RT9035 - Richtek

RT9035
3A, Ultra Low Dropout Regulator
General Description
Features
The RT9035 is a high performance positive voltage regulator
designed for use in applications requiring very low Input
voltage and extremely low dropout voltage at up to 3A. It
operates with a VIN as low as 1V and VDD voltage 3V with
programmable output voltage as low as 0.8V. The RT9035
features ultra low dropout that is ideal for applications
where VOUT is very close to VIN. Additionally, it has an
enable pin to further reduce power dissipation while
shutdown and provides excellent regulation over variations
in line, load and temperature. The RT9035 provides a power
good signal to indicate if the voltage level of VOUT reaches
z
Maximum 3A Low-Dropout Voltage Regulator
z
High Accuracy Output Voltage 2%
Dropout Voltage Typical 270mV at 3A
Power Good Output
Output Voltage Pull Low Resistance when Disable
Thermal and Over Current Protection
RoHS Compliant and Halogen Free
z
z
z
z
Applications
z
z
Note Book PC Applications
Motherboard Applications
Pin Configurations
Ordering Information
Lead Plating System
G : Green (Halogen Free and Pb Free)
Z : ECO (Ecological Element with
Halogen Free and Pb free)
1
15
2
14
GND
3
4
13
12
21
5
11
6
7
8
9
NC
NC
NC
NC
VDD
10
VIN
Package Type
QW : WQFN-20L 4x4 (W-Type)
20 19 18 17 16
NC
GND
NC
NC
PGOOD
NC
EN
VIN
VIN
RT9035-
VOUT
VOUT
(TOP VIEW)
NC
ADJ
VOUT
90% of its rating value. The RT9035 is available in the
WQFN-20L 4x4 package with 1.05V, 1.2V, 1.5V, 1.8V and
2.5V internally preset outputs that are also adjustable by
using external resistors.
z
WQFN-20L 4x4
Output Voltage
1K : 1.05V/Adj
12 : 1.2V/Adj
15 : 1.5V/Adj
18 : 1.8V/Adj
25 : 2.5V/Adj
Marking Information
For marking information, contact our sales representative
directly or through a Richtek distributor located in your
area.
Note :
Richtek products are :
`
RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
`
Suitable for use in SnPb or Pb-free soldering processes.
DS9035-02 March 2011
www.richtek.com
1
RT9035
Typical Application Circuit
VOUT = 0.8 × R1 + R2
R2
VIN
VIN
10µF
Chip Enable
RT9035
VDD
10µF
Chip Enable
PGOOD
VDD
VIN
10µF
ADJ
EN
VIN
VOUT
VOUT
GND
10µF
R2
PGOOD
VDD
GND
100k
R1
ADJ
EN
1µF
CDummy
RT9035
VDD
VOUT
VOUT
100k
1µF
VOUT
VOUT
Figure 1. Fixed Voltage Regulator
Figure 2. Adjustable Voltage Regulator
Functional Pin Description
Pin No.
1, 3, 4, 6, 12, 13,
14, 15, 20
2,
21 (Exposed Pad)
Pin Name
NC
GND
Pin Function
No Internal Connection.
Ground. The exposed pad must be soldered to a large PCB and connected to
GND for maximum power dissipation.
5
PGOOD
Power Good Open Drain Output.
7
EN
Chip Enable (Active High). Internal pull low.
8, 9, 10
VIN
Supply Input Voltage.
11
VDD
Supply Voltage of Control Circuit.
VOUT
Output Voltage.
16, 17, 18
19
ADJ
Set the output voltage by an external feedback resistor divider. If the ADJ pin is
grounded, the output voltage will be set by internal feedback resistor divider.
Function Block Diagram
VOUT
VIN
SD
OTP
VDD
POR
0.8V
-
EN
+
OCP
Error
Amplifier
Mode
ADJ
PGOOD
-
0.72V
+
GND
www.richtek.com
2
DS9035-02 March 2011
RT9035
Absolute Maximum Ratings
z
z
z
z
z
z
z
z
z
(Note 1)
Supply Input Voltage, VIN -------------------------------------------------------------------------------------------- 6V
Control Voltage --------------------------------------------------------------------------------------------------------- 6V
Output Voltage --------------------------------------------------------------------------------------------------------- 6V
Power Dissipation, PD @ TA = 25°C
WQFN-20L 4x4 -------------------------------------------------------------------------------------------------------- 1.852W
Package Thermal Resistance (Note 2)
WQFN-20L 4x4, θJA --------------------------------------------------------------------------------------------------- 54°C/W
WQFN-20L 4x4, θJC -------------------------------------------------------------------------------------------------- 7°C/W
Lead Temperature (Soldering, 10 sec.) --------------------------------------------------------------------------- 260°C
Junction Temperature ------------------------------------------------------------------------------------------------- 150°C
Storage Temperature Range ---------------------------------------------------------------------------------------- −65°C to 150°C
ESD Susceptibility (Note 3)
HBM (Human Body Mode) ------------------------------------------------------------------------------------------ 2kV
MM (Machine Mode) -------------------------------------------------------------------------------------------------- 200V
Recommended Operating Conditions
z
z
z
z
(Note 4)
Supply Input Voltage, VIN -------------------------------------------------------------------------------------------- 1.5V to 5V
Control Voltage, VDD -------------------------------------------------------------------------------------------------- 4.5V to 5.5V
Junction Temperature Range ---------------------------------------------------------------------------------------- −40°C to 125°C
Ambient Temperature Range ---------------------------------------------------------------------------------------- −40°C to 85°C
Electrical Characteristics
(VIN = VOUT + 500mV, VEN = VDD = 5V, CIN = COUT = 10μF, TA = 25°C, unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
--
0.6
1.2
mA
4.5
--
5.5
V
POR Threshold
2.4
2.7
3
V
POR Falling Hysteresis
0.15
0.2
--
V
VDD = 5V
−2
0
2
%
VDD = 5V, IOUT = 3A,
VIN = VOUT + 1V
--
0.2
1
%
VDD
Quiescent Current (GND Current)
(Note 5)
IQ
VDD = 5V
VDD Operation Range
VDD
VDD Input Range
Power On Reset
VOUT
Fixed Output Voltage
VOUT Load Regulation
(Note 6) ΔVLOAD
VOUT Line Regulation (VIN)
ΔVLINE_IN
VDD = 5V, VIN = VOUT + 1V to 5V
IOUT = 1mA
--
0.2
0.6
%
Dropout Voltage
VDROP
VDD = 5V, IOUT = 3A
--
270
400
mV
ILIM
VDD = 5V, VIN = 3.6V
--
4.5
--
A
VDD = 5V , VOUT < 0.2V
--
2.5
--
A
(Note 7)
Current Limit
Short Circuit Current
To be Continued
DS9035-02 March 2011
www.richtek.com
3
RT9035
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
In-rush Current
VDD = 5V, COUT = 10μF, Enable
Start-up, ILOAD = 1A
--
0.5
--
A
VOUT Pull Low Resistance
VEN = 0V
--
150
--
Ω
0.788
0.8
0.812
V
--
0.2
--
V
ADJ
Reference Voltage (Adj)
VDD = 5V, VOUT = 2.5V
ADJ Pin Threshold
Power Good
Power Good Rising Threshold
VDD = 5V
--
90
--
%
Power Good Hysteresis
VDD = 5V
--
10
--
%
Power Good Sink Capability
VDD = 5V, IOUT = 10mA
--
0.2
0.4
V
Logic-Low VEN_L
VDD = 5V
--
--
0.6
Logic-High VEN_H
VDD = 5V
1.2
--
--
Chip Enable
EN Threshold
Voltage
V
EN Pin Bias Current
IEN
VEN = 5V
--
12
--
μA
VDD Shutdown Current
ISHDN
VDD = 5V, VEN = 0V
--
--
1
μA
--
160
--
°C
--
110
--
°C
Over Temperature Protection
Thermal Shutdown Temperature
T SD
Thermal Shutdown Returned
Temperature
Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended
periods may remain possibility to affect device reliability.
Note 2. θJA is measured in the natural convection at TA = 25°C on a high effective thermal conductivity test board (4 Layers,
2S2P) of JEDEC 51-7 thermal measurement standard. The case point of θJC is on the expose pad for WQFN package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. Quiescent, or ground current, is the difference between input and output currents. It is defined by IQ = IIN - IOUT under
no load condition (IOUT = 0mA).
Note 6. Regulation is measured at constant junction temperature by using a 2ms current pulse. Devices are tested for load
regulation in the load range from 1mA to 3A.
Note 7. The dropout voltage is defined as VIN -VOUT, which is measured when VOUT is VOUT(NORMAL) − 100mV.
www.richtek.com
4
DS9035-02 March 2011
RT9035
Typical Operating Characteristics
Load Transient Response
Load Transient Response
VDD = 5V, VIN = 1.8V, VOUT = 1.2V
VDD = 5V, VIN = 1.8V, VOUT = 1.2V
VOUT
(20mV/Div)
VOUT
(20mV/Div)
IOUT
(1A/Div)
IOUT
(1A/Div)
Time (250μs/Div)
Time (250μs/Div)
VDD Line Transient Response
VDD Line Transient Response
VIN = 1.8V, VOUT = 1.2V, IOUT = 10mA
VIN = 1.8V, VOUT = 1.2V, IOUT = 2A
5
5
VDD
VDD
4
4
VOUT
(10mV/Div)
VOUT
(10mV/Div)
Time (250μs/Div)
Time (250μs/Div)
VIN Line Transient Response
VIN Line Transient Response
VDD = 5V, VOUT = 1.2V, IOUT = 10mA
VDD = 5V, VOUT = 1.2V, IOUT = 2A
3
3
VIN
VIN
2
2
VOUT
(10mV/Div)
VOUT
(10mV/Div)
Time (250μs/Div)
DS9035-02 March 2011
Time (250μs/Div)
www.richtek.com
5
RT9035
Dropout Voltage vs. Load Current
Start Up from Enable
400
IOUT = 3A
Dropout Voltage (mV)
350
125°C
300
250
EN
(1V/Div)
25°C
VOUT
(1V/Div)
200
150
PGOOD
(1V/Div)
-40°C
100
I IN
(2A/Div)
50
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
Time (500μs/Div)
Load Current (A)
Start Up from VDD
Start Up from VIN
IOUT = 3A
IOUT = 3A
VIN
(1V/Div)
VDD
(5V/Div)
VOUT
(1V/Div)
VOUT
(1V/Div)
PGOOD
(1V/Div)
PGOOD
(1V/Div)
I IN
(2A/Div)
I IN
(2A/Div)
Time (500μs/Div)
Time (1ms/Div)
Short Circuit Protection
Short Current vs. Temperature
3.0
2.8
Current Limit (A)
2.6
2.4
2.2
2.0
1.8
1.6
1.4
IOUT
(1A/Div)
VDD = 5V, VIN = 1.8V, VOUT = 1.2V
1.2
VDD = 5V, VIN = 1.8V, VOUT = 1.2V
1.0
Time (1ms/Div)
-40
-20
0
20
40
60
80
100
Temperature (°C)
www.richtek.com
6
DS9035-02 March 2011
RT9035
Quiescent Current vs. Temperature
Current Limit vs. Temperature
1000
5.0
900
Quiescent Current Iq (uA)
5.5
Current Limit (A)
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
800
700
600
500
400
300
200
100
VDD = 5V, VIN = 2.5V, VOUT = 1.2V
0.0
VDD = 5V, VIN = 1.8V, VOUT = 1.2V
0
-40
-20
0
20
40
60
80
100
-40 -25 -10
5
Temperature (°C)
20
35
50
65
80
95 110 125
Temperature (°C)
Reference Voltage vs. Temperature
Output Voltage vs. Temperature
0.84
1.25
0.83
1.24
1.23
0.82
Output Voltage (V)
Reference Voltage (V)
VIN = 1.8V, VADJ = 0V, IOUT = 0A
0.81
0.80
0.79
0.78
1.22
1.21
1.20
1.19
1.18
1.17
0.77
1.16
0.76
1.15
-40 -25 -10
5
20
35
50
65
80
95 110 125
-40 -25 -10
5
Temperature (°C)
VDD POR Threshold Voltage vs. Temperature
2.95
POR Voltage (V)
2.90
Rising
2.80
2.75
2.70
2.65
Falling
2.60
35
50
65
80
95 110 125
ADJ Threshold Voltage vs. Temperature
ADJ Threshold Voltage Range (V)
3.00
2.85
20
Temperature (°C)
2.55
2.50
2.45
2.40
0.30
0.28
0.26
0.24
0.22
0.20
0.18
0.16
0.14
0.12
0.10
-40 -25 -10
5
20
35
50
65
Temperature (°C)
DS9035-02 March 2011
80
95 110 125
-40 -25 -10
5
20
35
50
65
80
95 110 125
Temperature (°C)
www.richtek.com
7
RT9035
Application Information
Adjustable Mode Operation
The output voltage of RT9035 is adjustable from 0.8V to
VIN by external voltage divider resisters as shown in Typical
Application Circuit (Figure 2). The value of resisters R1
and R2 should be more than 10kΩ to reduce the power
loss.
The PGOOD pin will output high immediately after the
output voltage arrives 90% of normal output voltage. The
PGOOD pin will output high with typical 1.5ms delay time.
Thermal-Shutdown Protection
The RT9035 goes into shutdown mode when the EN pin
is in the logic low condition. During this condition, the
pass transistor, error amplifier, and band gap are turned
off. The RT9035 goes into operation mode when the EN
pin is in the logic high condition. The RT9035 has an internal
pull low resistor at EN pin so that the regulator will be turn
off when EN pin is floating.
Thermal protection limits power dissipation to prevent IC
over temperature in RT9035. When the operation junction
temperature exceeds 160°C, the over-temperature
protection circuit starts the thermal shutdown function
and turns the pass transistor off. The pass transistor turn
on again after the junction temperature cools by 30°C.
RT9035 lowers its OTP trip level from 160°C to 110°C
when output short circuit occurs (VOUT < 0.2V). It limits
IC case temperature under 100°C and provides maximum
safety to customer while output short circuit occurring.
Output Capacitor
Power Dissipation
The RT9035 is specifically designed to employ ceramic
output capacitors as low as 10μF. The ceramic capacitors
offer significant cost and space savings, along with high
frequency noise filtering.
For continuous operation, do not exceed absolute
maximum operation junction temperature 125°C. The
power dissipation definition in device is:
Input Capacitor
The maximum power dissipation depends on the thermal
resistance of IC package, PCB layout, the rate of
surroundings airflow and temperature difference between
junctions to ambient. The maximum power dissipation can
be calculated by following formula:
Enable
Good bypassing is recommended from input to ground to
help improve AC performance. A 10μF input capacitor or
greater located as close as possible to the IC is
recommended.
Current Limit
The RT9035 contains an independent current limit and
the short circuit current protection to prevent unexpected
applications. The current limit monitors and controls the
pass transistor’ s gate voltage, limiting the output current
to higher than 4.5A typical. When the output voltage is
less than 0.2V, the short circuit current protection starts
the current fold back function and maintains the loading
current 2.5A. The output can be shorted to ground
indefinitely without damaging the part.
Power Good
The power good function is an open-drain output. Connects
100kΩ pull up resistor to VOUT to obtain an output voltage.
www.richtek.com
8
PD = (VIN − VOUT) x IOUT + VIN x IQ
PD(MAX) = ( TJ(MAX) − TA ) / θJA
Where T J(MAX) is the maximum operation junction
temperature 125°C, TA is the ambient temperature and the
θJA is the junction to ambient thermal resistance.
For recommended operating conditions specification of
RT9035, where T J (MAX) is the maximum junction
temperature of the die (125°C) and TA is the maximum
ambient temperature. The junction to ambient thermal
resistance for WQFN-20L 4x4 package is 54°C/W on the
standard JEDEC 51-7 (4 layers, 2S2P) thermal test board.
The copper thickness is 2oz. The maximum power
dissipation at TA = 25°C can be calculated by following
formula:
PD (MAX) = (125°C − 25°C) / (54°C/W) = 1.852W
DS9035-02 March 2011
RT9035
The maximum power dissipation depends on operating
ambient temperature for fixed T J(MAX) and thermal
resistance θJA . For RT9035 packages, the Figure 3 of derating curves allows the designer to see the effect of rising
ambient temperature on the maximum power allowed.
Power Dissipation (W)
2.4
4-Layers PCB
2
1.6
1.2
0.8
0.4
0
0
20
40
60
80
100
120
140
Ambient Temperature (°C)
Figure 3. De-rating Curve
DS9035-02 March 2011
www.richtek.com
9
RT9035
Outline Dimension
1
1
2
2
DETAIL A
Pin #1 ID and Tie Bar Mark Options
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
0.700
0.800
0.028
0.031
A1
0.000
0.050
0.000
0.002
A3
0.175
0.250
0.007
0.010
b
0.150
0.300
0.006
0.012
D
3.950
4.050
0.156
0.159
D2
2.650
2.750
0.104
0.108
E
3.950
4.050
0.156
0.159
E2
2.650
2.750
0.104
0.108
e
L
0.500
0.350
0.020
0.450
0.014
0.018
W-Type 20L QFN 4x4 Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
5F, No. 95, Minchiuan Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)86672399 Fax: (8862)86672377
Email: [email protected]
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
www.richtek.com
10
DS9035-02 March 2011