Ferrite Magnets - Products of TDK

Ferrite Magnets
FB series
Issue date:
June 2011
• All specifications are subject to change without notice.
• Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific
bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.
FERRITE MAGNETS
Introduction.................................................................................. 1
Anisotropic Materials (High Performance)
FB12 Series (Wet-molded) ...................................................... 2
FB5D Series (Dry-molded) ...................................................... 2
FB13B, FB14H Series (Thin-type) ........................................... 3
Recommended Materials’ Table by Application........................... 4
Magnetic, Physical and Mechanical Characteristics.................... 5
Demagnetization Curves/Magnetic Characteristics
Thin-type Materials
FB13B............................................................................... 7
FB14H .............................................................................. 8
Wet-Anisotropic Materials
FB12B............................................................................... 9
FB12H ............................................................................ 10
FB9N .............................................................................. 11
FB9B............................................................................... 12
FB9H .............................................................................. 13
FB6N .............................................................................. 14
FB6B............................................................................... 15
FB6H .............................................................................. 16
FB6E............................................................................... 17
FB5B............................................................................... 18
FB5H .............................................................................. 19
Dry-Anisotropic Materials
FB5D .............................................................................. 20
FB5DH............................................................................ 21
FB3N .............................................................................. 22
FB3G .............................................................................. 23
Typical Shapes and Product Identifications............................... 24
Dimensional Tolerances ............................................................ 25
Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC,
lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants,
PBB and PBDE, have not been used, except for exempted applications.
(1/25)
Ferrite Magnets FB Series
INTRODUCTION
From the development of the FB1A material grade in 1959, TDK’s history of developing ferrite magnets has reflected with the progress of
magnet application technology. Our technology departments faced many challenges, starting with the integration of physical properties,
and including our efforts to reduce manufacturing costs by rationalizing our production lines and optimizing our material procurement
practices to improve every product’s performance to impart a "differentiating factor" for the applied product. Our pride and our passion as
the first company to make ferrite materials commercially available to the industrial world have been the driving force behind our efforts.
Our rapid and unerring response to changing needs, as well as our aggressive involvement in the development of new markets, is the
essence of our over 50 years of history in the field of ferrite magnet development.
The fruits of our technological development and the unique expertise we have gained in this process are shared among the relevant divisions within the company.
TDK has established an "in-market" service system for responding quickly to orders and requests for technical services when customers
contact one of our production or service offices. In addition to delivering high-quality magnets with excellent characteristics, we also
actively support our customers' efforts to reduce design time and to optimize their designs based on our abundant expertise in the field of
magnetic circuitry design.
• Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific
bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(2/25)
HIGH PERFORMANCE ANISOTROPIC MATERIALS SERIES
With new compositions and microstructures, these ferrite magnets deliver the best characteristics.
MATERIAL CHARACTERISTICS DISTRIBUTION
500
High-performance
FB13B thin-type anisotropic magnets
High performance
wet-anisotropic type
480
FB14H
FB9N
Residual flux density Br (mT, ×10G)
460
FB12B
FB12H
FB9B
FB6N
440
420
FB6H
FB5D
400
High performance
wet-anisotropic type
FB9H
FB6B
FB3N
FB5DH
380
FB6E
Thin-type anisotropic
material
Wet-anisotropic material
Dry-anisotropic material
FB3G
360
High performance
dry-anisotropic type
340
200
2.5
250
3.0
300
3.5
350
400
4.0
4.5
5.0
Intrinsic coercive force H CJ
450
500 [kA/m]
6.0(kOe)
5.5
MAGNETIC CHARACTERISTICS
Material
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
Thin-type anisotropic
FB13B
FB14H
475±10
470±10
4.75±0.1
4.70±0.1
340±20
355±20
4.27±0.25
4.46±0.25
380±20
430±20
4.77±0.25
5.40±0.25
44.0±1.6
43.1±1.6
5.5±0.2
5.4±0.2
Wet-anisotropic
FB12B
FB12H
470±10
460±10
4.70±0.1
4.60±0.1
340±12
345±15
4.27±0.15
4.33±0.19
380±12
430±15
4.77±0.15
5.40±0.19
43.1±1.6
41.4±1.6
5.4±0.2
5.2±0.2
Dry-anisotropic
FB5D
415±10
4.15±0.1
254.6±12
3.20±0.15
262.6±16
3.30±0.2
32.6±1.6
4.1±0.2
FB5DH
400±10
4.00±0.1
278.6±12
3.5±0.15
318.3±16
4.00±0.2
30.3±1.6
3.8±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
HIGH PERFORMANCE WET-ANISOTROPIC MATERIALS
FB12 SERIES(FB12B • FB12H)
HIGH PERFORMANCE DRY-ANISOTROPIC MATERIALS
FB5D SERIES(FB5D • FB5DH)
FEATURES
• This wet-molded anisotropic ferrite magnet has even greater
superiority over the FB9 series and delivers the world's greatest
magnetic force with an even further improved coercive force HCJ
temperature coefficient.
FEATURES
• These dry-molded ferrite magnets deliver magnetic characteristics that rival wet-molded magnets.
• These magnets can be made into small and complex shapes
that are difficult to make as wet-molded magnets.
• Their coercive force HCJ temperature coefficient is also superior.
APPLICATIONS
Electrical motors, actuators, appliance motors, medical equipment
and other motors.
APPLICATIONS
Small motors for electric components, office computing and audiovisual equipment, household appliances and other motors.
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(3/25)
HIGH PERFORMANCE THIN-TYPE ANISOTROPIC MATERIALS
FB13B/FB14H SERIES
TDK has established mass production technology for thin ferrite magnets, for which production was previously difficult, using its unique
new method (NS1) while achieving the world's highest level in high-performance ferrite magnets. FB13B and FB14H are ferrite magnets
that are suitable for size and weight reduction of motors.
EXAMPLE OF MAGNETIC COERCIVE FORCE (HCJ)
TEMPERATURE CHARACTERISTICS ACCORDING TO
MATERIAL GRADE
450
400
HCJ(kA/m)
FEATURES
• Contribute to compact in and lighter weight motor design by realizing thin-shape magnet production (Magnet’s thickness: 1.0 to
2.5mm).
• Excellent heat resistance, corrosion resistance, and ease of
magnetization.
• Further improvement of irreversible demagnetization durability at
lower temperature with FB12 material basis(Higher coercive
force HCJ , and excellent temperature coefficient of HCJ) .
• Optimized grain orientation control improves the magnetic
anisotropy to create ferrite magnets with the world’s highest performance.
• Support for specially-shaped configurations allows greater
design freedom.
350
300
FB6B
FB9B
FB12B, FB13B
250
200
–100
–50
0
50
100
Temperature(˚C)
150
200
APPLICATIONS
Power windows, seat actuators, fuel pumps, other small motors
and actuators
APPLICATION EXAMPLES
1. AN EXAMPLE OF SIZE AND WEIGHT REDUCTION OF A
BRUSHED MOTOR
By adopting FB13B or FB14H in combination with a multipolar
design of the motor in which the ferrite magnet is used, it will
become possible to realize even further size and weight reduction
of motors.
3. TAKING ADVANTAGE OF CONFIGURATION FREEDOM TO
IMPROVE MICROMOTOR PERFORMANCE
Nd-bonded magnets require coating when being applied in motors
for which reliable thermal resistance and corrosion resistance are
required.
Conventional shape
Motor diameter
Motor volume
Magnet wall
5.0
thickness
Total magnet weight 65
Total magnet weight
100%
ratio
FB9B
2 poles
ø37
86%
FB13B
4 poles
ø33.4
70%
3.5
1.9
47
26
72%
40%
2. REPLACING A NEODYMIUM MAGNET WITH A HIGHPERFORMANCE THIN-TYPE ANISOTROPIC FERRITE
MAGNET(FB13B, FB14H)
By adopting FB13B or FB14H, coating will be rendered
unnecessary, allowing for easy magnetization after mounting.
Neodymium bond magnet
Magnet
Rotor
Rotor
1.2
Starting torque(compared to FB5D)
FB6B
2 poles
ø40
100%
Wide-arc shape
Magnet
1.15
1.1
1.05
1
0.95
0.9
FB5D
FB13B
Conventional shape Conventional shape
FB13B
Wide-arc shape
Neodymium bond
magnet
Conventional shape
FB13B
High-performance thin-shape
The benefits of ferrite magnet
substitution
C-type magnet
(thickness: 1.1 mm)
Excellent
・Heat resistance
・Corrosion resistance
・Ease of magnetization
C-type magnet
(thickness: 2.0 mm)
Housing
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(4/25)
RECOMMENDED MATERIALS’ TABLE BY APPLICATION(TYPICAL)
AUTOMOTIVE, MOTOR-CYCLE
Application
Application product and function
Motor
Fuel pump
Power wind lift motor
Motors for brake systems
Blower
Cooling fan motors
Window shield wiper
Power steering
Active suspension
Starter
Door lock
Mirror actuator
Electronic throttle motor
Power seats
Starter generators for two-wheeled vehicles
Current sensors, etc.
Generator
Sensor
Others
Materials
Magnet’s
shape
C
C
C
C
C
C
C
C
C
C
C
C
C
C
W,C,D
C
FB series
Materials
Magnet’s
shape
C
C
C
FB series
Materials
Magnet’s
shape
C
C
C
C
C
C
C
C
C
C
C
FB series
FB series
14H
13B
12B
12H
9N
9B
9H
5D
5DH
12B
12H
9N
9B
9H
5D
5DH
12B
12H
9N
9B
9H
5D
5DH
12B
12H
9N
9B
9H
5D
5DH
OA EQUIPMENT
Application
Application product and function
Printer
Paper feeding
Head actuator
Focusing motors for camera
Projector
14H
13B
HOME APPLIANCE
Application
Application product and function
Air conditioner
Compressor
Fan
Main drive
Water supply pumps
Compressor
Fan
Drive motor
Fan
Drive motor
Drive motor
Drive motor
Washing machine
Refrigerator
Air filer
Mixer
Hair dryer
Shaver
Electric tool
Various pumps
14H
13B
MEDICAL/HEALTH CARE EQUIPMENT
Application
Application product and function
Medical equipment
Analysis equipment
Magnetic health
care equipment
Dental instruments, Medical pump
Pump unit
Materials
Magnet’s
shape
C
C
Electric bed motors
C
14H
13B
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(5/25)
MAGNETIC, PHYSICAL AND MECHANICAL CHARACTERISTICS
WET-ANISOTROPIC MATERIALS
Material
Composition
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
Recoil permeability
µrec
Temperature coefficient
of Br ∆ Br/Br/∆ T
Curie temperature
Tc
Coefficient of thermal
expansion ∆ L/L/∆ T
C//∗
C⊥ ∗
Specific heat
Density
Deflection strength
Compressive strength
Tensile strength
Material
Composition
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
Recoil permeability
µrec
Temperature coefficient
of Br ∆ Br/Br/∆ T
Curie temperature
Tc
Coefficient of thermal
expansion ∆ L/L/∆ T
Specific heat
Density
Deflection strength
Compressive strength
Tensile strength
C//∗
C⊥ ∗
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
FB13B
SrO6Fe2O3
475±10
4.75±0.1
340±20
4.27±0.25
380±20
4.77±0.25
44.0±1.6
5.5±0.2
FB14H
SrO6Fe2O3
470±10
4.70±0.1
355±20
4.46±0.25
430±20
5.40±0.25
43.1±1.6
5.4±0.2
FB12B
SrO6Fe2O3
470±10
4.7±0.1
340±12
4.3±0.15
380±12
4.8±0.15
43.1±1.6
5.4±0.2
FB12H
SrO6Fe2O3
460±10
4.6±0.1
345±15
4.3±0.19
430±15
5.4±0.19
41.4±1.6
5.2±0.2
FB9N
SrO6Fe2O3
460±10
4.6±0.1
278.5±12
3.5±0.15
286.5±12
3.6±0.15
40.4±1.6
5.1±0.2
1.05 to 1.1
1.05 to 1.1
1.05 to 1.1
1.05 to 1.1
1.05 to 1.1
[%/K]
(%/°C)
[K]
(°C)
[1/K](1/°C)
[1/K](1/°C)
[J/kg • K]
(cal/g • °C)
[kg/m3]
(g/cm3)
[N/m2]
(kgf/mm2)
[N/m2]
(kgf/mm2)
[N/m2]
(kgf/mm2)
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
5.07 to 5.17×103
5.07 to 5.17
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
5.02 to 5.12×103
5.02 to 5.12
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
5.07 to 5.17×103
5.07 to 5.17
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
5.02 to 5.12×103
5.02 to 5.12
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
5.0 to 5.1×103
5.0 to 5.1
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
FB9B
SrO6Fe2O3
450±10
4.5±0.1
342.2±12
4.3±0.15
358.1±12
4.5±0.15
38.6±1.6
4.9±0.2
FB9H
SrO6Fe2O3
430±10
4.3±0.1
330.2±12
4.15±0.15
397.1±12
5.0±0.15
35.0±1.6
4.4±0.2
FB6N
SrO6Fe2O3
440±10
4.4±0.1
258.6±12
3.25±0.15
262.6±12
3.3±0.15
36.7±1.6
4.6±0.2
FB6B
SrO6Fe2O3
420±10
4.2±0.1
302.4±12
3.8±0.15
318.3±12
4.0±0.15
33.4±1.6
4.2±0.2
FB6H
SrO6Fe2O3
400±10
4.0±0.1
302.4±12
3.8±0.15
358.1±12
4.5±0.15
30.3±1.6
3.8±0.2
1.05 to 1.1
1.05 to 1.1
1.05 to 1.1
1.05 to 1.1
1.05 to 1.1
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
4.95 to 5.05×103
4.95 to 5.05
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
4.9 to 5.0×103
4.9 to 5.0
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
4.9 to 5.0×103
4.9 to 5.0
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
4.9 to 5.0×103
4.9 to 5.0
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
4.9 to 5.0×103
4.9 to 5.0
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
[%/K]
(%/°C)
[K]
(°C)
[1/K](1/°C)
[1/K](1/°C)
[J/kg • K]
(cal/g • °C)
[kg/m3]
(g/cm3)
[N/m2]
(kgf/mm2)
[N/m2]
(kgf/mm2)
[N/m2]
(kgf/mm2)
∗
C//: Measured values in the direction of the easy axis of magnetization
C⊥ : Measured values in the perpendicular direction to the easy axis of magnetization
• [ ]: in the unit of SI, ( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(6/25)
WET-ANISOTROPIC MATERIALS
Material
Composition
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
Recoil permeability
µrec
Temperature coefficient
of Br ∆ Br/Br/∆ T
Curie temperature
Tc
Coefficient of thermal
expansion ∆ L/L/∆ T
C//∗
C⊥ ∗
Specific heat
Density
Deflection strength
Compressive strength
Tensile strength
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
[%/K]
(%/°C)
[K]
(°C)
[1/K](1/°C)
[1/K](1/°C)
[J/kg • K]
(cal/g • °C)
[kg/m3]
(g/cm3)
[N/m2]
(kgf/mm2)
[N/m2]
(kgf/mm2)
[N/m2]
(kgf/mm2)
FB6E
SrO6Fe2O3
380±10
3.8±0.1
290.5±12
3.65±0.15
393.9±12
4.95±0.15
27.5±1.6
3.45±0.2
FB5B
SrO6Fe2O3
420±10
4.2±0.1
262.6±12
3.3±0.15
266.6±12
3.35±0.15
33.4±1.6
4.2±0.2
FB5H
SrO6Fe2O3
405±10
4.05±0.1
298.4±12
3.75±0.15
322.3±12
4.05±0.15
31.1±1.6
3.9±0.2
1.05 to 1.1
1.05 to 1.1
1.05 to 1.1
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
4.9 to 5.0×103
4.9 to 5.0
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
4.9 to 5.0×103
4.9 to 5.0
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
10×10–6
837
0.2
4.85 to 4.95×103
4.85 to 4.95
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
DRY-ANISOTROPIC AND DRY-ISOTROPIC MATERIALS
Material
Composition
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
Recoil permeability
µrec
Temperature coefficient
of Br ∆ Br/Br/∆ T
Curie temperature
Tc
Coefficient of thermal
expansion ∆ L/L/∆ T
Specific heat
Density
Deflection strength
Compressive strength
Tensile strength
C//∗
C⊥ ∗
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
[%/K]
(%/°C)
[K]
(°C)
[1/K](1/°C)
[1/K](1/°C)
[J/kg • K]
(cal/g • °C)
[kg/m3]
(g/cm3)
[N/m2]
(kgf/mm2)
[N/m2]
(kgf/mm2)
[N/m2]
(kgf/mm2)
FB5D
SrO6Fe2O3
415±10
4.15±0.1
254.6±12
3.2±0.15
262.6±16
3.3±0.2
32.6±1.6
4.1±0.2
FB5DH
SrO6Fe2O3
400±10
4.00±0.1
278.6±12
3.5±0.15
318.3±16
4.0±0.2
30.3±1.6
3.8±0.2
FB3N
SrO6Fe2O3
395±15
3.95±0.15
234.8±12
2.95±0.15
238.7±16
3.0±0.2
28.7±2.4
3.6±0.3
FB3G
SrO6Fe2O3
375±15
3.75±0.15
254.6±16
3.2±0.2
270.6±16
3.4±0.25
25.9±2.4
3.25±0.3
1.05 to 1.10
1.05 to 1.10
1.1 to 1.2
1.1 to 1.2
–0.18
–0.18
733
460
15×10–6
9×10–6
837
0.2
5.0 to 5.1×103
5.0 to 5.1
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
9×10–6
837
0.2
5.0 to 5.1×103
5.0 to 5.1
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
9×10–6
837
0.2
4.7 to 4.9×103
4.7 to 4.9
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
–0.18
–0.18
733
460
15×10–6
9×10–6
837
0.2
4.6 to 4.9×103
4.6 to 4.9
0.5 to 0.9×108
5 to 9
>6.9×108
>70
0.2 to 0.5×108
2 to 5
∗
C//: Measured values in the direction of the easy axis of magnetization
C⊥ : Measured values in the perpendicular direction to the easy axis of magnetization
• [ ]: in the unit of SI, ( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(7/25)
DEMAGNETIZATION CURVES/MAGNETIC CHARACTERISTICS
THIN-TYPE MATERIAL FB13B
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT ]
1.5
(kG)
1.0
– 60˚C
B-H Curve
J-H Curve
–20˚C
5
0.7
500
20˚C
60˚C
100˚C
4
400
3
300
2
200
1
100
0
0
B, J
0.5
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
475±10
4.75±0.1
340±20
4.27±0.25
380±20
4.77±0.25
44.0±1.6
5.5±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(8/25)
THIN-TYPE MATERIAL FB14H
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT ]
1.5
(kG)
1.0
– 60˚C
B-H Curve
J-H Curve
–20˚C
5
0.7
500
20˚C
60˚C
100˚C
4
400
3
300
2
200
1
100
0
0
B, J
0.5
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
470±10
4.70±0.1
355±20
4.46±0.25
430±20
5.40±0.25
43.1±1.6
5.4±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(9/25)
WET-ANISOTROPIC MATERIAL FB12B
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT ]
1.5
(kG)
1.0
– 60˚C
B-H Curve
J-H Curve
–20˚C
5
0.7
500
20˚C
60˚C
100˚C
4
400
3
300
2
200
1
100
0
0
B, J
0.5
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
470±10
4.7±0.1
340±12
4.3±0.15
380±12
4.8±0.15
43.1±1.6
5.4±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(10/25)
WET-ANISOTROPIC MATERIAL FB12H
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
B-H Curve
J-H Curve
[mT ]
1.5
(kG)
1.0
– 60˚C
5
–20˚C
500
0.7
20˚C
60˚C
4
400
100˚C
0.5
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
460±10
4.6±0.1
345±15
4.3±0.19
430±15
5.4±0.19
41.4±1.6
5.2±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(11/25)
WET-ANISOTROPIC MATERIAL FB9N
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
B-H Curve
J-H Curve
[mT ]
1.5
(kG)
1.0
– 60˚C
5
–20˚C
500
0.7
20˚C
60˚C
4
400
100˚C
0.5
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
• [ ]: in the unit of SI
( ): in the unit of CGS
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
460±10
4.60±0.1
278.5±12
3.5±0.15
286.5±12
3.6±0.15
40.4±1.6
5.1±0.2
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(12/25)
WET-ANISOTROPIC MATERIAL FB9B
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
B-H Curve
J-H Curve
[mT ]
1.5
(kG)
1.0
– 60˚C
5
500
–20˚C
0.7
20˚C
60˚C
4
400
100˚C
0.5
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
450±10
4.50±0.1
342.2±12
4.3±0.15
358.1±12
4.5±0.15
38.6±1.6
4.9±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(13/25)
WET-ANISOTROPIC MATERIAL FB9H
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT ]
1.5
(kG)
1.0
5
500
B-H Curve
J-H Curve
– 60˚C
0.7
–20˚C
20˚C
60˚C
4
400
100˚C
0.5
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
430±10
4.30±0.1
330.2±12
4.15±0.15
397.9±12
5.0±0.15
35.0±1.6
4.4±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(14/25)
WET-ANISOTROPIC MATERIAL FB6N
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
B-H Curve
J-H Curve
[mT ]
1.5
(kG)
1.0
– 60˚C
5
500
–20˚C
0.7
20˚C
60˚C
4
400
100˚C
0.5
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
FEATURES
• FB6N has high Br-value and fits downsized high-performance
motors or generators.
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
440±10
4.4±0.1
258.6±12
3.25±0.15
262.6±12
3.3±0.15
36.7±1.6
4.6±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(15/25)
WET-ANISOTROPIC MATERIAL FB6B
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT]
1.5
(kG)
1.0
5
500
B-H Curve
J-H Curve
– 60˚C
0.7
–20˚C
20˚C
4
400
60˚C
100˚C
0.5
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
FEATURES
• FB6B is high Br with high Hc, and fits power motors which are
required strong resistance to demagnetization.
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
420±10
4.2±0.1
302.4±12
3.8±0.15
318.3±12
4.0±0.15
33.4±1.6
4.2±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(16/25)
WET-ANISOTROPIC MATERIAL FB6H
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT ]
1.5
(kG)
1.0
5
500
B-H Curve
J-H Curve
0.7
– 60˚C
–20˚C
20˚C
400
60˚C
0.5
100˚C
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
FEATURES
• FB6H is high Br with high Hc, and fits starter motors of
automotive and motor cycle which are required strong
resistance to demagnetization.
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
400±10
4.0±0.1
302.4±12
3.8±0.15
358.1±12
4.5±0.15
30.3±1.6
3.8±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(17/25)
WET-ANISOTROPIC MATERIAL FB6E
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT ]
1.5
(kG)
1.0
5
500
B-H Curve
J-H Curve
0.7
– 60˚C
–20˚C
400
20˚C
60˚C
0.5
100˚C
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
FEATURES
• FB6E has high HCJ, and fits starter motors of automotive and
motor cycle which are required strong resistance to
demagnetization.
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
380±10
3.8±0.1
290.5±12
3.65±0.15
393.9±12
4.95±0.15
27.5±1.6
3.45±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(18/25)
WET-ANISOTROPIC MATERIAL FB5B
DEMAGNETIZATION CURVE
3.0
5.0
[mT ]
– B/H
2.0
1.5
(kG)
1.0
5
500
B-H Curve
J-H Curve
– 60˚C
0.7
–20˚C
20˚C
4
400
60˚C
100˚C
0.5
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
FEATURES
• FB5B is high cost-performance material with high Br- and
relatively high HCJ-values, which fits a wide variety of motor
applications.
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
420±10
4.2±0.1
262.6±12
3.3±0.15
266.6±12
3.35±0.15
33.4±1.6
4.2±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(19/25)
WET-ANISOTROPIC MATERIAL FB5H
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT ]
1.5
(kG)
1.0
5
500
B-H Curve
J-H Curve
0.7
– 60˚C
–20˚C
20˚C
4
400
60˚C
100˚C
3
300
2
200
1
100
0
0
B, J
0.5
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
FEATURES
• FB5H is high cost-performance material with high Br- and
relatively high HCJ-values, which fits power motors with strong
demagnetization resistance.
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
405±10
4.05±0.1
298.4±12
3.75±0.15
322.3±12
4.05±0.15
31.1±1.6
3.9±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(20/25)
DRY-ANISOTROPIC MATERIAL FB5D
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT ]
1.5
(kG)
1.0
5
500
B-H Curve
J-H Curve
– 60˚C
0.7
–20˚C
20˚C
4
400
60˚C
100˚C
0.5
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
FEATURES
• Magnetic characteristics that rival wet-molded magnets.
• HCJ temperature characteristics have improved by 30%.
• Supports small sizes and complex shapes.
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
415±10
4.15±0.1
254.6±12
3.2±0.15
262.6±20
3.3±0.2
32.6±1.6
4.1±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(21/25)
DRY-ANISOTROPIC MATERIAL FB5DH
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT ]
1.5
(kG)
1.0
5
500
B-H Curve
J-H Curve
0.7
– 60˚C
–20˚C
20˚C
4
400
60˚C
0.5
100˚C
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
400±10
4.00±0.1
278.6±11.9
3.5±0.15
318.3±15.9
4.0±0.2
30.3±1.6
3.8±0.2
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(22/25)
DRY-ANISOTROPIC MATERIAL FB3N
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT ]
1.5
(kG)
1.0
5
500
B-H Curve
J-H Curve
0.7
– 60˚C
–20˚C
20˚C
400
60˚C
0.5
100˚C
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
FEATURES
• FB3N is high Br dry-molded material with high HCJ-value, and
fits various kinds of applications, which require small and
complex shaped magnets with high performance.
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
395±15
3.95±0.15
234.8±12
2.95±0.15
238.7±16
3.0±0.2
28.7±2.4
3.6±0.3
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(23/25)
DRY-ANISOTROPIC MATERIAL FB3G
DEMAGNETIZATION CURVE
– B/H
2.0
3.0
5.0
[mT ]
1.5
(kG)
1.0
5
500
B-H Curve
J-H Curve
0.7
– 60˚C
–20˚C
400
20˚C
60˚C
0.5
100˚C
300
2
200
1
100
0
0
B, J
3
0.3
(BH) max
[kJ/m3 ]
50
40
30
20
10
(kOe)
[kA/m]
6
5
450
400
4
350
3
300
250
–H
2
200
150
0
1
100
50
0
FEATURES
• These dry molded magnets with high Hc values and reduced
low-temperature demagnetization deliver excellent characteristics in applications with large demagnetizing fields.
MAGNETIC CHARACTERISTICS
Residual flux density
Br
Coercive force
HCB
Intrinsic coercive force
HCJ
Maximum energy product
(BH)max
[mT]
(kG)
[kA/m]
(kOe)
[kA/m]
(kOe)
[kJ/m3]
(MGOe)
375±15
3.75±0.15
254.6±16
3.2±0.2
270.6±20
3.4±0.25
25.9±2.4
3.25±0.3
• [ ]: in the unit of SI
( ): in the unit of CGS
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(24/25)
TYPICAL SHAPES AND PRODUCT IDENTIFICATIONS
We offer support for products with unusual and complex shapes, as well as for smaller or larger products in addition to the six standard
shapes shown in the list. Please contact us for details.
PRODUCT IDENTIFICATIONS
An example of a basic item
FB9B
C 38×30×40 S
(1)
(2)
(3)
(4)
(1) Material name
(2) Shape
(3) Size
(4) TDK internal code
An example of special items which have an "S" or other alphabetical letters added in front of the shape code (2).
Example FB9BC38×30×40S
Shape
Condition to determine "Shape" code
Arc
Anisotropic product:
Magnetization direction c (Horizontally orientated)
Dimensional
condition
Shape
code
Expression
method
C
Ce×f×b
—
a
d c
øf
øe
b
Anisotropic product:
Magnetization direction Radial (Radial orientated)
—
Anisotropic product: Magnetization direction b
—
D
Da×b
Anisotropic product: Magnetization direction c
—
DH
DHa×b×c
Anisotropic product: Magnetization direction a
—
RH
RHa×b×c
Anisotropic product: Magnetization direction c
a
b
W
Wa×b×c
Anisotropic product: Magnetization direction c
a
b
WH
WHa×b×c
Cylindrical/Disk
b
øa
Ring/Disk with hole
øb
c
øa
Block
c
a
b
Block with hole
ød
c
b
a
(Dry material)
• Shape codes for products of similar shapes are denoted by the direction of magnetization for anisotropic products.
: Magnetization direction
: Compression direction
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm
(25/25)
DIMENSIONAL TOLERANCES
Ferrite magnets contract by 40 to 50% in volume during the main baking process. To ensure a high degree of dimensional accuracy, we
have optimized the manufacturing conditions in all of our processes, from raw material acceptance to baking, and have also implemented
a stringent process management system. Even so, the contraction rates of individual products may vary. Therefore, if a baked product
does not satisfy our standard dimensional tolerances, it undergoes a grinding process at the final stage of the standard process to ensure
that all products meet our standards. We can also meet our customers’ demands for high-precision products by applying various grinding
processes in addition to our standard grinding process. However, because ferrite magnet grinding involves the use of expensive grinding
tools such as diamond grinders, products with dimensional specifications that exceed our standard dimensional tolerances will cost more.
If you are seeking to reduce the development cost of your applied product, we recommend that you adopt the general dimensional tolerances of the standard process as the standard for your design.
C TYPE (Anisotropic, arc type)
Shape
d c
Item
Standard
process
General dimensional tolerances in the standard
process
Dimensional tolerances
after grinding∗2
Width a
No grinding
±2% or ±0.3mm of standard dimension∗1
±0.2mm
Length b
No grinding
±2% or ±0.3mm of standard dimension∗1
±0.2mm
±0.15mm of standard dimension∗2
—
±0.3mm of standard dimension∗2
—
±0.1mm of standard dimension∗2
—
±0.1mm of standard dimension∗2
—
a
f e
Thickness c
b
Height d
: Grinding
Outer diameter e
(Radius)
Inner diameter f
(Radius)
D TYPE
Shape
Item
Standard
process
General dimensional tolerances in the standard
process
Dimensional tolerances
after grinding∗2
Diameter a
No grinding
Anisotropic:
±2% or ±0.3mm of standard dimension ∗1
±0.1mm
Anisotropic:
±0.1mm of standard dimension∗2
—
b
Thickness
(Height) b
øa
: Grinding
DH/RH TYPE
Shape
øb
c
Item
Standard
process
General dimensional tolerances in the standard
process
Dimensional tolerances
after grinding∗2
Outer
diameter a
No grinding
Anisotropic: ±2% or ±0.3mm of standard dimension∗1
±0.1mm
Inner
diameter b
No grinding
Anisotropic: ±2% or ±0.3mm of standard dimension∗1
±0.1mm
Anisotropic: ±0.1mm of standard dimension∗2
—
Thickness
(Height) c
øa
: Grinding
W/WH TYPE
Shape
c
b
a
Item
Standard
process
General dimensional tolerances in the standard
process
Dimensional tolerances
after grinding∗2
Length a/
Width b
No grinding
Anisotropic: ±2% or ±0.3mm of standard dimension∗1
±0.1mm
Thickness
(Height) c
No grinding
Anisotropic: ±0.1mm of standard dimension∗2
—
∗1
The larger of the two values is applied.
values in a product with a standard size and shape.
• Values may differ from the above values depending on the size or shape; please contact us in each case concerning products with a size or shape other
than the above.
∗2 Reference
• All specifications are subject to change without notice.
004-01 / 20110601 / e321.fm