Operational Amplifiers / Comparators High Speed with High Voltage Operational Amplifiers BA3472F,BA3472FV,BA3472FVM,BA3472RFVM BA3474F,BA3474FV,BA3474RFV No.11049EBT17 ●Description General-purpose BA3472 / BA3474 family integrate two/four Independent Op-amps and phase compensation capacitors on a single chip and have some features of high-gain, low power consumption, and wide operating voltage range of +3[V] ~ +36[V](single power supply). Especially, characteristics are high slew rate (10V/μs) and high Maximum frequency (4MHz). High Speed Dual BA3472F/FV/FVM (BA3472RFVM:Operation guaranteed up to +105℃) Quad BA3474F/FV (BA3474RFV:Operation guaranteed up to +105℃) ●Features 1) Operable with a single power supply 2) Wide operating supply voltage +3.0 [V] ~ +36.0 [V] (single supply) ±1.5 [V] ~ ±18.0 [V] (split supply) 3) Standard Op-Amp. Pin-assignments 4) Internal phase compensation 5) High slew rate: 10[V/µs] 6) Maximum frequency: 4[MHz] 7) High open loop voltage gain 8) Internal ESD protection Human body model (HBM) ±5000 [V] (Typ.) 9) Operable low input voltage around GND level 10) Wide output voltage range VEE+0.3[V] ~ VCC-1.0[V](Typ.) with VCC-VEE=30[V] ●Pin Assignment OUT1 1 -IN1 2 OUT1 1 -IN1 2 +IN1 3 VEE 4 SOP8 BA3472F 8 VCC 7 OUT2 CH1 - + CH2 + - SSOP-B8 BA3472FV www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 11 VEE 5 - + CH2 SOP14 BA3472FVM BA3472RFVM 1/20 13 -IN4 VCC 4 OUT2 7 MSOP8 CH4 + - 12 +IN4 -IN2 6 5 +IN2 CH1 - + +IN1 3 +IN2 6 -IN2 14 OUT4 BA3474F + CH3 VQFN16 10 +IN3 9 -IN3 8 OUT3 SSOP-B14 BA3474FV BA3474RFV 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Absolute Maximum Ratings (Ta=25[℃]) Ratings Parameter Supply Voltage Symbol BA3472 family BA3474 family BA3472R family BA3474R family Unit VCC-VEE +36 V Vid 36 V Input Common-mode Voltage Range Vicm (VEE - 0.3) ~ VEE + 36 V Operating Temperature Range Topr Storage Temperature Range Tstg -55 ~ +150 ℃ Tjmax +150 ℃ Differential Input Voltage (*1) Maximum Junction Temperature -40 ~ +85(SOP14:+75) -40 ~ +105 ℃ Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*1) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. ●Electric Characteristics ○BA3472 family (Unless otherwise specified Parameter Input Offset Voltage (*2) Symbol Vio VCC=+15[V], VEE=-15[V], Ta=25[℃]) Limits Temperature range BA3472F/FV/FVM Min. Typ. Max. - 1 10 25℃ Unit Vicm=0[V],VOUT=0[V] mV - 1.5 10 Condition VCC=5[V],VEE=0[V],Vicm=0[V], VOUT=VCC/2 Input Offset Current (*2) Iio 25℃ - 6 75 nA Vicm=0[V],VOUT=0[V] Input Bias Current (*2) Ib 25℃ - 100 500 nA Vicm=0[V],VOUT=0[V] Supply Current ICC 25℃ - 4 5.5 mA RL=∞ 3.7 4 - High Level Output Voltage VOH 25℃ 13.7 14 - Low Level Output Voltage Large Signal Voltage Gain VOL 25℃ 13.5 - - - 0.1 0.3 - -14.7 -14.3 - - -13.5 VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] AV 25℃ 80 100 - dB RL≧2[kΩ],VOUT=±10 [V] Vicm 25℃ 0 - VCC-2.0 V VCC=5[V],VEE=0[V], VOUT=VCC/2 Common-mode Rejection Ratio CMRR 25℃ 60 97 - dB Vicm=0[V],VOUT=0[V] Power Supply Rejection Ratio PSRR 25℃ 60 97 - dB Vicm=0[V],VOUT=0[V] Output Source Current (*3) IOH 25℃ 10 30 - mA Output Sink Current (*3) IOL 25℃ 20 30 - mA ft 25℃ - 4 - MHz Slew Rate SR 25℃ - 10 - V/μs Channel Separation CS 25℃ - 120 - dB Input Common-mode Voltage Range Maximum Frequency (*2) (*3) VIN+=1[V],VIN-=0[V],VOUT=0[V] Only 1ch is short circuit VIN+=0[V],VIN-=1[V],VOUT=5[V], Only 1ch is short circuit Av=1,Vin=-10 to +10[V], RL=2[kΩ] - Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 2/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ○BA3472R family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃]) Limits Parameter Input Offset Voltage (*4) Symbol Vio Temperature range BA3472RFVM Unit Min. Typ. Max. - 1 10 Vicm=0[V],VOUT=0[V] mV 25℃ - 1.5 10 Condition VCC=5[V],VEE=0[V],Vicm=0[V], VOUT=VCC/2 Input Offset Current (*4) Iio 25℃ - 6 75 nA Vicm=0[V],VOUT=0[V] Input Bias Current (*4) Ib 25℃ - 100 500 nA Vicm=0[V],VOUT=0[V] ICC 25℃ - 4 5.5 mA RL=∞ 3.7 4 - 13.7 14 - 13.5 - - - 0.1 0.3 - -14.7 -14.3 - - -13.5 Supply Current High Level Output Voltage Low Level Output Voltage Large Signal Voltage Gain VOH VOL 25℃ 25℃ VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] AV 25℃ 80 100 - dB RL≧2[kΩ],VOUT=±10 [V] Vicm 25℃ 0 - VCC-2.0 V VCC=5[V],VEE=0[V], VOUT=VCC/2 Common-mode Rejection Ratio CMRR 25℃ 60 97 - dB Vicm=0[V],VOUT=0[V] Power Supply Rejection Ratio PSRR 25℃ 60 97 - dB Vicm=0[V],VOUT=0[V] Output Source Current (*5) IOH 25℃ 10 30 - mA Output Sink Current (*5) IOL 25℃ 20 30 - mA ft 25℃ - 4 - MHz Slew Rate SR 25℃ - 10 - V/μs Av=1,Vin=-10 to +10[V], RL=2[kΩ] Channel Separation CS 25℃ - 120 - Input Common-mode Voltage Range Maximum Frequency (*4) (*5) VIN+=1[V],VIN-=0[V], VOUT=0[V] Only 1ch is short circuit VIN+=0[V],VIN-=1[V], VOUT=5[V] Only 1ch is short circuit dB - - Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 3/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ○BA3474 family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃]) Limits Parameter Symbol Input Offset Voltage (*6) Vio Temperature range BA3474F/FV Unit Min. Typ. Max. - 1 10 Vicm=0[V],VOUT=0[V] mV 25℃ - 1.5 10 Condition VCC=5[V],VEE=0[V], Vicm=0[V] VOUT=VCC/2 Input Offset Current (*6) Iio 25℃ - 6 75 nA Vicm=0[V],VOUT=0[V] Input Bias Current (*6) Ib 25℃ - 100 500 nA Vicm=0[V],VOUT=0[V] ICC 25℃ - 8 11 mA RL=∞ 3.7 4 - 13.7 14 - 13.5 - - - 0.1 0.3 - -14.7 -14.3 - - -13.5 Supply Current High Level Output Voltage Low Level Output Voltage Large Signal Voltage Gain VOH VOL 25℃ 25℃ VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] AV 25℃ 80 100 - dB RL≧2[kΩ], VOUT=±10 [V] Vicm 25℃ 0 - VCC-2.0 V VCC=5[V],VEE=0[V], VOUT=VCC/2 Common-mode Rejection Ratio CMRR 25℃ 60 97 - dB Vicm=0[V],VOUT=0[V] Power Supply Rejection Ratio PSRR 25℃ 60 97 - dB Vicm=0[V],VOUT=0[V] Output Source Current (*7) IOH 25℃ 10 30 - mA Output Sink Current (*7) IOL 25℃ 20 30 - mA ft 25℃ - 4 - MHz Slew Rate SR 25℃ - 10 - V/μs Av=1,Vin=-10 to +10[V], RL=2[kΩ] Channel Separation CS 25℃ - 120 - Input Common-mode Range Voltage Maximum Frequency (*6) (*7) VIN+=1[V],VIN-=0[V], VOUT=0[V] Only 1ch is short circuit VIN+=0[V],VIN-=1[V], VOUT=5[V] Only 1ch is short circuit dB - - Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 4/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ○BA3474R family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃]) Limits Parameter Symbol Input Offset Voltage (*8) Vio Temperature range 25℃ Unit BA3474RFV Min. Typ. Max. - 1 10 Vicm=0[V],VOUT=0[V] mV - 1.5 10 Condition VCC=5[V],VEE=0[V],Vicm=0[V], VOUT=VCC/2 Input Offset Current (*8) Iio 25℃ - 6 75 nA Vicm=0[V],VOUT=0[V] Input Bias Current (*8) Ib 25℃ - 100 500 nA Vicm=0[V],VOUT=0[V] ICC 25℃ - 8 11 mA RL=∞ 3.7 4 - 13.7 14 - 13.5 - - - 0.1 0.3 - -14.7 -14.3 - - -13.5 Supply Current High Level Output Voltage Low Level Output Voltage VOH VOL 25℃ 25℃ VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] AV 25℃ 80 100 - dB RL≧2[kΩ],VOUT=±10 [V] Vicm 25℃ 0 - VCC-2.0 V VCC=5[V],VEE=0[V], VOUT=VCC/2 Common-mode Rejection Ratio CMRR 25℃ 60 97 - dB Vicm=0[V],VOUT=0[V] Power Supply Rejection Ratio PSRR 25℃ 60 97 - dB Vicm=0[V],VOUT=0[V] Output Source Current (*9) IOH 25℃ 10 30 - mA Output Sink Current (*9) IOL 25℃ 20 30 - mA ft 25℃ - 4 - MHz Slew Rate SR 25℃ - 10 - V/μs Av=1,Vin=-10 to +10[V],RL=2[kΩ] Channel Separation CS 25℃ - 120 - Large Signal Voltage Gain Input Common-mode Range Voltage Maximum Frequency (*8) (*9) VIN+=1[V],VIN-=0[V],VOUT=0[V], Only 1ch is short circuit VIN+=0[V],VIN-=1[V],VOUT=5[V], Only 1ch is short circuit dB - - Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 5/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Reference Data BA3472 family BA3472 family BA3472 ファミリ BA3472F BA3472FV 400 BA3472FVM 200 75 85 100 50 4 3 85℃ 2 1 125 Fig.1 Fig.1 Derating Curve ディレーティングカーブ BA3472 BA3472 family ファミリ 5 10 25 20 85℃ 15 10 4 3 5V 3V 2 1 25 30 35 40 -50 -25 0 25 50 75 100 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig.2 Fig.2 Supply Current - Supply Voltage 回路電流 - 電源電圧特性 Fig.3 Fig.3 Supply Current - Ambient Temperature 回路電流 - 温度特性 BA3472 BA3472family ファミリ 25 30V 36V 20 15 5V 10 5 BA3472family ファミリ BA3472 1.0 3V 0.8 0.6 0.4 -40℃ 25℃ 85℃ 0.2 5 0 20 30 40 0.0 -50 Fig.4 Fig.4 High level Output Voltage - Supply Voltage High レベル出力電圧-電源電圧特性 0.6 0.4 3V 0.2 0.0 -50 -25 0 25 50 75 (RL=10[kΩ]) 25℃ -40℃ 3 25℃ 1 0 -1 85℃ -3 -4 0.5 1 1.5 2 2.5 -15 -10 -5 0 5 10 -40℃ 25℃ 85℃ 10.0 1.0 0 0.5 1 1.5 2 2 -40℃ 25℃ 1 0 -1 COMMON MODE INPUT VOLTAGE[V] Fig.10 Fig.10 入力オフセット電圧-同相入力電圧特性 Input Offset Voltage - Common Model Input Voltage (VCC/VEE=15[V]/-15[V]) 3 3.5 4 4.5 5 Fig.9 Fig.9 Output Source Current - (VOUT-VEE) 出力シンク電流-VOUT-VEE電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) BA3472 BA3472 family ファミリ 3 2.5 VOUT-VEE電圧差[V] VOUT-VEE [V] Fig.8 Output Source Current - (VCC-VOUT) 出力ソース電流-VCC-VOUT電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) 15 40 BA3472 BA3472family ファミリ 100.0 3 85℃ -2 -3 -20 30 (RL=10[kΩ]) VCC-VOUT電圧差[V] VCC-VOUT [V] -5 20 0.1 0 INPUT OFFSET VOLTAGE[mV] 4 -2 10 Fig.6 Fig.6 Low level Output Voltage Low レベル出力電圧-電源電圧特性 - (RL=10[kΩ]) Supply Voltage 0.1 BA3472ファミリ family BA3472 -40℃ 0 SUPPLY VOLTAGE[V] 85℃ 1.0 100 Fig.7 Fig.7 Low level Output Voltage Low レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) 2 100 10.0 AMBIENT TEMPERATURE [℃] 5 75 BA3472ファミリ family BA3472 100.0 OUTPUT SOURCE CURRENT[mA] 0.8 5V 50 (RL=10[kΩ]) BA3472ファミリ family BA3472 30V 25 Fig.5 Fig.5 High level Output Voltage High レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) (RL=10[kΩ]) (RL=10[kΩ]) 36V 0 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE[V] 1.0 -25 OUTPUT SINK CURRENT[mA] 10 BA3472 BA3472family ファミリ 3 INPUT OFFSET VOLTAGE[mV] 0 OUTPUT VOLTAGE[V] 20 30 0 INPUT OFFSET VOLTAGE[mV] 36V 35 -40℃ 25℃ 30 15 40 OUTPUT VOLTAGE[V] OUTPUT VOLTAGE[V] 35 30V 0 0 AMBIENT TEMPERATURE[℃] 40 5 OUTPUT VOLTAGE[V] 25 -40℃ 25℃ 0 0 0 5 BA3472 BA3472family ファミリ 6 SUPPLY CURRENT [mA] 800 600 BA3472 BA3472 family ファミリ 6 SUPPLY CURRENT [mA] POWER DISSIPATION[mW] 1000 2 30V 36V 1 0 5V -1 -2 -3 0 5 10 15 20 25 30 SUPPLY VOLTAGE[V] 35 40 Fig.11 Fig.11 Input Offset Voltage - Supply voltage 入力オフセット電圧-電源電圧特性 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE[℃] Fig.12 Fig.12 Input Offset Voltage - Ambient Temperature 入力オフセット電圧-温度特性 (VCC/VEE=15[V]/-15[V]) (*)The data above is ability value of sample, it is not guaranteed www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 6/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Reference Data BA3472 family -40℃ 25℃ 85℃ 60 40 20 0 80 5V 60 40 36V 20 5 10 15 20 25 30 35 40 150 130 10V -25 0 25 50 75 100 90 80 70 60 100 BA3472 family BA3472 ファミリ 140 140 30V 120 36V 90 140 120 130 100 90 80 -40℃ 25℃ 85℃ 90 80 60 60 60 50 50 50 40 50 75 100 5 10 15 20 25 30 35 Fig.16 Large SignalFig.16 Voltage Gain 大振幅電圧利得-温度特性 -Ambient Temperature Fig.17 Common ModeFig.17 Rejection Ratio 同相信号除去比-電源電圧特性 -Supply Voltage 4 2 0 10 15 20 25 30 SUPPLY VOLTAGE[V] 35 30V 8 15V 6 5V 4 3V 2 -25 0 25 50 75 AMBIENT TEMPERATURE[℃] 100 Fig.20 Fig.20 Slewスルーレート(L-H)-温度特性 Rate L-H - Ambient Temperature ( RL=10[kΩ] ) ( RL=10[kΩ] ) (RL=10[kΩ]) BA3472 family BA3472 ファミリ 8 6 OUTPUT 4 2 INPUT 0 -2 -4 -6 -8 -10 -12 BA3472 family BA3472 ファミリ 100 INPUT/OUTPUT VOLTAGE[mV] 10 -30 30 -60 GAIN 20 -90 10 -120 0 -150 -180 1 10 100 1000 10000 FREQUENCY[kHz] Fig.19 Fig.19 Slew Rate L-H - Supply Voltage スルーレート(L-H)-電源電圧特性 12 0 -10 -50 (RL=10[kΩ]) 100 40 10 40 75 PHASE 0 5 50 BA3472 BA3472 family ファミリ VOLTAGE GAIN[dB] SLEW RATE(RISE)[V/μs] 6 25 Fig.18 Fig.18 Common Mode Rejection Ratio 同相信号除去比-温度特性 -Ambient Temperature 36V 8 0 0 50 12 25℃ 10 -25 AMBIENT TEMPERATURE[℃] BA3472 family BA3472 ファミリ 14 85℃ -40℃ 12 -50 40 SUPPLY VOLTAGE[V] BA3472ファミリ family BA3472 5V 40 0 AMBIENT TEMPERATURE[℃] 14 36V 30V 110 100 70 25 40 120 70 0 35 BA3472 family BA3472 ファミリ 150 70 -25 15 20 25 30 SUPPLY VOLTAGE[V] -Supply Voltage 80 -50 10 Fig.15 Fig.15 Large Signal Voltage Gain 大振幅電圧利得-電源電圧特性 CMRR[dB] CMRR[dB] 100 5 130 110 110 85℃ 110 Fig.14 Fig.14 Input入力バイアス電流-温度特性 Bias Current - Ambient Temperature BA3472 family BA3472 ファミリ -40℃ 25℃ 120 AMBIENT TEMPERATURE[℃] Fig.13 Fig.13 Input Bias Current - Supply voltage 入力バイアス電流-電源電圧特性 LARGE SIGNAL VOLTAGE GAIN[dB] 130 50 -50 SUPPLY VOLTAGE[V] SLEW RATE(RISE)[V/μs] 140 0 0 INPUT/OUTPUT VOLTAGE[V] 30V BA3472ファミリ family BA3472 150 LARGE SIGNAL VOLTAGE GAIN[dB] INPUT BIAS CURRENT[nA] INPUT BIAS CURRENT[nA] 80 BA3472 family BA3472 ファミリ 100 PHASE[deg] BA3472ファミリ family BA3472 100 Fig.21 Fig.21 Voltage Gain - Frequency 電圧利得-周波数特性 (VCC=7.5[V]/-7.5[V], Av=40[dB], (VCC/VEE=+15[V]/-15[V],Av=40[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) 80 INPUT 60 40 OUTPUT 20 0 -20 -40 -60 -80 -100 0 1 2 3 4 5 6 7 8 TIME[μs] Fig.22 Fig.22 Input / Output Voltage - Time 大信号応答特性 (VCC/VEE=15[V]/-15[V], Av=0[dB], (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) 0.0 0.5 1.0 1.5 2.0 2.5 TIME[μs] Fig.23 Fig.23 Input小信号入出力波形 / Output Voltage - Time (VCC/VEE=15[V]/-15[V], Av=0[dB], (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ], CL=100[pF], Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) (*)The data above is ability value of sample, it is not guaranteed www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 7/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Reference Data BA3474 family BA3474 BA3474 family ファミリ BA3474F 600 400 BA3474FV 200 10 -40℃ 25℃ 8 6 85℃ 4 2 25 75 85 50 100 125 35 5 10 5V 2 20 25 30 35 40 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] Fig.26 Fig.26 Supply 回路電流 Current - Ambient Temperature - 温度特性 BA3474 BA3474family ファミリ BA3474 BA3474family ファミリ 1.0 35 OUTPUT VOLTAGE[V] 25 20 85℃ 15 15 40 -40℃ 25℃ 30 3V 4 Fig.25 Fig.25 Supply Current Supply Voltage 回路電流 - -電源電圧特性 BA3474 BA3474family ファミリ 40 10 30 25 36V 30V 20 15 5V 10 3V 0.8 0.6 0.4 25℃ 85℃ -40℃ 0.2 5 5 0 0 10 20 30 0.0 -50 40 (RL=10[kΩ]) 0.8 0.6 30V 5V 3V 0.2 0.0 -50 -25 0 25 50 75 25℃ 1.0 -40℃ 2 1 0 85℃ -2 -3 -4 -5 -40℃ -10 -5 0 5 10 15 COMMON MODE INPUT VOLTAGE[V] Fig.33 Fig.33 Input Offset Voltage 入力オフセット電圧-同相入力電圧特性 - Common Model Input Voltage (VCC/VEE=15[V]/-15[V]) 30 40 BA3474family ファミリ BA3474 100.0 -40℃ 25℃ 85℃ 10.0 1.0 0.1 0 0.5 1 1.5 2 2.5 3 Fig.31 Fig.31 Output Source Current - (VCC-VOUT) 出力ソース電流-VCC-VOUT電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) 0 0.5 1 2 25℃ -40℃ 1 0 85℃ -1 -2 1.5 2 2.5 3 3.5 4 4.5 5 VOUT-VEE電圧差[V] VOUT-VEE [V] Fig.32 Fig.32 Output Source Current - (VOUT-VEE) 出力シンク電流-VOUT-VEE電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) BA3474family ファミリ BA3474 3 -3 -15 20 Fig.29 Fig.29 Low level Output Voltage Low レベル出力電圧-電源電圧特性 - Supply Voltage (RL=10[kΩ]) (RL=10[kΩ]) 0.1 INPUT OFFSET VOLTAGE[mV] 4 -20 10 SUPPLY VOLTAGE[V] 85℃ BA3474 BA3474family ファミリ -1 0 VCC-VOUT [V] VCC-VOUT電圧差[V] (RL=10[kΩ]) 25℃ 100 10.0 100 125 150 Fig.30 Fig.30 level Output Voltage LowLow レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) 3 75 BA3474family ファミリ BA3474 AMBIENT TEMPERATURE [℃] 5 50 100.0 OUTPUT SOURCE CURRENT[mA] BA3474family ファミリ BA3474 36V 25 Fig.28 Fig.28 High level Output Voltage High レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) (RL=10[kΩ]) Fig.27 Fig.27 High level Output Voltage High レベル出力電圧-電源電圧特性 - (RL=10[kΩ]) Supply Voltage 0.4 0 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE[V] 1.0 -25 OUTPUT SINK CURRENT[mA] 0 BA3474 BA3474family ファミリ 3 INPUT OFFSET VOLTAGE[mV] OUTPUT VOLTAGE[V] 6 SUPPLY VOLTAGE [V] Fig.24 Fig.24 Derating Curve ディレーティングカーブ 36V 0 0 AMBIENT TEMPERATURE[℃] OUTPUT VOLTAGE[V] 30V 8 OUTPUT VOLTAGE[V] 0 INPUT OFFSET VOLTAGE[mV] 10 0 0 BA3474 BA3474 family ファミリ 12 SUPPLY CURRENT [mA] 800 BA3474 family BA3474 ファミリ 12 SUPPLY CURRENT [mA] POWER DISSIPATION[mW] 1000 36V 30V 2 1 0 5V -1 -2 -3 0 5 10 15 20 25 30 SUPPLY VOLTAGE[V] 35 40 Fig.34 Fig.34 入力オフセット電圧-電源電圧特性 Input Offset Voltage - Supply voltage -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE[℃] Fig.35 Fig.35 Input 入力オフセット電圧-温度特性 Offset Voltage -Ambient Temperature (VCC/VEE=15[V]/-15[V]) (*)The data above is ability value of sample, it is not guaranteed www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 8/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Reference Data BA3474 family -40℃ 25℃ 85℃ 60 40 20 0 80 5V 30V 60 40 36V 20 5 10 15 20 25 30 35 40 80 70 60 -25 0 25 50 75 100 5 140 130 120 110 36V CMRR[dB] CMRR[dB] 100 100 90 80 85℃ 90 80 80 70 70 60 60 60 50 50 50 40 -50 -25 0 25 50 75 100 -40℃ 25℃ 70 5 10 15 20 25 30 35 Fig.39 Fig.39 Large Signal Voltage Gain 大振幅電圧利得-温度特性 -Ambient Temperature Fig.40 Fig.40 Common Mode Rejection Ratio 同相信号除去比-電源電圧特性 -Supply Voltage SLEW RATE(RISE)[V/μs] 10 8 6 4 2 40 8 15V 6 5V 3V 2 0 5 10 15 20 25 30 35 0 40 -25 0 25 50 75 100 AMBIENT TEMPERATURE[℃] Fig.42 Fig.42 Slew Rate L-H - Supply Voltage スルーレート(L-H)-電源電圧特性 Fig.43 Fig.43 Slewスルーレート(L-H)-温度特性 Rate L-H - Ambient Temperature ( RL=10[kΩ] ) ( RL=10[kΩ] ) (RL=10[kΩ]) (RL=10[kΩ]) BA3474family ファミリ BA3474 12 8 6 OUTPUT 4 2 INPUT 0 -2 -4 -6 -8 -10 BA3474family ファミリ BA3474 100 INPUT/OUTPUT VOLTAGE[mV] 10 100 0 -30 30 -60 GAIN 20 -90 10 -120 0 -150 -10 -50 SUPPLY VOLTAGE[V] 75 BA3474family ファミリ BA3474 50 30V 4 50 PHASE 10 0 25 36V 12 85℃ 25℃ 0 Fig.41 Fig.41 Common Mode Rejection Ratio 同相信号除去比-温度特性 -Ambient Temperature VOLTAGE GAIN[dB] 12 -25 AMBIENT TEMPERATURE[℃] BA3474family ファミリ BA3474 14 -40℃ -50 40 SUPPLY VOLTAGE[V] BA3474family ファミリ BA3474 5V 40 0 AMBIENT TEMPERATURE[℃] 14 40 36V 30V 110 100 35 BA3474family ファミリ BA3474 150 140 30V 15 20 25 30 SUPPLY VOLTAGE[V] -Supply Voltage BA3474 BA3474family ファミリ 120 90 10 Fig.38 Fig.38 Large Signal Voltage Gain 大振幅電圧利得-電源電圧特性 130 10V 85℃ 90 130 110 25℃ 100 140 120 -40℃ 110 Fig.37 Fig.37 Input Bias Current - Ambient Temperature 入力バイアス電流-温度特性 BA3474 BA3474family ファミリ 150 LARGE SIGNAL VOLTAGE GAIN[dB] 120 AMBIENT TEMPERATURE[℃] Fig.36 Fig.36 Input Bias Current - Supply voltage 入力バイアス電流-電源電圧特性 SLEW RATE(RISE)[V/μs] 130 50 -50 SUPPLY VOLTAGE[V] INPUT/OUTPUT VOLTAGE[V] 140 0 0 BA3474 BA3474family ファミリ 150 LARGE SIGNAL VOLTAGE GAIN[dB] INPUT BIAS CURRENT[nA] INPUT BIAS CURRENT[nA] 80 BA3474family ファミリ BA3474 100 PHASE[deg] BA3474 BA3474family ファミリ 100 -180 1 10 100 1000 10000 FREQUENCY[kHz] Fig.44 Fig.44 Voltage Gain - Frequency 電圧利得-周波数特性 (VCC=7.5[V]/-7.5[V], Av=40[dB], (VCC/VEE=+15[V]/-15[V],Av=40[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) 80 INPUT 60 40 OUTPUT 20 0 -20 -40 -60 -80 -100 -12 0 1 2 3 4 5 6 7 8 TIME[μs] Fig.45 Fig.45 Input / 大信号応答特性 Output Voltage - Time (VCC/VEE=15[V]/-15[V], Av=0[dB], (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) (*)The data above is ability value of sample, it is not guaranteed www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 0.0 0.5 1.0 1.5 2.0 2.5 TIME[μs] Fig.46 Fig.46 Input / Output Voltage - Time 小信号入出力波形 (VCC/VEE=15[V]/-15[V], Av=0[dB], (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) 9/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Reference Data BA3472R family BA3472R BA3472Rファミリ family 400 BA3472RFVM 200 0 25 50 105 75 100 4 3 1 5 10 15 20 25 5V 3V 2 1 30 35 40 -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE [℃] Fig.49 Fig.49 Supply Current - Ambient Temperature 回路電流 - 温度特性 BA3472R ファミリ BA3472R family 40 BA3472R ファミリ BA3472R family 1.0 35 OUTPUT VOLTAGE[V] 25℃ 25 20 15 105℃ 10 5 30 25 30V 36V 20 15 5V 10 3V 0.8 0.6 0.4 105℃ -40℃ 25℃ 0.2 5 0 10 20 30 40 0.0 -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE [℃] Fig.50 Fig.50 High level Output Voltage High レベル出力電圧-電源電圧特性 - (RL=10[kΩ]) Supply Voltage Fig.51 Fig.51 High level Output Voltage High レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) 0.6 0.4 36V 3V 5V 30V 0.2 0.0 -50 -25 0 25 50 75 100 10.0 105℃ 1.0 (RL=10[kΩ]) (RL=10[kΩ]) 3 -40℃ 2 25℃ 1 0 -1 105℃ -2 -3 -4 0.5 1 1.5 2 2.5 -10 -5 0 5 10 1.0 0 0.5 1 2 -40℃ 25℃ 1 0 -1 15 COMMON MODE INPUT VOLTAGE[V] Fig.56 Fig.56 Input Offset Voltage 入力オフセット電圧-同相入力電圧特性 - Common Model Input Voltage (VCC/VEE=15[V]/-15[V]) 2.5 3 3.5 4 4.5 5 Fig.55 Fig.55 Output Source Current - (VOUT-VEE) 出力シンク電流-VOUT-VEE電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) BA3472R family BA3472R ファミリ 3 1.5 2 VOUT-VEE電圧差[V] VOUT-VEE [V] 105℃ -2 -3 -15 -40℃ 25℃ 105℃ 10.0 3 Fig.54 Fig.54 Output Source Current - (VCC-VOUT) 出力ソース電流-VCC-VOUT電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) -5 -20 BA3472R family BA3472R ファミリ VCC-VOUT電圧差[V] VCC-VOUT [V] INPUT OFFSET VOLTAGE[mV] 4 40 0.1 0 BA3472Rファミリ family BA3472R 5 25℃ -40℃ AMBIENT TEMPERATURE [℃] Fig.53 Fig.53 Low level Output Voltage Low レベル出力電圧-温度特性 - Ambient Temperature 30 100.0 0.1 125 20 (RL=10[kΩ]) OUTPUT SINK CURRENT[mA] 0.8 BA3472Rファミリ family BA3472R 100.0 OUTPUT SOURCE CURRENT[mA] 1.0 10 Fig.52 Fig.52 Low level Output Voltage Low レベル出力電圧-電源電圧特性 - Supply Voltage (RL=10[kΩ]) (RL=10[kΩ]) (RL=10[kΩ]) BA3472Rファミリ family BA3472R 0 SUPPLY VOLTAGE[V] SUPPLY VOLTAGE[V] BA3472R family BA3472R ファミリ 3 INPUT OFFSET VOLTAGE[mV] OUTPUT VOLTAGE[V] 3 Fig.48 Fig.48 Supply Current Supply Voltage 回路電流 - -電源電圧特性 -40℃ 0 OUTPUT VOLTAGE[V] 36V 4 SUPPLY VOLTAGE [V] 0 INPUT OFFSET VOLTAGE[mV] 30V 0 0 BA3472R family BA3472R ファミリ 30 5 0 125 Fig.47 Fig.47 Derating Curve ディレーティングカーブ 35 105℃ 2 AMBIENT TEMPERATURE[℃] 40 -40℃ 25℃ OUTPUT VOLTAGE[V] 0 5 BA3472R BA3472Rファミリ family 6 SUPPLY CURRENT [mA] 600 BA3472R BA3472Rファミリ family 6 SUPPLY CURRENT [mA] POWER DISSIPATION[mW] 800 2 30V 36V 1 0 5V -1 -2 -3 0 5 10 15 20 25 30 SUPPLY VOLTAGE[V] 35 40 Fig.57 Fig.57 入力オフセット電圧-電源電圧特性 Input Offset Voltage - Supply voltage -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE[℃] Fig.58 Fig.58 Input Offset Voltage - Ambient Temperature 入力オフセット電圧-温度特性 (VCC/VEE=15[V]/-15[V]) (*)The data above is ability value of sample, it is not guaranteed www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 10/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Reference Data BA3472R family -40℃ 25℃ 60 40 105℃ 20 0 80 5V 30V 60 40 36V 20 5 10 15 20 25 30 35 -50 150 -25 0 25 50 75 100 100 80 70 60 5 140 120 130 30V 120 120 110 100 36V 100 100 90 80 -40℃ 25℃ 105℃ 90 80 80 70 70 70 60 60 60 50 50 50 40 0 25 50 75 100 0 5 10 Fig.62 Fig.62 Large Signal Voltage Gain 大振幅電圧利得-温度特性 -Ambient Temperature 20 25 30 35 25 50 SLEW RATE(RISE)[V/μs] 8 6 105℃ 4 2 0 35 8 BA3472R BA3472R family ファミリ 0 15V 5V 3V 2 8 OUTPUT 4 25 50 75 100 125 2 INPUT -2 -4 -6 -8 -10 -60 GAIN 20 -90 10 -120 0 -150 -180 BA3472R BA3472R family ファミリ 100 1 10 100 1000 10000 FREQUENCY[kHz] スルーレート(L-H)-温度特性 (RL=10[kΩ]) ( RL=10[kΩ] ) INPUT/OUTPUT VOLTAGE[mV] 10 6 0 Fig.66 Slew Rate L-H - Fig.66 Ambient Temperature BA3472R family BA3472R ファミリ 12 -25 AMBIENT TEMPERATURE[℃] スルーレート(L-H)-電源電圧特性 (RL=10[kΩ]) ( RL=10[kΩ] ) 30 -10 -50 Fig.65 Fig.65 Slew Rate L-H - Supply Voltage -30 40 6 4 125 Fig.64 Fig.64 Common Mode Rejection Ratio 同相信号除去比-温度特性 -Ambient Temperature 30V 10 40 100 PHASE 0 10 15 20 25 30 SUPPLY VOLTAGE[V] 75 50 12 10 0 0 36V 25℃ 5 -25 AMBIENT TEMPERATURE[℃] BA3472R family BA3472R ファミリ 14 -40℃ 0 -50 40 Fig.63 Fig.63 Common Mode Rejection Ratio 同相信号除去比-電源電圧特性 -Supply Voltage BA3472R family BA3472R ファミリ 12 15 SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] 14 5V 40 125 VOLTAGE GAIN[dB] -25 40 36V 30V 110 CMRR[dB] 110 35 BA3472R BA3472Rファミリ family 150 130 -50 15 20 25 30 SUPPLY VOLTAGE[V] -Supply Voltage 130 90 10 Fig.61 Fig.61 Large Signal Voltage Gain 大振幅電圧利得-電源電圧特性 140 10V 105℃ 90 125 BA3472R family BA3472R ファミリ 140 CMRR[dB] LARGE SIGNAL VOLTAGE GAIN[dB] 110 Fig.60 Fig.60 Input Bias Current - Ambient Temperature 入力バイアス電流-温度特性 BA3472Rファミリ family BA3472R -40℃ 25℃ 120 AMBIENT TEMPERATURE[℃] Fig.59 Fig.59 Input Bias Current - Supply voltage 入力バイアス電流-電源電圧特性 SLEW RATE(RISE)[V/μs] 130 50 40 SUPPLY VOLTAGE[V] INPUT/OUTPUT VOLTAGE[V] 140 0 0 BA3472Rファミリ family BA3472R 150 LARGE SIGNAL VOLTAGE GAIN[dB] INPUT BIAS CURRENT[nA] INPUT BIAS CURRENT[nA] 80 BA3472Rファミリ family BA3472R 100 PHASE[deg] BA3472R family BA3472R ファミリ 100 Fig.67 Fig.67 Voltage Gain - Frequency 電圧利得-周波数特性 (VCC=7.5[V]/-7.5[V], Av=40[dB], (VCC/VEE=+15[V]/-15[V],Av=40[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) 80 INPUT 60 40 OUTPUT 20 0 -20 -40 -60 -80 -100 -12 0 1 2 3 4 5 6 7 8 TIME[μs] Fig.68 Fig.68 Input /大信号応答特性 Output Voltage - Time (VCC/VEE=15[V]/-15[V], Av=0[dB], 0.0 0.5 1.0 1.5 2.0 2.5 TIME[μs] Fig.69 Fig.69 Input小信号入出力波形 / Output Voltage - Time (VCC/VEE=15[V]/-15[V], Av=0[dB], (VCC/VEE=+15[V]/-15[V],Av=0[dB] (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) (*)The data above is ability value of sample, it is not guaranteed RL=2[kΩ],CL=100[pF],Ta=25[℃]) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 11/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Reference Data BA3474R family BA3474R family BA3474R ファミリ 600 BA3474RFV 400 200 0 25 50 100 6 105℃ 4 2 5 10 15 20 25 30 35 BA3474R family BA3474R ファミリ 36V 6 3V 4 5V 2 40 -50 0 25 50 75 100 125 Fig.72 Fig.71 Supply Current - Ambient Temperature 回路電流 - 温度特性 BA3474R BA3474Rfamily ファミリ 40 -25 AMBIENT TEMPERATURE [℃] Fig.71 Fig.70 Supply Current - Supply Voltage 回路電流 - 電源電圧特性 BA3474R BA3474R family ファミリ 1.0 35 OUTPUT VOLTAGE[V] -40℃ 30 25℃ 25 20 15 105℃ 30 25 36V 30V 20 15 5V 10 5 3V 0.8 0.6 0.4 105℃ 25℃ -40℃ 0.2 5 0 0 0 10 20 30 40 0.0 -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE [℃] Fig.73 Fig.72 High level Output Voltage High レベル出力電圧-電源電圧特性 -(RL=10[kΩ]) Supply Voltage Fig.74 Fig.73 High level Output Voltage High レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) (RL=10[kΩ]) BA3474Rファミリ family BA3474R 0.6 36V 30V 5V 3V 0.2 0.0 -50 -25 0 25 50 75 100 10.0 105℃ 1.0 0.5 1.5 2 2.5 -40℃ 1 0 105℃ -2 -3 -4 -5 -15 -10 -5 0 5 10 0 0.5 1 15 COMMON MODE INPUT VOLTAGE[V] Fig.78 Fig.79 入力オフセット電圧-同相入力電圧特性 Input Offset Voltage - Common Model Input Voltage (VCC/VEE=15[V]/-15[V]) 1.5 2 2.5 3 Fig.78 BA3474R family BA3474R ファミリ BA3474R family BA3474R ファミリ 3 -40℃ 25℃ 1 0 4 4.5 5 Fig.77 Output Source Current - (VOUT-VEE) 出力シンク電流-VOUT-VEE電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) 3 2 3.5 VOUT-VEE電圧差[V] VOUT-VEE [V] 105℃ -1 -2 -3 -20 1.0 3 出力ソース電流-VCC-VOUT電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) 2 -1 1 Fig.77 Fig.76 Output Source Current - (VCC-VOUT) INPUT OFFSET VOLTAGE[mV] 25℃ -40℃ 25℃ 25℃ 105℃ VCC-VOUT [V] VCC-VOUT電圧差[V] 4 3 BA3474R BA3474R family ファミリ 0.1 0 BA3474Rファミリ family BA3474R 5 25℃ -40℃ AMBIENT TEMPERATURE [℃] (RL=10[kΩ]) (RL=10[kΩ]) 40 10.0 0.1 125 Fig.76 Fig.75 Low level Output Voltage Low レベル出力電圧-温度特性 - Ambient Temperature 30 100.0 INPUT OFFSET VOLTAGE[mV] 0.4 20 Fig.75 Fig.74 Low level Output Voltage Low レベル出力電圧-電源電圧特性 - Supply Voltage (RL=10[kΩ]) (RL=10[kΩ]) OUTPUT SINK CURRENT[mA] 0.8 10 BA3474R family BA3474R ファミリ 100.0 OUTPUT SOURCE CURRENT[mA] 1.0 0 SUPPLY VOLTAGE[V] SUPPLY VOLTAGE[V] (RL=10[kΩ]) INPUT OFFSET VOLTAGE[mV] 30V 8 0 0 Fig.70 Fig.69 Derating Curve ディレーティングカーブ 10 10 0 125 SUPPLY VOLTAGE [V] 35 OUTPUT VOLTAGE[V] 25℃ 8 AMBIENT TEMPERATURE[℃] 40 OUTPUT VOLTAGE[V] 105 75 -40℃ OUTPUT VOLTAGE[V] 0 10 BA3474R ファミリ BA3474R family 12 SUPPLY CURRENT [mA] 800 BA3474R ファミリ BA3474R family 12 SUPPLY CURRENT [mA] POWER DISSIPATION[mW] 1000 36V 30V 2 1 0 5V -1 -2 -3 0 5 10 15 20 25 30 SUPPLY VOLTAGE[V] 35 40 Fig.79 Fig.80 Input Offset Voltage - Supply voltage 入力オフセット電圧-電源電圧特性 -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE[℃] Fig.81 Fig.80 Input Offset Voltage -Ambient Temperature 入力オフセット電圧-温度特性 (VCC/VEE=15[V]/-15[V]) (*)The data above is ability value of sample, it is not guaranteed www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 12/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Reference Data BA3474R family -40℃ 25℃ 60 40 105℃ 20 80 5V 30V 60 40 36V 20 0 5 10 15 20 25 30 35 Fig.82 Fig.81 Input Bias Current - Supply voltage 入力バイアス電流-電源電圧特性 -25 0 25 50 75 100 90 80 60 5 120 130 110 80 CMRR[dB] 90 80 70 -40℃ 25℃ 105℃ 50 40 125 40 0 5 10 AMBIENT TEMPERATURE[℃] 8 6 105℃ 4 35 15V 6 5V 3V 0 10 15 20 25 30 35 40 SUPPLY VOLTAGE[V] -25 0 25 50 80 INPUT/OUTPUT VOLTAGE[mV] 100 8 OUTPUT 2 INPUT -2 -4 -6 -8 -10 -12 100 125 BA3474R family BA3474R ファミリ 50 0 -30 30 -60 GAIN 20 -90 10 -120 0 -150 -180 1 10 100 1000 10000 FREQUENCY[kHz] Fig.90 Fig.89 Voltage Gain - Frequency 電圧利得-周波数特性 (VCC=7.5[V]/-7.5[V], Av=40[dB], BA3474R BA3474R family ファミリ 10 0 125 スルーレート(L-H)-温度特性 (RL=10[kΩ]) ( RL=10[kΩ] ) 12 4 100 Fig.89 Fig.88 Slew Rate L-H - Ambient Temperature BA3474R family BA3474R ファミリ 6 75 AMBIENT TEMPERATURE[℃] スルーレート(L-H)-電源電圧特性 (RL=10[kΩ]) ( RL=10[kΩ] ) 75 -10 -50 Fig.88 Fig.87 Slew Rate L-H - Supply Voltage 50 40 2 5 25 PHASE 8 0 0 Fig.87 Fig.86 Common Mode Rejection Ratio 同相信号除去比-温度特性 -Ambient Temperature 30V 4 -25 AMBIENT TEMPERATURE[℃] 10 2 0 -50 40 36V 12 SLEW RATE(RISE)[V/μs] 10 30 BA3474R family BA3474R ファミリ 14 -40℃ 25℃ 25 Fig.86 Common ModeFig.85 Rejection Ratio 同相信号除去比-電源電圧特性 -Supply Voltage BA3474Rファミリ family BA3474R 12 20 SUPPLY VOLTAGE[V] Fig.85 Large Signal Fig.84 Voltage Gain 大振幅電圧利得-温度特性 -Ambient Temperature 14 15 VOLTAGE GAIN[dB] 100 5V 70 50 75 36V 80 50 50 40 90 60 25 35 100 60 0 30V 110 100 60 -25 30 BA3474R family BA3474R ファミリ 120 70 -50 25 150 120 36V 20 -Supply Voltage 130 90 15 Fig.84 Fig.83 Large Signal Voltage Gain 大振幅電圧利得-電源電圧特性 140 100 10 SUPPLY VOLTAGE[V] 130 110 105℃ 70 125 BA3474R family BA3474R ファミリ 140 30V 25℃ 100 140 10V -40℃ 110 Fig.83 Fig.82 Input Bias Current - Ambient Temperature 入力バイアス電流-温度特性 CMRR[dB] LARGE SIGNAL VOLTAGE GAIN[dB] 120 AMBIENT TEMPERATURE[℃] BA3474R family BA3474R ファミリ 150 SLEW RATE(RISE)[V/μs] 130 50 -50 40 SUPPLY VOLTAGE[V] INPUT/OUTPUT VOLTAGE[V] 140 0 0 BA3474R family BA3474R ファミリ 150 LARGE SIGNAL VOLTAGE GAIN[dB] INPUT BIAS CURRENT[nA] INPUT BIAS CURRENT[nA] 80 BA3474R ファミリ BA3474R family 100 PHASE[deg] BA3474Rファミリ family BA3474R 100 (VCC/VEE=+15[V]/-15[V],Av=40[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) INPUT 60 40 OUTPUT 20 0 -20 -40 -60 -80 -100 0 1 2 3 4 5 6 7 8 TIME[μs] Fig.91 Fig.90 Input / Output Voltage - Time 大信号応答特性 (VCC/VEE=15[V]/-15[V], Av=0[dB], (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) (*)The data above is ability value of sample, it is not guaranteed www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 0.0 0.5 1.0 1.5 2.0 2.5 TIME[μs] Fig.92 Fig.91 Input / Output Voltage - Time 小信号入出力波形 (VCC/VEE=15[V]/-15[V], Av=0[dB], (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) 13/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Schematic diagram VCC VIN- VOUT VIN+ VEE Fig.93 Schematic diagram (one channel only) ●Test circuit 1 NULL method VCC, VEE, EK, Vicm Unit : [V] Parameter VF S1 S2 S3 VCC VEE EK Vicm Calculation Input Offset Voltage VF1 ON ON OFF 15 -15 0 0 1 Input Offset Current VF2 OFF OFF OFF 15 -15 0 0 2 VF3 OFF ON VF4 ON OFF OFF 15 -15 0 0 3 ON ON ON 15 -15 +10 0 15 -15 -10 0 ON ON OFF 15 -15 0 -15 15 -15 0 13 ON ON OFF Input Bias Current VF5 Large Signal Voltage Gain VF6 Common-mode Rejection Ratio (Input Common-mode Voltage Range) VF7 VF8 VF9 Power Supply Rejection Ratio VF10 2 -2 0 0 18 -18 0 0 4 5 6 -Calculation- 1. Input Offset Voltage (Vio) Vio = | VF1 | 1 + Rf / Rs [V] C2 0.1[µF] 2. Input Offset Current (Iio) Iio = | VF2-VF1 | Ri ×(1 + Rf / Rs) Rf 50[kΩ] [A] S1 3. Input Bias Current (Ib) Ib = Rs | VF4-VF3 | 2×Ri× (1 + Rf / Rs) [A] 50[Ω] 10[kΩ] Av = 20×Log ΔEK×(1+Rf /Rs) |VF5-VF6| Rs Vicm [dB] EK RK 500[kΩ] Ri 50[Ω] 10[kΩ] 4. Large Signal Voltage Gain (Av) VCC 0.1[µF] +15[V] RK 500[kΩ] DUT NULL S3 Ri S2 C1 VEE RL C3 1000[pF] -15[V] V VF 5. Common-mode Rejection Ratio (CMRR) CMRR = 20×Log ΔVicm×(1+Rf /Rs) |VF8-VF7| Fig.94 Test circuit 1 (one channel only) [dB] 6. Power Supply Rejection Ratio (PSRR) PSRR = 20×Log ΔVcc×(1+Rf /Rs) |VF10-VF9| www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. [dB] 14/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Test circuit2 switch condition SW 1 SW No. Supply Current SW 2 SW 3 SW 4 SW 5 SW 6 SW 7 SW 8 SW 9 SW 10 SW 11 SW 12 SW 13 SW 14 OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF High Level Output Voltage OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF Low Level Output Voltage OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF Output Source Current OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON Output Sink Current OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON Slew Rate OFF OFF OFF ON OFF OFF OFF ON Gain Bandwidth Product Equivalent Input Noise Voltage ON ON OFF OFF OFF OFF OFF ON OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF Voltage 電圧 SW4 VH R2 SW5 VCC VL A Input Voltage Waveform - SW1 RS SW2 SW3 SW7 SW8 VIN- VIN+ 時間 電圧 SW9 SW10 SW11 SW12 SW13 SW14 VH VEE ~ time Voltage + SW6 R1 入力電圧波形 ΔV A RL ~ CL V ~ V VOUT VL Δt Output Voltage Waveform 出力電圧波形 Fig.95 Test circuit 2 (one channel only) time 時間 Fig.96 Slew rate input output wave ●Test circuit 3 Channel separation VCC VCC R1//R2 R1//R2 OTHER CH VEE VEE R1 VIN R2 R1 V VOUT2 R2 V VOUT1 =0.5[Vrms] CS=20 × log 100 × VOUT1 VOUT2 Fig.97 Test circuit 3 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 15/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Notes for use 1) Unused circuits When there are unused circuits it is recommended that they are connected as in Fig.98, setting the non-inverting input terminal to a potential within input common-mode voltage range (Vicm). 2) Input terminal voltage Applying GND + 36V to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics. 3) Power supply (single / dual) The op-amp operates when the specified voltage supplied is between VCC and VEE. Therefore, the single supply op-amp can be used as dual supply op-amp as well. VCC Please keep this potential in Vicm + VEE Fig.98 Unused circuit example 4) Power dissipation Pd Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information. 5) Short-circuit between pins and erroneous mounting Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and the power supply, or the output and GND may result in IC destruction. 6) Operation in a strong electromagnetic field Operation in a strong electromagnetic field may cause malfunctions. 7) Radiation This IC is not designed to withstand radiation. 8) IC handing Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to piezoelectric (piezo) effects. 9) Board inspection Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage. 10) Output capacitor Discharge of the external output capacitor to VCC is possible via internal parasitic elements when VCC is shorted to VEE, causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance less than 0.1µF. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 16/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Derating curves Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature). IC is heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and thermal resistance of package (heat dissipation capability). The maximum junction temperature is typically equal to the maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package. The parameter which indicates this heat dissipation capability(hardness of heat release)is called thermal resistance, represented by the symbol θja[℃/W].The temperature of IC inside the package can be estimated by this thermal resistance. Fig.99 (a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below: ・・・・・ (Ⅰ) θja = (Tj-Ta) / Pd [℃/W] Derating curve in Fig.99 (b) indicates power that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal resistance θja. Thermal resistance θja depends on chip size, power consumption, package, ambient temperature, package condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Fig.100(c) ~ (f) shows a derating curve for an example of BA3472, BA3474, BA3472R, BA3474R. LSIの 消 費 電 力 [W] Power dissipation of LSI Pd (max) θja = ( Tj ー Ta ) / Pd [℃/W] P2 θja2 < θja1 Ambient temperature 周囲温度 Ta [℃] θ' ja2 P1 θ ja2 Tj ' (max) Tj (max) θ' ja1 θ ja1 Chip surfaceチップ temperature 表面温度 Tj [℃] 0 消費電力 Pd P [W] Power dissipation [W] 25 50 75 100 125 150 周 囲 温 度 Ta [℃ ] Ambient temperature (b) Derating curve (a) Thermal resistance Fig. 99 Thermal resistance and derating curve 1000 870mW(*13) 780mW(*10) 800 BA3472F POWER DISSIPATION Pd [mW] 690mW(*11) BA3472FV 590mW(*12) 600 許容損失 Pd [mW] 許容損失 Pd [mW] POWER DISSIPATION Pd [mW] 1000 400 BA3472FVM 200 800 25 75 85 100 50 610mW(*14) 600 400 BA3474F 200 0 0 BA3474FV 0 125 0 Ta [℃]: Ta[℃] Ambient周囲温度 Temperature 25 75 85 100 50 125 Ambient周囲温度 Temperature Ta [℃]: Ta[℃] (c)BA3472 family (d)BA3474 family 1000 1000 POWER DISSIPATION Pd [mW] BA3472RFVM 許容損失 Pd [mW] 許容損失 Pd [mW] POWER DISSIPATION Pd [mW] 870mW(*13) 800 590mW(*12) 600 400 200 0 0 25 50 75 100 105 BA3474RFV 800 600 400 200 0 125 0 [℃] : Ta[℃] Ambient周囲温度 Temperature 25 50 75 100 105 125 Ta [℃] : Ta[℃] 周囲温度 Ambient Temperature (e)BA3472R family (f)BA3474R family (*10) (*11) (*12) (*13) (*14) Unit 6.2 5.5 4.7 7.0 4.9 [mW/℃] When using the unit above Ta=25[℃], subtract the value above per degree[℃]. Permissible dissipation is the value when FR4 glass epoxy board 70[mm]×70[mm]×1.6[mm](cooper foil area below 3[%]) is mounted. Fig. 100 Derating curve www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 17/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Description of Electrical Characteristics Described below are descriptions of the relevant electrical terms Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents. 1. Absolute maximum ratings The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components. 1.1 Power supply voltage (VCC-VEE) Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry. 1.2 Differential input voltage (Vid) Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC. 1.3 Input common-mode voltage range (Vicm) Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead. 1.4 Power dissipation (Pd) Indicates the power that can be consumed by a particular mounted board at ambient temperature (25℃). For packaged products, Pd is determined by the maximum junction temperature and the thermal resistance. 2. Electrical characteristics 2.1 Input offset voltage (Vio) Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0 V. 2.2 Input offset current (Iio) Indicates the difference of input bias current between the non-inverting and inverting terminals. 2.3 Input bias current (Ib) Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal. 2.4 Circuit current (ICC) Indicates the current of the IC itself that flows under specified conditions and during no-load steady state. 2.5 maximum output voltage (VOM) Indicates the voltage range that can be output by the IC under specified load condition. It is typically divided into high-level output voltage and low-level output voltage. 2.6 Large signal voltage gain (AV) The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage. AV = (output voltage fluctuation) / (input offset fluctuation) 2.7 Input common-mode voltage range (Vicm) Indicates the input voltage range under which the IC operates normally. 2.8 Common-mode rejection ratio (CMRR) Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change in input common-mode voltage) / (input offset fluctuation) 2.9 Power supply rejection ratio (PSRR) Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation). SVR = (change in power supply voltage) / (input offset fluctuation) 2.10 Channel separation (CS) Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel. 2.11 Slew rate (SR) Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied. 2.12 Maximum frequency (ft) Indicates a frequency where the voltage gain of Op-Amp is 1. 2.13 Total harmonic distortion + Noise (THD+N) Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage of driven channel. 2.14 Input referred noise voltage (Vn) Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in series with input terminal. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 18/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Ordering part number B A 3 Part No. 4 7 2 F V - Package F : SOP8 SOP14 FV : SSOP-B8 SSOP-B14 FVM : MSOP8 Part No. ・3472 ・3472R ・3474 ・3474R E 2 Packaging and forming specification E2: Embossed tape and reel (SOP8/SOP14/SSOP-B8/SSOP-B14) TR: Embossed tape and reel (MSOP8) SOP8 <Tape and Reel information> 7 6 5 +6° 4° −4° 6.2±0.3 4.4±0.2 0.3MIN 8 1 2 3 0.9±0.15 5.0±0.2 (MAX 5.35 include BURR) Tape Embossed carrier tape Quantity 2500pcs Direction of feed E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 4 0.595 1.5±0.1 +0.1 0.17 -0.05 S S 0.11 0.1 1.27 1pin 0.42±0.1 Reel (Unit : mm) Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. SOP14 <Tape and Reel information> 8.7 ± 0.2 (MAX 9.05 include BURR) 8 Tape Embossed carrier tape Quantity 2500pcs Direction of feed 0.3MIN 4.4±0.2 6.2±0.3 14 1 E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 7 1.5±0.1 0.15 ± 0.1 0.11 1.27 0.4 ± 0.1 0.1 1pin Reel (Unit : mm) Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. SSOP-B8 <Tape and Reel information> 3.0±0.2 (MAX 3.35 include BURR) 0.3MIN 4.4 ± 0.2 6.4 ± 0.3 876 5 Tape Embossed carrier tape Quantity 2500pcs Direction of feed E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 1.15 ± 0.1 1 23 4 0.15±0.1 0.1 S 0.1 0.22±0.10 (0.52) 0.08 M 0.65 1pin Reel (Unit : mm) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 19/20 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note SSOP-B14 <Tape and Reel information> 5.0 ± 0.2 8 1 Tape Embossed carrier tape Quantity 2500pcs Direction of feed 0.3Min. 4.4 ± 0.2 6.4 ± 0.3 14 E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 7 0.10 1.15 ± 0.1 0.15 ± 0.1 0.1 0.65 0.22 ± 0.1 Direction of feed 1pin Reel (Unit : mm) ∗ Order quantity needs to be multiple of the minimum quantity. MSOP8 <Tape and Reel information> 2.8±0.1 4.0±0.2 8 7 6 5 0.6±0.2 +6° 4° −4° 0.29±0.15 2.9±0.1 (MAX 3.25 include BURR) Tape Embossed carrier tape Quantity 3000pcs Direction of feed TR The direction is the 1pin of product is at the upper right when you hold ( reel on the left hand and you pull out the tape on the right hand ) 1 2 3 4 1PIN MARK 1pin +0.05 0.145 −0.03 0.475 0.08±0.05 0.75±0.05 0.9MAX S +0.05 0.22 −0.04 0.08 S Direction of feed 0.65 Reel (Unit : mm) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 20/20 ∗ Order quantity needs to be multiple of the minimum quantity. 2011.08 - Rev.B Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. R1120A