PDFDownload - Fairchild Semiconductor

User Guide for
FEBFAN9611_S01U300A
Evaluation Board
FAN9611 300W Interleaved Dual-BCM,
Low-Profile, PFC Evaluation Board
Featured Fairchild Product:
FAN9611
Direct questions or comments
about this evaluation board to:
“Worldwide Direct Support”
Fairchild Semiconductor.com
© 2012 Fairchild Semiconductor Corporation
1
FEBFAN9611_S01U300A • Rev. 0.0.1
Table of Contents
1. Overview of the Evaluation Board ............................................................................................. 3 2. Key Features ............................................................................................................................... 5 3. Specifications ............................................................................................................................. 6 4. Test Procedure ............................................................................................................................ 7 4.1. Safety Precautions .............................................................................................................7 5. Schematic ................................................................................................................................... 9 6. Boost Inductor Specification .................................................................................................... 10 7. Four-Layer PCB and Assembly Images ................................................................................... 11 8. Bill of Materials (BOM) ........................................................................................................... 14 9. Inrush Current Limiting............................................................................................................ 16 10. Test Results ............................................................................................................................. 18 10.1. Startup .............................................................................................................................18 10.2. Steady State Operation....................................................................................................20 10.3. Line Transient .................................................................................................................24 10.4. Load Transient ................................................................................................................25 10.5. Brownout Protection .......................................................................................................27 10.6. Phase Management .........................................................................................................28 10.7. Efficiency ........................................................................................................................30 10.8. Harmonic Distortion and Power Factor ..........................................................................32 10.9. EMI .................................................................................................................................33 11. References ............................................................................................................................... 34 12. Ordering Information .............................................................................................................. 34 13. Revision History ..................................................................................................................... 34 © 2012 Fairchild Semiconductor Corporation
2
FEBFAN9611_S01U300A • Rev. 0.0.1
The following user guide supports the FAN9611 300W evaluation board for interleaved
boundary-conduction-mode power-factor-corrected supply. It should be used in
conjunction with the FAN9611 datasheet, Fairchild application note AN-6086 —Design
Considerations for Interleaved Boundary-Conduction Mode PFC Using FAN9611 /
FAN9612 and FAN9611/12 PFC Excel®-based Design Tool.
1. Overview of the Evaluation Board
The FAN9611 interleaved, dual Boundary-Conduction-Mode (BCM), Power-FactorCorrection (PFC) controllers operate two parallel-connected boost power trains 180º out
of phase. Interleaving extends the maximum practical power level of the control
technique from about 300W to greater than 800W. Unlike the Continuous Conduction
Mode (CCM) technique often used at higher power levels, BCM offers inherent zerocurrent switching of the boost diodes (no reverse-recovery losses), which permits the use
of less expensive diodes without sacrificing efficiency. Furthermore, the input and output
filters can be smaller due to ripple current cancellation between the power trains and
doubling of effective switching frequency.
The advanced line feed-forward with peak detection circuit minimizes the output voltage
variation during line transients. To guarantee stable operation with less switching loss at
light load, the maximum switching frequency is clamped at 525kHz. Synchronization is
maintained under all operating conditions.
Protection functions include output over-voltage, over-current, open-feedback, undervoltage lockout, brownout, and redundant latching over-voltage protection. FAN9611 is
available in a lead-free, 16-lead, Small-Outline Integrated-Circuit (SOIC) package.
This FAN9611 evaluation board uses a four-layer Printed Circuit Board (PCB) designed
for 300W (400V/0.75A) rated power. The maximum rated power is 350W and the
Maximum On-Time (MOT) power limit is set to 360W. The FEBFAN9611_S01U300A
is optimized to demonstrate all the FAN9611 efficiency and protection features in a lowprofile height form factor less than 18mm.
© 2012 Fairchild Semiconductor Corporation
3
FEBFAN9611_S01U300A • Rev. 0.0.1
Figure 1. FEBFAN9611_S01U300A, Top View, 152mm x 105mm
Figure 2. FEBFAN9611_S01U300A, Side View (Low Profile), Cross Section=18mm
Figure 3. FEBFAN9611_S01U300A, Bottom View, 152mm x 105mm
© 2012 Fairchild Semiconductor Corporation
4
FEBFAN9611_S01U300A • Rev. 0.0.1
2. Key Features














ZCD1
180° Out-of-Phase Synchronization
Automatic Phase Disable at Light Load
1.8A Sink, 1.0A Source, High-Current Gate Drivers
Transconductance (gM) Error Amplifier for Reduced Overshoot
Voltage-Mode Control with (VIN)2 Feed-Forward
Closed-Loop Soft-Start with Programmable Soft-Start Time for Reduced Overshoot
Minimum Restart Timer Frequency to Avoid Audible Noise
Maximum Switching Frequency Clamp
Brownout Protection with Soft Recovery
Non-Latching OVP on FB Pin and Second-Level Latching Protection on OVP Pin
Open-Feedback Protection
Over-Current and Power-Limit Protection for Each Phase
Low Startup Current: 80µA Typical
Works with DC input or 50Hz to 400Hz AC Input
CHANNEL 1
VALLEY DETECTOR
1
SYNCHRONIZATION
A
16
CS1
15
CS2
14
VDD
13
DRV1
12
DRV2
11
PGND
10
VIN
9
OVP
B
RESTART TIMERS
FREQUENCY CLAMPS
ZCD2
CHANNEL 2
VALLEY DETECTOR
2
0.2V
VDD
VDD
5V
5VB
5V
5V
BIAS
3
0.195V
UVLO
2
K1 VIN IMOT
A
IMOT
MOT
4
R
Q
A
1.25V
S
Q
R
Q
S
Q
5V
0.195V
AGND
K1
5
2
VIN
IMOT
B
B
5V
5µA
SS
6
3VREF
COMP
gm
FB
INPUT VOLTAGE SENSE
(Input Voltage Squarer,
Input UVLO, Brownout)
7
8
Phase
Management
2µA
PROTECTION LOGIC
(Open FB, Brownout Protection,
OVP, Latched OVP)
Figure 4. Block Diagram
© 2012 Fairchild Semiconductor Corporation
5
FEBFAN9611_S01U300A • Rev. 0.0.1
3. Specifications
This evaluation board has been designed and optimized for the conditions in Table 1.
Table 1. Electrical and Mechanical Requirements
VIN_AC
Min.
Typ.
Max.
80V
120V
265V
VIN_AC(ON)
90V
VIN_AC(OFF)
80V
fVIN_AC
50Hz
60Hz
65Hz
VOUT_PFC
395V
400V
405V
VOUT_PFC_RIPPLE
10V
11V
POUT_PFC
300W
350W
POUT_PFC(MOT LIMIT)
360W
fSW_PFC
18kHz
tHOLD_UP
20ms
tSOFT_START
300kHz
250ms
tON_OVERSHOOT
300ms
10V
η_PFC_120V
POUT>30%POUT(TYP)
96%
96.5%
η_PFC_230V
POUT>30%POUT(TYP)
95%
98%
PF_120V
0.991
PF_230V
0.980
Mechanical and Thermal
Height
18mm
θJC
60⁰C
The trip points for the built-in protections are set as below in the evaluation board.


The line UVLO (brownout protection) trip point is set at 80VAC (10VAC hysteresis).
The pulse-by-pulse current limit for each MOSFET is set at 6A.
The current-limit function can be observed by measuring the individual inductor current
waveforms while operating at 85VAC and increasing the load to 360W. The maximum
power limit is set at ~120% of the rated output power. The power-limit function can be
observed while operating at >115VAC and increasing the load beyond 360W. When
operating in power limit, the output voltage drops and the COMP voltage is saturated, but
the AC line current remains sinusoidal. The phase-management function permits phase
shedding / adding ~18% of the nominal output power for high line (230VAC). This level
can be increased by modifying the MOT resistor (R6) as described in Fairchild
Application Note AN-6086 —Design Considerations for Interleaved BoundaryConduction Mode PFC Using FAN9611 / FAN9612.
© 2012 Fairchild Semiconductor Corporation
6
FEBFAN9611_S01U300A • Rev. 0.0.1
4. Test Procedure
Before applying power to the FEBFAN9611_S01U300A evaluation board; the DC bias
supply for VDD, AC voltage supply for line input, and DC electronic load for output
should be connected to the board as shown in Figure 5.
Table 2. Specification Excerpt from FAN9611 Datasheet
Symbol
Parameter
Conditions
Min. Typ. Max. Unit
Supply
Startup Supply Current
VDD = VON – 0.2V
80
110
µA
Operating Current
Output Not Switching
3.7
5.2
mA
Dynamic Operating Current
fSW = 50kHz; CLOAD = 2nF
4
6
mA
VON
UVLO Start Threshold
VDD Increasing
9.5
10.0
10.5
V
VOFF
UVLO Stop Threshold Voltage
VDD Decreasing
7.0
7.5
8.0
V
VHYS
UVLO Hysteresis
VON – VOFF
ISTARTUP
IDD
IDD_DYM
4.1.
2.5
V
Safety Precautions
The FEBFAN9611_S01U300A evaluation module produces lethal voltages and the bulk
output capacitors store significant charge. Please be extra careful when probing and
handling the module and observe a few precautions:




Start with a clean working surface, clear of any conductive material.
Be careful while turning on the power switch to the AC source.
Never probe or move a probe on the DUT while the AC line voltage is present.
Ensure the output capacitors are discharged before disconnecting the test leads. One
way to do this is to remove the AC power with the DC output load still switched on.
The load then discharges the output capacitors and the module is safe to disconnect.
Power-On Procedure
1. Supply VDD for the control chip first. It should be higher than 10.5V (refer to the
specification for VDD turn-on threshold voltage in Table 2).
2. Connect the AC voltage (90~265VAC) to start the FAN9611 evaluation board. Since
FAN9611 has brownout protection, any input voltage less than the designed
minimum AC line voltage triggers brownout protection. FEBFAN9611_S01U300A
does not start until the AC input voltage is greater than 90VAC.
3. Change load current (0~0.75A) and check the operation
4. Verify the output voltage is regulating between 395VDC<VOUT<405VDC
© 2012 Fairchild Semiconductor Corporation
7
FEBFAN9611_S01U300A • Rev. 0.0.1
AC Source
PF, THD, PIN
0-265VAC
DVM
Voltage
DVM
Current
Electronic Load
400V, 0-1A
DVM
Current
DC Bias Supply
0-12V
Figure 5. Recommended Test Set-Up
All efficiency data shown in this document was taken using the test set up shown in
Figure 5 with the output voltage being measured directly at the output bulk capacitors
(not through the output connector (J2)).
Power-Off Procedure
1. Make sure the electronic load is set to draw at least 100mA of constant DC current.
2. Disconnect (shut down) AC line voltage source.
3. Disconnect (shut down) 12V DC bias power supply.
4. Disconnect (shut down) DC electronic load last to ensure that the output capacitors
are fully discharged before handling the evaluation module.
© 2012 Fairchild Semiconductor Corporation
8
FEBFAN9611_S01U300A • Rev. 0.0.1
5. Schematic
Figure 6. FEBFAN9611_S01U300A 300W Evaluation Board Schematic
© 2012 Fairchild Semiconductor Corporation
9
FEBFAN9611_S01U300A • Rev. 0.0.1
6. Boost Inductor Specification
750340834 from Wurth Electronics (www.we-online.com)



Core: EFD30 (Ae=69mm2)
Bobbin: EFD30
Inductance : 270H
Figure 7. Boost Inductor (L1, L2) in the Evaluation Board
Figure 8. Wurth 750340834 Mechanical Drawing
Table 3. Inductor Turns Specifications
Pin
Turns
Wire
16
69 (3 Layers)
30xAWG#38 Litz
10  9
7
AWG#28
NBOOST
Insulation Tape
NAUX
Insulation Tape
© 2012 Fairchild Semiconductor Corporation
10
FEBFAN9611_S01U300A • Rev. 0.0.1
7. Four-Layer PCB and Assembly Images
Figure 9. Layer 1 – Top Layer
Figure 10. Layer 2 – Internal Layer
© 2012 Fairchild Semiconductor Corporation
11
FEBFAN9611_S01U300A • Rev. 0.0.1
Figure 11. Layer 3 – Internal Layer
Figure 12. Layer 4 – Bottom Layer
© 2012 Fairchild Semiconductor Corporation
12
FEBFAN9611_S01U300A • Rev. 0.0.1
Figure 13. Top Assembly
Figure 14. Bottom Assembly
© 2012 Fairchild Semiconductor Corporation
13
FEBFAN9611_S01U300A • Rev. 0.0.1
8.
Bill of Materials (BOM)
Item Qty. Reference
Part Number
Value
Description
Manufacturer Package
STD
1206
1
2
C1, C6
0.22µF
CAP, SMD, Ceramic, 25V,
X7R
2
1
C2
390nF
CAP, SMD, Ceramic, 25V,
X7R
STD
805
3
2
C3, C13
15nF
CAP, SMD, Ceramic, 25V,
X7R
STD
805
4
2
C4, C9
150nF
Cap, 450V, 5%, Polypropylene
Panasonic
Thru-Hole
470nF
CAP, SMD, Ceramic, 25V,
X7R
STD
805
Cap, 330VAC, 10%,
Polypropylene
EPCOS
Thru-Hole
ECW-F2W154JAQ
5
1
C5
6
2
C7, C11
B32914A3474
470nF
7
2
C8, C26
B43041A5157M
150µF
Cap, Alum, Elect.
EPCOS
Thru-Hole
2.2µF
CAP, SMD, Ceramic, 25V,
X7R
STD
1206
8
2
C10, C14
9
1
C12
B32914A3105K
1µF
Cap, 330VAC, 10%,
Polypropylene
Epcos
Thru-Hole
10
1
C15
PHE840MB6100MB05R17
0.1µF
Cap, X Type, 10%,
Polypropylene
KEMET
Thru-Hole
11
2
C16, C18
CS85-B2GA471KYNS
470pF
Cap, Ceramic, 250VAC, 10%,
Y5P,
TDK Corporation
Thru-Hole
12
1
C17
2.7nF
CAP, SMD, Ceramic, 25V,
X7R
STD
805
13
1
C19
0.1µF
CAP, SMD, Ceramic, 25V,
X7R
STD
805
14
1
C20
1µF
CAP, SMD, Ceramic,50V, X5R
STD
805
15
1
C37
1nF
CAP, SMD, Ceramic, 25V,
X7R
STD
805
16
3
D1-3
ES3J
Diode, 600V, 3A, Ultra-Fast
Recovery
Fairchild
Semiconductor
SMC
17
2
D4, D6
S1J
Diode, General Purpose, 1A,
600V
Fairchild
Semiconductor
SMA
18
1
D5
GBU6J
Diode, Bridge, 6A, 1000V
Fairchild
Semiconductor
Thru-Hole
19
3
D7-8, D10
MBR0540
Diode, Schottky,40V, 500mA
Fairchild
Semiconductor
SOD-123
20
1
D9
MMBZ5231B
5.1V
Diode, Zener, 5V, 350mW
Fairchild
Semiconductor
SOT-23
21
1
F1
37421000410
10A
Fuse, 374 Series, 5.08mm
Spacing
Littlefuse
Radial
22
1
H1
7-345-2PP-BA
Heatsink, Low Profile, T0-247
CTS
Thru-Hole
23
1
J1
1-1318301-3
Header, 3 Pin, 0.312 Spacing
TE Connectivity
Thru-Hole
24
1
J2
1-1123724-2
Header, 2 Pin, 0.312 Spacing
TYCO
Thru-Hole
25
5
J3-7
3103-2-00-21-00-00-08-0
Test pin, Gold, 40mil,
Mill-Max
Thru-Hole
26
1
K1
G5CA-1A DC12
RELAY PWR SPST-NO 10A
12VDC PCB
Omeron
Electronics, Inc.
Thru-Hole
27
2
L1-2
750340834/NP1138-01
280µH
Inductor, Coupled
Wurth
Thru-Hole
28
2
L3-4
750311795
9mH
Common Mode Choke, 9mH
Wurth
Thru-Hole
MOSFET, NCH, UniFET,
500V, 11.5A, 0.18Ω
Fairchild
Semiconductor
TO-220
29
2
Q1, Q3
FDP22N50N
Continued on the following page…
© 2012 Fairchild Semiconductor Corporation
14
FEBFAN9611_S01U300A • Rev. 0.0.1
Item Qty. Reference
Part Number
Value
Description
Manufacturer Package
30
2
Q2, Q4
ZXTP25020DFL
Transistor, PNP, 20V, 1.5A
Zetex
SOT-23
31
1
Q6
2N7002
MOSFET, NCH, 60V, 300mA
Philips
SOT-23
32
2
R1-2
46.4kΩ
RES, SMD, 1/8W
STD
805
33
6
R3, R18,
R23-24 R3334
665kΩ
RES, SMD, 1/8W
STD
805
34
3
R4, R7-8
340kΩ
RES, SMD, 1/8W
STD
805
35
1
R5
68.1kΩ
RES, SMD, 1/8W
STD
805
36
1
R6
60.4kΩ
RES, SMD, 1/8W
STD
805
37
1
R9
422kΩ
RES, SMD, 1/8W
STD
805
38
2
R10, R20
47.5Ω
RES, SMD, 1/8W
STD
805
39
2
R11-12
12Ω
RES, SMD, 1/8W
STD
805
40
2
R13-14
0.033Ω
RES, SMD, 1W
STD
2512
41
1
R15
33Ω
Thermistor
Epcos Inc.
Thru-Hole
42
3
R16, R26,
R40
0Ω
RES, SMD, 1/2W
STD
2010
43
1
R17
45.3kΩ
RES, SMD, 1/8W
STD
805
B57237S0330M000
44
1
R19
15.4kΩ
RES, SMD, 1/8W
STD
805
45
2
R21-22
10kΩ
RES, SMD, 1/8W
STD
805
46
1
R25
24.9kΩ
RES, SMD, 1/4W
STD
1206
47
2
R27-28
1.24MΩ
RES, SMD, 1/8W
STD
805
48
3
R29, R35-36
1.2kΩ
RES, SMD, 1/8W
STD
805
49
1
R30
23.7kΩ
RES, SMD, 1/4W
STD
1206
50
1
R31
7.68kΩ
RES, SMD, 1/8W
STD
805
51
1
R32
150kΩ
RES, SMD, 1/4W
STD
1206
52
1
R37
1kΩ
RES, SMD, 1/8W
STD
805
53
1
R38
0Ω
RES, SMD, 1/4W
STD
1206
54
1
R39
0Ω
RES, SMD, 1/8W
STD
805
55
2
R65-66
DNP
RES, SMD, 1/10W
STD
603
Fairchild
Semiconductor
SOIC-16
56
1
U1
FAN9611
Interleaved, Dual, BMC, PFC
Controller
57
1
U2
LM393M
Dual, Differential Comparator
Fairchild
Semiconductor
SOIC-8
58
2
SC1, SC2
PMSSS 440 0050 PH
SCREW MACHINE PHIL 440X1/2 SS
STD
Hardware
59
2
W1, W2
INT LWZ 004
WASHER LOCK INT TOOTH
#4 ZINC
STD
Hardware
60
2
N1, N2
HNZ440
NUT HEX 4-40 ZINC PLATED
STD
Hardware
4 Layer, FR4, FAN9611 LOWPROFILE PWB - REV. 1.0
Fairchild
Semiconductor
PCB
61
1
PWB
Notes:
1. DNP = Do Not Populate
2. STD = Standard Components
© 2012 Fairchild Semiconductor Corporation
15
FEBFAN9611_S01U300A • Rev. 0.0.1
9. Inrush Current Limiting
The evaluation board includes an inrush current limiting circuit comprised of the highlighted
components shown in Figure 15.
Figure 15. Inrush Current Limiting Circuit
Since the inrush current limiting circuit has a negative impact on light-load efficiency and may not
be required by all offline applications, the evaluation board is configured with the inrush circuit
fully populated, but disabled, as shown in Figure 15. R18 and R39 are installed on the PCB;
purposely electrically open. To enable and test the inrush current limiting circuit, rotate R18 and
R39 to complete the proper series connection shown in the schematic. Remove R38 to allow the
33Ω NTC thermistor (R15) to limit the inrush current during startup. Input current measurements
can be made by removing the R16, 0Ω jumper and installing a loop of wire connected to the holes
provided within the R16 PCB pad locations. A current probe can then be connected to the wire
loop. The effectiveness of the inrush current limiting function is shown below in Figure 16.
© 2012 Fairchild Semiconductor Corporation
16
FEBFAN9611_S01U300A • Rev. 0.0.1
33Ω NTC
AC Input Current
(Inrush Enabled)
AC Input Current
(Inrush Disabled)
AC Input Peak
Current (Zoom)
(Inrush Disabled)
M2: AC Line Current (5A/div), CH3: AC Line Current (5A/div), Time (50ms/div)
Figure 16. Full-Load Startup at 115VAC
Table 4. Inrush Current Limiting Circuit Effectiveness Comparison
Input Line Output
Peak Line Current
Peak Line Current
Voltage
Power (Inrush Circuit Disabled) (Inrush Circuit Enabled)
% Inrush
Current
Reduction
VIN=115VAC
300W
22.50APK
8.45APK
62.40%
VIN=230VAC
300W
26.9APK
11.5APK
57.3%
© 2012 Fairchild Semiconductor Corporation
17
FEBFAN9611_S01U300A • Rev. 0.0.1
10. Test Results
10.1. Startup
Figure 17 and Figure 18 show the startup operation at 115VAC line voltage for no-load
and full-load condition, respectively. Due to the closed-loop soft-start, almost no
overshoot is observed for no-load startup and full-load startup.
DRV1
COMP
VOUT
Line
Current
CH1: Gate Drive 1 Voltage (20V/div), CH2: COMP Voltage (2V/div),
CH3: Output Voltage (200V/div), CH4: Line Current (5A/div), Time (100ms/div)
Figure 17. No-Load Startup at 115VAC
DRV1
COMP
VOUT
Line
Current
CH1: Gate Drive 1 Voltage (20V/div), CH2: COMP Voltage (2V/div),
CH3: Output Voltage (200V/div), CH4: Line Current (5A/div), Time (200ms/div)
Figure 18. Full-Load Startup at 115VAC
© 2012 Fairchild Semiconductor Corporation
18
FEBFAN9611_S01U300A • Rev. 0.0.1
Figure 19 and Figure 20 show the startup operation at 230VAC line voltage for no-load
and full-load conditions, respectively. Due to the closed-loop soft-start, almost no
overshoot is observed for no-load startup and full-load startup.
DRV1
COMP
VOUT
Line
Current
CH1: Gate Drive 1 Voltage (20V/div), CH2: COMP Voltage (2V/div),
CH3: Output Voltage (200V/div), CH4: Line Current (10A/div), Time (100ms/div)
Figure 19. No-Load Startup at 230VAC
DRV1
COMP
VOUT
Line
Current
CH1: Gate Drive 1 Voltage (20V/div), CH2: COMP Voltage (2V/div),
CH3: Output Voltage (200V/div), CH4: Line Current (10A/div), Time (100ms/div)
Figure 20. Full-Load Startup at 230VAC
© 2012 Fairchild Semiconductor Corporation
19
FEBFAN9611_S01U300A • Rev. 0.0.1
10.2. Steady-State Operation
Figure 21 and Figure 22 show the two inductor currents and the sum of the two inductor
currents operating at full load for 90VAC and 230VAC line voltage. The sum of the
inductor currents has relatively small ripple due to the ripple cancellation of interleaving.
IL2
IL1
IL1 + IL2
CH3: Inductor L2 Current (5A/div), CH4: Inductor L1 Current (5A/div),
CH2: Sum of Two Inductor Currents (5A/div), Time (2ms/div, zoom to 10s/div)
Figure 21. Zoom of Inductor Current Waveforms at Full-Load and 90VAC
IL2
IL1
IL1 + IL2
CH3: Inductor L1 Current (2A/div), CH4: Inductor L2 Current (2A/div),
CH2: Sum of Two Inductor Current (2A/div), Time (2ms/div)
Figure 22. Zoom of Inductor Current Waveforms at Full-Load and 230VAC
© 2012 Fairchild Semiconductor Corporation
20
FEBFAN9611_S01U300A • Rev. 0.0.1
VDS(Q3)
DRV1
ZCD1
IL2
CH1: DRV1 (20V/div), CH2: VDS(Q3) (100V/div)
CH3: ZCD1 (1V/div), CH4: Inductor L2 Current (5A/div)
Figure 23. Zero Valley Switching at Full Load, 115VAC
VDS(Q3)
DRV1
ZCD1
IL2
CH1: DRV1 (20V/div), CH2: VDS(Q3) (100V/div)
CH3: ZCD1 (1V/div), CH4: Inductor L2 Current (5A/div)
Figure 24. Zero Valley Switching at Full Load, 230VAC
© 2012 Fairchild Semiconductor Corporation
21
FEBFAN9611_S01U300A • Rev. 0.0.1
VDS(Q3)
IL2
DRV1
CH1: DRV1 (20V/div), CH2: VDS(Q3) (100V/div)
CH4: Inductor L2 Current (5A/div)
Figure 25. Zoom of Valley Switching at Full Load, 230VAC
CS1
CS2
IL2
IL1
CH1: FAN9611, Pin 16 (100mV/div), CH2: FAN9611, Pin 15 (100mV/div)
CH3: Inductor L2 Current (5A/div), CH4: Inductor L1 Current (5A/div)
Figure 26. Current-Sense Waveforms at Full Load, 90VAC
© 2012 Fairchild Semiconductor Corporation
22
FEBFAN9611_S01U300A • Rev. 0.0.1
IL1
IL2
CH1: Inductor L1 Current (2A/div), CH2: Inductor L2 Current (2A/div)
Figure 27. Inductor Current Waveforms at 360W, 85VAC, Over-Current Operation
IL1
IL2
Line
Current
VOUT
CH1: Inductor L1 Current (5A/div), CH2: Inductor L2 Current (5A/div)
CH3: Output Voltage (100V/div), CH4: Line Current (5A/div), Time (20ms/div)
Figure 28. MOT Power Limit, 0.5A to 1.3A Load Transient, 115VAC
© 2012 Fairchild Semiconductor Corporation
23
FEBFAN9611_S01U300A • Rev. 0.0.1
10.3. Line Transient
Figure 29 and Figure 30 show the line transient operation and minimal effect on output
voltage due to the line feed-forward function. When the line voltage changes from
230VAC to 115VAC, about 20V (5% of nominal output voltage) voltage undershoot is
observed. When the line voltage changes from 115VAC to 230VAC, about 6V (1.5% of
nominal output voltage) voltage overshoot is observed.
Rectified
Line
Voltage
VOUT
COMP
Line
Current
CH1: Rectified Line Voltage (200V/div), CH2: Output Voltage (20V/div, AC),
CH3: COMP Voltage (2V/div), CH4: Line Current (5A/div), Time (50ms/div)
Figure 29. Line Transient Response at Full-Load Condition (230VAC 115VAC)
Rectified
Line
Voltage
VOUT
COMP
Line
Current
CH1: Rectified Line Voltage (200V/div), CH2: Output Voltage (10V/div, AC),
CH3: COMP Voltage (2V/div), CH4: Line Current (5A/div), Time (50ms/div)
Figure 30. Line Transient Response at Full-Load Condition (115VAC 230VAC)
© 2012 Fairchild Semiconductor Corporation
24
FEBFAN9611_S01U300A • Rev. 0.0.1
10.4. Load Transient
Figure 31 and Figure 32 show the load-transient operation. When the output load changes
from 100% to 0%, 20V (5% of nominal output voltage) voltage overshoot is observed.
When the output load changes from 0% to 100%, 34V (8.5% of nominal output voltage)
voltage undershoot is observed.
Rectified
Line
Voltage
VOUT
COMP
Line
Current
CH1: Rectified Line Voltage (100V/div), CH2: Output Voltage (20V/div, AC),
CH3: COMP Voltage (2V/div), CH4: Line Current (5A/div), Time (50ms/div)
Figure 31. Load Transient Response at 115VAC (Full Load  No Load)
Rectified
Line
Voltage
VOUT
COMP
Line
Current
CH1: Rectified Line Voltage (100V/div), CH2: Output Voltage (20V/div, AC),
CH3: COMP Voltage (2V/div), CH4: Line Current (5A/div), Time (50ms/div)
Figure 32. Load Transient Response at 115VAC (No Load  Full Load)
© 2012 Fairchild Semiconductor Corporation
25
FEBFAN9611_S01U300A • Rev. 0.0.1
Rectified
Line
Voltage
VOUT
COMP
Line
Current
CH1: Rectified Line Voltage (100V/div), CH2: Output Voltage (20V/div, AC),
CH3: COMP Voltage (5V/div), CH4: Line Current (5A/div), Time (50ms/div)
Figure 33. Load Transient Response at 230VAC (Full Load  No Load)
Rectified
Line
Voltage
VOUT
COMP
Line
Current
CH1: Rectified Line Voltage (100V/div), CH2: Output Voltage (20V/div, AC),
CH3: COMP Voltage (5V/div), CH4: Line Current (5A/div), Time (50ms/div)
Figure 34. Load Transient Response at 230VAC (No Load  Full Load)
© 2012 Fairchild Semiconductor Corporation
26
FEBFAN9611_S01U300A • Rev. 0.0.1
10.5. Brownout Protection
Figure 35 shows the startup operation while slowly increasing the line voltage. The
power supply starts up when the line voltage reaches around 90VAC. Figure 36 shows the
shutdown operation while slowly decreasing the line voltage. The power supply shuts
down when the line voltage reaches around 80VAC.
Line
Voltage
DRV1
Line
Current
CH1: Line Voltage (100V/div), CH2: Gate Drive 1 Voltage (10V/div),
CH4: Line Current (5A/div), Time (200ms/div)
Figure 35. Startup Slowly Increasing the Line Voltage
Line
Voltage
DRV1
Line
Current
CH1: Line Voltage (100V/div), CH2: Gate Drive 1 Voltage (10V/div),
CH4: Line Current (5A/div), Time (20ms/div)
Figure 36. Shutdown Slowly Decreasing the Line Voltage
© 2012 Fairchild Semiconductor Corporation
27
FEBFAN9611_S01U300A • Rev. 0.0.1
10.6. Phase Management
Figure 37 and Figure 38 show the phase-shedding waveforms. As observed, when the
gate drive signal of Channel 2 is disabled, the duty cycle of Channel 1 gate drive signal is
doubled to minimize the line current glitch and guarantee smooth transient.
DRV1
DRV2
IL1
IL2
CH1: Gate Drive 1 Voltage (20V/div), CH2: Gate Drive 2 Voltage (20V/div),
CH3: Inductor L1 Current (1A/div), CH4: Inductor L2 Current (1A/div), Time (5ms/div)
Figure 37. Phase-Shedding Operation
DRV1
DRV2
IL1
IL2
CH1: Gate Drive 1 Voltage (20V/div), CH2: Gate Drive 2 Voltage (20V/div),
CH3: Inductor L1 Current (1A/div), CH4: Inductor L2 Current (1A/div), Time (5µs/div)
Figure 38. Phase-Shedding Operation (Zoomed-in Timescale)
© 2012 Fairchild Semiconductor Corporation
28
FEBFAN9611_S01U300A • Rev. 0.0.1
Figure 39 and Figure 40 show the phase-adding waveforms. As observed, just before the
Channel 2 gate drive signal is enabled, the duty cycle of Channel 1 gate drive signal is
reduced by 50% to minimize the line current glitch and guarantee smooth transient. In
Figure 40, the first pulse of gate drive 2 during the phase-adding operation is skipped to
ensure 180° out-of-phase interleaving operation during transient.
DRV1
DRV2
IL1
IL2
CH1: Gate Drive 1 Voltage (20V/div), CH2: Gate Drive 2 Voltage (20V/div),
CH3: Inductor L1 Current (1A/div), CH4: Inductor L2 Current (1A/div), Time (5ms/div)
Figure 39. Phase-Adding Operation
DRV1
DRV2
IL1
IL2
CH1: Gate Drive 1 Voltage (20V/div), CH2: Gate Drive 2 Voltage (20V/div),
CH3: Inductor L1 Current (1A/div), CH4: Inductor L2 Current (1A/div), Time (5µs/div)
Figure 40. Phase-Adding Operation (Zoomed-in Timescale)
© 2012 Fairchild Semiconductor Corporation
29
FEBFAN9611_S01U300A • Rev. 0.0.1
10.7. Efficiency
Figure 41 and Figure 42 show the measured efficiency of the 300W evaluation board
with RMOT=60.4kΩ at input voltages of 115VAC and 230VAC. The phase management
threshold on the test evaluation board is approximately 15% of the nominal output power.
The threshold can be adjusted upwards to achieve a more desirable efficiency profile by
increasing the MOT resistor. Figure 43 and Figure 44 show the light-load efficiency
improvement that can be achieved when the threshold is adjusted to 30% by increasing
the MOT resistor to 120kΩ.
Since phase shedding reduces the switching loss by effectively decreasing the switching
frequency at light load, greater efficiency improvement is achieved at 230VAC, where
switching losses dominate. Relatively less improvement is obtained at 115VAC, since the
MOSFET is turned on with zero voltage and switching losses are negligible. The
efficiency measurements include the losses in the EMI filter, cable loss and power
consumption of the control IC.
Efficiency vs. Load
Efficiency vs. Load
(115VAC, 400V DC Output, RMOT=60.4KΩ, No Inrush Circuit)
(230VAC, 400V DC Output, RMOT=60.4KΩ, No Inrush Circuit)
100%
Efficiency (%)
Efficiency (%)
100%
95%
90%
95%
90%
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0%
10%
20%
30%
Output Power (%) 50%
60%
70%
80%
90%
100%
Output Power (%) Figure 41. Efficiency vs. Load (115VAC)
Figure 42. Efficiency vs. Load (230VAC)
Efficiency vs. Load
Efficiency vs. Load
(115VAC, 400V DC Output, RMOT=120KΩ, No Inrush Circuit)
(230VAC, 400V DC Output, RMOT=120KΩ, No Inrush Circuit)
100%
Efficiency (%)
100%
Efficiency (%)
40%
95%
90%
95%
90%
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0%
Output Power (%) 20%
30%
40%
50%
60%
70%
80%
90%
100%
Output Power (%) Figure 43. Efficiency vs. Load (115VAC)
© 2012 Fairchild Semiconductor Corporation
10%
Figure 44. Efficiency vs. Load (230VAC)
30
FEBFAN9611_S01U300A • Rev. 0.0.1
Figure 45 and Figure 46 show a direct comparison of light-load efficiency benefit gained
when increasing the MOT resistor. For RMOT=120kΩ, the phase threshold is adjusted
upward from 18% to approximately 30% of nominal maximum output power. It is not
recommended to adjust the phase threshold near the 50% nominal maximum output
power, since each individual BCM PFC channel is optimally designed to process 50%
(plus 20% margin) of the total output power required by the load.
Efficiency vs. Load
Efficiency vs. Load
(115VAC, 400V DC Output, RMOT Comparison, No Inrush Circuit)
(230VAC, 400V DC Output, RMOT Compare, No Inrush Circuit)
100%
Efficiency (%)
Efficiency (%)
100%
95%
95%
RMOT=60.4KΩ
RMOT=60.4KΩ
RMOT=120KΩ
RMOT=120KΩ
90%
90%
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0%
Output Power (%) 10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
Output Power (%) Figure 45. Efficiency vs. Load (115VAC)
Figure 46. Efficiency vs. Load (230VAC)
The FEBFAN9611_S01U300A evaluation board is configured with RMOT=60.4kΩ, which
sets the maximum output power limit to about 360W. Because of the highly optimized,
low-profile cross-section of this design; the EFD30 inductors are not rated to process
more than 200W each (400W total output power). When the MOT resistor is increased to
120kΩ, the maximum allowable output power is also increased to greater than 400W. To
fully protect the power stage, a simple voltage divider and PNP clamp should be applied
to the FAN9611 COMP voltage (pin 7) as detailed in AN-6086, Figure 15.
© 2012 Fairchild Semiconductor Corporation
31
FEBFAN9611_S01U300A • Rev. 0.0.1
10.8. Harmonic Distortion and Power Factor
Figure 47 and Figure 48 compare the measured harmonic current with EN61000 Class D
and Class C, respectively, at input voltages of 115VAC and 230VAC. Class D is applied to
TV and PC power, while Class C is applied to lighting applications. As can be observed,
both regulations are met with sufficient margin.
EN61000‐3‐2, 115VAC, 300W
EN61000‐3‐2, 230VAC, 300W
1.2
1.2
1
Measured Harmonic Current
Class C Limit
0.8
Harmonic Current (A)
Harmonic Current (A)
1
Class D Limit
0.6
Class C Limit
Class D Limit
0.6
0.4
0.4
0.2
0.2
0
Measured Harmonic Current
0.8
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Number
Harmonic Number
Figure 47. Harmonic Current, 115VAC
Figure 48. Harmonic Current, 230VAC
Power Factor vs. Load
Total Harmonic Distortion vs. Load
(400V DC Output, 300W)
1.00
30%
0.95
25%
230Vac
20%
115Vac
0.90
230Vac
THD (%)
Power Factor
(400V DC Output, 300W)
0.85
115Vac
15%
0.80
10%
0.75
5%
0.70
0%
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0%
Output Power (%)
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
Output Power (%)
Figure 49. Measured Power Factor
Figure 50. Measured Total Harmonic Distortion
Figure 49 shows the measured power factor at input voltage of 115VAC and 230VAC. As
observed, high power factor above 0.95 is obtained from 100% to 50% load. Figure 50
shows the total harmonic distortion at input voltages of 115VAC and 230VAC.
© 2012 Fairchild Semiconductor Corporation
32
FEBFAN9611_S01U300A • Rev. 0.0.1
10.9. EMI
EN55022 CISPR, Class B
Att 10 dB
dBµV
100
RBW
9 kHz
MT
10 ms
PREAMP OFF
1 MHz
Att 10 dB
dBµV
10 MHz
2 AV
MAXH
1 MHz
10 MHz
90
90
1 PK
MAXH
100
RBW
9 kHz
MT
10 ms
PREAMP OFF
1 PK
MAXH
80
TDF
70
2 AV
MAXH
80
TDF
70
EN55022Q
EN55022Q
60
60
PRN
EN55022A
PRN
EN55022A
50
50
6DB
6DB
40
40
30
30
20
20
10
10
0
0
150 kHz
30 MHz
150 kHz
Figure 52. 115VAC, Neutral
Figure 51. 115VAC, Line
Att 10 dB
dBµV
100
RBW
9 kHz
MT
10 ms
PREAMP OFF
1 MHz
Att 10 dB
dBµV
10 MHz
90
1 PK
MAXH
2 AV
MAXH
30 MHz
100
RBW
9 kHz
MT
10 ms
PREAMP OFF
1 MHz
10 MHz
90
1 PK
MAXH
80
TDF
70
EN55022Q
2 AV
MAXH
80
TDF
70
EN55022Q
60
60
PRN
EN55022A
50
PRN
EN55022A
50
6DB
6DB
40
40
30
30
20
20
10
10
0
0
150 kHz
30 MHz
150 kHz
Figure 53. 230VAC, Line
© 2012 Fairchild Semiconductor Corporation
30 MHz
Figure 54. 230VAC, Neutral
33
FEBFAN9611_S01U300A • Rev. 0.0.1
11. References
[1]
[2]
FAN9611 / FAN9612 — Interleaved Dual BCM PFC Controllers
AN-6086 — Design Considerations for Interleaved Boundary-Conduction Mode
PFC Using FAN9611 / FAN9612
12. Ordering Information
Orderable Part Number
Description
FEBFAN9611_S01U300A
FAN9611 300W Evaluation Board
13. Revision History
Date
Revision
Description
February 2012
0.0.1
Initial release
WARNING AND DISCLAIMER
Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users’ Guide. Contact an
authorized Fairchild representative with any questions.
This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The
Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User’s Guide constitute a sales contract or create any kind
of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild’s published
specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to
any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no
contract exists, Fairchild’s standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO
IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR
USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR
THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a)
are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in
accordance with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or
system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its
safety or effectiveness
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website,
www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing
counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation,
substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to
protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts
either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy
either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for
handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized
Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty
coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our
customers to do their part in stopping this practice by buying direct or from authorized distributors.
EXPORT COMPLIANCE STATEMENT
These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the
ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited.
U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be
responsible to ensure the appropriate U.S. export regulations are followed.
© 2011 Fairchild Semiconductor Corporation
34
FEBFAN9611_S01U300A • Rev. 0.0.1