General-purpose Operational Amplifiers / Comparators TROPHY SERIES Operational Amplifiers LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Description The Universal Standard family LM358 / 324 and LM2904 / 2902 monolithic ICs integrate two independent op-amp circuits and phase compensation capacitors on a single chip, feature high gain and low power consumption, and possess an operating voltage range between 3[V]and 32[V] (single power supply.) No.11094EBT02 TROPHY SERIES Dual LM358 family LM358DR LM358PWR LM358DGKR Quad LM2904 family LM2904DR LM2904PWR LM2904DGKR LM2904VQDR LM2904VQPWR LM324 family LM2902 family LM2902DR LM2902PWR LM2902KDR LM2902KPWR LM2902KVQDR LM2902KVQPWR LM324DR LM324PWR LM324KDR ●Features 1) Operating temperature range 0[℃] to + 70[℃] Commercial Grade LM358/324 family : Extended Industrial Grade LM2904/2902 family : -40[℃] to +125[℃] 2) Wide operating voltage range +3[V] to +32[V] (single supply) ±1.5[V] to ±16[V] (dual supply) 3) Low supply current 4) Common-mode input voltage range, including ground 5) Differential input voltage range equal to maximum ratedsupply voltage 6) High large signal voltage gain 7) Wide output voltage range ●Pin Assignment 1OUT 1IN1IN+ GND 1 2 3 - + + - 4 8 Vcc 7 2OUT 6 2IN- 5 SOIC8 TSSOP8 LM358DR LM2904DR LM2904VQDR LM358PWR LM2904PWR LM2904VQPWR www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 2IN+ MSOP8/VSSOP8 LM358DGKR LM2904DGKR 1OUT 1 14 4OUT 1IN- 2 13 4IN- 1IN+ 3 12 4IN+ Vcc 4 11 GND 2IN+ 5 10 3IN+ 9 3IN- 8 3OUT 2IN- 6 2OUT 7 - - SOIC14 LM324DR LM324KDR LM2902DR LM2902KDR LM2902KVQDR 1/17 + + + + - - TSSOP14 LM324PWR LM2902PWR LM2902KPWR LM2902KVQPWR 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Absolute Maximum Ratings (Ta=25[℃]) Parameter Symbol Supply Voltage LM358 family Vcc-GND Operating Temperature Range Topr Storage Temperature Range Tstg Input Common-mode Voltage VICM Maximum Junction Temperature Tjmax Ratings LM2904 LM2902 family family +26 LM324 family +32 0 to +70 LM2904V LM2902V family family +32 -40 to +125 -65 to +150 -0.3 to +32 Unit V ℃ ℃ -0.3 to +26 -0.3 to +32 150 V ℃ ●Electric Characteristics ○LM358,LM324 family (Unless otherwise specified, Vcc=+5[V]) Limits Parameter Symbol Input Offset Voltage (*1) VIO Input Offset Voltage Drift αVIO Input Offset Current (*1) IIO Input Offset Current Drift αIIO Input Bias Current (*1) IIB Input Common-modeVoltage Range VICR High Level Output Voltage VOH Low Level Output Voltage Large Signal Voltage Gain Temperature range LM358 family LM324 family Unit Min. Typ. Max. Min. Typ. Max. 25℃ - 3 7 - 3 7 Full range - - 9 - - 9 - - 7 - - - - 25℃ - 2 50 - 2 50 Full range - - 150 - - 150 - - 10 - - - - 25℃ - 20 250 - 20 250 Full range - - 500 - - 500 25℃ 0 - Vcc-1.5 - - Vcc-1.5 Full range 0 - Vcc-2.0 - - Vcc-2.0 mV Conditions VO=1.4[V] VIC=VICR(min) Vcc=5[V] to 30[V] μV/℃ nA - VO=1.4[V] Fig. No 98 - 98 pA/℃ - - nA VO=1.4[V] 98 V Vcc=5[V] to 30[V] 98 25℃ Vcc-1.5 - - Vcc-1.5 - - Full range 27 28 - 27 28 - VOL Full range - 5 20 - 5 20 AVD 25℃ 25 100 - 25 100 - Common-mode Rejection Ratio CMRR 25℃ 65 80 - 65 80 - dB Vcc=5[V] to 30[V], VIC=VICR(min) 98 Supply-Voltage rejection ratio KSVR 25℃ 65 100 - 65 100 - dB Vcc=5[V] to 30[V] 98 VO1/VO2 25℃ - 120 - - 120 - dB f=1[kHz] to 20[kHz] 101 25℃ 20 30 - 20 30 - Full range 10 - - 10 - - mA Vcc=15[V],VO=0[V] VID=1[V] mA Vcc=15[V],VO=0[V] VID=-1[V] μA VO=200[mV],VID=-1[V] Cross-talk Attenuation Source Output Current (*2) Sink 25℃ 10 20 - 10 20 - Full range 2 - - 2 - - 25℃ 12 30 - 12 30 - Full range - 0.7 1.2 - 0.7 1.2 Full range - 1 2 - 1.4 3 Supply Current (All Amps) ICC Slew Rate at Unity-Gain SR 25℃ - 0.3 - - 0.5 - Unity Gain Bandwidth B1 25℃ - 0.7 - - 1.2 - Equivalent Input Noise Voltage Vn 25℃ - 40 - - 35 - V mV RL≧2[kΩ] Vcc=30[V],RL≧10[kΩ] RL≦10[kΩ] Vcc=15[V] V/mV VO=1[V] to 11[V] RL≧2[kΩ] 99 98 98 99 VO=2.5[V],No Load mA Vcc=30[V],VO=0.5[V] No Load RL=1[MΩ],CL=30[pF] VI=±10[V] V/μs Vcc=15[V],GND=-15[V] (reference to Fig100) RL=1[MΩ],CL=20[pF] MHz Vcc=15[V],GND=-15[V] (reference to Fig99) Vcc=15[V],GND=-15[V] nV/ Hz RS=100[Ω],VI=0[V] f=1[kHz](reference to Fig99) 99 99 99 99 (*1) Absolute value (*2) Under high temperature, consider the power dissipation of IC when selecting the output current. When the output terminal is continuously shorted, the output current reduces the temperature inside the IC by flushing. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 2/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ○LM2904,LM2902 family (Unless otherwise specified, Vcc=+5[V]) Limits Parameter Symbol Temperature range LM2904 family Min. Input Offset Voltage (*3) VIO Input Offset Voltage Drift αVIO LM2904 LM2902(*5) Input Offset Current (*3) IIO LM2904V LM2902V(*5) Input Offset Current Drift αIIO Input Bias Current (*3) IIB Input Common-mode Voltage Range VICR High Level Output Voltage LM2904 LM2902(*5) LM2904V LM2902V(*5) VOH Typ. Unit LM2902 family Max. Min. Typ. 25℃ - 3 7 - 3 7 Full range - - 10 - - 10 - - 7 - - 7 - 25℃ - 2 50 - 2 50 Full range - - 300 - - 300 25℃ - 2 50 - 2 50 Full range - - 150 - - 150 - - 10 - - 10 - 25℃ - 20 250 - 20 250 Full range - - 500 - - 500 25℃ - - Vcc-1.5 - - Vcc-1.5 Full range - - Vcc-2.0 - - Vcc-2.0 25℃ Vcc-1.5 - - Vcc-1.5 - - Full range 23 24 - 23 24 - Full range 27 28 - 27 - - mV nA 98 RL≧10[kΩ] V mV Large Signal Voltage Gain AVD 25℃ 25 100 - 25 100 - V/mV 25℃ 50 80 - 50 80 - dB 25℃ 65 80 - 60 80 - dB 65 100 - 50 100 - - - - 60 100 - 25℃ - 120 - - 120 - Output Current (*4) Sink LM2904 LM2902(*5) LM2904V LM2902V(*5) 30 - 20 30 60 10 - - 10 - - ICC Slew Rate at Unity Gain 99 RL≦10[kΩ] 99 Vcc=15[V],VO=1[V] to 11[V] RL≧2[kΩ] 98 Vcc=5[V] to MAX(*5) VIC=VICR(min) 98 dB Vcc=5[V] to MAX(*5) 98 dB f=1[kHz] to 20[kHz] 101 mA Vcc=15[V],VO=0[V] VID=1[V] mA Vcc=15[V],VO=0[V] VID=-1[V] 25℃ 10 20 - 10 20 - Full range 2 - - 2 - - 25℃ - 30 - - 30 - μA 25℃ 12 40 - 12 40 - μA Full range - 0.7 1.2 - 0.7 1.2 Io Supply Current (All Amps) Vcc=MAX(*5),RL≧10[kΩ] Vcc=MAX(*5),RL≧10[kΩ] 20 20 - Vcc=5[V] to MAX(*5) 5 25℃ - V - Full range 98 98 20 Source - VO=1.4[V] 5 VO1/VO2 VO=1.4[V] 98 nA - Cross-talk Attenuation - pA/℃ Full range LM2902V(*5) VO=1.4[V],VIC=VICR(min) Vcc=5[V] to MAX(*5) μV/℃ VOL 25℃ Fig. No Max. Low Level Output Voltage LM2904 LM2902(*5) CommonCMRR mode Rejection Ratio LM2904V LM2902V(*5) LM2904 LM2904V Supply Voltage KSVR M2902(*5) Rejection Ratio Conditions 99 VO=200[mV],VID=-1[V] Full range - 1 2 - 1.4 3 SR 25℃ - 0.3 - - 0.5 - Unity-Gain Bandwidth B1 25℃ - 0.7 - - 1.2 - Equivalent Input Noise Voltage Vn 25℃ - 40 - - 35 - VO=2.5[V],No Load mA Vcc=MAX(*5),VO=0.5[V] No Load RL=1[MΩ],CL=30[pF], VI=±10[V] V/μs Vcc=15[V],GND=-15[V] (reference to Fig100) RL=1[MΩ],CL=20[pF] MHz Vcc=15[V],GND=-15[V] (reference to Fig99) Vcc=15[V],GND=-15[V] RS=100[Ω]VI=0[V] nV/ Hz f=1[kHz], ( reference to Fig99) 99 99 99 99 (*3) Absolute value (*4) Under high temperature, consider the power dissipation of the IC when selecting the output current. When the output terminal is continuously shorted the output current is reduced to lower the temperature inside the IC. (*5) The maximum supply voltage is 26V for the LM2904DR, LM2904PW, LM2904PWR, and LM2904DQKR The maximum supply voltage is 32V for the LM2904VQDR and LM2904VQPWR www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 3/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Reference Data LM358 family POWER DISSIPATION Pd [mW] LM358 family LM358 family LM358 family 800 LM358PWR LM358DGKR 600 25℃ LM358DR 32V 0℃ 400 200 5V 70℃ 3V 0 70 0 25 50 75 100 AMBIENT TEMPERATURE : [℃] Ta [℃] Fig. 1 Derating Curve Fig. 2 Supply Current – Supply Voltage LM358 family Fig. 3 Supply Current – Ambient Temperature LM358 family LM358 family 0℃ 0℃ 25℃ 70℃ 25℃ 70℃ Fig. 4 Maximum Output Voltage – Supply Voltage (RL=10[kΩ]) Fig. 5 Fig. 6 Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage (VCC=5[V],RL=2[kΩ]) (VCC=5[V]) LM358 family LM358 family LM358 family 15V 70℃ 3V 5V 0℃ 3V 5V 15V 25℃ Fig. 7 Output Source Current – Ambient Temperature (VOUT=0[V]) Fig. 8 Output Sink Current – Output Voltage (VCC=5[V]) Fig. 9 Output Sink Current – Ambient Temperature (VOUT=VCC) LM358 family LM358 family LM358 family 32V 25℃ 0℃ 0℃ 5V 25℃ 3V 70℃ 70℃ Fig. 10 Low Level Sink Current - Supply Voltage (VOUT=0.2[V]) Fig. 11 Low Level Sink Current - Ambient Temperature (VOUT=0.2[V]) Fig. 12 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 4/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Reference Data LM358 family LM358 family LM358 family LM358 family 3V 5V 32V 25℃ 0℃ 32V 3V 5V 70℃ Fig. 13 Input Offset Voltage – Ambient Temperature (Vicm=0[V], VOUT=1.4[V]) Fig. 14 Input Bias Current – Supply Voltage (Vicm=0[V], VOUT=1.4[V]) Fig. 15 Input Bias Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) LM358 family LM358 family LM358 family 70℃ 0℃ 25℃ 0℃ 25℃ 70℃ [V] Fig. 16 Input Bias Current – Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V]) Fig. 17 Input Offset Voltage – Common Mode Input Voltage (VCC=5[V]) Fig. 18 Input Offset Current – Supply Voltage (Vicm=0[V],VOUT=1.4[V]) LM358 family LM358 family LM358 family 0℃ 15V 25℃ 3V 5V 5V 32V 70℃ Fig. 19 Input Offset Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) Fig. 20 Large Signal Voltage Gain – Supply Voltage (RL=2[kΩ]) LM358 family LM358 family 36V 0℃ Fig. 21 Large Signal Voltage Gain – Ambient Temperature (RL=2[kΩ]) LM358 family 32V 25℃ 70℃ Fig. 22 Common Mode Rejection Ratio – Supply Voltage 5V 3V Fig. 23 Common Mode Rejection Ratio – Ambient Temperature Fig. 24 Power Supply Rejection Ratio – Ambient Temperature (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 5/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Reference Data LM324 family BA2904 family LM324 family LM324 family family BA2904 LM324 family 1000 POWER DISSIPATION Pd [mW] LM324PWR LM324DR LM324KDR 800 32V 25℃ 600 0℃ 400 200 5V 70℃ 0 0 25 70 50 75 3V 100 AMBIENT TEMPERATURE :[℃] Ta [℃] Fig. 25 Derating Curve Fig. 26 Supply Current – Supply Voltage LM324 family Fig. 27 Supply Current – Ambient Temperature LM324 family LM324 family 0℃ 0℃ 25℃ 70℃ 25℃ 70℃ Fig. 28 Maximum Output Voltage – Supply Voltage (RL=10[kΩ]) Fig. 29 Fig. 30 Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage (VCC=5[V],RL=2[kΩ]) (VCC=5[V]) LM324 family LM324 family LM324 family 15V 70℃ 3V 5V 0℃ 5V 15V 3V 25℃ Fig. 31 Output Source Current – Ambient Temperature (VOUT=0[V]) Fig. 32 Output Sink Current – Output Voltage (VCC=5[V]) Fig. 33 Output Sink Current – Ambient Temperature (VOUT=VCC) LM324 family LM324 family LM324 family 32V 0℃ 25℃ 0℃ 5V 25℃ 3V 70℃ 70℃ Fig. 34 Low Level Sink Current - Supply Voltage (VOUT=0.2[V]) Fig. 35 Low Level Sink Current - Ambient Temperature (VOUT=0.2[V]) Fig. 36 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 6/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Reference Data LM324 family LM324 family 3V 5V LM324 family LM324 family 25℃ 0℃ 32V 32V 3V 70℃ Fig. 37 Input Offset Voltage – Ambient Temperature (Vicm=0[V], VOUT=1.4[V]) Fig. 38 Input Bias Current – Supply Voltage (Vicm=0[V], VOUT=1.4[V]) 5V Fig. 39 Input Bias Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) LM324 family LM324 family LM324 family 0℃ 70℃ 25℃ 0℃ 25℃ 70℃ [V] Fig. 40 Input Bias Current – Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V]) Fig. 41 Input Offset Voltage – Common Mode Input Voltage (VCC=5[V]) Fig. 42 Input Offset Current – Supply Voltage (Vicm=0[V],VOUT=1.4[V]) LM324 family LM324 family LM324 family 25℃ 0℃ 15V 3V 5V 5V 32V 70℃ Fig. 43 Input Offset Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) Fig. 44 Large Signal Voltage Gain – Supply Voltage (RL=2[kΩ]) LM324 family LM324 family LM324 family 32V 36V 0℃ Fig. 45 Large Signal Voltage Gain – Ambient Temperature (RL=2[kΩ]) 25℃ 5V 70℃ Fig. 46 Common Mode Rejection Ratio – Supply Voltage 3V Fig. 47 Common Mode Rejection Ratio – Ambient Temperature Fig. 48 Power Supply Rejection Ratio – Ambient Temperature (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 7/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Reference Data LM2904 family LM2904 family LM2904PWR LM2904VQPWR 0.8 LM2904DR LM2904VQDR 400 200 25℃ -40℃ 0.6 0.4 0 125℃ 105℃ 0.2 25 50 75 100 125 0 150 0.8 32V 0.6 0.4 5V 0.2 3V 0.0 0.0 0 LM2904 family family BA2904 1.0 SUPPLY CURRENT [mA] LM2904DGKR 600 BA2904 LM2904 family family 1.0 SUPPLY CURRENT [mA] POWER DISSIPATION Pd [mW] 800 10 AMBIENT TEMPERATURE : [℃] Ta [℃] Fig. 49 Derating Curve 20 30 SUPPLY VOLTAGE [V] -50 40 Fig. 50 Supply Current – Supply Voltage LM2904 family 40 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 51 Supply Current – Ambient Temperature LM2904 family 5 -25 LM2904 family 50 -40℃ 30 125℃ 20 25℃ 105℃ 10 0 0 10 20 30 4 3 2 1 105℃ 20 10 125℃ 0 0 1 LM2904 family LM2904 family 100 5V 30 15V 20 10 0 0 25 50 75 10 125℃ 1 -40℃ 0.1 25℃ 0.01 15V 0 0.4 AMBIENT TEMPERATURE [℃] Fig. 55 Output Source Current – Ambient Temperature (VOUT=0[V]) LOW LEVEL SINK CURRENT [μA] 25℃ 60 50 40 125℃ 105℃ 30 20 10 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 Fig. 58 Low Level Sink Current - Supply Voltage (VOUT=0.2[V]) 3V 10 -50 2 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 57 Output Sink Current – Ambient Temperature (VOUT=VCC) LM2904 family 8 32V 70 60 5V 50 40 3V 30 20 10 0 0 5V LM2904 family 80 -40℃ 70 0.8 1.2 1.6 OUTPUT VOLTAGE [V] Fig. 56 Output Sink Current – Output Voltage (VCC=5[V]) LM2904 family 80 20 0 0.001 100 125 150 INPUT OFFSET VOLTAGE [mV] -25 OUTPUT SINK CURRENT [mA] 3V -50 5 LM2904 family 30 105℃ 40 2 3 4 OUTPUT VOLTAGE [V] Fig. 53 Fig. 54 Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage (VCC=5[V],RL=2[kΩ]) (VCC=5[V]) OUTPUT SINK CURRENT [mA] OUTPUT SOURCE CURRENT [mA] 25℃ 30 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 52 Maximum Output Voltage – Supply Voltage (RL=10[kΩ]) LOW LEVEL SINK CURRENT [μA] 40 0 40 SUPPLY VOLTAGE [V] 50 OUTPUT SOURCE CURRENT [mA] MAXIMUM OUTPUT VOLTAGE [V] MAXIMUM OUTPUT VOLTAGE [V] -40℃ 6 -40℃ 25℃ 4 2 0 -2 105℃ 125℃ -4 -6 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 59 Low Level Sink Current - Ambient Temperature (VOUT=0.2[V]) 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 Fig. 60 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 8/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Reference Data LM2904 family LM2904 family 8 LM2904 family 50 3V 2 0 5V -2 32V -4 40 30 20 10 105℃ -6 20 3V 10 5V 0 0 0 25 50 75 0 100 125 150 Fig. 61 Input Offset Voltage – Ambient Temperature (Vicm=0[V], VOUT=1.4[V]) 30 20 10 0 30 -50 35 -10 6 -40℃ 4 105℃ 25℃ 125℃ 2 0 -2 -4 -6 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 64 Input Bias Current – Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V]) 3V 0 5V 32V -5 0 1 2 3 [V] INPUT VOLTAGE [Vin] -10 4 0 0 25 50 75 130 -40℃ 25℃ 120 110 100 90 105℃ 125℃ 80 70 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 67 Input Offset Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) -40℃ 25℃ 100 80 125℃ 105℃ 60 40 0 10 20 30 SUPPLY VOLTAGE [V] Fig. 70 Common Mode Rejection Ratio – Supply Voltage 40 15 20 25 30 35 Fig. 66 Input Offset Current – Supply Voltage (Vicm=0[V],VOUT=1.4[V]) LM2904 family 130 15V 120 110 100 5V 90 80 70 6 8 10 12 SUPPLY VOLTAGE [V] 14 -50 16 Fig. 68 Large Signal Voltage Gain – Supply Voltage (RL=2[kΩ]) COMMON MODE REJECTION RATIO [dB] 120 10 SUPPLY VOLTAGE [V] 60 4 LM2904 family 140 5 140 LM2904 family 140 36V 32V 120 100 80 5V 3V 60 40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 71 Common Mode Rejection Ratio – Ambient Temperature -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 69 Large Signal Voltage Gain – Ambient Temperature (RL=2[kΩ]) LM2904 family 140 POWER SUPPLY REJECTION RATIO [dB] -25 125℃ 105℃ -5 5 60 -50 0 LM2904 family 140 LARGE SIGNAL VOLTAGE GAIN [dB] 5 25℃ -40℃ Fig. 65 Input Offset Voltage – Common Mode Input Voltage (VCC=5[V]) LM2904 family 10 5 -10 -1 LARGE SIGNAL VOLTAGE GAIN [dB] -25 LM2904 family 10 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 63 Input Bias Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) LM2904 family 8 INPUT OFFSET VOLTAGE [mV] 40 10 15 20 25 SUPPLY VOLTAGE [V] Fig. 62 Input Bias Current – Supply Voltage (Vicm=0[V], VOUT=1.4[V]) LM2904 family 50 5 INPUT OFFSET CURRENT [nA] -25 AMBIENT TEMPERATURE [℃] INPUT BIAS CURRENT[nA] 32V 30 125℃ -50 INPUT OFFSET CURRENT [nA] 25℃ -40℃ 40 INPUT BIAS CURRENT [nA] 4 INPUT BIAS CURRENT [nA] INPUT OFFSET VOLTAGE [mV] 6 -8 COMMON MODE REJECTION RATIO [dB] LM2904 family 50 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 72 Power Supply Rejection Ratio – Ambient Temperature (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 9/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Reference Data LM2902 family LM2902 family 600 400 LM2902DR LM2902KDR LM2902KVQDR 200 0.8 25℃ -40℃ 0.6 0.4 0.2 125℃ 105℃ 0 25 50 75 100 125 0 150 AMBIENT TEMPERATURE : [℃] Ta [℃] Fig. 73 Derating Curve 32V 0.6 0.4 5V 0.2 3V 10 20 30 SUPPLY VOLTAGE [V] -50 40 Fig. 74 Supply Current – Supply Voltage LM2902 family 40 0.8 0.0 0.0 0 LM2902 family 1.0 SUPPLY CURRENT [mA] LM2902PWR LM2902KPWR LM2902KVQPWR 800 LM2902 family 1.0 SUPPLY CURRENT [mA] POWER DISSIPATION Pd [mW] 1000 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 75 Supply Current – Ambient Temperature LM2902 family 5 -25 LM2902 family 50 -40℃ 30 125℃ 20 25℃ 105℃ 10 0 0 10 20 30 4 3 2 1 105℃ 20 125℃ 10 0 0 1 LM2902 family LM2902 family 100 5V 30 15V 10 0 -25 0 25 50 75 10 125℃ 1 -40℃ 0.1 25℃ 0.01 15V 0 0.4 AMBIENT TEMPERATURE [℃] Fig. 79 Output Source Current – Ambient Temperature (VOUT=0[V]) LOW LEVEL SINK CURRENT [μA] 25℃ 60 50 40 105℃ 30 125℃ 20 10 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 Fig. 82 Low Level Sink Current - Supply Voltage (VOUT=0.2[V]) 3V 10 -50 2 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 81 Output Sink Current – Ambient Temperature (VOUT=VCC) LM2902 family 8 32V 70 60 5V 50 40 3V 30 20 10 0 0 5V LM2902 family 80 -40℃ 70 0.8 1.2 1.6 OUTPUT VOLTAGE [V] Fig. 80 Output Sink Current – Output Voltage (VCC=5[V]) LM2902 family 80 20 0 0.001 100 125 150 INPUT OFFSET VOLTAGE [mV] -50 OUTPUT SINK CURRENT [mA] 3V 20 5 LM2902 family 30 105℃ 40 2 3 4 OUTPUT VOLTAGE [V] Fig. 77 Fig. 78 Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage (VCC=5[V],RL=2[kΩ]) (VCC=5[V]) OUTPUT SINK CURRENT [mA] OUTPUT SOURCE CURRENT [mA] 25℃ 30 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 76 Maximum Output Voltage – Supply Voltage (RL=10[kΩ]) LOW LEVEL SINK CURRENT [μA] 40 0 40 SUPPLY VOLTAGE [V] 50 OUTPUT SOURCE CURRENT [mA] MAXIMUM OUTPUT VOLTAGE [V] MAXIMUM OUTPUT VOLTAGE [V] -40℃ 6 -40℃ 25℃ 4 2 0 -2 105℃ 125℃ -4 -6 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 83 Low Level Sink Current - Ambient Temperature (VOUT=0.2[V]) 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 Fig. 84 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 10/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Reference Data LM2902 family LM2902 family 8 LM2902 family 50 3V 2 0 5V -2 32V -4 40 30 20 10 105℃ -6 20 3V 10 5V 0 0 0 25 50 75 0 100 125 150 Fig. 85 Input Offset Voltage – Ambient Temperature (Vicm=0[V], VOUT=1.4[V]) 30 20 10 0 30 -50 35 -10 6 -40℃ 4 105℃ 25℃ 125℃ 2 0 -2 -4 -6 0 25 50 75 100 125 150 0 AMBIENT TEMPERATURE [℃] Fig. 88 Input Bias Current – Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V]) 3V 0 5V 32V -5 1 2 3 [V] INPUT VOLTAGE [Vin] 4 -10 130 -40℃ 25℃ 120 110 100 90 105℃ 0 25 50 75 125℃ 80 70 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 91 Input Offset Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) 25℃ 100 80 105℃ 125℃ 60 40 0 10 20 30 SUPPLY VOLTAGE [V] Fig. 94 Common Mode Rejection Ratio – Supply Voltage 40 15 20 25 30 35 Fig. 90 Input Offset Current – Supply Voltage (Vicm=0[V],VOUT=1.4[V]) LM2902 family 140 130 15V 120 110 100 5V 90 80 70 6 8 10 12 SUPPLY VOLTAGE [V] 14 -50 16 Fig. 92 Large Signal Voltage Gain – Supply Voltage (RL=2[kΩ]) -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 93 Large Signal Voltage Gain – Ambient Temperature (RL=2[kΩ]) LM2902 family COMMON MODE REJECTION RATIO [dB] -40℃ 120 10 60 4 LM2902 family 140 5 SUPPLY VOLTAGE [V] 140 36V 120 100 80 5V 3V 60 40 -50 -25 LM2902 family 140 32V 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 95 Common Mode Rejection Ratio – Ambient Temperature POWER SUPPLY REJECTION RATIO [dB] -25 125℃ 105℃ -5 0 60 -50 0 5 LM2902 family 140 LARGE SIGNAL VOLTAGE GAIN [dB] 5 25℃ -40℃ Fig. 89 Input Offset Voltage – Common Mode Input Voltage (VCC=5[V]) LM2902 family 10 5 -10 -1 LARGE SIGNAL VOLTAGE GAIN [dB] -25 LM2902 family 10 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 87 Input Bias Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V]) LM2902 family 8 INPUT OFFSET VOLTAGE [mV] 40 10 15 20 25 SUPPLY VOLTAGE [V] Fig. 86 Input Bias Current – Supply Voltage (Vicm=0[V], VOUT=1.4[V]) LM2902 family 50 5 INPUT OFFSET CURRENT [nA] -25 AMBIENT TEMPERATURE [℃] INPUT BIAS CURRENT[nA] 32V 30 125℃ -50 INPUT OFFSET CURRENT [nA] 25℃ -40℃ 40 INPUT BIAS CURRENT [nA] 4 INPUT BIAS CURRENT [nA] INPUT OFFSET VOLTAGE [mV] 6 -8 COMMON MODE REJECTION RATIO [dB] LM2902 family 50 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 96 Power Supply Rejection Ratio – Ambient Temperature (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 11/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Circuit Diagram Vcc INOUT IN+ GND Fig.97 Circuit Diagram (each Op-Amp) ●Measurement Circuit 1 NULL Method Measurement Condition Measurement item VF Input Offset Voltage S1 S2 S3 Vcc VF1 ON ON OFF 5 to 30 Input Offset Current Input Bias Current VICR ‐1.4 0 5 to 30 0 ‐1.4 0 1 2 5 0 ‐1.4 0 5 0 ‐1.4 0 5 0 ‐1.4 0 5 0 ‐1.4 0 5 0 ‐1.4 0 5 0 ‐1.4 0 15 0 ‐1.4 0 15 0 ‐1.4 0 15 0 -11.4 0 15 0 -11.4 0 VF5 VF7 VF8 VF9 Supply Voltage Rejection Ratio EK 0 VF2 OFF OFF OFF VF6 Common-mode Rejection Ratio GND VF3 OFF ON VF4 ON OFF Large Signal Voltage Gain Vcc,GND,EK,VICR Unit:[V] LM2904/LM2902 family Calculation Vcc GND EK VICR LM358/LM324 family VF10 OFF ON ON ON ON ON OFF ON ON OFF 5 0 ‐1.4 0 5 0 ‐1.4 0 5 0 ‐1.4 3.5 5 0 ‐1.4 3.5 5 0 ‐1.4 0 5 0 ‐1.4 0 30 0 ‐1.4 0 30 0 ‐1.4 0 3 4 5 6 -Calculation- 1.Input Offset Voltage (VIO) Vio VF1 1+ Rf /Rs 0.1[μF] [V] 2. Input offset current (IIO) Iio VF2 - VF1 Ri (1+ Rf / Rs) Rf 50[kΩ] [A] 500[kΩ] S1 3.Input Bias Current (IIB) Rs VF4 - VF3 [A] Ib 2× Ri (1+ Rf / Rs) VICR 4.Large Signal Voltage Gain (AVD) AV 20× Log CMRR 20× Log Rf 3.5× (1+ Rf/ Rs) VF8-VF7 500[kΩ] DUT S3 Ri 1000[pF] GND RL -15[V] V VF 50[kΩ] [dB] Fig.98 Measurement Circuit 1 (each Op-Amp) 6.Supply Voltage rejection ratio (KSVR) PSRR = 20×Log 50[Ω] 10[kΩ] S2 5.Common-mode rejection ratio (CMRR) +15[V] Ri 50[Ω] 10[kΩ] Rs 10× (1+ Rf /Rs) [dB] VF6 - VF5 Vcc 0.1[μF] VOUT EK △Vcc×(1+Rf/Rs) VF10 - VF9 [dB] △Vcc=25V www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 12/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Measurement Circuit 2: Switch Condition SW 1 SW No. SW 2 SW 3 SW 4 SW 5 SW 6 SW 7 SW 8 SW 9 SW 10 SW 11 SW 12 SW 13 SW 14 SW 15 Supply Current OFF OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF OFF High Level Output Voltage OFF OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF Low Level Output Voltage OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF Output Source Current OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON Output Sink Current OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON Slew Rate OFF OFF OFF ON OFF OFF OFF OFF ON Unity-gain Bandwidth Product OFF ON OFF OFF OFF ON Equivalent Input Noise Voltage ON OFF OFF OFF ON OFF ON OFF OFF OFF OFF ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF ON ON OFF OFF OFF OFF Input voltage 3[V] SW4 SW5 R2 SW6 R3 Vcc 0.5[V] A t Input waveform - Output voltage SW1 SW2 SR = ΔV / Δt + SW3 3[V] SW10 SW11 SW12 SW13 SW14 SW15 RS R1 SW7 SW8 SW9 GND ΔV A ~ VIN- VIN+ RL ~ CL V ~ V VOUT Δt 0.5[V] t Output waveform Fig.99 Measurement Circuit 2 (each Op-Amp) Fig.100 Slew Rate Input Waveform ●Measurement Circuit 3: Cross-talk Attenuation R2=100[kΩ] R2=100[kΩ] Vcc=+2.5[V] Vcc=+2.5[V] R1=1[kΩ] R1=1[kΩ] other CH CH1 VIN R1//R2 V GND=-2.5[V] VOUT1 =0.5 [Vrms] R1//R2 VO1/VO2=20×log V GND=-2.5[V] VOUT2 100×VOUT1 VOUT2 Fig.101 Measurement Circuit 3 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 13/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Description of Electrical Characteristics Described below are descriptions of the relevant electrical terms Please note that item names, symbols and their meaning may differ form those on another manufacturer’s documents. 1. Absolute maximum ratings The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of characteristics or damage to the part itself as well as peripheral components. 1.1 Power supply voltage (Vcc/GND) Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing deterioration of characteristics or destruction of the internal circuitry. 1.2 Differential input voltage (VID) Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC. 1.3 Input common-mode voltage range (VICR) Signifies the maximum voltage that can be supplied to the non-inverting and inverting terminals without causing deterioration of the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead. 1.4 Operating temperature range and storage temperature range (Topr, Tstg) The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics. 1.5 Power dissipation (Pd) Indicates the power that can be consumed by a specific mounted board at ambient temperature (25℃). For packaged products, Pd is determined by the maximum junction temperature and the thermal resistance. 2. Electric characteristics 2.1 Input offset voltage (VIO) Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0V. 2.2 Input offset voltage drift (αVIO) Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation. 2.3 Input offset current (IIO) Indicates the difference of the input bias current between the non-inverting and inverting terminals. 2.4 Input offset current drift (αIIO) Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation. 2.5 Input bias current (IIB) Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal. 2.6 Circuit current (ICC) Indicates the current of the IC itself that flows under specific conditions and during no-load steady state. 2.7 High level output voltage/low level output voltage (VOH/VOL) Signifying the voltage range that can be output by under specific load conditions, it is in general divided into high level output voltage and low level output voltage. High level output voltage indicates the upper limit of the output voltage, while low level output voltage the lower limit. 2.8 Differential voltage amplification (AVD) The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage. AVD = (output voltage fluctuation) / (input offset fluctuation) 2.9 Input common-mode voltage range (VICR) Indicates the input voltage range under which the IC operates normally. 2.10 Common-mode rejection ratio (CMRR) Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change in input common-mode voltage) / (input offset fluctuation) 2.11 Power supply rejection ratio (KSVR) Denotes the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation). KSVR = (change in power supply voltage) / (input offset fluctuation) 2.12 Output source current/ output sink current (IOH/IOL) The maximum current that can be output under specific output conditions, it is divided into output source current and output sink current. The output source current indicates the current flowing out of IC, and the output sink current the current flowing into the IC. 2.13 Cross talk attenuation (VO1/VO2) Expresses the amount of fluctuation in the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel. 2.14 Slew rate at unity gain (SR) Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied. 2.15 Unity gain bandwidth (B1) The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value of the frequency where the gain of the op-amp is 1 (maximum frequency, unity gain frequency). www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 14/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Derating Curves 1000 LM358DGKR LM358DR 600 LM2904PWR LM2904VQPWR LM358PWR POWER DISSIPATION Pd [mW] POWER DISSIPATION Pd [mW] 800 LM2904DGKR LM2904DR LM2904VQDR 400 200 0 800 25 50 75 LM2902DR LM2902KDR LM2902KQVDR 600 LM324PWR 400 LM324DR LM324KDR 200 0 70 0 LM2902PWR LM2902KPWR LM2902KQVPWR 100 125 70 0 150 AMBIENT TEMPERATURE [℃] LM358DR/PWR/DGKR LM2904DR/PWR/DGKR/VQDR/VQPWR 50 75 100 125 150 LM324DR/PWR/KDR LM2902DR/PWR/KDR/KPWR/KQDR/KQPWR Power Dissipation Package 25 AMBIENT TEMPERATURE [℃] Power Dissipation Pd[W] θja [℃/W] Package Pd[W] θja [℃/W] SOIC8 (*8) 450 3.6 SOIC14 610 4.9 TSSOP8 (*6) 500 4.0 TSSOP14 870 7.0 MSOP8/VSSOP8 (*7) 470 3.76 θja = (Tj-Ta)/Pd[℃/W] Fig.102 Derating Curves ●Precautions 1) Unused circuits When there are unused circuits, it is recommended that they be connected as in Figure 103, setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICR). 2) Input terminal voltage Applying GND + 32V to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics. V cc - connect to V icm + GND 3) Power supply (single / dual) The op-amp operates when the voltage is applied between Vcc and GND. Therefore, the single supply op-amp can be used as a dual supply op-amp as well. Fig.103 Disable circuit example 4) Power dissipation (Pd) Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise of chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under the actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information. 5) Short-circuits between pins and erroneous mounting Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output and the power supply, or the output and GND may also result in IC destruction. 6) Operation in a strong electromagnetic field Operation in a strong electromagnetic field may cause malfunctions. 7) Radiation This IC is not designed to withstand radiation. 8) IC handing Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical characteristics due to piezoelectric (piezo) effects. 9) IC operation The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to the middle potential of Vcc and GND, crossover distortion occurs at the changeover between discharging and charging of the output current. Connecting a resistor between the output terminal and GND and increasing the bias current for Class A operation will suppress crossover distortion. 10) Board inspection Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage. 11) Output capacitor Discharge of the external output capacitor to Vcc is possible via internal parasitic elements when Vcc is shorted to GND, causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance less than 0.1μF. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 15/17 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note ●Ordering part number L M 2 9 0 2 Family name LM358 LM324 LM2902 LM2904 K V Q Operating Voltage ESD tolerance application VQ : 32V None : 26V K : 2kV None : Normal D R Package type R : Real D : SOIC P W : TSSOP DGK : MSOP/VSSOP SOIC8 <Tape and Reel information> 4.9±0.2 (MAX 5.25 include BURR) 6 5 0.45Min. 7 3.9±0.2 6.0±0.3 8 4° +6° −4° 1 2 3 Tape Embossed carrier tape Quantity 2500pcs Direction of feed ( reel on the left hand and you pull out the tape on the right hand The direction is the 1pin of product is at the upper left when you hold ) 4 0.545 0.2±0.1 0.175 1.375±0.1 S 1.27 0.42±0.1 1pin 0.1 S Reel (Unit : mm) Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. SOIC14 <Tape and Reel information> 8.65±0.1 (Max 9.0 include BURR) 0.65± 0.15 1 1PIN MARK Tape Embossed carrier tape Quantity 2500pcs Direction of feed ( reel on the left hand and you pull out the tape on the right hand The direction is the 1pin of product is at the upper left when you hold ) 7 0.175 ± 0.075 S +0.05 0.22 −0.03 1.375 ± 0.075 1.65MAX 0.515 1.05± 0.2 8 6.0 ± 0.2 3.9 ± 0.1 14 4° +6° −4° +0.05 0.42 −0.04 1.27 0.08 S 0.08 M 1pin Reel (Unit : mm) Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. TSSOP8 <Tape and Reel information> 3.0±0.1 (MAX 3.35 include BURR) 7 6 0.5 ± 0.15 3 2500pcs Direction of feed ( reel on the left hand and you pull out the tape on the right hand 4 1PIN MARK The direction is the 1pin of product is at the upper left when you hold ) 1.0±0.2 2 Embossed carrier tape Quantity +0.05 0.145 −0.03 1.0 ± 0.05 S 0.1 ± 0.05 1.2MAX 1 0.525 Tape 5 6.4 ± 0.2 4.4 ± 0.1 8 4±4 0.08 S +0.05 0.245 −0.04 0.08 M 1pin 0.65 (Unit : mm) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Reel 16/17 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2011.06 - Rev.B LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR Technical Note TSSOP14 <Tape and Reel information> 5.0±0.1 (Max 5.35 include BURR) 4 ±4 14 1 Tape Embossed carrier tape Quantity 2500pcs Direction of feed ( reel on the left hand and you pull out the tape on the right hand The direction is the 1pin of product is at the upper left when you hold ) 7 1PIN MARK +0.05 0.145 −0.03 0.1±0.05 S 1.0±0.05 1.2MAX 0.55 1.0±0.2 0.5±0.15 6.4±0.2 4.4±0.1 8 0.08 S +0.05 0.245 −0.04 0.65 0.08 1pin M Reel (Unit : mm) Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. MSOP / VSSOP8 <Tape and Reel information> 3.0±0.1 (MAX 3.35 include BURR) 6 5 0.45 ± 0.15 2 3 4 1PIN MARK Tape Embossed carrier tape Quantity 2500pcs Direction of feed ( reel on the left hand and you pull out the tape on the right hand The direction is the 1pin of product is at the upper left when you hold ) 0.95 ± 0.2 1 +0.05 0.145 −0.03 0.525 0.1±0.05 S 0.85±0.05 1.1MAX 7 3.0 ± 0.1 4.9± 0.2 8 4±4 0.08 S +0.05 0.32 −0.04 0.08 M 1pin 0.65 (Unit : mm) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Reel 17/17 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2011.06 - Rev.B Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. R1120A