ROHM LM2902KVQDR

General-purpose Operational Amplifiers / Comparators
TROPHY SERIES
Operational Amplifiers
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
●Description
The Universal Standard family LM358 / 324 and
LM2904 / 2902 monolithic ICs integrate two independent
op-amp circuits and phase compensation capacitors
on a single chip, feature high gain and low power
consumption, and possess an operating voltage range
between 3[V]and 32[V] (single power supply.)
No.11094EBT02
TROPHY
SERIES
Dual
LM358 family
LM358DR
LM358PWR
LM358DGKR
Quad
LM2904 family
LM2904DR
LM2904PWR
LM2904DGKR
LM2904VQDR
LM2904VQPWR
LM324 family
LM2902 family
LM2902DR
LM2902PWR
LM2902KDR
LM2902KPWR
LM2902KVQDR
LM2902KVQPWR
LM324DR
LM324PWR
LM324KDR
●Features
1) Operating temperature range
0[℃] to + 70[℃]
Commercial Grade
LM358/324 family
:
Extended Industrial Grade
LM2904/2902 family :
-40[℃] to +125[℃]
2) Wide operating voltage range
+3[V] to +32[V] (single supply)
±1.5[V] to ±16[V] (dual supply)
3) Low supply current
4) Common-mode input voltage range, including ground
5) Differential input voltage range equal to maximum ratedsupply voltage
6) High large signal voltage gain
7) Wide output voltage range
●Pin Assignment
1OUT
1IN1IN+
GND
1
2
3
- +
+ -
4
8
Vcc
7
2OUT
6
2IN-
5
SOIC8
TSSOP8
LM358DR
LM2904DR
LM2904VQDR
LM358PWR
LM2904PWR
LM2904VQPWR
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
2IN+
MSOP8/VSSOP8
LM358DGKR
LM2904DGKR
1OUT
1
14
4OUT
1IN-
2
13
4IN-
1IN+
3
12
4IN+
Vcc
4
11
GND
2IN+
5
10
3IN+
9
3IN-
8
3OUT
2IN-
6
2OUT
7
-
-
SOIC14
LM324DR
LM324KDR
LM2902DR
LM2902KDR
LM2902KVQDR
1/17
+
+
+
+
-
-
TSSOP14
LM324PWR
LM2902PWR
LM2902KPWR
LM2902KVQPWR
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Absolute Maximum Ratings (Ta=25[℃])
Parameter
Symbol
Supply Voltage
LM358
family
Vcc-GND
Operating Temperature Range
Topr
Storage Temperature Range
Tstg
Input Common-mode Voltage
VICM
Maximum Junction Temperature
Tjmax
Ratings
LM2904
LM2902
family
family
+26
LM324
family
+32
0 to +70
LM2904V LM2902V
family
family
+32
-40 to +125
-65 to +150
-0.3 to +32
Unit
V
℃
℃
-0.3 to +26
-0.3 to +32
150
V
℃
●Electric Characteristics
○LM358,LM324 family (Unless otherwise specified, Vcc=+5[V])
Limits
Parameter
Symbol
Input Offset Voltage (*1)
VIO
Input Offset Voltage Drift
αVIO
Input Offset Current (*1)
IIO
Input Offset Current Drift
αIIO
Input Bias Current (*1)
IIB
Input Common-modeVoltage Range
VICR
High Level Output Voltage
VOH
Low Level Output Voltage
Large Signal Voltage Gain
Temperature
range
LM358 family
LM324 family
Unit
Min.
Typ.
Max.
Min.
Typ.
Max.
25℃
-
3
7
-
3
7
Full range
-
-
9
-
-
9
-
-
7
-
-
-
-
25℃
-
2
50
-
2
50
Full range
-
-
150
-
-
150
-
-
10
-
-
-
-
25℃
-
20
250
-
20
250
Full range
-
-
500
-
-
500
25℃
0
-
Vcc-1.5
-
-
Vcc-1.5
Full range
0
-
Vcc-2.0
-
-
Vcc-2.0
mV
Conditions
VO=1.4[V]
VIC=VICR(min)
Vcc=5[V] to 30[V]
μV/℃
nA
-
VO=1.4[V]
Fig.
No
98
-
98
pA/℃
-
-
nA
VO=1.4[V]
98
V
Vcc=5[V] to 30[V]
98
25℃
Vcc-1.5
-
-
Vcc-1.5
-
-
Full range
27
28
-
27
28
-
VOL
Full range
-
5
20
-
5
20
AVD
25℃
25
100
-
25
100
-
Common-mode Rejection Ratio
CMRR
25℃
65
80
-
65
80
-
dB
Vcc=5[V] to 30[V],
VIC=VICR(min)
98
Supply-Voltage rejection ratio
KSVR
25℃
65
100
-
65
100
-
dB
Vcc=5[V] to 30[V]
98
VO1/VO2
25℃
-
120
-
-
120
-
dB
f=1[kHz] to 20[kHz]
101
25℃
20
30
-
20
30
-
Full range
10
-
-
10
-
-
mA
Vcc=15[V],VO=0[V]
VID=1[V]
mA
Vcc=15[V],VO=0[V]
VID=-1[V]
μA
VO=200[mV],VID=-1[V]
Cross-talk Attenuation
Source
Output Current (*2)
Sink
25℃
10
20
-
10
20
-
Full range
2
-
-
2
-
-
25℃
12
30
-
12
30
-
Full range
-
0.7
1.2
-
0.7
1.2
Full range
-
1
2
-
1.4
3
Supply Current (All Amps)
ICC
Slew Rate at Unity-Gain
SR
25℃
-
0.3
-
-
0.5
-
Unity Gain Bandwidth
B1
25℃
-
0.7
-
-
1.2
-
Equivalent Input Noise Voltage
Vn
25℃
-
40
-
-
35
-
V
mV
RL≧2[kΩ]
Vcc=30[V],RL≧10[kΩ]
RL≦10[kΩ]
Vcc=15[V]
V/mV VO=1[V] to 11[V]
RL≧2[kΩ]
99
98
98
99
VO=2.5[V],No Load
mA
Vcc=30[V],VO=0.5[V]
No Load
RL=1[MΩ],CL=30[pF]
VI=±10[V]
V/μs
Vcc=15[V],GND=-15[V]
(reference to Fig100)
RL=1[MΩ],CL=20[pF]
MHz Vcc=15[V],GND=-15[V]
(reference to Fig99)
Vcc=15[V],GND=-15[V]
nV/ Hz RS=100[Ω],VI=0[V]
f=1[kHz](reference to Fig99)
99
99
99
99
(*1) Absolute value
(*2) Under high temperature, consider the power dissipation of IC when selecting the output current.
When the output terminal is continuously shorted, the output current reduces the temperature inside the IC by flushing.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
2/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
○LM2904,LM2902 family (Unless otherwise specified, Vcc=+5[V])
Limits
Parameter
Symbol
Temperature
range
LM2904 family
Min.
Input Offset Voltage (*3)
VIO
Input Offset Voltage Drift
αVIO
LM2904
LM2902(*5)
Input Offset
Current (*3)
IIO
LM2904V
LM2902V(*5)
Input Offset Current Drift
αIIO
Input Bias Current (*3)
IIB
Input Common-mode
Voltage Range
VICR
High Level
Output Voltage
LM2904
LM2902(*5)
LM2904V
LM2902V(*5)
VOH
Typ.
Unit
LM2902 family
Max.
Min.
Typ.
25℃
-
3
7
-
3
7
Full range
-
-
10
-
-
10
-
-
7
-
-
7
-
25℃
-
2
50
-
2
50
Full range
-
-
300
-
-
300
25℃
-
2
50
-
2
50
Full range
-
-
150
-
-
150
-
-
10
-
-
10
-
25℃
-
20
250
-
20
250
Full range
-
-
500
-
-
500
25℃
-
-
Vcc-1.5
-
-
Vcc-1.5
Full range
-
-
Vcc-2.0
-
-
Vcc-2.0
25℃
Vcc-1.5
-
-
Vcc-1.5
-
-
Full range
23
24
-
23
24
-
Full range
27
28
-
27
-
-
mV
nA
98
RL≧10[kΩ]
V
mV
Large Signal
Voltage Gain
AVD
25℃
25
100
-
25
100
-
V/mV
25℃
50
80
-
50
80
-
dB
25℃
65
80
-
60
80
-
dB
65
100
-
50
100
-
-
-
-
60
100
-
25℃
-
120
-
-
120
-
Output Current (*4)
Sink
LM2904
LM2902(*5)
LM2904V
LM2902V(*5)
30
-
20
30
60
10
-
-
10
-
-
ICC
Slew Rate at Unity Gain
99
RL≦10[kΩ]
99
Vcc=15[V],VO=1[V] to 11[V]
RL≧2[kΩ]
98
Vcc=5[V] to MAX(*5)
VIC=VICR(min)
98
dB
Vcc=5[V] to MAX(*5)
98
dB
f=1[kHz] to 20[kHz]
101
mA
Vcc=15[V],VO=0[V]
VID=1[V]
mA
Vcc=15[V],VO=0[V]
VID=-1[V]
25℃
10
20
-
10
20
-
Full range
2
-
-
2
-
-
25℃
-
30
-
-
30
-
μA
25℃
12
40
-
12
40
-
μA
Full range
-
0.7
1.2
-
0.7
1.2
Io
Supply Current (All Amps)
Vcc=MAX(*5),RL≧10[kΩ]
Vcc=MAX(*5),RL≧10[kΩ]
20
20
-
Vcc=5[V] to MAX(*5)
5
25℃
-
V
-
Full range
98
98
20
Source
-
VO=1.4[V]
5
VO1/VO2
VO=1.4[V]
98
nA
-
Cross-talk Attenuation
-
pA/℃
Full range
LM2902V(*5)
VO=1.4[V],VIC=VICR(min)
Vcc=5[V] to MAX(*5)
μV/℃
VOL
25℃
Fig.
No
Max.
Low Level
Output Voltage
LM2904
LM2902(*5)
CommonCMRR
mode Rejection Ratio LM2904V
LM2902V(*5)
LM2904
LM2904V
Supply Voltage
KSVR
M2902(*5)
Rejection Ratio
Conditions
99
VO=200[mV],VID=-1[V]
Full range
-
1
2
-
1.4
3
SR
25℃
-
0.3
-
-
0.5
-
Unity-Gain Bandwidth
B1
25℃
-
0.7
-
-
1.2
-
Equivalent Input Noise Voltage
Vn
25℃
-
40
-
-
35
-
VO=2.5[V],No Load
mA
Vcc=MAX(*5),VO=0.5[V]
No Load
RL=1[MΩ],CL=30[pF],
VI=±10[V]
V/μs
Vcc=15[V],GND=-15[V]
(reference to Fig100)
RL=1[MΩ],CL=20[pF]
MHz Vcc=15[V],GND=-15[V]
(reference to Fig99)
Vcc=15[V],GND=-15[V]
RS=100[Ω]VI=0[V]
nV/ Hz
f=1[kHz],
( reference to Fig99)
99
99
99
99
(*3) Absolute value
(*4) Under high temperature, consider the power dissipation of the IC when selecting the output current.
When the output terminal is continuously shorted the output current is reduced to lower the temperature inside the IC.
(*5) The maximum supply voltage is 26V for the LM2904DR, LM2904PW, LM2904PWR, and LM2904DQKR
The maximum supply voltage is 32V for the LM2904VQDR and LM2904VQPWR
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
3/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Reference Data LM358 family
POWER DISSIPATION Pd [mW]
LM358 family
LM358 family
LM358 family
800
LM358PWR
LM358DGKR
600
25℃
LM358DR
32V
0℃
400
200
5V
70℃
3V
0
70
0
25
50
75
100
AMBIENT TEMPERATURE : [℃]
Ta [℃]
Fig. 1
Derating Curve
Fig. 2
Supply Current – Supply Voltage
LM358 family
Fig. 3
Supply Current – Ambient Temperature
LM358 family
LM358 family
0℃
0℃
25℃
70℃
25℃
70℃
Fig. 4
Maximum Output Voltage – Supply Voltage
(RL=10[kΩ])
Fig. 5
Fig. 6
Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage
(VCC=5[V],RL=2[kΩ])
(VCC=5[V])
LM358 family
LM358 family
LM358 family
15V
70℃
3V
5V
0℃
3V
5V
15V
25℃
Fig. 7
Output Source Current – Ambient Temperature
(VOUT=0[V])
Fig. 8
Output Sink Current – Output Voltage
(VCC=5[V])
Fig. 9
Output Sink Current – Ambient Temperature
(VOUT=VCC)
LM358 family
LM358 family
LM358 family
32V
25℃
0℃
0℃
5V
25℃
3V
70℃
70℃
Fig. 10
Low Level Sink Current - Supply Voltage
(VOUT=0.2[V])
Fig. 11
Low Level Sink Current - Ambient Temperature
(VOUT=0.2[V])
Fig. 12
Input Offset Voltage - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
4/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Reference Data LM358 family
LM358 family
LM358 family
LM358 family
3V
5V
32V
25℃
0℃
32V
3V
5V
70℃
Fig. 13
Input Offset Voltage – Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
Fig. 14
Input Bias Current – Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
Fig. 15
Input Bias Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
LM358 family
LM358 family
LM358 family
70℃
0℃
25℃
0℃
25℃
70℃
[V]
Fig. 16
Input Bias Current – Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
Fig. 17
Input Offset Voltage – Common Mode Input Voltage
(VCC=5[V])
Fig. 18
Input Offset Current – Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
LM358 family
LM358 family
LM358 family
0℃
15V
25℃
3V
5V
5V
32V
70℃
Fig. 19
Input Offset Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
Fig. 20
Large Signal Voltage Gain – Supply Voltage
(RL=2[kΩ])
LM358 family
LM358 family
36V
0℃
Fig. 21
Large Signal Voltage Gain
– Ambient Temperature
(RL=2[kΩ])
LM358 family
32V
25℃
70℃
Fig. 22
Common Mode Rejection Ratio
– Supply Voltage
5V
3V
Fig. 23
Common Mode Rejection Ratio
– Ambient Temperature
Fig. 24
Power Supply Rejection Ratio
– Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
5/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Reference Data LM324 family
BA2904
family
LM324 family
LM324 family
family
BA2904
LM324 family
1000
POWER DISSIPATION Pd [mW]
LM324PWR
LM324DR
LM324KDR
800
32V
25℃
600
0℃
400
200
5V
70℃
0
0
25
70
50
75
3V
100
AMBIENT TEMPERATURE :[℃]
Ta [℃]
Fig. 25
Derating Curve
Fig. 26
Supply Current – Supply Voltage
LM324 family
Fig. 27
Supply Current – Ambient Temperature
LM324 family
LM324 family
0℃
0℃
25℃
70℃
25℃
70℃
Fig. 28
Maximum Output Voltage – Supply Voltage
(RL=10[kΩ])
Fig. 29
Fig. 30
Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage
(VCC=5[V],RL=2[kΩ])
(VCC=5[V])
LM324 family
LM324 family
LM324 family
15V
70℃
3V
5V
0℃
5V
15V
3V
25℃
Fig. 31
Output Source Current – Ambient Temperature
(VOUT=0[V])
Fig. 32
Output Sink Current – Output Voltage
(VCC=5[V])
Fig. 33
Output Sink Current – Ambient Temperature
(VOUT=VCC)
LM324 family
LM324 family
LM324 family
32V
0℃
25℃
0℃
5V
25℃
3V
70℃
70℃
Fig. 34
Low Level Sink Current - Supply Voltage
(VOUT=0.2[V])
Fig. 35
Low Level Sink Current - Ambient Temperature
(VOUT=0.2[V])
Fig. 36
Input Offset Voltage - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
6/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Reference Data LM324 family
LM324 family
3V
5V
LM324 family
LM324 family
25℃
0℃
32V
32V
3V
70℃
Fig. 37
Input Offset Voltage – Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
Fig. 38
Input Bias Current – Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
5V
Fig. 39
Input Bias Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
LM324 family
LM324 family
LM324 family
0℃
70℃
25℃
0℃
25℃
70℃
[V]
Fig. 40
Input Bias Current – Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
Fig. 41
Input Offset Voltage – Common Mode Input Voltage
(VCC=5[V])
Fig. 42
Input Offset Current – Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
LM324 family
LM324 family
LM324 family
25℃
0℃
15V
3V
5V
5V
32V
70℃
Fig. 43
Input Offset Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
Fig. 44
Large Signal Voltage Gain – Supply Voltage
(RL=2[kΩ])
LM324 family
LM324 family
LM324 family
32V
36V
0℃
Fig. 45
Large Signal Voltage Gain
– Ambient Temperature
(RL=2[kΩ])
25℃
5V
70℃
Fig. 46
Common Mode Rejection Ratio
– Supply Voltage
3V
Fig. 47
Common Mode Rejection Ratio
– Ambient Temperature
Fig. 48
Power Supply Rejection Ratio
– Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
7/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Reference Data LM2904 family
LM2904 family
LM2904PWR
LM2904VQPWR
0.8
LM2904DR
LM2904VQDR
400
200
25℃
-40℃
0.6
0.4
0
125℃
105℃
0.2
25
50
75
100
125
0
150
0.8
32V
0.6
0.4
5V
0.2
3V
0.0
0.0
0
LM2904 family
family
BA2904
1.0
SUPPLY CURRENT [mA]
LM2904DGKR
600
BA2904
LM2904 family
family
1.0
SUPPLY CURRENT [mA]
POWER DISSIPATION Pd [mW]
800
10
AMBIENT TEMPERATURE : [℃]
Ta [℃]
Fig. 49
Derating Curve
20
30
SUPPLY VOLTAGE [V]
-50
40
Fig. 50
Supply Current – Supply Voltage
LM2904 family
40
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 51
Supply Current – Ambient Temperature
LM2904 family
5
-25
LM2904 family
50
-40℃
30
125℃
20
25℃
105℃
10
0
0
10
20
30
4
3
2
1
105℃
20
10
125℃
0
0
1
LM2904 family
LM2904 family
100
5V
30
15V
20
10
0
0
25
50
75
10
125℃
1
-40℃
0.1
25℃
0.01
15V
0
0.4
AMBIENT TEMPERATURE [℃]
Fig. 55
Output Source Current – Ambient Temperature
(VOUT=0[V])
LOW LEVEL SINK CURRENT [μA]
25℃
60
50
40
125℃
105℃
30
20
10
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 58
Low Level Sink Current - Supply Voltage
(VOUT=0.2[V])
3V
10
-50
2
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 57
Output Sink Current – Ambient Temperature
(VOUT=VCC)
LM2904 family
8
32V
70
60
5V
50
40
3V
30
20
10
0
0
5V
LM2904 family
80
-40℃
70
0.8
1.2
1.6
OUTPUT VOLTAGE [V]
Fig. 56
Output Sink Current – Output Voltage
(VCC=5[V])
LM2904 family
80
20
0
0.001
100 125 150
INPUT OFFSET VOLTAGE [mV]
-25
OUTPUT SINK CURRENT [mA]
3V
-50
5
LM2904 family
30
105℃
40
2
3
4
OUTPUT VOLTAGE [V]
Fig. 53
Fig. 54
Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage
(VCC=5[V],RL=2[kΩ])
(VCC=5[V])
OUTPUT SINK CURRENT [mA]
OUTPUT SOURCE CURRENT [mA]
25℃
30
-50 -25 0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 52
Maximum Output Voltage – Supply Voltage
(RL=10[kΩ])
LOW LEVEL SINK CURRENT [μA]
40
0
40
SUPPLY VOLTAGE [V]
50
OUTPUT SOURCE CURRENT [mA]
MAXIMUM OUTPUT VOLTAGE [V]
MAXIMUM OUTPUT VOLTAGE [V]
-40℃
6
-40℃
25℃
4
2
0
-2
105℃
125℃
-4
-6
-8
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 59
Low Level Sink Current - Ambient Temperature
(VOUT=0.2[V])
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 60
Input Offset Voltage - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
8/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Reference Data LM2904 family
LM2904 family
8
LM2904 family
50
3V
2
0
5V
-2
32V
-4
40
30
20
10
105℃
-6
20
3V
10
5V
0
0
0
25
50
75
0
100 125 150
Fig. 61
Input Offset Voltage – Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
30
20
10
0
30
-50
35
-10
6
-40℃
4
105℃
25℃
125℃
2
0
-2
-4
-6
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 64
Input Bias Current – Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
3V
0
5V
32V
-5
0
1
2
3
[V]
INPUT VOLTAGE [Vin]
-10
4
0
0
25
50
75
130
-40℃
25℃
120
110
100
90
105℃
125℃
80
70
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 67
Input Offset Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
-40℃
25℃
100
80
125℃
105℃
60
40
0
10
20
30
SUPPLY VOLTAGE [V]
Fig. 70
Common Mode Rejection Ratio
– Supply Voltage
40
15
20
25
30
35
Fig. 66
Input Offset Current – Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
LM2904 family
130
15V
120
110
100
5V
90
80
70
6
8
10
12
SUPPLY VOLTAGE [V]
14
-50
16
Fig. 68
Large Signal Voltage Gain – Supply Voltage
(RL=2[kΩ])
COMMON MODE REJECTION RATIO [dB]
120
10
SUPPLY VOLTAGE [V]
60
4
LM2904 family
140
5
140
LM2904 family
140
36V
32V
120
100
80
5V
3V
60
40
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 71
Common Mode Rejection Ratio
– Ambient Temperature
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 69
Large Signal Voltage Gain
– Ambient Temperature
(RL=2[kΩ])
LM2904 family
140
POWER SUPPLY REJECTION RATIO [dB]
-25
125℃
105℃
-5
5
60
-50
0
LM2904 family
140
LARGE SIGNAL VOLTAGE GAIN [dB]
5
25℃
-40℃
Fig. 65
Input Offset Voltage – Common Mode Input Voltage
(VCC=5[V])
LM2904 family
10
5
-10
-1
LARGE SIGNAL VOLTAGE GAIN [dB]
-25
LM2904 family
10
-8
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 63
Input Bias Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
LM2904 family
8
INPUT OFFSET VOLTAGE [mV]
40
10
15
20
25
SUPPLY VOLTAGE [V]
Fig. 62
Input Bias Current – Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
LM2904 family
50
5
INPUT OFFSET CURRENT [nA]
-25
AMBIENT TEMPERATURE [℃]
INPUT BIAS CURRENT[nA]
32V
30
125℃
-50
INPUT OFFSET CURRENT [nA]
25℃
-40℃
40
INPUT BIAS CURRENT [nA]
4
INPUT BIAS CURRENT [nA]
INPUT OFFSET VOLTAGE [mV]
6
-8
COMMON MODE REJECTION RATIO [dB]
LM2904 family
50
130
120
110
100
90
80
70
60
-50
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 72
Power Supply Rejection Ratio
– Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
9/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Reference Data LM2902 family
LM2902 family
600
400
LM2902DR
LM2902KDR
LM2902KVQDR
200
0.8
25℃
-40℃
0.6
0.4
0.2
125℃
105℃
0
25
50
75
100
125
0
150
AMBIENT TEMPERATURE : [℃]
Ta [℃]
Fig. 73
Derating Curve
32V
0.6
0.4
5V
0.2
3V
10
20
30
SUPPLY VOLTAGE [V]
-50
40
Fig. 74
Supply Current – Supply Voltage
LM2902 family
40
0.8
0.0
0.0
0
LM2902 family
1.0
SUPPLY CURRENT [mA]
LM2902PWR
LM2902KPWR
LM2902KVQPWR
800
LM2902 family
1.0
SUPPLY CURRENT [mA]
POWER DISSIPATION Pd [mW]
1000
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 75
Supply Current – Ambient Temperature
LM2902 family
5
-25
LM2902 family
50
-40℃
30
125℃
20
25℃
105℃
10
0
0
10
20
30
4
3
2
1
105℃
20
125℃
10
0
0
1
LM2902 family
LM2902 family
100
5V
30
15V
10
0
-25
0
25
50
75
10
125℃
1
-40℃
0.1
25℃
0.01
15V
0
0.4
AMBIENT TEMPERATURE [℃]
Fig. 79
Output Source Current – Ambient Temperature
(VOUT=0[V])
LOW LEVEL SINK CURRENT [μA]
25℃
60
50
40
105℃
30
125℃
20
10
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 82
Low Level Sink Current - Supply Voltage
(VOUT=0.2[V])
3V
10
-50
2
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 81
Output Sink Current – Ambient Temperature
(VOUT=VCC)
LM2902 family
8
32V
70
60
5V
50
40
3V
30
20
10
0
0
5V
LM2902 family
80
-40℃
70
0.8
1.2
1.6
OUTPUT VOLTAGE [V]
Fig. 80
Output Sink Current – Output Voltage
(VCC=5[V])
LM2902 family
80
20
0
0.001
100 125 150
INPUT OFFSET VOLTAGE [mV]
-50
OUTPUT SINK CURRENT [mA]
3V
20
5
LM2902 family
30
105℃
40
2
3
4
OUTPUT VOLTAGE [V]
Fig. 77
Fig. 78
Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage
(VCC=5[V],RL=2[kΩ])
(VCC=5[V])
OUTPUT SINK CURRENT [mA]
OUTPUT SOURCE CURRENT [mA]
25℃
30
-50 -25 0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 76
Maximum Output Voltage – Supply Voltage
(RL=10[kΩ])
LOW LEVEL SINK CURRENT [μA]
40
0
40
SUPPLY VOLTAGE [V]
50
OUTPUT SOURCE CURRENT [mA]
MAXIMUM OUTPUT VOLTAGE [V]
MAXIMUM OUTPUT VOLTAGE [V]
-40℃
6
-40℃
25℃
4
2
0
-2
105℃
125℃
-4
-6
-8
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 83
Low Level Sink Current - Ambient Temperature
(VOUT=0.2[V])
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 84
Input Offset Voltage - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
10/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Reference Data LM2902 family
LM2902 family
8
LM2902 family
50
3V
2
0
5V
-2
32V
-4
40
30
20
10
105℃
-6
20
3V
10
5V
0
0
0
25
50
75
0
100 125 150
Fig. 85
Input Offset Voltage – Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
30
20
10
0
30
-50
35
-10
6
-40℃
4
105℃
25℃
125℃
2
0
-2
-4
-6
0
25
50
75
100 125 150
0
AMBIENT TEMPERATURE [℃]
Fig. 88
Input Bias Current – Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
3V
0
5V
32V
-5
1
2
3
[V]
INPUT VOLTAGE [Vin]
4
-10
130
-40℃
25℃
120
110
100
90
105℃
0
25
50
75
125℃
80
70
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 91
Input Offset Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
25℃
100
80
105℃
125℃
60
40
0
10
20
30
SUPPLY VOLTAGE [V]
Fig. 94
Common Mode Rejection Ratio
– Supply Voltage
40
15
20
25
30
35
Fig. 90
Input Offset Current – Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
LM2902 family
140
130
15V
120
110
100
5V
90
80
70
6
8
10
12
SUPPLY VOLTAGE [V]
14
-50
16
Fig. 92
Large Signal Voltage Gain – Supply Voltage
(RL=2[kΩ])
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 93
Large Signal Voltage Gain
– Ambient Temperature
(RL=2[kΩ])
LM2902 family
COMMON MODE REJECTION RATIO [dB]
-40℃
120
10
60
4
LM2902 family
140
5
SUPPLY VOLTAGE [V]
140
36V
120
100
80
5V
3V
60
40
-50
-25
LM2902 family
140
32V
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 95
Common Mode Rejection Ratio
– Ambient Temperature
POWER SUPPLY REJECTION RATIO [dB]
-25
125℃
105℃
-5
0
60
-50
0
5
LM2902 family
140
LARGE SIGNAL VOLTAGE GAIN [dB]
5
25℃
-40℃
Fig. 89
Input Offset Voltage – Common Mode Input Voltage
(VCC=5[V])
LM2902 family
10
5
-10
-1
LARGE SIGNAL VOLTAGE GAIN [dB]
-25
LM2902 family
10
-8
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 87
Input Bias Current – Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
LM2902 family
8
INPUT OFFSET VOLTAGE [mV]
40
10
15
20
25
SUPPLY VOLTAGE [V]
Fig. 86
Input Bias Current – Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
LM2902 family
50
5
INPUT OFFSET CURRENT [nA]
-25
AMBIENT TEMPERATURE [℃]
INPUT BIAS CURRENT[nA]
32V
30
125℃
-50
INPUT OFFSET CURRENT [nA]
25℃
-40℃
40
INPUT BIAS CURRENT [nA]
4
INPUT BIAS CURRENT [nA]
INPUT OFFSET VOLTAGE [mV]
6
-8
COMMON MODE REJECTION RATIO [dB]
LM2902 family
50
130
120
110
100
90
80
70
60
-50
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 96
Power Supply Rejection Ratio
– Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
11/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Circuit Diagram
Vcc
INOUT
IN+
GND
Fig.97 Circuit Diagram (each Op-Amp)
●Measurement Circuit 1 NULL Method Measurement Condition
Measurement item
VF
Input Offset Voltage
S1
S2
S3
Vcc
VF1 ON ON OFF 5 to 30
Input Offset Current
Input Bias Current
VICR
‐1.4
0
5 to 30
0
‐1.4
0
1
2
5
0
‐1.4
0
5
0
‐1.4
0
5
0
‐1.4
0
5
0
‐1.4
0
5
0
‐1.4
0
5
0
‐1.4
0
15
0
‐1.4
0
15
0
‐1.4
0
15
0
-11.4
0
15
0
-11.4
0
VF5
VF7
VF8
VF9
Supply Voltage Rejection Ratio
EK
0
VF2 OFF OFF OFF
VF6
Common-mode Rejection Ratio
GND
VF3 OFF ON
VF4 ON OFF
Large Signal Voltage Gain
Vcc,GND,EK,VICR Unit:[V]
LM2904/LM2902 family
Calculation
Vcc GND EK VICR
LM358/LM324 family
VF10
OFF
ON
ON ON
ON
ON OFF
ON
ON OFF
5
0
‐1.4
0
5
0
‐1.4
0
5
0
‐1.4
3.5
5
0
‐1.4
3.5
5
0
‐1.4
0
5
0
‐1.4
0
30
0
‐1.4
0
30
0
‐1.4
0
3
4
5
6
-Calculation-
1.Input Offset Voltage (VIO)
Vio 
VF1
1+ Rf /Rs
0.1[μF]
[V]
2. Input offset current (IIO)
Iio 
VF2 - VF1
Ri (1+ Rf / Rs)
Rf
50[kΩ]
[A]
500[kΩ]
S1
3.Input Bias Current (IIB)
Rs
VF4 - VF3
[A]
Ib 
2× Ri (1+ Rf / Rs)
VICR
4.Large Signal Voltage Gain (AVD)
AV  20× Log
CMRR  20× Log
Rf
3.5× (1+ Rf/ Rs)
VF8-VF7
500[kΩ]
DUT
S3
Ri
1000[pF]
GND
RL
-15[V]
V
VF
50[kΩ]
[dB]
Fig.98 Measurement Circuit 1 (each Op-Amp)
6.Supply Voltage rejection ratio (KSVR)
PSRR = 20×Log
50[Ω] 10[kΩ]
S2
5.Common-mode rejection ratio (CMRR)
+15[V]
Ri
50[Ω] 10[kΩ]
Rs
10× (1+ Rf /Rs) [dB]
VF6 - VF5
Vcc
0.1[μF]
VOUT EK
△Vcc×(1+Rf/Rs)
VF10 - VF9
[dB]
△Vcc=25V
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
12/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Measurement Circuit 2: Switch Condition
SW
1
SW No.
SW
2
SW
3
SW
4
SW
5
SW
6
SW
7
SW
8
SW
9
SW
10
SW
11
SW
12
SW
13
SW
14
SW
15
Supply Current
OFF OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
High Level Output Voltage
OFF OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF
Low Level Output Voltage
OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF
Output Source Current
OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON
Output Sink Current
OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON
Slew Rate
OFF OFF OFF ON OFF OFF OFF OFF ON
Unity-gain Bandwidth Product
OFF ON OFF OFF OFF ON
Equivalent Input Noise Voltage
ON OFF OFF OFF ON OFF ON OFF OFF OFF OFF ON OFF OFF OFF
ON
ON OFF OFF OFF OFF
ON OFF OFF ON
ON OFF OFF OFF OFF
Input voltage
3[V]
SW4
SW5
R2
SW6
R3
Vcc
0.5[V]
A
t
Input waveform
-
Output voltage
SW1
SW2
SR = ΔV / Δt
+
SW3
3[V]
SW10 SW11 SW12 SW13 SW14 SW15
RS
R1
SW7
SW8
SW9
GND
ΔV
A
~
VIN-
VIN+
RL
~
CL
V
~
V
VOUT
Δt
0.5[V]
t
Output waveform
Fig.99 Measurement Circuit 2 (each Op-Amp)
Fig.100 Slew Rate Input Waveform
●Measurement Circuit 3: Cross-talk Attenuation
R2=100[kΩ]
R2=100[kΩ]
Vcc=+2.5[V]
Vcc=+2.5[V]
R1=1[kΩ]
R1=1[kΩ]
other
CH
CH1
VIN
R1//R2
V
GND=-2.5[V]
VOUT1
=0.5 [Vrms]
R1//R2
VO1/VO2=20×log
V
GND=-2.5[V]
VOUT2
100×VOUT1
VOUT2
Fig.101 Measurement Circuit 3
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
13/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Description of Electrical Characteristics
Described below are descriptions of the relevant electrical terms
Please note that item names, symbols and their meaning may differ form those on another manufacturer’s documents.
1. Absolute maximum ratings
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of characteristics or damage to the part
itself as well as peripheral components.
1.1 Power supply voltage (Vcc/GND)
Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing deterioration of
characteristics or destruction of the internal circuitry.
1.2 Differential input voltage (VID)
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.
1.3 Input common-mode voltage range (VICR)
Signifies the maximum voltage that can be supplied to the non-inverting and inverting terminals without causing deterioration of the electrical characteristics
or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the maximum ratings – use within the input
common-mode voltage range of the electric characteristics instead.
1.4 Operating temperature range and storage temperature range (Topr, Tstg)
The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power
consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive
deterioration of the electrical characteristics.
1.5 Power dissipation (Pd)
Indicates the power that can be consumed by a specific mounted board at ambient temperature (25℃). For packaged products, Pd is determined by the
maximum junction temperature and the thermal resistance.
2. Electric characteristics
2.1 Input offset voltage (VIO)
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the
output voltage to 0V.
2.2 Input offset voltage drift (αVIO)
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.
2.3 Input offset current (IIO)
Indicates the difference of the input bias current between the non-inverting and inverting terminals.
2.4 Input offset current drift (αIIO)
Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation.
2.5 Input bias current (IIB)
Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input
bias current at the inverting terminal.
2.6 Circuit current (ICC)
Indicates the current of the IC itself that flows under specific conditions and during no-load steady state.
2.7 High level output voltage/low level output voltage (VOH/VOL)
Signifying the voltage range that can be output by under specific load conditions, it is in general divided into high level output voltage and low level output
voltage. High level output voltage indicates the upper limit of the output voltage, while low level output voltage the lower limit.
2.8 Differential voltage amplification (AVD)
The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying
rate (gain) with respect to DC voltage.
AVD = (output voltage fluctuation) / (input offset fluctuation)
2.9 Input common-mode voltage range (VICR)
Indicates the input voltage range under which the IC operates normally.
2.10 Common-mode rejection ratio (CMRR)
Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation).
CMRR = (change in input common-mode voltage) / (input offset fluctuation)
2.11 Power supply rejection ratio (KSVR)
Denotes the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation).
KSVR = (change in power supply voltage) / (input offset fluctuation)
2.12 Output source current/ output sink current (IOH/IOL)
The maximum current that can be output under specific output conditions, it is divided into output source current and output sink current. The output source
current indicates the current flowing out of IC, and the output sink current the current flowing into the IC.
2.13 Cross talk attenuation (VO1/VO2)
Expresses the amount of fluctuation in the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel.
2.14 Slew rate at unity gain (SR)
Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied.
2.15 Unity gain bandwidth (B1)
The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value of the frequency where the gain of
the op-amp is 1 (maximum frequency, unity gain frequency).
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
14/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Derating Curves
1000
LM358DGKR
LM358DR
600
LM2904PWR
LM2904VQPWR
LM358PWR
POWER DISSIPATION Pd [mW]
POWER DISSIPATION Pd [mW]
800
LM2904DGKR
LM2904DR
LM2904VQDR
400
200
0
800
25
50
75
LM2902DR
LM2902KDR
LM2902KQVDR
600
LM324PWR
400
LM324DR
LM324KDR
200
0
70
0
LM2902PWR
LM2902KPWR
LM2902KQVPWR
100
125
70
0
150
AMBIENT TEMPERATURE [℃]
LM358DR/PWR/DGKR
LM2904DR/PWR/DGKR/VQDR/VQPWR
50
75
100
125
150
LM324DR/PWR/KDR
LM2902DR/PWR/KDR/KPWR/KQDR/KQPWR
Power Dissipation
Package
25
AMBIENT TEMPERATURE [℃]
Power Dissipation
Pd[W]
θja [℃/W]
Package
Pd[W]
θja [℃/W]
SOIC8 (*8)
450
3.6
SOIC14
610
4.9
TSSOP8 (*6)
500
4.0
TSSOP14
870
7.0
MSOP8/VSSOP8 (*7)
470
3.76
θja = (Tj-Ta)/Pd[℃/W]
Fig.102 Derating Curves
●Precautions
1) Unused circuits
When there are unused circuits, it is recommended that they be connected as in Figure 103,
setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICR).
2) Input terminal voltage
Applying GND + 32V to the input terminal is possible without causing deterioration of the electrical
characteristics or destruction, irrespective of the supply voltage. However, this does not ensure
normal circuit operation.
Please note that the circuit operates normally only when the input voltage is within the common mode
input voltage range of the electric characteristics.
V cc
-
connect
to V icm
+
GND
3) Power supply (single / dual)
The op-amp operates when the voltage is applied between Vcc and GND.
Therefore, the single supply op-amp can be used as a dual supply op-amp as well.
Fig.103 Disable circuit example
4) Power dissipation (Pd)
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise of chip temperature, including
reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under the actual operating conditions and apply a sufficient
margin in thermal design. Refer to the thermal derating curves for more information.
5) Short-circuits between pins and erroneous mounting
Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output and the power supply, or the output
and GND may also result in IC destruction.
6) Operation in a strong electromagnetic field
Operation in a strong electromagnetic field may cause malfunctions.
7) Radiation
This IC is not designed to withstand radiation.
8) IC handing
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical characteristics due to piezoelectric (piezo)
effects.
9) IC operation
The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to the middle potential of Vcc and
GND, crossover distortion occurs at the changeover between discharging and charging of the output current. Connecting a resistor between the output
terminal and GND and increasing the bias current for Class A operation will suppress crossover distortion.
10) Board inspection
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition,
when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please
take measures against ESD in the assembly process as well as during transportation and storage.
11) Output capacitor
Discharge of the external output capacitor to Vcc is possible via internal parasitic elements when Vcc is shorted to GND, causing damage to the internal
circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage
comparators, use an output capacitor with a capacitance less than 0.1μF.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
15/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
●Ordering part number
L
M
2
9
0
2
Family name
LM358
LM324
LM2902
LM2904
K
V
Q
Operating Voltage
ESD tolerance
application
VQ : 32V
None : 26V
K : 2kV
None : Normal
D
R
Package type
R : Real
D
: SOIC
P W : TSSOP
DGK : MSOP/VSSOP
SOIC8
<Tape and Reel information>
4.9±0.2
(MAX 5.25 include BURR)
6
5
0.45Min.
7
3.9±0.2
6.0±0.3
8
4° +6°
−4°
1
2
3
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
( reel on the left hand and you pull out the tape on the right hand
The direction is the 1pin of product is at the upper left when you hold
)
4
0.545
0.2±0.1
0.175
1.375±0.1
S
1.27
0.42±0.1
1pin
0.1 S
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SOIC14
<Tape and Reel information>
8.65±0.1
(Max 9.0 include BURR)
0.65± 0.15
1
1PIN MARK
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
( reel on the left hand and you pull out the tape on the right hand
The direction is the 1pin of product is at the upper left when you hold
)
7
0.175 ± 0.075
S
+0.05
0.22 −0.03
1.375 ± 0.075
1.65MAX
0.515
1.05± 0.2
8
6.0 ± 0.2
3.9 ± 0.1
14
4° +6°
−4°
+0.05
0.42 −0.04
1.27
0.08 S
0.08 M
1pin
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
TSSOP8
<Tape and Reel information>
3.0±0.1
(MAX 3.35 include BURR)
7
6
0.5 ± 0.15
3
2500pcs
Direction
of feed
( reel on the left hand and you pull out the tape on the right hand
4
1PIN MARK
The direction is the 1pin of product is at the upper left when you hold
)
1.0±0.2
2
Embossed carrier tape
Quantity
+0.05
0.145 −0.03
1.0 ± 0.05
S
0.1 ± 0.05
1.2MAX
1
0.525
Tape
5
6.4 ± 0.2
4.4 ± 0.1
8
4±4
0.08 S
+0.05
0.245 −0.04
0.08
M
1pin
0.65
(Unit : mm)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Reel
16/17
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
TSSOP14
<Tape and Reel information>
5.0±0.1
(Max 5.35 include BURR)
4 ±4
14
1
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
( reel on the left hand and you pull out the tape on the right hand
The direction is the 1pin of product is at the upper left when you hold
)
7
1PIN MARK
+0.05
0.145 −0.03
0.1±0.05
S
1.0±0.05
1.2MAX
0.55
1.0±0.2
0.5±0.15
6.4±0.2
4.4±0.1
8
0.08 S
+0.05
0.245 −0.04
0.65
0.08
1pin
M
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
MSOP / VSSOP8
<Tape and Reel information>
3.0±0.1
(MAX 3.35 include BURR)
6
5
0.45 ± 0.15
2
3
4
1PIN MARK
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
( reel on the left hand and you pull out the tape on the right hand
The direction is the 1pin of product is at the upper left when you hold
)
0.95 ± 0.2
1
+0.05
0.145 −0.03
0.525
0.1±0.05
S
0.85±0.05
1.1MAX
7
3.0 ± 0.1
4.9± 0.2
8
4±4
0.08 S
+0.05
0.32 −0.04
0.08
M
1pin
0.65
(Unit : mm)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Reel
17/17
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2011.06 - Rev.B
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
R1120A