Ferrite Magnets FB series Issue date: June 2011 • All specifications are subject to change without notice. • Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications. FERRITE MAGNETS Introduction.................................................................................. 1 Anisotropic Materials (High Performance) FB12 Series (Wet-molded) ...................................................... 2 FB5D Series (Dry-molded) ...................................................... 2 FB13B, FB14H Series (Thin-type) ........................................... 3 Recommended Materials’ Table by Application........................... 4 Magnetic, Physical and Mechanical Characteristics.................... 5 Demagnetization Curves/Magnetic Characteristics Thin-type Materials FB13B............................................................................... 7 FB14H .............................................................................. 8 Wet-Anisotropic Materials FB12B............................................................................... 9 FB12H ............................................................................ 10 FB9N .............................................................................. 11 FB9B............................................................................... 12 FB9H .............................................................................. 13 FB6N .............................................................................. 14 FB6B............................................................................... 15 FB6H .............................................................................. 16 FB6E............................................................................... 17 FB5B............................................................................... 18 FB5H .............................................................................. 19 Dry-Anisotropic Materials FB5D .............................................................................. 20 FB5DH............................................................................ 21 FB3N .............................................................................. 22 FB3G .............................................................................. 23 Typical Shapes and Product Identifications............................... 24 Dimensional Tolerances ............................................................ 25 Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications. (1/25) Ferrite Magnets FB Series INTRODUCTION From the development of the FB1A material grade in 1959, TDK’s history of developing ferrite magnets has reflected with the progress of magnet application technology. Our technology departments faced many challenges, starting with the integration of physical properties, and including our efforts to reduce manufacturing costs by rationalizing our production lines and optimizing our material procurement practices to improve every product’s performance to impart a "differentiating factor" for the applied product. Our pride and our passion as the first company to make ferrite materials commercially available to the industrial world have been the driving force behind our efforts. Our rapid and unerring response to changing needs, as well as our aggressive involvement in the development of new markets, is the essence of our over 50 years of history in the field of ferrite magnet development. The fruits of our technological development and the unique expertise we have gained in this process are shared among the relevant divisions within the company. TDK has established an "in-market" service system for responding quickly to orders and requests for technical services when customers contact one of our production or service offices. In addition to delivering high-quality magnets with excellent characteristics, we also actively support our customers' efforts to reduce design time and to optimize their designs based on our abundant expertise in the field of magnetic circuitry design. • Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications. • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (2/25) HIGH PERFORMANCE ANISOTROPIC MATERIALS SERIES With new compositions and microstructures, these ferrite magnets deliver the best characteristics. MATERIAL CHARACTERISTICS DISTRIBUTION 500 High-performance FB13B thin-type anisotropic magnets High performance wet-anisotropic type 480 FB14H FB9N Residual flux density Br (mT, ×10G) 460 FB12B FB12H FB9B FB6N 440 420 FB6H FB5D 400 High performance wet-anisotropic type FB9H FB6B FB3N FB5DH 380 FB6E Thin-type anisotropic material Wet-anisotropic material Dry-anisotropic material FB3G 360 High performance dry-anisotropic type 340 200 2.5 250 3.0 300 3.5 350 400 4.0 4.5 5.0 Intrinsic coercive force H CJ 450 500 [kA/m] 6.0(kOe) 5.5 MAGNETIC CHARACTERISTICS Material Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) Thin-type anisotropic FB13B FB14H 475±10 470±10 4.75±0.1 4.70±0.1 340±20 355±20 4.27±0.25 4.46±0.25 380±20 430±20 4.77±0.25 5.40±0.25 44.0±1.6 43.1±1.6 5.5±0.2 5.4±0.2 Wet-anisotropic FB12B FB12H 470±10 460±10 4.70±0.1 4.60±0.1 340±12 345±15 4.27±0.15 4.33±0.19 380±12 430±15 4.77±0.15 5.40±0.19 43.1±1.6 41.4±1.6 5.4±0.2 5.2±0.2 Dry-anisotropic FB5D 415±10 4.15±0.1 254.6±12 3.20±0.15 262.6±16 3.30±0.2 32.6±1.6 4.1±0.2 FB5DH 400±10 4.00±0.1 278.6±12 3.5±0.15 318.3±16 4.00±0.2 30.3±1.6 3.8±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS HIGH PERFORMANCE WET-ANISOTROPIC MATERIALS FB12 SERIES(FB12B • FB12H) HIGH PERFORMANCE DRY-ANISOTROPIC MATERIALS FB5D SERIES(FB5D • FB5DH) FEATURES • This wet-molded anisotropic ferrite magnet has even greater superiority over the FB9 series and delivers the world's greatest magnetic force with an even further improved coercive force HCJ temperature coefficient. FEATURES • These dry-molded ferrite magnets deliver magnetic characteristics that rival wet-molded magnets. • These magnets can be made into small and complex shapes that are difficult to make as wet-molded magnets. • Their coercive force HCJ temperature coefficient is also superior. APPLICATIONS Electrical motors, actuators, appliance motors, medical equipment and other motors. APPLICATIONS Small motors for electric components, office computing and audiovisual equipment, household appliances and other motors. • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (3/25) HIGH PERFORMANCE THIN-TYPE ANISOTROPIC MATERIALS FB13B/FB14H SERIES TDK has established mass production technology for thin ferrite magnets, for which production was previously difficult, using its unique new method (NS1) while achieving the world's highest level in high-performance ferrite magnets. FB13B and FB14H are ferrite magnets that are suitable for size and weight reduction of motors. EXAMPLE OF MAGNETIC COERCIVE FORCE (HCJ) TEMPERATURE CHARACTERISTICS ACCORDING TO MATERIAL GRADE 450 400 HCJ(kA/m) FEATURES • Contribute to compact in and lighter weight motor design by realizing thin-shape magnet production (Magnet’s thickness: 1.0 to 2.5mm). • Excellent heat resistance, corrosion resistance, and ease of magnetization. • Further improvement of irreversible demagnetization durability at lower temperature with FB12 material basis(Higher coercive force HCJ , and excellent temperature coefficient of HCJ) . • Optimized grain orientation control improves the magnetic anisotropy to create ferrite magnets with the world’s highest performance. • Support for specially-shaped configurations allows greater design freedom. 350 300 FB6B FB9B FB12B, FB13B 250 200 –100 –50 0 50 100 Temperature(˚C) 150 200 APPLICATIONS Power windows, seat actuators, fuel pumps, other small motors and actuators APPLICATION EXAMPLES 1. AN EXAMPLE OF SIZE AND WEIGHT REDUCTION OF A BRUSHED MOTOR By adopting FB13B or FB14H in combination with a multipolar design of the motor in which the ferrite magnet is used, it will become possible to realize even further size and weight reduction of motors. 3. TAKING ADVANTAGE OF CONFIGURATION FREEDOM TO IMPROVE MICROMOTOR PERFORMANCE Nd-bonded magnets require coating when being applied in motors for which reliable thermal resistance and corrosion resistance are required. Conventional shape Motor diameter Motor volume Magnet wall 5.0 thickness Total magnet weight 65 Total magnet weight 100% ratio FB9B 2 poles ø37 86% FB13B 4 poles ø33.4 70% 3.5 1.9 47 26 72% 40% 2. REPLACING A NEODYMIUM MAGNET WITH A HIGHPERFORMANCE THIN-TYPE ANISOTROPIC FERRITE MAGNET(FB13B, FB14H) By adopting FB13B or FB14H, coating will be rendered unnecessary, allowing for easy magnetization after mounting. Neodymium bond magnet Magnet Rotor Rotor 1.2 Starting torque(compared to FB5D) FB6B 2 poles ø40 100% Wide-arc shape Magnet 1.15 1.1 1.05 1 0.95 0.9 FB5D FB13B Conventional shape Conventional shape FB13B Wide-arc shape Neodymium bond magnet Conventional shape FB13B High-performance thin-shape The benefits of ferrite magnet substitution C-type magnet (thickness: 1.1 mm) Excellent ・Heat resistance ・Corrosion resistance ・Ease of magnetization C-type magnet (thickness: 2.0 mm) Housing • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (4/25) RECOMMENDED MATERIALS’ TABLE BY APPLICATION(TYPICAL) AUTOMOTIVE, MOTOR-CYCLE Application Application product and function Motor Fuel pump Power wind lift motor Motors for brake systems Blower Cooling fan motors Window shield wiper Power steering Active suspension Starter Door lock Mirror actuator Electronic throttle motor Power seats Starter generators for two-wheeled vehicles Current sensors, etc. Generator Sensor Others Materials Magnet’s shape C C C C C C C C C C C C C C W,C,D C FB series Materials Magnet’s shape C C C FB series Materials Magnet’s shape C C C C C C C C C C C FB series FB series 14H 13B 12B 12H 9N 9B 9H 5D 5DH 12B 12H 9N 9B 9H 5D 5DH 12B 12H 9N 9B 9H 5D 5DH 12B 12H 9N 9B 9H 5D 5DH OA EQUIPMENT Application Application product and function Printer Paper feeding Head actuator Focusing motors for camera Projector 14H 13B HOME APPLIANCE Application Application product and function Air conditioner Compressor Fan Main drive Water supply pumps Compressor Fan Drive motor Fan Drive motor Drive motor Drive motor Washing machine Refrigerator Air filer Mixer Hair dryer Shaver Electric tool Various pumps 14H 13B MEDICAL/HEALTH CARE EQUIPMENT Application Application product and function Medical equipment Analysis equipment Magnetic health care equipment Dental instruments, Medical pump Pump unit Materials Magnet’s shape C C Electric bed motors C 14H 13B • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (5/25) MAGNETIC, PHYSICAL AND MECHANICAL CHARACTERISTICS WET-ANISOTROPIC MATERIALS Material Composition Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max Recoil permeability µrec Temperature coefficient of Br ∆ Br/Br/∆ T Curie temperature Tc Coefficient of thermal expansion ∆ L/L/∆ T C//∗ C⊥ ∗ Specific heat Density Deflection strength Compressive strength Tensile strength Material Composition Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max Recoil permeability µrec Temperature coefficient of Br ∆ Br/Br/∆ T Curie temperature Tc Coefficient of thermal expansion ∆ L/L/∆ T Specific heat Density Deflection strength Compressive strength Tensile strength C//∗ C⊥ ∗ [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) FB13B SrO6Fe2O3 475±10 4.75±0.1 340±20 4.27±0.25 380±20 4.77±0.25 44.0±1.6 5.5±0.2 FB14H SrO6Fe2O3 470±10 4.70±0.1 355±20 4.46±0.25 430±20 5.40±0.25 43.1±1.6 5.4±0.2 FB12B SrO6Fe2O3 470±10 4.7±0.1 340±12 4.3±0.15 380±12 4.8±0.15 43.1±1.6 5.4±0.2 FB12H SrO6Fe2O3 460±10 4.6±0.1 345±15 4.3±0.19 430±15 5.4±0.19 41.4±1.6 5.2±0.2 FB9N SrO6Fe2O3 460±10 4.6±0.1 278.5±12 3.5±0.15 286.5±12 3.6±0.15 40.4±1.6 5.1±0.2 1.05 to 1.1 1.05 to 1.1 1.05 to 1.1 1.05 to 1.1 1.05 to 1.1 [%/K] (%/°C) [K] (°C) [1/K](1/°C) [1/K](1/°C) [J/kg • K] (cal/g • °C) [kg/m3] (g/cm3) [N/m2] (kgf/mm2) [N/m2] (kgf/mm2) [N/m2] (kgf/mm2) –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 5.07 to 5.17×103 5.07 to 5.17 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 5.02 to 5.12×103 5.02 to 5.12 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 5.07 to 5.17×103 5.07 to 5.17 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 5.02 to 5.12×103 5.02 to 5.12 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 5.0 to 5.1×103 5.0 to 5.1 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) FB9B SrO6Fe2O3 450±10 4.5±0.1 342.2±12 4.3±0.15 358.1±12 4.5±0.15 38.6±1.6 4.9±0.2 FB9H SrO6Fe2O3 430±10 4.3±0.1 330.2±12 4.15±0.15 397.1±12 5.0±0.15 35.0±1.6 4.4±0.2 FB6N SrO6Fe2O3 440±10 4.4±0.1 258.6±12 3.25±0.15 262.6±12 3.3±0.15 36.7±1.6 4.6±0.2 FB6B SrO6Fe2O3 420±10 4.2±0.1 302.4±12 3.8±0.15 318.3±12 4.0±0.15 33.4±1.6 4.2±0.2 FB6H SrO6Fe2O3 400±10 4.0±0.1 302.4±12 3.8±0.15 358.1±12 4.5±0.15 30.3±1.6 3.8±0.2 1.05 to 1.1 1.05 to 1.1 1.05 to 1.1 1.05 to 1.1 1.05 to 1.1 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 4.95 to 5.05×103 4.95 to 5.05 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 4.9 to 5.0×103 4.9 to 5.0 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 4.9 to 5.0×103 4.9 to 5.0 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 4.9 to 5.0×103 4.9 to 5.0 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 4.9 to 5.0×103 4.9 to 5.0 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 [%/K] (%/°C) [K] (°C) [1/K](1/°C) [1/K](1/°C) [J/kg • K] (cal/g • °C) [kg/m3] (g/cm3) [N/m2] (kgf/mm2) [N/m2] (kgf/mm2) [N/m2] (kgf/mm2) ∗ C//: Measured values in the direction of the easy axis of magnetization C⊥ : Measured values in the perpendicular direction to the easy axis of magnetization • [ ]: in the unit of SI, ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (6/25) WET-ANISOTROPIC MATERIALS Material Composition Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max Recoil permeability µrec Temperature coefficient of Br ∆ Br/Br/∆ T Curie temperature Tc Coefficient of thermal expansion ∆ L/L/∆ T C//∗ C⊥ ∗ Specific heat Density Deflection strength Compressive strength Tensile strength [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) [%/K] (%/°C) [K] (°C) [1/K](1/°C) [1/K](1/°C) [J/kg • K] (cal/g • °C) [kg/m3] (g/cm3) [N/m2] (kgf/mm2) [N/m2] (kgf/mm2) [N/m2] (kgf/mm2) FB6E SrO6Fe2O3 380±10 3.8±0.1 290.5±12 3.65±0.15 393.9±12 4.95±0.15 27.5±1.6 3.45±0.2 FB5B SrO6Fe2O3 420±10 4.2±0.1 262.6±12 3.3±0.15 266.6±12 3.35±0.15 33.4±1.6 4.2±0.2 FB5H SrO6Fe2O3 405±10 4.05±0.1 298.4±12 3.75±0.15 322.3±12 4.05±0.15 31.1±1.6 3.9±0.2 1.05 to 1.1 1.05 to 1.1 1.05 to 1.1 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 4.9 to 5.0×103 4.9 to 5.0 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 4.9 to 5.0×103 4.9 to 5.0 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 10×10–6 837 0.2 4.85 to 4.95×103 4.85 to 4.95 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 DRY-ANISOTROPIC AND DRY-ISOTROPIC MATERIALS Material Composition Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max Recoil permeability µrec Temperature coefficient of Br ∆ Br/Br/∆ T Curie temperature Tc Coefficient of thermal expansion ∆ L/L/∆ T Specific heat Density Deflection strength Compressive strength Tensile strength C//∗ C⊥ ∗ [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) [%/K] (%/°C) [K] (°C) [1/K](1/°C) [1/K](1/°C) [J/kg • K] (cal/g • °C) [kg/m3] (g/cm3) [N/m2] (kgf/mm2) [N/m2] (kgf/mm2) [N/m2] (kgf/mm2) FB5D SrO6Fe2O3 415±10 4.15±0.1 254.6±12 3.2±0.15 262.6±16 3.3±0.2 32.6±1.6 4.1±0.2 FB5DH SrO6Fe2O3 400±10 4.00±0.1 278.6±12 3.5±0.15 318.3±16 4.0±0.2 30.3±1.6 3.8±0.2 FB3N SrO6Fe2O3 395±15 3.95±0.15 234.8±12 2.95±0.15 238.7±16 3.0±0.2 28.7±2.4 3.6±0.3 FB3G SrO6Fe2O3 375±15 3.75±0.15 254.6±16 3.2±0.2 270.6±16 3.4±0.25 25.9±2.4 3.25±0.3 1.05 to 1.10 1.05 to 1.10 1.1 to 1.2 1.1 to 1.2 –0.18 –0.18 733 460 15×10–6 9×10–6 837 0.2 5.0 to 5.1×103 5.0 to 5.1 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 9×10–6 837 0.2 5.0 to 5.1×103 5.0 to 5.1 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 9×10–6 837 0.2 4.7 to 4.9×103 4.7 to 4.9 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 –0.18 –0.18 733 460 15×10–6 9×10–6 837 0.2 4.6 to 4.9×103 4.6 to 4.9 0.5 to 0.9×108 5 to 9 >6.9×108 >70 0.2 to 0.5×108 2 to 5 ∗ C//: Measured values in the direction of the easy axis of magnetization C⊥ : Measured values in the perpendicular direction to the easy axis of magnetization • [ ]: in the unit of SI, ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (7/25) DEMAGNETIZATION CURVES/MAGNETIC CHARACTERISTICS THIN-TYPE MATERIAL FB13B DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT ] 1.5 (kG) 1.0 – 60˚C B-H Curve J-H Curve –20˚C 5 0.7 500 20˚C 60˚C 100˚C 4 400 3 300 2 200 1 100 0 0 B, J 0.5 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 475±10 4.75±0.1 340±20 4.27±0.25 380±20 4.77±0.25 44.0±1.6 5.5±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (8/25) THIN-TYPE MATERIAL FB14H DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT ] 1.5 (kG) 1.0 – 60˚C B-H Curve J-H Curve –20˚C 5 0.7 500 20˚C 60˚C 100˚C 4 400 3 300 2 200 1 100 0 0 B, J 0.5 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 470±10 4.70±0.1 355±20 4.46±0.25 430±20 5.40±0.25 43.1±1.6 5.4±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (9/25) WET-ANISOTROPIC MATERIAL FB12B DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT ] 1.5 (kG) 1.0 – 60˚C B-H Curve J-H Curve –20˚C 5 0.7 500 20˚C 60˚C 100˚C 4 400 3 300 2 200 1 100 0 0 B, J 0.5 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 470±10 4.7±0.1 340±12 4.3±0.15 380±12 4.8±0.15 43.1±1.6 5.4±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (10/25) WET-ANISOTROPIC MATERIAL FB12H DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 B-H Curve J-H Curve [mT ] 1.5 (kG) 1.0 – 60˚C 5 –20˚C 500 0.7 20˚C 60˚C 4 400 100˚C 0.5 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 460±10 4.6±0.1 345±15 4.3±0.19 430±15 5.4±0.19 41.4±1.6 5.2±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (11/25) WET-ANISOTROPIC MATERIAL FB9N DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 B-H Curve J-H Curve [mT ] 1.5 (kG) 1.0 – 60˚C 5 –20˚C 500 0.7 20˚C 60˚C 4 400 100˚C 0.5 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max • [ ]: in the unit of SI ( ): in the unit of CGS [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 460±10 4.60±0.1 278.5±12 3.5±0.15 286.5±12 3.6±0.15 40.4±1.6 5.1±0.2 • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (12/25) WET-ANISOTROPIC MATERIAL FB9B DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 B-H Curve J-H Curve [mT ] 1.5 (kG) 1.0 – 60˚C 5 500 –20˚C 0.7 20˚C 60˚C 4 400 100˚C 0.5 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 450±10 4.50±0.1 342.2±12 4.3±0.15 358.1±12 4.5±0.15 38.6±1.6 4.9±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (13/25) WET-ANISOTROPIC MATERIAL FB9H DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT ] 1.5 (kG) 1.0 5 500 B-H Curve J-H Curve – 60˚C 0.7 –20˚C 20˚C 60˚C 4 400 100˚C 0.5 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 430±10 4.30±0.1 330.2±12 4.15±0.15 397.9±12 5.0±0.15 35.0±1.6 4.4±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (14/25) WET-ANISOTROPIC MATERIAL FB6N DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 B-H Curve J-H Curve [mT ] 1.5 (kG) 1.0 – 60˚C 5 500 –20˚C 0.7 20˚C 60˚C 4 400 100˚C 0.5 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 FEATURES • FB6N has high Br-value and fits downsized high-performance motors or generators. MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 440±10 4.4±0.1 258.6±12 3.25±0.15 262.6±12 3.3±0.15 36.7±1.6 4.6±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (15/25) WET-ANISOTROPIC MATERIAL FB6B DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT] 1.5 (kG) 1.0 5 500 B-H Curve J-H Curve – 60˚C 0.7 –20˚C 20˚C 4 400 60˚C 100˚C 0.5 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 FEATURES • FB6B is high Br with high Hc, and fits power motors which are required strong resistance to demagnetization. MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 420±10 4.2±0.1 302.4±12 3.8±0.15 318.3±12 4.0±0.15 33.4±1.6 4.2±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (16/25) WET-ANISOTROPIC MATERIAL FB6H DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT ] 1.5 (kG) 1.0 5 500 B-H Curve J-H Curve 0.7 – 60˚C –20˚C 20˚C 400 60˚C 0.5 100˚C 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 FEATURES • FB6H is high Br with high Hc, and fits starter motors of automotive and motor cycle which are required strong resistance to demagnetization. MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 400±10 4.0±0.1 302.4±12 3.8±0.15 358.1±12 4.5±0.15 30.3±1.6 3.8±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (17/25) WET-ANISOTROPIC MATERIAL FB6E DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT ] 1.5 (kG) 1.0 5 500 B-H Curve J-H Curve 0.7 – 60˚C –20˚C 400 20˚C 60˚C 0.5 100˚C 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 FEATURES • FB6E has high HCJ, and fits starter motors of automotive and motor cycle which are required strong resistance to demagnetization. MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 380±10 3.8±0.1 290.5±12 3.65±0.15 393.9±12 4.95±0.15 27.5±1.6 3.45±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (18/25) WET-ANISOTROPIC MATERIAL FB5B DEMAGNETIZATION CURVE 3.0 5.0 [mT ] – B/H 2.0 1.5 (kG) 1.0 5 500 B-H Curve J-H Curve – 60˚C 0.7 –20˚C 20˚C 4 400 60˚C 100˚C 0.5 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 FEATURES • FB5B is high cost-performance material with high Br- and relatively high HCJ-values, which fits a wide variety of motor applications. MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 420±10 4.2±0.1 262.6±12 3.3±0.15 266.6±12 3.35±0.15 33.4±1.6 4.2±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (19/25) WET-ANISOTROPIC MATERIAL FB5H DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT ] 1.5 (kG) 1.0 5 500 B-H Curve J-H Curve 0.7 – 60˚C –20˚C 20˚C 4 400 60˚C 100˚C 3 300 2 200 1 100 0 0 B, J 0.5 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 FEATURES • FB5H is high cost-performance material with high Br- and relatively high HCJ-values, which fits power motors with strong demagnetization resistance. MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 405±10 4.05±0.1 298.4±12 3.75±0.15 322.3±12 4.05±0.15 31.1±1.6 3.9±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (20/25) DRY-ANISOTROPIC MATERIAL FB5D DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT ] 1.5 (kG) 1.0 5 500 B-H Curve J-H Curve – 60˚C 0.7 –20˚C 20˚C 4 400 60˚C 100˚C 0.5 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 FEATURES • Magnetic characteristics that rival wet-molded magnets. • HCJ temperature characteristics have improved by 30%. • Supports small sizes and complex shapes. MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 415±10 4.15±0.1 254.6±12 3.2±0.15 262.6±20 3.3±0.2 32.6±1.6 4.1±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (21/25) DRY-ANISOTROPIC MATERIAL FB5DH DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT ] 1.5 (kG) 1.0 5 500 B-H Curve J-H Curve 0.7 – 60˚C –20˚C 20˚C 4 400 60˚C 0.5 100˚C 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 400±10 4.00±0.1 278.6±11.9 3.5±0.15 318.3±15.9 4.0±0.2 30.3±1.6 3.8±0.2 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (22/25) DRY-ANISOTROPIC MATERIAL FB3N DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT ] 1.5 (kG) 1.0 5 500 B-H Curve J-H Curve 0.7 – 60˚C –20˚C 20˚C 400 60˚C 0.5 100˚C 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 FEATURES • FB3N is high Br dry-molded material with high HCJ-value, and fits various kinds of applications, which require small and complex shaped magnets with high performance. MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 395±15 3.95±0.15 234.8±12 2.95±0.15 238.7±16 3.0±0.2 28.7±2.4 3.6±0.3 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (23/25) DRY-ANISOTROPIC MATERIAL FB3G DEMAGNETIZATION CURVE – B/H 2.0 3.0 5.0 [mT ] 1.5 (kG) 1.0 5 500 B-H Curve J-H Curve 0.7 – 60˚C –20˚C 400 20˚C 60˚C 0.5 100˚C 300 2 200 1 100 0 0 B, J 3 0.3 (BH) max [kJ/m3 ] 50 40 30 20 10 (kOe) [kA/m] 6 5 450 400 4 350 3 300 250 –H 2 200 150 0 1 100 50 0 FEATURES • These dry molded magnets with high Hc values and reduced low-temperature demagnetization deliver excellent characteristics in applications with large demagnetizing fields. MAGNETIC CHARACTERISTICS Residual flux density Br Coercive force HCB Intrinsic coercive force HCJ Maximum energy product (BH)max [mT] (kG) [kA/m] (kOe) [kA/m] (kOe) [kJ/m3] (MGOe) 375±15 3.75±0.15 254.6±16 3.2±0.2 270.6±20 3.4±0.25 25.9±2.4 3.25±0.3 • [ ]: in the unit of SI ( ): in the unit of CGS • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (24/25) TYPICAL SHAPES AND PRODUCT IDENTIFICATIONS We offer support for products with unusual and complex shapes, as well as for smaller or larger products in addition to the six standard shapes shown in the list. Please contact us for details. PRODUCT IDENTIFICATIONS An example of a basic item FB9B C 38×30×40 S (1) (2) (3) (4) (1) Material name (2) Shape (3) Size (4) TDK internal code An example of special items which have an "S" or other alphabetical letters added in front of the shape code (2). Example FB9BC38×30×40S Shape Condition to determine "Shape" code Arc Anisotropic product: Magnetization direction c (Horizontally orientated) Dimensional condition Shape code Expression method C Ce×f×b — a d c øf øe b Anisotropic product: Magnetization direction Radial (Radial orientated) — Anisotropic product: Magnetization direction b — D Da×b Anisotropic product: Magnetization direction c — DH DHa×b×c Anisotropic product: Magnetization direction a — RH RHa×b×c Anisotropic product: Magnetization direction c a b W Wa×b×c Anisotropic product: Magnetization direction c a b WH WHa×b×c Cylindrical/Disk b øa Ring/Disk with hole øb c øa Block c a b Block with hole ød c b a (Dry material) • Shape codes for products of similar shapes are denoted by the direction of magnetization for anisotropic products. : Magnetization direction : Compression direction • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm (25/25) DIMENSIONAL TOLERANCES Ferrite magnets contract by 40 to 50% in volume during the main baking process. To ensure a high degree of dimensional accuracy, we have optimized the manufacturing conditions in all of our processes, from raw material acceptance to baking, and have also implemented a stringent process management system. Even so, the contraction rates of individual products may vary. Therefore, if a baked product does not satisfy our standard dimensional tolerances, it undergoes a grinding process at the final stage of the standard process to ensure that all products meet our standards. We can also meet our customers’ demands for high-precision products by applying various grinding processes in addition to our standard grinding process. However, because ferrite magnet grinding involves the use of expensive grinding tools such as diamond grinders, products with dimensional specifications that exceed our standard dimensional tolerances will cost more. If you are seeking to reduce the development cost of your applied product, we recommend that you adopt the general dimensional tolerances of the standard process as the standard for your design. C TYPE (Anisotropic, arc type) Shape d c Item Standard process General dimensional tolerances in the standard process Dimensional tolerances after grinding∗2 Width a No grinding ±2% or ±0.3mm of standard dimension∗1 ±0.2mm Length b No grinding ±2% or ±0.3mm of standard dimension∗1 ±0.2mm ±0.15mm of standard dimension∗2 — ±0.3mm of standard dimension∗2 — ±0.1mm of standard dimension∗2 — ±0.1mm of standard dimension∗2 — a f e Thickness c b Height d : Grinding Outer diameter e (Radius) Inner diameter f (Radius) D TYPE Shape Item Standard process General dimensional tolerances in the standard process Dimensional tolerances after grinding∗2 Diameter a No grinding Anisotropic: ±2% or ±0.3mm of standard dimension ∗1 ±0.1mm Anisotropic: ±0.1mm of standard dimension∗2 — b Thickness (Height) b øa : Grinding DH/RH TYPE Shape øb c Item Standard process General dimensional tolerances in the standard process Dimensional tolerances after grinding∗2 Outer diameter a No grinding Anisotropic: ±2% or ±0.3mm of standard dimension∗1 ±0.1mm Inner diameter b No grinding Anisotropic: ±2% or ±0.3mm of standard dimension∗1 ±0.1mm Anisotropic: ±0.1mm of standard dimension∗2 — Thickness (Height) c øa : Grinding W/WH TYPE Shape c b a Item Standard process General dimensional tolerances in the standard process Dimensional tolerances after grinding∗2 Length a/ Width b No grinding Anisotropic: ±2% or ±0.3mm of standard dimension∗1 ±0.1mm Thickness (Height) c No grinding Anisotropic: ±0.1mm of standard dimension∗2 — ∗1 The larger of the two values is applied. values in a product with a standard size and shape. • Values may differ from the above values depending on the size or shape; please contact us in each case concerning products with a size or shape other than the above. ∗2 Reference • All specifications are subject to change without notice. 004-01 / 20110601 / e321.fm