain the 32-bit data to be transferred. Depending upon the type of the transaction, the source of the data will be the KSZ8692MPB/KSZ8692XPB if it initiates a PCI write transaction, or the data source will be the target if it is a PCI Read transaction. The KSZ8692MPB/KSZ8692XPB bus transaction consists of an address phase followed by one or more data phases. The KSZ8692MPB/KSZ8692XPB supports both Read and Write burst transactions. In case of a Read transaction, a special data turn around cycle is needed between the address phase and the data phase. 28 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Pin Number Pin Name Pin Type A6, A7, E10, C10 CBEN[3..0] I/O C8 PAR Pin Description PCI Commands and Byte Enable, asserted Low. The PCI command and byte enable signals are multiplexed on the same pins. During the first clock cycle of a PCI transaction, the CBEN bus contains the command for the transaction. The PCI transaction consists of the address phases and one or more data phases. During the data phases of the transaction, the bus carries the byte enable for the current data phases. I/O Parity PCI Bus parity is even across PAD[31:0] and CBEN[3:0]. The KSZ8692MPB/KSZ8692XPB generates PAR during the address phase and write data phases as a bus master, and during read data phases as a target. It checks for correct PAR during read data phase as a bus master, during every address phase as a bus slave, and during write data phases as a target. D9 FRAMEN I/O PCI Bus Frame signal, asserted Low. FRAMEN is an indication of an active PCI bus cycle. It is asserted at the beginning of a PCI transaction, i.e. the address phase, and de-asserted before the final transfer of the data phase of the transaction. B8 IRDYN I/O PCI Initiator Ready signal, asserted Low. This signal is asserted by a PCI master to indicate a valid data phase on the PAD bus during data phases of a write transaction. In a read transaction, it indicates that the master is ready to accept data from the target. A target will monitor the IRDYN signal when a data phase is completed on any rising edge of the PCI clock when both IRDYN and TRDYN are asserted. Wait cycles are inserted until both IRDYN and TRDYN are asserted together. E9 TRDYN I/O PCI Target Ready signal, asserted Low. This signal is asserted by a PCI slave to indicate a valid data phase on the PAD bus during data phases of a read transaction. In a write transaction, it indicates that the slave is ready to accept data from the target. A PCI initiator will monitor the TRDYN signal when a data phase is completed on any rising edge of the PCI clock when both IRDYN and TRDYN are asserted. Wait cycles are inserted until both IRDYN and TRDYN are asserted together. A9 DEVSELN I/O PCI Device Select signal, asserted Low. This signal is asserted when the KSZ8692MPB/KSZ8692XPB is selected as a target during a bus transaction. When the KSZ8692MPB/KSZ8692XPB is the initiator of the current bus access, it expects the target to assert DEVSELN within 5 PCI bus cycles, confirming the access. If the target does not assert DEVSELN within the required bus cycles, the KSZ8692MPB/KSZ8692XPB aborts the bus cycle. As a target, the KSZ8692MPB/KSZ8692XPB asserts this signal in a medium speed decode timing. (2 bus cycles) B7 IDSEL I B9 STOPN I/O Initialization Device Select. It is used as a chip select during configuration read and write transactions. PCI Stop signal, asserted Low. This signal is asserted by the PCI target to indicate to the bus master that it is terminating the current transaction. The KSZ8692MPB/KSZ8692XPB responds to the assertion of STOPN when it is the bus master, either to disconnect, retry, or abort. August 2009 29 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Pin Number Pin Name Pin Type A10 PERRN I/O Pin Description PCI Parity Error signal, asserted Low. The KSZ8692MPB/KSZ8692XPB asserts PERRN when it checks and detects a bus parity error. When it generates the PAR output, the KSZ8692MPB/KSZ8692XPB monitors for any reported parity error on PERRN. When the KSZ8692MPB/KSZ8692XPB is the bus master and a parity error is detected, the KSZ8692MPB/KSZ8692XPB sets error bits on the control status registers. It completes the current data burst transaction, then stop the operation. After the Host clears the system error, the KSZ8692MPB/KSZ8692XPB continues its operation. C9 C4 SERRN M66EN O (open drain) I PCI System Error signal, asserted Low. If an address parity error is detected, the KSZ8692MPB/KSZ8692XPB asserts the SERRN signal two clocks after the failing address. PCI 66MHz Enable When asserted, this signal indicates the PCI Bus segment is operating at 66MHz. This pin is mainly used in Guest bridge mode when the PCLK is driven by the Host bridge. F6 PCLKOUT3 O PCI Clock output 3 (No connect for KSZ8692XPB) D1 PCLKOUT2 O PCI Clock output 2 (No connect for KSZ8692XPB) D2 PCLKOUT1 O PCI Clock output 1 E5 PCLKOUT0 O PCI Clock output 0. This signal provides the timing for the PCI bus transactions. This signal is used to drive the PCI bus interface and the internal PCI logic. All PCI bus signals are sampled on the rising edges of the PCLK. PCLK can operate from 20MHz to 33MHz, or 66MHz. In Host Bridge Mode, this is an output signal for all the devices on the PCI bus to sample data and control signals. Connect this clock to drive PCLK input. In Guest Bridge Mode, this is not used. A8 CLKRUNN I/O This is a CardBus only signal. The CLKRUNN signal is used by portable CardBus devices to request the system to turn on the bus clock. Output is not generated. C2 MPCIACTN I/O Mini-PCI active. This signal is asserted by the PCI device to indicate that its current function requires full system performance. MPCIACTN is an open drain output signal. D5 PBMS I PCI Bridge Mode Select Select the operating mode of the PCI Bridge. When PBMS is High, the Host Bridge Mode is selected and on chip PCI bus arbiter is enabled. When PBMS is Low, the Guest Bridge Mode is selected and the on-chip arbiter is disabled. A1 August 2009 PMEN O (open drain) PCI Power Management Enable (active low) This pin is to inform the external PCI host that KSZ8692MPB/KSZ8692XPB has detected a wake-up event. 30 M9999-082609-3.0 Micrel, Inc. Pin Number KSZ8692MPB/KSZ8692XPB Pin Name Pin Type Pin Description P16 U1RXD Ipd UART 1 Receive Data R16 U1TXD O (Tri-State) UART 1Transmit Data UART Signals Must be enabled as output by software, otherwise tri-stated upon power-up. External pull-up recommended. R19 U1CTSN Ipd UART 1Clear to Send R20 U1DCDN Ipd UART 1 Data Carrier Detect P15 U1DSRN Ipd UART 1 Data Set Ready R15 U2RXD Ipd UART 2 Receive Data R17 U2TXD O (Tri-State) UART 2 Transmit Data Must be enabled as output by software, otherwise tri-stated upon power-up. External pull-up recommended. R18 U3RXD Ipd UART 3 Receive Data N15 U3TXD O (Tri-State) UART 3 Transmit Data Must be enabled as output by software, otherwise tri-stated upon power-up. External pull-up recommended. T19 U4RXD Ipd UART 4 Receive Data T20 U4TXD O (Tri-State) UART 4 Transmit Data Must be enabled as output by software, otherwise tri-stated upon power-up. External pull-up recommended. TAP Control Signals A18 TCK I JTAG Test Clock A17 TMS I JTAG Test Mode Select A16 TDI I JTAG Test Data In A15 TDO O JTAG Test Data Out A14 TRSTN I JTAG Test Reset, asserted Low P5 SCANEN Ipd V2 TESTEN Ipd Test Signals 1 = Scan Enable (Factory reserved) 0 = Normal Operation 1 = Test Enable (Factory reserved) 0 = Normal Operation V1 TESTEN1 Ipd 1 = Test Enable1 (Factory reserved) 0 = Normal Operation Y2 TEST1 O (analog) Factory reserved W2 TEST2 O (analog) Factory reserved Power and Ground (96) N6, M6, M7, G7, G8, G9, M14, M15, N14, P11, P12,P13,P14 August 2009 VDD1.2 P Digital power supply 1.3V (13) 31 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Pin Number Pin Name Pin Type Pin Description G6, H6, J6, K6, F7, F8, F9, F10, F11, G10, G11, H14, J14, K14,K15,L15 VDD3.3 P Digital power supply 3.3V (16) R6, R7, R8, R9, R10, R11, R12, R13, R14, T8, T9, T10, T11 VDD2.5 P DDR Pad Driver 2.5V or 2.6V Power Supply. (13) H7, H8, H9, H10, H11, J7, J8, J9, J10, J11, K7, K8, K9, K10, K11, K12, L7, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, N9, N10, N11, N12, N13, P7, P8, P9, P10 GND GROUND Digital Ground. (37) L6 PLLVDDA3.3 P Band Gap Reference Analog Power. (1) M8 PLLVSSA3.3 GROUND Band Gap Reference Analog Ground. (1) P6 PLLDVDD1.2 P De-skew PLL Analog and Digital Power. (1) M5 PLLSVDD1.2 P System PLL Analog and Digital Power. (1) N7, N8 PLLVSS1.2 GROUND De-skew PLL and System PLL Ground. (2) L8 PLLVSSISO GROUND Ground Isolation PLL and other circuit. (1) G12 USB1VDDA3.3 P Analog Power for USB Channel 1. (1) G13 USBCVDDA3.3 P Analog Power for Common Circuit of USB Channel 1 and 2. (1) Analog Power for USB Channel 2. (1) G14 USB2VDDA3.3 P H13, J13, K13 USBVSSA3.3 GROUND J15 USB1VDD1.2 P Digital Power for USB Channel 1 Controller. (1) H15 USB2VDD1.2 P Digital Power for USB Channel 2 Controller. (1) J12 USBVSS1 GROUND Digital Ground for USB Channel 1 Controller. (1) H12 USBVSS2 GROUND Digital Ground for USB Channel 2 Controller. (1) Analog Ground for both USB Channels Analog Circuit. (3) Notes: 1. P = Power supply. I = Input. O = Output. O/I = Output in normal mode; input pin during reset. Ipu = Internal 55kΩ pull-up resistor. Ipd = Internal 55kΩ pull-down resistor. August 2009 32 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Power-up Strapping Options Certain pins are sampled upon power up or reset to initialize KSZ8692MPB/KSZ8692XPB system registers per system configuration requirements. Pin Number Pin Name Pin Type E3 SADDR[0] Ipd/O Pin Description During reset, this pin is the input strap option for NAND Boot small page size 0 = 512 Bytes (default) 1 = 528 Bytes E1, E2 SADDR[2:1] Ipd/O During reset, this pin is the input strap option for NAND Flash configuration register (0x8054) bit [7:6]. These pins are used to specify number of active banks (CE#) in cascade. 00 = 1 bank (default) 01 = 2 banks F4 SADDR[3] Ipd/O During reset, this pin is the input strap option for NAND Flash configuration register (0x8054) bit [8], NAND Flash type. This pin is used to specify using large or small block NAND Flash as a boot bank as follows: “0” = small block (default) “1” = large block F5 SADDR[4] Ipd/O During reset, this pin is the input strap option for NAND Flash configuration register (0x8054) bit [4], NAND Flash type. This pin is used to specify number of NAND Flash in parallel for combined data width as follows: “0” = 1 NAND Flash (default) “1” = 2 NAND Flash F3 SADDR[5] Ipu/O During reset, this pin is the input strap option to enter ARM9 tic test mode 0: ARM tic test mode (factory reserved) 1: Normal mode (default) F2 SADDR[6] Ipd/O During reset, this pin is the input strap option for NAND FLASH device support automatic page crossing 0: NAND FLASH device does not support automatic page crossing (default) 1: NAND FLASH device supports automatic page crossing G1 SADDR[7] Ipd/O During reset, this pin is a strapping option for B0SIZE, Bank 0 Data Access Size. This is applicable to ROM/SRAM/FLASH and NAND boot bank. Bank 0 is used for boot program. This pin is used to specify the size of the bank 0 data bus width as follow: “0” = one byte (default) “1” = half word F1 SADDR[8] Ipd/O During reset, this pin is the a strapping option for BTSEL: “0” = Boot select from NOR flash (default) “1” = Boot select from NAND flash G2 SADDR[9] Ipd/O During reset, this pin is the a strapping option for BYP_SYSPLL: “0” = Use systems PLL (default) “1” = Bypass systems PLL, use external clock (factory reserved) G4 SADDR[10] Ipd/O During reset, this pin is a strapping option for BYP_CLKSEL: “0” = Select 200MHz external clock (default) “1” = Select 250MHz external clock (factory reserved) G3 SADDR[11] Ipd/O During reset, this pin is the input strap option to enable MII mode at port1 (LAN port) 0: MII mode (default) 1: Factory Reserved August 2009 33 M9999-082609-3.0 Micrel, Inc. Pin Number M1 KSZ8692MPB/KSZ8692XPB Pin Name Pin Type EROEN Ipd/O (WRSTPLS) Pin Description ROM/SRAM/FLASH(NOR) and EXTIO Output Enable, asserted Low. When asserted, this signal controls the output enable port of the specified ROM/SRAM/FLASH memory and EXTIO device. During reset, this pin is used for Watchdog Timer Reset Polarity Select. This is a power strapping option pin for watchdog reset output polarity. “0” = WRSTO is selected as active high (default) “1” = WRSTO is selected as active low. This pin is shared with the EROEN pin. J4 ERWEN0 Ipd/O ROM/SRAM/FLASH(NOR) and EXTIO Write Byte Enable, asserted Low. When asserted, these signals control the byte write enable of the memory device for ROM/SRAM/FLASH and EXTIO access. During ARM tic test mode, this pin is TESTACK. During reset, this pin is the input strap option to enable MII mode at port0 (WAN port) 0: MII mode (default) 1: Factory Reserved R3 NCLE Ipd/O NAND command Latch Enable NCLE controls the activating path for command sent to NAND flash. During reset, this pin is the input strap option for NAND Flash configuration register (0x8054) bit [2]. This bit along with configuration register bits [1:0] is used for boot program. This pin, along with NALE and NWEN, is used to specify NAND Flash size. [NCLE, NALE, NWEN] 000 = 64Mbit 001 = 128Mbit (default) 010 = 256Mbit 011 = 512Mbit 100 = 1Gbit 101 = 2Gbit 110 = 4Gbit 111 = 8Gbit U2 NALE Ipd/O NAND Address Latch Enable NALE controls the activating path for address sent to NAND flash. During reset, this pin is the input strap option for NAND Flash configuration register (0x8054) bit [1]. This bit along with configuration register bits [2], [0] is used for boot program. This pin, along with NCLE and NWEN, is used to specify NAND Flash size. [NCLE, NALE, NWEN] 000 = 64Mbit 001 = 128Mbit (default) 010 = 256Mbit 011 = 512Mbit 100 = 1Gbit 101 = 2Gbit 110 = 4Gbit 111 = 8Gbit August 2009 34 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Pin Number Pin Name Pin Type T4 NWEN Ipu/O Pin Description NAND Write Enable, asserted low During reset, this pin is the input strap option for NAND Flash configuration register (0x8054) bit [0]. This bit, along with configuration register bits [2:1], is used for boot program. This pin, along with NCLE and NALE, is used to specify NAND Flash size. [NCLE, NALE, NWEN] 000 = 64Mbit 001 = 128Mbit (default) 010 = 256Mbit 011 = 512Mbit 100 = 1Gbit 101 = 2Gbit 110 = 4Gbit 111 = 8Gbit U3 NWPN Ipu/O NAND Write Protection, asserted low During reset, this pin is input strap option to enable test modes. This pin, along with TESTEN, TESTEN1, form different test modes. {TESTEN, TESTEN1, NWPN} = 011: ARM Scan test mode 010: USB Analog Bits test mode others: refer to TESTEN and TESTEN1 pin description (factory reserved) G15 USBCFG I USB port 2 configuration “1” = port 2 is host “0” = port 2 is device ( port 1 is always host) Test Pins Strapping Options P5 SCANEN Ipd 1 = Scan Enable (Factory reserved) 0 = Normal Operation V2 TESTEN Ipd 1 = Test Enable (Factory reserved) 0 = Normal Operation V1 TESTEN1 Ipd 1 = Test Enable1 (Factory reserved) 0 = Normal Operation Notes: 1. P = Power supply. I = Input. O = Output. O/I = Output in normal mode; input pin during reset. Ipu = Internal 55kΩ pull-up resistor. Ipd = Internal 55kΩ pull-down resistor. August 2009 35 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Absolute Maximum Ratings(1) Operating Ratings(2) Supply Voltage (VDD1.2, PLLDVDD1.2, PLLSVDD1.2, USB1VDD1.2, USB2VDD1.2 ) .................... –0.5V to +1.6V VDD2.5……........……… …………………..–0.5V to +3.0V (VDD3.3, PLLVDDA3.3, PLLDVDD3.3, USB1VDDA3.3, USB2VDDA3.3, USBCVDDA3.3)......................................... –0.5V to +4.0V Input Voltage (all inputs).............................. –0.5V to +4.0V Output Voltage (all outputs) ........................ –0.5V to +4.0V Pb-Free Temperature (soldering, 10sec.) ................ 260°C Storage Temperature (Ts) ........................–55°C to +150°C Supply Voltage (VDD1.2, PLLDVDD1.2, PLLSVDD1.2, USB1VDD1.2, USB2VDD1.2 ) ..........+1.235V to +1.365V VDD2.5 ............................................... +2.3V to +2.7V (VDD3.3, PLLVDDA3.3, PLLDVDD3.3, USB1VDDA3.3, USB2VDDA3.3, USBCVDDA3.3) ....................................... +3.0V to +3.6V Ambient Temperature (TA) Commercial................................................ 0°C to +70°C Industrial ...............................................-40°C to +85°C Junction Temperature (TJ) ........................................150°C (3) Package Thermal Resistance (qJA) No Air Flow .....................................23.4°C/W 1m/s ................................................21.1°C/W 2m/s ................................................20.2°C/W (yJC) No Air Flow ....................................... 9.5°C/W Electrical Characteristics(4) Symbol Parameter Condition Min Typ Max Units Total Supply Current with WAN and LAN ports 100% Utilization, DDR clock = 200MHz I1.3V VDD1.2, PLLDVDD1.2, PLLSVDD1.2, USB1VDD1.2, USB2VDD1.2 Single supply at 1.3V 540 mA I2.6V VDD2.5 Single supply at 2.6V 135 mA I3.3v VDD3.3, PLLVDDA3.3, PLLDVDD3.3, USB1VDDA3.3, USB2VDDA3.3, USBCVDDA3.3 Single supply at 3.3V 105 mA TTL Inputs ( SDIO, Static Memory, UART, SPI, I2C, I2S, MDC/MDIO, GPIO) VIH Input High Voltage VIL Input Low Voltage IIN Input Current (Excluding pull-up/pull-down) 2.0 VIN = GND ~ VDD3.3 V –10 0.8 V 10 µA TTL Outputs (SDIO, Static Memory, UART, SPI, I2C, I2S, MDC/MDIO, GPIO) VOH Output High Voltage IOH = –8mA VOL Output Low Voltage IOL = 8mA IOZ Output Tri-state Leakage 2.4 V 0.4 V 10 µA PCI Electrical: Compliant to PCI version 2.3 Standard DDR Electrical: Compliant to EIA/JEDEC standard EIA/JESD8-9 (Stub series terminated logic for 2.5V, SSTL_2) USB 2.0 Electrical: Compliant to USB 2.0 Standard MII Electrical: compliant to IEEE 802.3u Specification Notes: 1. Exceeding the absolute maximum rating may damage the device. 2. The device is not guaranteed to function outside its operating rating. Unused inputs must always be tied to an appropriate logic voltage level (Ground to VDD). 3. No heat spreader in package. 4. TA = 25°C. The specification is for the packaged product only. August 2009 36 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Timing Specifications Figure 16 provides power sequencing requirement with respect to system reset. Figure 16. Reset Timing Note: Power sequencing of supply voltages must be in order of 3.3V first, 2.5V/2.6V next and 1.3V last Symbol Parameter tSR Stable supply voltages to reset high Min 10 Typ Max Units ms tCS Configuration set-up time 50 ns tCH Configuration hold time 50 ns tRC Reset to strap-in pin output 50 ns Table 1. Reset Timing Parameters Figures 17 and 18 provide NOR FLASH, ROM and SRAM interface timing. Figure 17. Static Memory Read Cycle August 2009 37 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Figure 18. Static Memory Write Cycle (1) Symbol Parameter Registers RBiTACC Programmable bank i access time 0x5010, 0x5014 RBiTPA Programmable bank i page access time 0x5010, 0x5014 Table 2. Programmable Static Memory Timing Parameters Note: 1. "i" Refers to chip select parameters 0 and 1. Figure 19 provides external I/O ports interface timing. Figure 19. External I/O Read and Write Cycles August 2009 38 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Min (1) Typ (1) Max (1) Symbol Parameter Tcta Valid address to CS setup time EBiTACS +0.8 EBiTACS +1.1 EBiTACS +1.3 ns Tcos OE valid to CS setup time EBiTCOS +0.6 EBiTCOS +0.6 EBiTCOS +1.0 ns Tdsu Valid read data to OE setup time Tcws WE valid to CS setup time EBiTCOS +0.6 Tdh Write data to CS hold time 0 Tcah Address to CS hold time EBiTCOH +1.0 Toew OE/WE pulsewidth EBiTACT Tocs, Tcsw Rising edge CS to OE/WE hold time 2.0 Units ns EBiTCOS +0.6 EBiTCOS +1.0 ns ns EBiTCOH +1.0 EBiTCOH +1.4 ns EBiTACT ns 0 ns Table 3. External I/O Memory Timing Parameters Note: 1. Measurements for minimum were taken at 0°C, typical at 25°C, and maximum at 100°C. (1) Symbol Parameter Registers EBiTACS Programmable bank i address setup time before chip select 0x5000, 0x5004, 0x5008 EBiTACT Programmable bank i write enable/output enable access time 0x5000, 0x5004, 0x5008 EBiTCOS Programmable bank i chip select setup time before OEN 0x5000, 0x5004, 0x5008 EBiTCOH Programmable bank i chip select hold time 0x5000, 0x5004, 0x5008 Table 4. Programmable External I/O Timing Parameters Note: 1. "i" Refers to chip select parameters 0, 1, or 2. August 2009 39 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Signal Location Information 1 A PMEN B GNT1N C REQ1N D PCLKOU T2 2 10 11 12 13 14 15 16 17 18 19 20 PAD20 CBEN3 CBEN2 N N PERRN PAD13 PAD10 PAD6 TRSTN TDO TDI TMS TCK I2S_SDO I2S_SDI PAD22 PAD19 IDSEL IRDYN STOPN PAD14 PAD12 PAD7 PAD4 GPIO19 GPIO18 GPIO17 GPIO16 GPIO15 I2S_LRCL I2S_BCL K K PRSTN M66EN PAD24 PAD23 PAD17 PAR SERRN CBEN0 PAD11 PAD5 PAD2 KSDCDN KDATA3 KDATA2 K SCKIN REQ3N GNT2N PMBS PAD29 PAD25 PAD16 FRAMEN PAD15 PAD8 PAD1 KSDWP KCMD SPICS SPMISO KDATA0 KCLK SPMOSI_ SDA GPIO14 GPIO12 SCKOUT GNT3N PCLKOU T0 REQ2N KDATA1 SPCK_S CL GPIO13 GPIO10 GPIO9 GPIO8 GPIO7 SADDR4 PCLKOU T3 GPIO11 USBHOV USBHPW USBHPW C1 R1 R0 MPCIACT N PCLKOU T1 SADDR1 SADDR9 K SADDR22 SADDR21 U SDATA14 V TESTEN1 W XCLK2 Y XCLK1 9 DEVSEL PAD27 J SADDR15 SADDR17 P SDATA1 R SDATA4 T SDATA9 8 CLKRUN PAD21 H SADDR12 SADDR14 N ECS1 7 PAD31 F M EROEN 6 PAD26 SADDR SADDR6 8 L RCSN0 5 PCLK SADDR2 SADDR7 4 PAD28 E G 3 I2S_MCL SADDR0 SADDR5 EWAITN SDATA5 PAD18 TRDYN CBEN1 PAD9 PAD0 VDD3.3 VDD3.3 VDD3.3 VDD3.3 VDD3.3 PAD3 USB1 VDDA3. SADDR11 SADDR10 SADDR13 VDD3.3 VDD1.2 VDD1.2 VDD1.2 VDD3.3 VDD3.3 3 SADDR16 SADDR18 SADDR19 SADDR20 ERWEN0 ERWEN1 VDD3.3 GND VDD3.3 GND GND GND GND GND GND GND SPIRDY USBC USB2 VDDA3. VDDA3. USBCFG USBTEST USBXI 3 3 U1P GND MDC CLK25MH Z_1 P1_TXD3 GND USBVSS 1 USBVSS A3.3 USB1 VDD3.3 VDD1.2 P1_TXEN P1_TXC P1_TXD1 P1_TXD2 P1_TXD0 VDD3.3 VDD3.3 P1_RXDV P1_RXER P1_CRS P1_RXC P1_COL GND PLLVSSI GND SO GND GND GND GND GND PLLS PLLVSSA SDATA2 SDATA8 VDD1.2 VDD1.2 VDD1.2 3.3 GND GND GND GND GND VDD1.2 VDD1.2 P0_RXC P0_CRS GND GND GND GND GND VDD1.2 U3TXD GND GND VDD1.2 VDD1.2 VDD1.2 VDD1.2 U1DSRN U1RXD SDATA6 PLL VDDA3. SDATA3 SDATA13 3 GND SDATA12 WRSTO SDATA11 NRBN1 SDATA10 NCLE VDD3.3 GND NREN VDD1.2 PLLVSS1 PLLVSS1 .2 .2 PLLD SCANEN VDD1.2 GND RESETN GND GND U1M USBXO GND SDATA7 U2M USB2 VDD3.3 VDD1.2 USBREXT MDIO GND SDATA0 USBHOV C0 U2P USBVSS A3.3 GND RCSN1 GPIO6 USBVSS 2 USBVSS A3.3 SADDR23 ECS2 ECS0 SADDR3 PAD30 VDD2.5 VDD2.5 VDD2.5 VDD2.5 VDD2.5 VDD2.5 VDD2.5 VDD2.5 VDD2.5 VDD3.3 P0_TXEN P0_TXD3 P1_RXD1 P1_RXD2 P1_RXD3 U2RXD P0_TXC P0_TXD2 P1_RXD0 P0_RXD0 P0_RXD2 P0_RXDV P0_TXD0 P0_TXD1 U1TXD P0_RXD1 P0_RXD3 P0_RXER P0_COL U2TXD U3RXD U1CTSN U1DCDN U4TXD GPIO5/T OUT1 SDATA15 NCEN1 NWEN DATA3 DM0 VREF VDD2.5 VDD2.5 VDD2.5 VDD2.5 RSVD BA1 RASN ADDR2 ADDR10 ADDR13 NALE NWPN NRBN0 DATA4 DQS0 VREF DM1 RSVD RSVD RSVD RSVD CKE CSN CASN ADDR3 ADDR11 GPIO2/EI NT2 U4RXD GPIO0/EI GPIO4/T NT0 OUT0 TESTEN NCEN0 DATA1 DATA6 DATA8 DATA11 DQS1 RSVD RSVD RSVD RSVD RSVD BA0 WEN ADDR0 ADDR4 ADDR12 GPIO1/EI GPIO3/EI NT1 NT3 TEST2 SDOCLK DATA0 DATA5 DATA9 DATA12 DATA15 RSVD RSVD RSVD RSVD RSVD CLK0N CLK1N RSVD RSVD ADDR5 ADDR8 ADDR9 TEST1 SDICLK DATA2 DATA7 DATA10 DATA13 DATA14 RSVD RSVD RSVD RSVD RSVD CLK0 CLK1 RSVD RSVD ADDR1 ADDR6 ADDR7 Power - 1.2V (digital & analog) Power - 3.3V (digital & analog) VDD2.5 JTAG PCI USB UART Test Strap/Reset/XTAL Signals GPIO I2S GND ROM/SRAM/NAND Ethernet I2C/SPI DDR SDIO Note: for KSZ8692XPB SDIO balls (D14, C18, C15, C16, E13, C17, C14, D13) and PCI balls (E4, D4, D3, E6, F6, D1) are no connect. Figure 20. Ball Grid Array Map August 2009 40 M9999-082609-3.0 Micrel, Inc. KSZ8692MPB/KSZ8692XPB Package Information Figure 21. 400-Pin PBGA MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2008 Micrel, Incorporated. August 2009 41 M9999-082609-3.0