ROHM BA3472FVM

Operational Amplifiers / Comparators
High Speed with High Voltage
Operational Amplifiers
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM
BA3474F,BA3474FV,BA3474RFV
No.11049EBT17
●Description
General-purpose BA3472 / BA3474 family integrate two/four Independent Op-amps and phase compensation capacitors on a single
chip and have some features of high-gain, low power consumption, and wide operating voltage range of +3[V] ~ +36[V](single
power supply). Especially, characteristics are high slew rate (10V/μs) and high Maximum frequency (4MHz).
High Speed
Dual
BA3472F/FV/FVM
(BA3472RFVM:Operation guaranteed up to +105℃)
Quad
BA3474F/FV
(BA3474RFV:Operation guaranteed up to +105℃)
●Features
1) Operable with a single power supply
2) Wide operating supply voltage
+3.0 [V] ~ +36.0 [V] (single supply)
±1.5 [V] ~ ±18.0 [V] (split supply)
3) Standard Op-Amp. Pin-assignments
4) Internal phase compensation
5) High slew rate: 10[V/µs]
6) Maximum frequency: 4[MHz]
7) High open loop voltage gain
8) Internal ESD protection
Human body model (HBM) ±5000 [V] (Typ.)
9) Operable low input voltage around GND level
10) Wide output voltage range
VEE+0.3[V] ~ VCC-1.0[V](Typ.)
with VCC-VEE=30[V]
●Pin Assignment
OUT1 1
-IN1 2
OUT1 1
-IN1
2
+IN1
3
VEE
4
SOP8
BA3472F
8 VCC
7 OUT2
CH1
- +
CH2
+ -
SSOP-B8
BA3472FV
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
11 VEE
5
- +
CH2
SOP14
BA3472FVM
BA3472RFVM
1/20
13 -IN4
VCC 4
OUT2 7
MSOP8
CH4
+ -
12 +IN4
-IN2 6
5 +IN2
CH1
- +
+IN1 3
+IN2
6 -IN2
14 OUT4
BA3474F
+ CH3
VQFN16
10 +IN3
9
-IN3
8
OUT3
SSOP-B14
BA3474FV
BA3474RFV
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Absolute Maximum Ratings (Ta=25[℃])
Ratings
Parameter
Supply Voltage
Symbol
BA3472 family
BA3474 family
BA3472R family
BA3474R family
Unit
VCC-VEE
+36
V
Vid
36
V
Input Common-mode
Voltage Range
Vicm
(VEE - 0.3) ~ VEE + 36
V
Operating Temperature Range
Topr
Storage Temperature Range
Tstg
-55 ~ +150
℃
Tjmax
+150
℃
Differential Input Voltage (*1)
Maximum Junction Temperature
-40 ~ +85(SOP14:+75)
-40 ~ +105
℃
Note: Absolute maximum rating item indicates the condition which must not be exceeded.
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause
deterioration of characteristics.
(*1) The voltage difference between inverting input and non-inverting input is the differential input voltage.
Then input terminal voltage is set to more than VEE.
●Electric Characteristics
○BA3472 family (Unless otherwise specified
Parameter
Input Offset Voltage (*2)
Symbol
Vio
VCC=+15[V], VEE=-15[V], Ta=25[℃])
Limits
Temperature
range
BA3472F/FV/FVM
Min.
Typ.
Max.
-
1
10
25℃
Unit
Vicm=0[V],VOUT=0[V]
mV
-
1.5
10
Condition
VCC=5[V],VEE=0[V],Vicm=0[V],
VOUT=VCC/2
Input Offset Current (*2)
Iio
25℃
-
6
75
nA
Vicm=0[V],VOUT=0[V]
Input Bias Current (*2)
Ib
25℃
-
100
500
nA
Vicm=0[V],VOUT=0[V]
Supply Current
ICC
25℃
-
4
5.5
mA
RL=∞
3.7
4
-
High Level Output Voltage
VOH
25℃
13.7
14
-
Low Level Output Voltage
Large Signal Voltage Gain
VOL
25℃
13.5
-
-
-
0.1
0.3
-
-14.7
-14.3
-
-
-13.5
VCC=5[V],RL=2[kΩ]
V
RL=10[kΩ]
RL=2[kΩ]
VCC=5[V],RL=2[kΩ]
V
RL=10[kΩ]
RL=2[kΩ]
AV
25℃
80
100
-
dB
RL≧2[kΩ],VOUT=±10 [V]
Vicm
25℃
0
-
VCC-2.0
V
VCC=5[V],VEE=0[V],
VOUT=VCC/2
Common-mode Rejection Ratio
CMRR
25℃
60
97
-
dB
Vicm=0[V],VOUT=0[V]
Power Supply Rejection Ratio
PSRR
25℃
60
97
-
dB
Vicm=0[V],VOUT=0[V]
Output Source Current (*3)
IOH
25℃
10
30
-
mA
Output Sink Current (*3)
IOL
25℃
20
30
-
mA
ft
25℃
-
4
-
MHz
Slew Rate
SR
25℃
-
10
-
V/μs
Channel Separation
CS
25℃
-
120
-
dB
Input Common-mode
Voltage Range
Maximum Frequency
(*2)
(*3)
VIN+=1[V],VIN-=0[V],VOUT=0[V]
Only 1ch is short circuit
VIN+=0[V],VIN-=1[V],VOUT=5[V],
Only 1ch is short circuit
Av=1,Vin=-10 to +10[V],
RL=2[kΩ]
-
Absolute value
Under high temperatures, please consider the power dissipation when selecting the output current.
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
2/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
○BA3472R family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃])
Limits
Parameter
Input Offset Voltage (*4)
Symbol
Vio
Temperature
range
BA3472RFVM
Unit
Min.
Typ.
Max.
-
1
10
Vicm=0[V],VOUT=0[V]
mV
25℃
-
1.5
10
Condition
VCC=5[V],VEE=0[V],Vicm=0[V],
VOUT=VCC/2
Input Offset Current (*4)
Iio
25℃
-
6
75
nA
Vicm=0[V],VOUT=0[V]
Input Bias Current (*4)
Ib
25℃
-
100
500
nA
Vicm=0[V],VOUT=0[V]
ICC
25℃
-
4
5.5
mA
RL=∞
3.7
4
-
13.7
14
-
13.5
-
-
-
0.1
0.3
-
-14.7
-14.3
-
-
-13.5
Supply Current
High Level Output Voltage
Low Level Output Voltage
Large Signal Voltage Gain
VOH
VOL
25℃
25℃
VCC=5[V],RL=2[kΩ]
V
RL=10[kΩ]
RL=2[kΩ]
VCC=5[V],RL=2[kΩ]
V
RL=10[kΩ]
RL=2[kΩ]
AV
25℃
80
100
-
dB
RL≧2[kΩ],VOUT=±10 [V]
Vicm
25℃
0
-
VCC-2.0
V
VCC=5[V],VEE=0[V],
VOUT=VCC/2
Common-mode Rejection Ratio
CMRR
25℃
60
97
-
dB
Vicm=0[V],VOUT=0[V]
Power Supply Rejection Ratio
PSRR
25℃
60
97
-
dB
Vicm=0[V],VOUT=0[V]
Output Source Current (*5)
IOH
25℃
10
30
-
mA
Output Sink Current (*5)
IOL
25℃
20
30
-
mA
ft
25℃
-
4
-
MHz
Slew Rate
SR
25℃
-
10
-
V/μs Av=1,Vin=-10 to +10[V], RL=2[kΩ]
Channel Separation
CS
25℃
-
120
-
Input Common-mode
Voltage Range
Maximum Frequency
(*4)
(*5)
VIN+=1[V],VIN-=0[V], VOUT=0[V]
Only 1ch is short circuit
VIN+=0[V],VIN-=1[V], VOUT=5[V]
Only 1ch is short circuit
dB
-
-
Absolute value
Under high temperatures, please consider the power dissipation when selecting the output current.
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
3/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
○BA3474 family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃])
Limits
Parameter
Symbol
Input Offset Voltage (*6)
Vio
Temperature
range
BA3474F/FV
Unit
Min.
Typ.
Max.
-
1
10
Vicm=0[V],VOUT=0[V]
mV
25℃
-
1.5
10
Condition
VCC=5[V],VEE=0[V], Vicm=0[V]
VOUT=VCC/2
Input Offset Current (*6)
Iio
25℃
-
6
75
nA
Vicm=0[V],VOUT=0[V]
Input Bias Current (*6)
Ib
25℃
-
100
500
nA
Vicm=0[V],VOUT=0[V]
ICC
25℃
-
8
11
mA
RL=∞
3.7
4
-
13.7
14
-
13.5
-
-
-
0.1
0.3
-
-14.7
-14.3
-
-
-13.5
Supply Current
High Level Output Voltage
Low Level Output Voltage
Large Signal Voltage Gain
VOH
VOL
25℃
25℃
VCC=5[V],RL=2[kΩ]
V
RL=10[kΩ]
RL=2[kΩ]
VCC=5[V],RL=2[kΩ]
V
RL=10[kΩ]
RL=2[kΩ]
AV
25℃
80
100
-
dB
RL≧2[kΩ], VOUT=±10 [V]
Vicm
25℃
0
-
VCC-2.0
V
VCC=5[V],VEE=0[V],
VOUT=VCC/2
Common-mode Rejection Ratio
CMRR
25℃
60
97
-
dB
Vicm=0[V],VOUT=0[V]
Power Supply Rejection Ratio
PSRR
25℃
60
97
-
dB
Vicm=0[V],VOUT=0[V]
Output Source Current (*7)
IOH
25℃
10
30
-
mA
Output Sink Current (*7)
IOL
25℃
20
30
-
mA
ft
25℃
-
4
-
MHz
Slew Rate
SR
25℃
-
10
-
V/μs Av=1,Vin=-10 to +10[V], RL=2[kΩ]
Channel Separation
CS
25℃
-
120
-
Input Common-mode
Range
Voltage
Maximum Frequency
(*6)
(*7)
VIN+=1[V],VIN-=0[V], VOUT=0[V]
Only 1ch is short circuit
VIN+=0[V],VIN-=1[V], VOUT=5[V]
Only 1ch is short circuit
dB
-
-
Absolute value
Under high temperatures, please consider the power dissipation when selecting the output current.
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
4/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
○BA3474R family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃])
Limits
Parameter
Symbol
Input Offset Voltage (*8)
Vio
Temperature
range
25℃
Unit
BA3474RFV
Min.
Typ.
Max.
-
1
10
Vicm=0[V],VOUT=0[V]
mV
-
1.5
10
Condition
VCC=5[V],VEE=0[V],Vicm=0[V],
VOUT=VCC/2
Input Offset Current (*8)
Iio
25℃
-
6
75
nA
Vicm=0[V],VOUT=0[V]
Input Bias Current (*8)
Ib
25℃
-
100
500
nA
Vicm=0[V],VOUT=0[V]
ICC
25℃
-
8
11
mA
RL=∞
3.7
4
-
13.7
14
-
13.5
-
-
-
0.1
0.3
-
-14.7
-14.3
-
-
-13.5
Supply Current
High Level Output Voltage
Low Level Output Voltage
VOH
VOL
25℃
25℃
VCC=5[V],RL=2[kΩ]
V
RL=10[kΩ]
RL=2[kΩ]
VCC=5[V],RL=2[kΩ]
V
RL=10[kΩ]
RL=2[kΩ]
AV
25℃
80
100
-
dB
RL≧2[kΩ],VOUT=±10 [V]
Vicm
25℃
0
-
VCC-2.0
V
VCC=5[V],VEE=0[V],
VOUT=VCC/2
Common-mode Rejection Ratio
CMRR
25℃
60
97
-
dB
Vicm=0[V],VOUT=0[V]
Power Supply Rejection Ratio
PSRR
25℃
60
97
-
dB
Vicm=0[V],VOUT=0[V]
Output Source Current (*9)
IOH
25℃
10
30
-
mA
Output Sink Current (*9)
IOL
25℃
20
30
-
mA
ft
25℃
-
4
-
MHz
Slew Rate
SR
25℃
-
10
-
V/μs Av=1,Vin=-10 to +10[V],RL=2[kΩ]
Channel Separation
CS
25℃
-
120
-
Large Signal Voltage Gain
Input Common-mode
Range
Voltage
Maximum Frequency
(*8)
(*9)
VIN+=1[V],VIN-=0[V],VOUT=0[V],
Only 1ch is short circuit
VIN+=0[V],VIN-=1[V],VOUT=5[V],
Only 1ch is short circuit
dB
-
-
Absolute value
Under high temperatures, please consider the power dissipation when selecting the output current.
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
5/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Reference Data BA3472 family
BA3472
family
BA3472
ファミリ
BA3472F
BA3472FV
400
BA3472FVM
200
75 85 100
50
4
3
85℃
2
1
125
Fig.1
Fig.1
Derating Curve
ディレーティングカーブ
BA3472
BA3472 family
ファミリ
5
10
25
20
85℃
15
10
4
3
5V
3V
2
1
25
30
35
40
-50
-25
0
25
50
75
100
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Fig.2
Fig.2
Supply
Current
- Supply Voltage
回路電流
- 電源電圧特性
Fig.3
Fig.3
Supply Current
- Ambient
Temperature
回路電流
- 温度特性
BA3472
BA3472family
ファミリ
25
30V
36V
20
15
5V
10
5
BA3472family
ファミリ
BA3472
1.0
3V
0.8
0.6
0.4
-40℃
25℃
85℃
0.2
5
0
20
30
40
0.0
-50
Fig.4
Fig.4
High
level
Output Voltage - Supply Voltage
High
レベル出力電圧-電源電圧特性
0.6
0.4
3V
0.2
0.0
-50
-25
0
25
50
75
(RL=10[kΩ])
25℃
-40℃
3
25℃
1
0
-1
85℃
-3
-4
0.5
1
1.5
2
2.5
-15
-10
-5
0
5
10
-40℃ 25℃ 85℃
10.0
1.0
0
0.5
1 1.5 2
2
-40℃
25℃
1
0
-1
COMMON MODE INPUT VOLTAGE[V]
Fig.10
Fig.10
入力オフセット電圧-同相入力電圧特性
Input Offset Voltage
- Common
Model Input Voltage
(VCC/VEE=15[V]/-15[V])
3
3.5 4
4.5
5
Fig.9
Fig.9
Output Source Current - (VOUT-VEE)
出力シンク電流-VOUT-VEE電圧差特性
(VCC/VEE=5[V]/0[V])
(VCC/VEE=5[V]/0[V])
BA3472
BA3472 family
ファミリ
3
2.5
VOUT-VEE電圧差[V]
VOUT-VEE [V]
Fig.8
Output Source Current - (VCC-VOUT)
出力ソース電流-VCC-VOUT電圧差特性
(VCC/VEE=5[V]/0[V])
(VCC/VEE=5[V]/0[V])
15
40
BA3472
BA3472family
ファミリ
100.0
3
85℃
-2
-3
-20
30
(RL=10[kΩ])
VCC-VOUT電圧差[V]
VCC-VOUT [V]
-5
20
0.1
0
INPUT OFFSET VOLTAGE[mV]
4
-2
10
Fig.6
Fig.6
Low level Output Voltage
Low レベル出力電圧-電源電圧特性
- (RL=10[kΩ])
Supply Voltage
0.1
BA3472ファミリ
family
BA3472
-40℃
0
SUPPLY VOLTAGE[V]
85℃
1.0
100
Fig.7
Fig.7
Low
level Output Voltage
Low
レベル出力電圧-温度特性
- Ambient
Temperature
(RL=10[kΩ])
2
100
10.0
AMBIENT TEMPERATURE [℃]
5
75
BA3472ファミリ
family
BA3472
100.0
OUTPUT SOURCE CURRENT[mA]
0.8
5V
50
(RL=10[kΩ])
BA3472ファミリ
family
BA3472
30V
25
Fig.5
Fig.5
High
level Output Voltage
High
レベル出力電圧-温度特性
- Ambient
Temperature
(RL=10[kΩ])
(RL=10[kΩ])
(RL=10[kΩ])
36V
0
AMBIENT TEMPERATURE [℃]
SUPPLY VOLTAGE[V]
1.0
-25
OUTPUT SINK CURRENT[mA]
10
BA3472
BA3472family
ファミリ
3
INPUT OFFSET VOLTAGE[mV]
0
OUTPUT VOLTAGE[V]
20
30
0
INPUT OFFSET VOLTAGE[mV]
36V
35
-40℃
25℃
30
15
40
OUTPUT VOLTAGE[V]
OUTPUT VOLTAGE[V]
35
30V
0
0
AMBIENT TEMPERATURE[℃]
40
5
OUTPUT VOLTAGE[V]
25
-40℃
25℃
0
0
0
5
BA3472
BA3472family
ファミリ
6
SUPPLY CURRENT [mA]
800
600
BA3472
BA3472 family
ファミリ
6
SUPPLY CURRENT [mA]
POWER DISSIPATION[mW]
1000
2
30V
36V
1
0
5V
-1
-2
-3
0
5
10
15
20
25
30
SUPPLY VOLTAGE[V]
35
40
Fig.11
Fig.11
Input Offset Voltage - Supply voltage
入力オフセット電圧-電源電圧特性
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE[℃]
Fig.12
Fig.12
Input Offset
Voltage - Ambient Temperature
入力オフセット電圧-温度特性
(VCC/VEE=15[V]/-15[V])
(*)The data above is ability value of sample, it is not guaranteed
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
6/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Reference Data BA3472 family
-40℃ 25℃
85℃
60
40
20
0
80
5V
60
40
36V
20
5
10
15
20
25
30
35
40
150
130
10V
-25
0
25
50
75
100
90
80
70
60
100
BA3472
family
BA3472 ファミリ
140
140
30V
120
36V
90
140
120
130
100
90
80
-40℃ 25℃
85℃
90
80
60
60
60
50
50
50
40
50
75
100
5
10
15
20
25
30
35
Fig.16
Large SignalFig.16
Voltage Gain
大振幅電圧利得-温度特性
-Ambient Temperature
Fig.17
Common ModeFig.17
Rejection Ratio
同相信号除去比-電源電圧特性
-Supply Voltage
4
2
0
10 15 20 25 30
SUPPLY VOLTAGE[V]
35
30V
8
15V
6
5V
4
3V
2
-25
0
25
50
75
AMBIENT TEMPERATURE[℃]
100
Fig.20
Fig.20
Slewスルーレート(L-H)-温度特性
Rate L-H - Ambient Temperature
( RL=10[kΩ] )
( RL=10[kΩ] )
(RL=10[kΩ])
BA3472 family
BA3472 ファミリ
8
6
OUTPUT
4
2
INPUT
0
-2
-4
-6
-8
-10
-12
BA3472 family
BA3472 ファミリ
100
INPUT/OUTPUT VOLTAGE[mV]
10
-30
30
-60
GAIN
20
-90
10
-120
0
-150
-180
1
10
100
1000
10000
FREQUENCY[kHz]
Fig.19
Fig.19
Slew Rate L-H - Supply Voltage
スルーレート(L-H)-電源電圧特性
12
0
-10
-50
(RL=10[kΩ])
100
40
10
40
75
PHASE
0
5
50
BA3472
BA3472 family
ファミリ
VOLTAGE GAIN[dB]
SLEW RATE(RISE)[V/μs]
6
25
Fig.18
Fig.18
Common Mode
Rejection Ratio
同相信号除去比-温度特性
-Ambient Temperature
36V
8
0
0
50
12
25℃
10
-25
AMBIENT TEMPERATURE[℃]
BA3472
family
BA3472 ファミリ
14
85℃
-40℃
12
-50
40
SUPPLY VOLTAGE[V]
BA3472ファミリ
family
BA3472
5V
40
0
AMBIENT TEMPERATURE[℃]
14
36V
30V
110
100
70
25
40
120
70
0
35
BA3472
family
BA3472 ファミリ
150
70
-25
15
20
25
30
SUPPLY VOLTAGE[V]
-Supply Voltage
80
-50
10
Fig.15
Fig.15
Large Signal Voltage Gain
大振幅電圧利得-電源電圧特性
CMRR[dB]
CMRR[dB]
100
5
130
110
110
85℃
110
Fig.14
Fig.14
Input入力バイアス電流-温度特性
Bias Current - Ambient Temperature
BA3472 family
BA3472 ファミリ
-40℃
25℃
120
AMBIENT TEMPERATURE[℃]
Fig.13
Fig.13
Input Bias Current - Supply voltage
入力バイアス電流-電源電圧特性
LARGE SIGNAL VOLTAGE GAIN[dB]
130
50
-50
SUPPLY VOLTAGE[V]
SLEW RATE(RISE)[V/μs]
140
0
0
INPUT/OUTPUT VOLTAGE[V]
30V
BA3472ファミリ
family
BA3472
150
LARGE SIGNAL VOLTAGE GAIN[dB]
INPUT BIAS CURRENT[nA]
INPUT BIAS CURRENT[nA]
80
BA3472
family
BA3472 ファミリ
100
PHASE[deg]
BA3472ファミリ
family
BA3472
100
Fig.21
Fig.21
Voltage
Gain - Frequency
電圧利得-周波数特性
(VCC=7.5[V]/-7.5[V], Av=40[dB],
(VCC/VEE=+15[V]/-15[V],Av=40[dB]
RL=2[kΩ],CL=100[pF],Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
80
INPUT
60
40
OUTPUT
20
0
-20
-40
-60
-80
-100
0
1
2
3
4
5
6
7
8
TIME[μs]
Fig.22
Fig.22
Input / Output Voltage - Time
大信号応答特性
(VCC/VEE=15[V]/-15[V],
Av=0[dB],
(VCC/VEE=+15[V]/-15[V],Av=0[dB]
RL=2[kΩ],CL=100[pF],Ta=25[℃])
0.0
0.5
1.0
1.5
2.0
2.5
TIME[μs]
Fig.23
Fig.23
Input小信号入出力波形
/ Output Voltage - Time
(VCC/VEE=15[V]/-15[V], Av=0[dB],
(VCC/VEE=+15[V]/-15[V],Av=0[dB]
RL=2[kΩ], CL=100[pF], Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
(*)The data above is ability value of sample, it is not guaranteed
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
7/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Reference Data BA3474 family
BA3474
BA3474 family
ファミリ
BA3474F
600
400
BA3474FV
200
10
-40℃
25℃
8
6
85℃
4
2
25
75 85
50
100
125
35
5
10
5V
2
20
25
30
35
40
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
Fig.26
Fig.26
Supply 回路電流
Current - Ambient
Temperature
- 温度特性
BA3474
BA3474family
ファミリ
BA3474
BA3474family
ファミリ
1.0
35
OUTPUT VOLTAGE[V]
25
20
85℃
15
15
40
-40℃
25℃
30
3V
4
Fig.25
Fig.25
Supply
Current
Supply Voltage
回路電流
- -電源電圧特性
BA3474
BA3474family
ファミリ
40
10
30
25
36V
30V
20
15
5V
10
3V
0.8
0.6
0.4
25℃
85℃
-40℃
0.2
5
5
0
0
10
20
30
0.0
-50
40
(RL=10[kΩ])
0.8
0.6
30V
5V
3V
0.2
0.0
-50
-25
0
25
50
75
25℃
1.0
-40℃
2
1
0
85℃
-2
-3
-4
-5
-40℃
-10
-5
0
5
10
15
COMMON MODE INPUT VOLTAGE[V]
Fig.33
Fig.33
Input Offset Voltage
入力オフセット電圧-同相入力電圧特性
- Common
Model Input Voltage
(VCC/VEE=15[V]/-15[V])
30
40
BA3474family
ファミリ
BA3474
100.0
-40℃
25℃
85℃
10.0
1.0
0.1
0
0.5
1
1.5
2
2.5
3
Fig.31
Fig.31
Output Source Current - (VCC-VOUT)
出力ソース電流-VCC-VOUT電圧差特性
(VCC/VEE=5[V]/0[V])
(VCC/VEE=5[V]/0[V])
0 0.5 1
2
25℃
-40℃
1
0
85℃
-1
-2
1.5
2
2.5 3
3.5
4 4.5
5
VOUT-VEE電圧差[V]
VOUT-VEE [V]
Fig.32
Fig.32
Output Source Current - (VOUT-VEE)
出力シンク電流-VOUT-VEE電圧差特性
(VCC/VEE=5[V]/0[V])
(VCC/VEE=5[V]/0[V])
BA3474family
ファミリ
BA3474
3
-3
-15
20
Fig.29
Fig.29
Low level Output Voltage
Low レベル出力電圧-電源電圧特性
- Supply Voltage
(RL=10[kΩ])
(RL=10[kΩ])
0.1
INPUT OFFSET VOLTAGE[mV]
4
-20
10
SUPPLY VOLTAGE[V]
85℃
BA3474
BA3474family
ファミリ
-1
0
VCC-VOUT [V]
VCC-VOUT電圧差[V]
(RL=10[kΩ])
25℃
100
10.0
100 125 150
Fig.30
Fig.30
level Output Voltage
LowLow
レベル出力電圧-温度特性
- Ambient
Temperature
(RL=10[kΩ])
3
75
BA3474family
ファミリ
BA3474
AMBIENT TEMPERATURE [℃]
5
50
100.0
OUTPUT SOURCE CURRENT[mA]
BA3474family
ファミリ
BA3474
36V
25
Fig.28
Fig.28
High
level Output Voltage
High
レベル出力電圧-温度特性
- Ambient Temperature
(RL=10[kΩ])
(RL=10[kΩ])
Fig.27
Fig.27
High level Output Voltage
High レベル出力電圧-電源電圧特性
- (RL=10[kΩ])
Supply Voltage
0.4
0
AMBIENT TEMPERATURE [℃]
SUPPLY VOLTAGE[V]
1.0
-25
OUTPUT SINK CURRENT[mA]
0
BA3474
BA3474family
ファミリ
3
INPUT OFFSET VOLTAGE[mV]
OUTPUT VOLTAGE[V]
6
SUPPLY VOLTAGE [V]
Fig.24
Fig.24
Derating Curve
ディレーティングカーブ
36V
0
0
AMBIENT TEMPERATURE[℃]
OUTPUT VOLTAGE[V]
30V
8
OUTPUT VOLTAGE[V]
0
INPUT OFFSET VOLTAGE[mV]
10
0
0
BA3474
BA3474 family
ファミリ
12
SUPPLY CURRENT [mA]
800
BA3474
family
BA3474 ファミリ
12
SUPPLY CURRENT [mA]
POWER DISSIPATION[mW]
1000
36V
30V
2
1
0
5V
-1
-2
-3
0
5
10
15
20
25
30
SUPPLY VOLTAGE[V]
35
40
Fig.34
Fig.34
入力オフセット電圧-電源電圧特性
Input
Offset Voltage - Supply voltage
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE[℃]
Fig.35
Fig.35
Input 入力オフセット電圧-温度特性
Offset Voltage -Ambient Temperature
(VCC/VEE=15[V]/-15[V])
(*)The data above is ability value of sample, it is not guaranteed
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
8/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Reference Data BA3474 family
-40℃ 25℃
85℃
60
40
20
0
80
5V
30V
60
40
36V
20
5
10
15
20
25
30
35
40
80
70
60
-25
0
25
50
75
100
5
140
130
120
110
36V
CMRR[dB]
CMRR[dB]
100
100
90
80
85℃
90
80
80
70
70
60
60
60
50
50
50
40
-50
-25
0
25
50
75
100
-40℃ 25℃
70
5
10
15
20
25
30
35
Fig.39
Fig.39
Large
Signal Voltage Gain
大振幅電圧利得-温度特性
-Ambient Temperature
Fig.40
Fig.40
Common
Mode Rejection Ratio
同相信号除去比-電源電圧特性
-Supply Voltage
SLEW RATE(RISE)[V/μs]
10
8
6
4
2
40
8
15V
6
5V
3V
2
0
5
10
15
20
25
30
35
0
40
-25
0
25
50
75
100
AMBIENT TEMPERATURE[℃]
Fig.42
Fig.42
Slew Rate L-H - Supply Voltage
スルーレート(L-H)-電源電圧特性
Fig.43
Fig.43
Slewスルーレート(L-H)-温度特性
Rate L-H - Ambient Temperature
( RL=10[kΩ] )
( RL=10[kΩ] )
(RL=10[kΩ])
(RL=10[kΩ])
BA3474family
ファミリ
BA3474
12
8
6
OUTPUT
4
2
INPUT
0
-2
-4
-6
-8
-10
BA3474family
ファミリ
BA3474
100
INPUT/OUTPUT VOLTAGE[mV]
10
100
0
-30
30
-60
GAIN
20
-90
10
-120
0
-150
-10
-50
SUPPLY VOLTAGE[V]
75
BA3474family
ファミリ
BA3474
50
30V
4
50
PHASE
10
0
25
36V
12
85℃
25℃
0
Fig.41
Fig.41
Common
Mode Rejection Ratio
同相信号除去比-温度特性
-Ambient Temperature
VOLTAGE GAIN[dB]
12
-25
AMBIENT TEMPERATURE[℃]
BA3474family
ファミリ
BA3474
14
-40℃
-50
40
SUPPLY VOLTAGE[V]
BA3474family
ファミリ
BA3474
5V
40
0
AMBIENT TEMPERATURE[℃]
14
40
36V
30V
110
100
35
BA3474family
ファミリ
BA3474
150
140
30V
15
20
25
30
SUPPLY VOLTAGE[V]
-Supply Voltage
BA3474
BA3474family
ファミリ
120
90
10
Fig.38
Fig.38
Large Signal Voltage Gain
大振幅電圧利得-電源電圧特性
130
10V
85℃
90
130
110
25℃
100
140
120
-40℃
110
Fig.37
Fig.37
Input Bias
Current - Ambient Temperature
入力バイアス電流-温度特性
BA3474
BA3474family
ファミリ
150
LARGE SIGNAL VOLTAGE GAIN[dB]
120
AMBIENT TEMPERATURE[℃]
Fig.36
Fig.36
Input Bias Current - Supply voltage
入力バイアス電流-電源電圧特性
SLEW RATE(RISE)[V/μs]
130
50
-50
SUPPLY VOLTAGE[V]
INPUT/OUTPUT VOLTAGE[V]
140
0
0
BA3474
BA3474family
ファミリ
150
LARGE SIGNAL VOLTAGE GAIN[dB]
INPUT BIAS CURRENT[nA]
INPUT BIAS CURRENT[nA]
80
BA3474family
ファミリ
BA3474
100
PHASE[deg]
BA3474
BA3474family
ファミリ
100
-180
1
10
100
1000
10000
FREQUENCY[kHz]
Fig.44
Fig.44
Voltage
Gain - Frequency
電圧利得-周波数特性
(VCC=7.5[V]/-7.5[V], Av=40[dB],
(VCC/VEE=+15[V]/-15[V],Av=40[dB]
RL=2[kΩ],CL=100[pF],Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
80
INPUT
60
40
OUTPUT
20
0
-20
-40
-60
-80
-100
-12
0
1
2
3
4
5
6
7
8
TIME[μs]
Fig.45
Fig.45
Input / 大信号応答特性
Output Voltage - Time
(VCC/VEE=15[V]/-15[V], Av=0[dB],
(VCC/VEE=+15[V]/-15[V],Av=0[dB]
RL=2[kΩ],CL=100[pF],Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
(*)The data above is ability value of sample, it is not guaranteed
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
0.0
0.5
1.0
1.5
2.0
2.5
TIME[μs]
Fig.46
Fig.46
Input / Output Voltage - Time
小信号入出力波形
(VCC/VEE=15[V]/-15[V], Av=0[dB],
(VCC/VEE=+15[V]/-15[V],Av=0[dB]
RL=2[kΩ],CL=100[pF],Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
9/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Reference Data BA3472R family
BA3472R
BA3472Rファミリ
family
400
BA3472RFVM
200
0
25
50
105
75
100
4
3
1
5
10
15
20
25
5V
3V
2
1
30
35
40
-50
-25
0
25
50
75
100
125
AMBIENT TEMPERATURE [℃]
Fig.49
Fig.49
Supply Current
- Ambient
Temperature
回路電流
- 温度特性
BA3472R ファミリ
BA3472R
family
40
BA3472R ファミリ
BA3472R
family
1.0
35
OUTPUT VOLTAGE[V]
25℃
25
20
15
105℃
10
5
30
25
30V
36V
20
15
5V
10
3V
0.8
0.6
0.4
105℃
-40℃
25℃
0.2
5
0
10
20
30
40
0.0
-50
-25
0
25
50
75
100
125
AMBIENT TEMPERATURE [℃]
Fig.50
Fig.50
High level Output Voltage
High レベル出力電圧-電源電圧特性
- (RL=10[kΩ])
Supply Voltage
Fig.51
Fig.51
High
level Output Voltage
High
レベル出力電圧-温度特性
- Ambient
Temperature
(RL=10[kΩ])
0.6
0.4
36V
3V
5V
30V
0.2
0.0
-50
-25
0
25
50
75
100
10.0
105℃
1.0
(RL=10[kΩ])
(RL=10[kΩ])
3
-40℃
2
25℃
1
0
-1
105℃
-2
-3
-4
0.5
1
1.5
2
2.5
-10
-5
0
5
10
1.0
0
0.5
1
2
-40℃
25℃
1
0
-1
15
COMMON MODE INPUT VOLTAGE[V]
Fig.56
Fig.56
Input Offset Voltage
入力オフセット電圧-同相入力電圧特性
- Common
Model Input Voltage
(VCC/VEE=15[V]/-15[V])
2.5
3
3.5
4
4.5
5
Fig.55
Fig.55
Output Source Current - (VOUT-VEE)
出力シンク電流-VOUT-VEE電圧差特性
(VCC/VEE=5[V]/0[V])
(VCC/VEE=5[V]/0[V])
BA3472R
family
BA3472R ファミリ
3
1.5 2
VOUT-VEE電圧差[V]
VOUT-VEE [V]
105℃
-2
-3
-15
-40℃ 25℃ 105℃
10.0
3
Fig.54
Fig.54
Output Source Current - (VCC-VOUT)
出力ソース電流-VCC-VOUT電圧差特性
(VCC/VEE=5[V]/0[V])
(VCC/VEE=5[V]/0[V])
-5
-20
BA3472R
family
BA3472R ファミリ
VCC-VOUT電圧差[V]
VCC-VOUT [V]
INPUT OFFSET VOLTAGE[mV]
4
40
0.1
0
BA3472Rファミリ
family
BA3472R
5
25℃
-40℃
AMBIENT TEMPERATURE [℃]
Fig.53
Fig.53
Low level Output Voltage
Low レベル出力電圧-温度特性
- Ambient Temperature
30
100.0
0.1
125
20
(RL=10[kΩ])
OUTPUT SINK CURRENT[mA]
0.8
BA3472Rファミリ
family
BA3472R
100.0
OUTPUT SOURCE CURRENT[mA]
1.0
10
Fig.52
Fig.52
Low level Output Voltage
Low レベル出力電圧-電源電圧特性
- Supply
Voltage
(RL=10[kΩ])
(RL=10[kΩ])
(RL=10[kΩ])
BA3472Rファミリ
family
BA3472R
0
SUPPLY VOLTAGE[V]
SUPPLY VOLTAGE[V]
BA3472R
family
BA3472R ファミリ
3
INPUT OFFSET VOLTAGE[mV]
OUTPUT VOLTAGE[V]
3
Fig.48
Fig.48
Supply
Current
Supply Voltage
回路電流
- -電源電圧特性
-40℃
0
OUTPUT VOLTAGE[V]
36V
4
SUPPLY VOLTAGE [V]
0
INPUT OFFSET VOLTAGE[mV]
30V
0
0
BA3472R
family
BA3472R ファミリ
30
5
0
125
Fig.47
Fig.47
Derating Curve
ディレーティングカーブ
35
105℃
2
AMBIENT TEMPERATURE[℃]
40
-40℃
25℃
OUTPUT VOLTAGE[V]
0
5
BA3472R
BA3472Rファミリ
family
6
SUPPLY CURRENT [mA]
600
BA3472R
BA3472Rファミリ
family
6
SUPPLY CURRENT [mA]
POWER DISSIPATION[mW]
800
2
30V
36V
1
0
5V
-1
-2
-3
0
5
10
15
20
25
30
SUPPLY VOLTAGE[V]
35
40
Fig.57
Fig.57
入力オフセット電圧-電源電圧特性
Input Offset Voltage - Supply voltage
-50
-25
0
25
50
75
100
125
AMBIENT TEMPERATURE[℃]
Fig.58
Fig.58
Input Offset
Voltage - Ambient Temperature
入力オフセット電圧-温度特性
(VCC/VEE=15[V]/-15[V])
(*)The data above is ability value of sample, it is not guaranteed
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
10/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Reference Data BA3472R family
-40℃
25℃
60
40
105℃
20
0
80
5V
30V
60
40
36V
20
5
10
15
20
25
30
35
-50
150
-25
0
25
50
75
100
100
80
70
60
5
140
120
130
30V
120
120
110
100
36V
100
100
90
80
-40℃ 25℃
105℃
90
80
80
70
70
70
60
60
60
50
50
50
40
0
25
50
75
100
0
5
10
Fig.62
Fig.62
Large
Signal Voltage Gain
大振幅電圧利得-温度特性
-Ambient Temperature
20
25
30
35
25
50
SLEW RATE(RISE)[V/μs]
8
6
105℃
4
2
0
35
8
BA3472R
BA3472R family
ファミリ
0
15V
5V
3V
2
8
OUTPUT
4
25
50
75
100
125
2
INPUT
-2
-4
-6
-8
-10
-60
GAIN
20
-90
10
-120
0
-150
-180
BA3472R
BA3472R family
ファミリ
100
1
10
100
1000
10000
FREQUENCY[kHz]
スルーレート(L-H)-温度特性
(RL=10[kΩ])
( RL=10[kΩ] )
INPUT/OUTPUT VOLTAGE[mV]
10
6
0
Fig.66
Slew Rate L-H - Fig.66
Ambient Temperature
BA3472R family
BA3472R ファミリ
12
-25
AMBIENT TEMPERATURE[℃]
スルーレート(L-H)-電源電圧特性
(RL=10[kΩ])
( RL=10[kΩ] )
30
-10
-50
Fig.65
Fig.65
Slew Rate L-H
- Supply Voltage
-30
40
6
4
125
Fig.64
Fig.64
Common
Mode Rejection Ratio
同相信号除去比-温度特性
-Ambient Temperature
30V
10
40
100
PHASE
0
10 15 20 25 30
SUPPLY VOLTAGE[V]
75
50
12
10
0
0
36V
25℃
5
-25
AMBIENT TEMPERATURE[℃]
BA3472R
family
BA3472R ファミリ
14
-40℃
0
-50
40
Fig.63
Fig.63
Common
Mode Rejection Ratio
同相信号除去比-電源電圧特性
-Supply Voltage
BA3472R
family
BA3472R ファミリ
12
15
SUPPLY VOLTAGE[V]
AMBIENT TEMPERATURE[℃]
14
5V
40
125
VOLTAGE GAIN[dB]
-25
40
36V
30V
110
CMRR[dB]
110
35
BA3472R
BA3472Rファミリ
family
150
130
-50
15
20
25
30
SUPPLY VOLTAGE[V]
-Supply Voltage
130
90
10
Fig.61
Fig.61
Large Signal Voltage Gain
大振幅電圧利得-電源電圧特性
140
10V
105℃
90
125
BA3472R
family
BA3472R ファミリ
140
CMRR[dB]
LARGE SIGNAL VOLTAGE GAIN[dB]
110
Fig.60
Fig.60
Input Bias
Current - Ambient Temperature
入力バイアス電流-温度特性
BA3472Rファミリ
family
BA3472R
-40℃
25℃
120
AMBIENT TEMPERATURE[℃]
Fig.59
Fig.59
Input Bias Current - Supply voltage
入力バイアス電流-電源電圧特性
SLEW RATE(RISE)[V/μs]
130
50
40
SUPPLY VOLTAGE[V]
INPUT/OUTPUT VOLTAGE[V]
140
0
0
BA3472Rファミリ
family
BA3472R
150
LARGE SIGNAL VOLTAGE GAIN[dB]
INPUT BIAS CURRENT[nA]
INPUT BIAS CURRENT[nA]
80
BA3472Rファミリ
family
BA3472R
100
PHASE[deg]
BA3472R
family
BA3472R ファミリ
100
Fig.67
Fig.67
Voltage Gain
- Frequency
電圧利得-周波数特性
(VCC=7.5[V]/-7.5[V],
Av=40[dB],
(VCC/VEE=+15[V]/-15[V],Av=40[dB]
RL=2[kΩ],CL=100[pF],Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
80
INPUT
60
40
OUTPUT
20
0
-20
-40
-60
-80
-100
-12
0
1
2
3
4
5
6
7
8
TIME[μs]
Fig.68
Fig.68
Input /大信号応答特性
Output Voltage - Time
(VCC/VEE=15[V]/-15[V], Av=0[dB],
0.0
0.5
1.0
1.5
2.0
2.5
TIME[μs]
Fig.69
Fig.69
Input小信号入出力波形
/ Output Voltage - Time
(VCC/VEE=15[V]/-15[V], Av=0[dB],
(VCC/VEE=+15[V]/-15[V],Av=0[dB]
(VCC/VEE=+15[V]/-15[V],Av=0[dB]
RL=2[kΩ],CL=100[pF],Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
(*)The data
above is ability value of sample, it is not guaranteed RL=2[kΩ],CL=100[pF],Ta=25[℃])
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
11/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Reference Data BA3474R family
BA3474R
family
BA3474R ファミリ
600
BA3474RFV
400
200
0
25
50
100
6
105℃
4
2
5
10
15
20
25
30
35
BA3474R
family
BA3474R ファミリ
36V
6
3V
4
5V
2
40
-50
0
25
50
75
100
125
Fig.72
Fig.71
Supply Current
- Ambient
Temperature
回路電流
- 温度特性
BA3474R
BA3474Rfamily
ファミリ
40
-25
AMBIENT TEMPERATURE [℃]
Fig.71
Fig.70
Supply
Current
- Supply Voltage
回路電流
- 電源電圧特性
BA3474R
BA3474R family
ファミリ
1.0
35
OUTPUT VOLTAGE[V]
-40℃
30
25℃
25
20
15
105℃
30
25
36V
30V
20
15
5V
10
5
3V
0.8
0.6
0.4
105℃
25℃
-40℃
0.2
5
0
0
0
10
20
30
40
0.0
-50
-25
0
25
50
75
100
125
AMBIENT TEMPERATURE [℃]
Fig.73
Fig.72
High level Output Voltage
High レベル出力電圧-電源電圧特性
-(RL=10[kΩ])
Supply Voltage
Fig.74
Fig.73
High
level Output Voltage
High
レベル出力電圧-温度特性
- Ambient Temperature
(RL=10[kΩ])
(RL=10[kΩ])
BA3474Rファミリ
family
BA3474R
0.6
36V
30V
5V
3V
0.2
0.0
-50
-25
0
25
50
75
100
10.0
105℃
1.0
0.5
1.5
2
2.5
-40℃
1
0
105℃
-2
-3
-4
-5
-15
-10
-5
0
5
10
0
0.5 1
15
COMMON MODE INPUT VOLTAGE[V]
Fig.78
Fig.79
入力オフセット電圧-同相入力電圧特性
Input Offset Voltage
- Common
Model Input Voltage
(VCC/VEE=15[V]/-15[V])
1.5
2
2.5 3
Fig.78
BA3474R
family
BA3474R ファミリ
BA3474R
family
BA3474R ファミリ
3
-40℃
25℃
1
0
4 4.5 5
Fig.77
Output Source Current - (VOUT-VEE)
出力シンク電流-VOUT-VEE電圧差特性
(VCC/VEE=5[V]/0[V])
(VCC/VEE=5[V]/0[V])
3
2
3.5
VOUT-VEE電圧差[V]
VOUT-VEE [V]
105℃
-1
-2
-3
-20
1.0
3
出力ソース電流-VCC-VOUT電圧差特性
(VCC/VEE=5[V]/0[V])
(VCC/VEE=5[V]/0[V])
2
-1
1
Fig.77
Fig.76
Output Source Current - (VCC-VOUT)
INPUT OFFSET VOLTAGE[mV]
25℃
-40℃ 25℃
25℃ 105℃
VCC-VOUT [V]
VCC-VOUT電圧差[V]
4
3
BA3474R
BA3474R family
ファミリ
0.1
0
BA3474Rファミリ
family
BA3474R
5
25℃
-40℃
AMBIENT TEMPERATURE [℃]
(RL=10[kΩ])
(RL=10[kΩ])
40
10.0
0.1
125
Fig.76
Fig.75
Low level Output Voltage
Low レベル出力電圧-温度特性
- Ambient Temperature
30
100.0
INPUT OFFSET VOLTAGE[mV]
0.4
20
Fig.75
Fig.74
Low level Output Voltage
Low レベル出力電圧-電源電圧特性
- Supply Voltage
(RL=10[kΩ])
(RL=10[kΩ])
OUTPUT SINK CURRENT[mA]
0.8
10
BA3474R
family
BA3474R ファミリ
100.0
OUTPUT SOURCE CURRENT[mA]
1.0
0
SUPPLY VOLTAGE[V]
SUPPLY VOLTAGE[V]
(RL=10[kΩ])
INPUT OFFSET VOLTAGE[mV]
30V
8
0
0
Fig.70
Fig.69
Derating Curve
ディレーティングカーブ
10
10
0
125
SUPPLY VOLTAGE [V]
35
OUTPUT VOLTAGE[V]
25℃
8
AMBIENT TEMPERATURE[℃]
40
OUTPUT VOLTAGE[V]
105
75
-40℃
OUTPUT VOLTAGE[V]
0
10
BA3474R ファミリ
BA3474R
family
12
SUPPLY CURRENT [mA]
800
BA3474R ファミリ
BA3474R
family
12
SUPPLY CURRENT [mA]
POWER DISSIPATION[mW]
1000
36V
30V
2
1
0
5V
-1
-2
-3
0
5
10
15
20
25
30
SUPPLY VOLTAGE[V]
35
40
Fig.79
Fig.80
Input Offset Voltage - Supply voltage
入力オフセット電圧-電源電圧特性
-50
-25
0
25
50
75
100
125
AMBIENT TEMPERATURE[℃]
Fig.81
Fig.80
Input Offset
Voltage -Ambient Temperature
入力オフセット電圧-温度特性
(VCC/VEE=15[V]/-15[V])
(*)The data above is ability value of sample, it is not guaranteed
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
12/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Reference Data BA3474R family
-40℃ 25℃
60
40
105℃
20
80
5V
30V
60
40
36V
20
0
5
10
15
20
25
30
35
Fig.82
Fig.81
Input Bias Current - Supply voltage
入力バイアス電流-電源電圧特性
-25
0
25
50
75
100
90
80
60
5
120
130
110
80
CMRR[dB]
90
80
70
-40℃ 25℃
105℃
50
40
125
40
0
5
10
AMBIENT TEMPERATURE[℃]
8
6
105℃
4
35
15V
6
5V
3V
0
10
15
20
25
30
35
40
SUPPLY VOLTAGE[V]
-25
0
25
50
80
INPUT/OUTPUT VOLTAGE[mV]
100
8
OUTPUT
2
INPUT
-2
-4
-6
-8
-10
-12
100
125
BA3474R
family
BA3474R ファミリ
50
0
-30
30
-60
GAIN
20
-90
10
-120
0
-150
-180
1
10
100
1000
10000
FREQUENCY[kHz]
Fig.90
Fig.89
Voltage
Gain - Frequency
電圧利得-周波数特性
(VCC=7.5[V]/-7.5[V], Av=40[dB],
BA3474R
BA3474R family
ファミリ
10
0
125
スルーレート(L-H)-温度特性
(RL=10[kΩ])
( RL=10[kΩ] )
12
4
100
Fig.89
Fig.88
Slew Rate L-H - Ambient Temperature
BA3474R
family
BA3474R ファミリ
6
75
AMBIENT TEMPERATURE[℃]
スルーレート(L-H)-電源電圧特性
(RL=10[kΩ])
( RL=10[kΩ] )
75
-10
-50
Fig.88
Fig.87
Slew Rate L-H - Supply Voltage
50
40
2
5
25
PHASE
8
0
0
Fig.87
Fig.86
Common Mode
Rejection Ratio
同相信号除去比-温度特性
-Ambient Temperature
30V
4
-25
AMBIENT TEMPERATURE[℃]
10
2
0
-50
40
36V
12
SLEW RATE(RISE)[V/μs]
10
30
BA3474R
family
BA3474R ファミリ
14
-40℃
25℃
25
Fig.86
Common ModeFig.85
Rejection Ratio
同相信号除去比-電源電圧特性
-Supply Voltage
BA3474Rファミリ
family
BA3474R
12
20
SUPPLY VOLTAGE[V]
Fig.85
Large Signal Fig.84
Voltage Gain
大振幅電圧利得-温度特性
-Ambient Temperature
14
15
VOLTAGE GAIN[dB]
100
5V
70
50
75
36V
80
50
50
40
90
60
25
35
100
60
0
30V
110
100
60
-25
30
BA3474R
family
BA3474R
ファミリ
120
70
-50
25
150
120
36V
20
-Supply Voltage
130
90
15
Fig.84
Fig.83
Large Signal Voltage Gain
大振幅電圧利得-電源電圧特性
140
100
10
SUPPLY VOLTAGE[V]
130
110
105℃
70
125
BA3474R
family
BA3474R ファミリ
140
30V
25℃
100
140
10V
-40℃
110
Fig.83
Fig.82
Input Bias
Current - Ambient Temperature
入力バイアス電流-温度特性
CMRR[dB]
LARGE SIGNAL VOLTAGE GAIN[dB]
120
AMBIENT TEMPERATURE[℃]
BA3474R
family
BA3474R
ファミリ
150
SLEW RATE(RISE)[V/μs]
130
50
-50
40
SUPPLY VOLTAGE[V]
INPUT/OUTPUT VOLTAGE[V]
140
0
0
BA3474R
family
BA3474R ファミリ
150
LARGE SIGNAL VOLTAGE GAIN[dB]
INPUT BIAS CURRENT[nA]
INPUT BIAS CURRENT[nA]
80
BA3474R ファミリ
BA3474R
family
100
PHASE[deg]
BA3474Rファミリ
family
BA3474R
100
(VCC/VEE=+15[V]/-15[V],Av=40[dB]
RL=2[kΩ],CL=100[pF],Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
INPUT
60
40
OUTPUT
20
0
-20
-40
-60
-80
-100
0
1
2
3
4
5
6
7
8
TIME[μs]
Fig.91
Fig.90
Input / Output
Voltage - Time
大信号応答特性
(VCC/VEE=15[V]/-15[V], Av=0[dB],
(VCC/VEE=+15[V]/-15[V],Av=0[dB]
RL=2[kΩ],CL=100[pF],Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
(*)The data above is ability value of sample, it is not guaranteed
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
0.0
0.5
1.0
1.5
2.0
2.5
TIME[μs]
Fig.92
Fig.91
Input / Output Voltage - Time
小信号入出力波形
(VCC/VEE=15[V]/-15[V], Av=0[dB],
(VCC/VEE=+15[V]/-15[V],Av=0[dB]
RL=2[kΩ],CL=100[pF],Ta=25[℃])
RL=2[kΩ],CL=100[pF],Ta=25[℃])
13/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Schematic diagram
VCC
VIN-
VOUT
VIN+
VEE
Fig.93 Schematic diagram (one channel only)
●Test circuit 1 NULL method
VCC, VEE, EK, Vicm Unit : [V]
Parameter
VF
S1
S2
S3
VCC
VEE
EK
Vicm Calculation
Input Offset Voltage
VF1
ON
ON
OFF
15
-15
0
0
1
Input Offset Current
VF2
OFF
OFF
OFF
15
-15
0
0
2
VF3
OFF
ON
VF4
ON
OFF
OFF
15
-15
0
0
3
ON
ON
ON
15
-15
+10
0
15
-15
-10
0
ON
ON
OFF
15
-15
0
-15
15
-15
0
13
ON
ON
OFF
Input Bias Current
VF5
Large Signal Voltage Gain
VF6
Common-mode Rejection Ratio
(Input Common-mode Voltage Range)
VF7
VF8
VF9
Power Supply Rejection Ratio
VF10
2
-2
0
0
18
-18
0
0
4
5
6
-Calculation-
1. Input Offset Voltage (Vio)
Vio =
| VF1 |
1 + Rf / Rs
[V]
C2
0.1[µF]
2. Input Offset Current (Iio)
Iio =
| VF2-VF1 |
Ri ×(1 + Rf / Rs)
Rf
50[kΩ]
[A]
S1
3. Input Bias Current (Ib)
Ib =
Rs
| VF4-VF3 |
2×Ri× (1 + Rf / Rs)
[A]
50[Ω] 10[kΩ]
Av = 20×Log
ΔEK×(1+Rf /Rs)
|VF5-VF6|
Rs
Vicm
[dB]
EK
RK
500[kΩ]
Ri
50[Ω] 10[kΩ]
4. Large Signal Voltage Gain (Av)
VCC
0.1[µF]
+15[V]
RK 500[kΩ]
DUT
NULL
S3
Ri
S2
C1
VEE
RL
C3
1000[pF]
-15[V]
V VF
5. Common-mode Rejection Ratio (CMRR)
CMRR = 20×Log
ΔVicm×(1+Rf /Rs)
|VF8-VF7|
Fig.94 Test circuit 1 (one channel only)
[dB]
6. Power Supply Rejection Ratio (PSRR)
PSRR = 20×Log
ΔVcc×(1+Rf /Rs)
|VF10-VF9|
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
[dB]
14/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Test circuit2 switch condition
SW
1
SW No.
Supply Current
SW
2
SW
3
SW
4
SW
5
SW
6
SW
7
SW
8
SW
9
SW
10
SW
11
SW
12
SW
13
SW
14
OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
High Level Output Voltage
OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF
Low Level Output Voltage
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF
Output Source Current
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON
Output Sink Current
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON
Slew Rate
OFF OFF OFF ON OFF OFF OFF ON
Gain Bandwidth Product
Equivalent Input Noise Voltage
ON
ON OFF OFF OFF OFF
OFF ON OFF OFF ON
ON OFF OFF ON
ON OFF OFF OFF OFF
ON OFF OFF OFF ON
ON OFF OFF OFF OFF ON OFF OFF OFF
Voltage
電圧
SW4
VH
R2
SW5
VCC
VL
A
Input Voltage Waveform
-
SW1
RS
SW2
SW3
SW7
SW8
VIN-
VIN+
時間
電圧
SW9
SW10
SW11
SW12
SW13
SW14
VH
VEE
~
time
Voltage
+
SW6
R1
入力電圧波形
ΔV
A
RL
~
CL
V
~
V
VOUT
VL
Δt
Output Voltage Waveform
出力電圧波形
Fig.95 Test circuit 2 (one channel only)
time
時間
Fig.96 Slew rate input output wave
●Test circuit 3 Channel separation
VCC
VCC
R1//R2
R1//R2
OTHER
CH
VEE
VEE
R1
VIN
R2
R1
V
VOUT2
R2
V
VOUT1
=0.5[Vrms]
CS=20 × log
100 × VOUT1
VOUT2
Fig.97 Test circuit 3
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
15/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Notes for use
1) Unused circuits
When there are unused circuits it is recommended that they are connected
as in Fig.98, setting the non-inverting input terminal to a potential within
input common-mode voltage range (Vicm).
2) Input terminal voltage
Applying GND + 36V to the input terminal is possible without causing
deterioration of the electrical characteristics or destruction, irrespective of
the supply voltage. However, this does not ensure normal circuit operation.
Please note that the circuit operates normally only when the input voltage is
within the common mode input voltage range of the electric characteristics.
3) Power supply (single / dual)
The op-amp operates when the specified voltage supplied is between VCC
and VEE. Therefore, the single supply op-amp can be used as dual supply
op-amp as well.
VCC
Please keep this
potential in Vicm
+
VEE
Fig.98 Unused circuit example
4) Power dissipation Pd
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in
chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation
(Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating
curves for more information.
5) Short-circuit between pins and erroneous mounting
Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and
the power supply, or the output and GND may result in IC destruction.
6) Operation in a strong electromagnetic field
Operation in a strong electromagnetic field may cause malfunctions.
7) Radiation
This IC is not designed to withstand radiation.
8) IC handing
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical
characteristics due to piezoelectric (piezo) effects.
9) Board inspection
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every
process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the
power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly
process as well as during transportation and storage.
10) Output capacitor
Discharge of the external output capacitor to VCC is possible via internal parasitic elements when VCC is shorted to VEE,
causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation
due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance
less than 0.1µF.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
16/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Derating curves
Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature). IC is heated
when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.
Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and thermal
resistance of package (heat dissipation capability). The maximum junction temperature is typically equal to the maximum
value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame
of the package. The parameter which indicates this heat dissipation capability(hardness of heat release)is called thermal
resistance, represented by the symbol θja[℃/W].The temperature of IC inside the package can be estimated by this thermal
resistance. Fig.99 (a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature
Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below:
・・・・・ (Ⅰ)
θja = (Tj-Ta) / Pd
[℃/W]
Derating curve in Fig.99 (b) indicates power that can be consumed by IC with reference to ambient temperature. Power that
can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal
resistance θja. Thermal resistance θja depends on chip size, power consumption, package, ambient temperature, package
condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value
measured at a specified condition. Fig.100(c) ~ (f) shows a derating curve for an example of BA3472, BA3474, BA3472R,
BA3474R.
LSIの 消 費 電 力 [W]
Power dissipation of LSI
Pd (max)
θja = ( Tj ー Ta ) / Pd [℃/W]
P2
θja2 < θja1
Ambient temperature
周囲温度 Ta [℃]
θ' ja2
P1
θ ja2
Tj ' (max) Tj (max)
θ' ja1
θ ja1
Chip surfaceチップ
temperature
表面温度 Tj [℃]
0
消費電力 Pd
P [W]
Power dissipation
[W]
25
50
75
100
125
150
周 囲 温 度 Ta [℃ ]
Ambient temperature
(b) Derating curve
(a) Thermal resistance
Fig. 99 Thermal resistance and derating curve
1000
870mW(*13)
780mW(*10)
800
BA3472F
POWER DISSIPATION Pd [mW]
690mW(*11)
BA3472FV
590mW(*12)
600
許容損失 Pd [mW]
許容損失
Pd [mW]
POWER
DISSIPATION
Pd [mW]
1000
400
BA3472FVM
200
800
25
75 85 100
50
610mW(*14)
600
400
BA3474F
200
0
0
BA3474FV
0
125
0
Ta [℃]: Ta[℃]
Ambient周囲温度
Temperature
25
75 85 100
50
125
Ambient周囲温度
Temperature
Ta [℃]: Ta[℃]
(c)BA3472 family
(d)BA3474 family
1000
1000
POWER DISSIPATION Pd [mW]
BA3472RFVM
許容損失 Pd [mW]
許容損失
Pd [mW]
POWER DISSIPATION
Pd [mW]
870mW(*13)
800
590mW(*12)
600
400
200
0
0
25
50
75
100
105
BA3474RFV
800
600
400
200
0
125
0
[℃] : Ta[℃]
Ambient周囲温度
Temperature
25
50
75
100
105
125
Ta [℃] : Ta[℃]
周囲温度
Ambient
Temperature
(e)BA3472R family
(f)BA3474R family
(*10)
(*11)
(*12)
(*13)
(*14)
Unit
6.2
5.5
4.7
7.0
4.9
[mW/℃]
When using the unit above Ta=25[℃], subtract the value above per degree[℃].
Permissible dissipation is the value when FR4 glass epoxy board 70[mm]×70[mm]×1.6[mm](cooper foil area below 3[%]) is mounted.
Fig. 100 Derating curve
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
17/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Description of Electrical Characteristics
Described below are descriptions of the relevant electrical terms
Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents.
1. Absolute maximum ratings
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of
electrical characteristics or damage to the part itself as well as peripheral components.
1.1 Power supply voltage (VCC-VEE)
Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without
causing deterioration of the electrical characteristics or destruction of the internal circuitry.
1.2 Differential input voltage (Vid)
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without
damaging the IC.
1.3 Input common-mode voltage range (Vicm)
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing
deterioration of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the
common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the
electric characteristics instead.
1.4 Power dissipation (Pd)
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25℃). For
packaged products, Pd is determined by the maximum junction temperature and the thermal resistance.
2. Electrical characteristics
2.1 Input offset voltage (Vio)
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input
voltage difference required for setting the output voltage to 0 V.
2.2 Input offset current (Iio)
Indicates the difference of input bias current between the non-inverting and inverting terminals.
2.3 Input bias current (Ib)
Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at
the non-inverting terminal and the input bias current at the inverting terminal.
2.4 Circuit current (ICC)
Indicates the current of the IC itself that flows under specified conditions and during no-load steady state.
2.5 maximum output voltage (VOM)
Indicates the voltage range that can be output by the IC under specified load condition. It is typically divided into
high-level output voltage and low-level output voltage.
2.6 Large signal voltage gain (AV)
The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting
terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.
AV = (output voltage fluctuation) / (input offset fluctuation)
2.7 Input common-mode voltage range (Vicm)
Indicates the input voltage range under which the IC operates normally.
2.8 Common-mode rejection ratio (CMRR)
Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation).
CMRR = (change in input common-mode voltage) / (input offset fluctuation)
2.9 Power supply rejection ratio (PSRR)
Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation).
SVR = (change in power supply voltage) / (input offset fluctuation)
2.10 Channel separation (CS)
Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the
output voltage of a driven channel.
2.11 Slew rate (SR)
Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied.
2.12 Maximum frequency (ft)
Indicates a frequency where the voltage gain of Op-Amp is 1.
2.13 Total harmonic distortion + Noise (THD+N)
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage
of driven channel.
2.14 Input referred noise voltage (Vn)
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in
series with input terminal.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
18/20
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
●Ordering part number
B
A
3
Part No.
4
7
2
F
V
-
Package
F
: SOP8
SOP14
FV : SSOP-B8
SSOP-B14
FVM : MSOP8
Part No.
・3472 ・3472R
・3474 ・3474R
E
2
Packaging and forming specification
E2: Embossed tape and reel
(SOP8/SOP14/SSOP-B8/SSOP-B14)
TR: Embossed tape and reel
(MSOP8)
SOP8
<Tape and Reel information>
7
6
5
+6°
4° −4°
6.2±0.3
4.4±0.2
0.3MIN
8
1 2
3
0.9±0.15
5.0±0.2
(MAX 5.35 include BURR)
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
4
0.595
1.5±0.1
+0.1
0.17 -0.05
S
S
0.11
0.1
1.27
1pin
0.42±0.1
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SOP14
<Tape and Reel information>
8.7 ± 0.2
(MAX 9.05 include BURR)
8
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
0.3MIN
4.4±0.2
6.2±0.3
14
1
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
7
1.5±0.1
0.15 ± 0.1
0.11
1.27
0.4 ± 0.1
0.1
1pin
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SSOP-B8
<Tape and Reel information>
3.0±0.2
(MAX 3.35 include BURR)
0.3MIN
4.4 ± 0.2
6.4 ± 0.3
876 5
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
1.15 ± 0.1
1 23 4
0.15±0.1
0.1
S
0.1
0.22±0.10
(0.52)
0.08
M
0.65
1pin
Reel
(Unit : mm)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
19/20
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2011.08 - Rev.B
BA3472F,BA3472FV,BA3472FVM,BA3472RFVM,
BA3474F,BA3474FV,BA3474RFV
Technical Note
SSOP-B14
<Tape and Reel information>
5.0 ± 0.2
8
1
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
0.3Min.
4.4 ± 0.2
6.4 ± 0.3
14
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
7
0.10
1.15 ± 0.1
0.15 ± 0.1
0.1
0.65
0.22 ± 0.1
Direction of feed
1pin
Reel
(Unit : mm)
∗ Order quantity needs to be multiple of the minimum quantity.
MSOP8
<Tape and Reel information>
2.8±0.1
4.0±0.2
8 7 6 5
0.6±0.2
+6°
4° −4°
0.29±0.15
2.9±0.1
(MAX 3.25 include BURR)
Tape
Embossed carrier tape
Quantity
3000pcs
Direction
of feed
TR
The direction is the 1pin of product is at the upper right when you hold
( reel on the left hand and you pull out the tape on the right hand
)
1 2 3 4
1PIN MARK
1pin
+0.05
0.145 −0.03
0.475
0.08±0.05
0.75±0.05
0.9MAX
S
+0.05
0.22 −0.04
0.08 S
Direction of feed
0.65
Reel
(Unit : mm)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
20/20
∗ Order quantity needs to be multiple of the minimum quantity.
2011.08 - Rev.B
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
R1120A