10-FY07BIA041MF-M528E68 DC Boost Application

10-FY07BIA041MF-M528E68
preliminary datasheet
DC Boost Application
flowSOL 1 BI
650V / 41mOhm
General conditions
BOOST
=
=
=
=
VGEon
VGEoff
Rgon
Rgoff
Figure 1.
MOSFET
10 V
0V
2Ω
2Ω
Figure 2.
Typical average static loss as a function of
input current IiRMS
Ploss=f(Iin)
FRED
Typical average static loss as a function of
input current IiRMS
Ploss=f(Iin)
100
Ploss (W)
100
Ploss (W)
Vin/Vout=0,2
80
80
Vin/Vout=1
60
60
40
40
20
20
Vin/Vout=0,2
Vin/Vout=1
0
0
0
10
20
30
40
50
0
10
20
30
40
Iin (A)
125
°C
Conditions:
Tj=
Ratio of input DC voltage to output DC voltage
parameter:
Vin/Vout
from
in
50
Iin (A)
Conditions:
Tj=
125
°C
Ratio of input DC voltage to output DC voltage
0,2
0,2
to
steps
1,0
Figure 3.
parameter:
Vin/Vout
from
in
0,2
0,2
to
steps
1,0
Figure 4.
MOSFET
Typical average switching loss as a function of
input current
Ploss=f(Iin)
FRED
Typical average switching loss as a function of
input current
Ploss=f(Iin)
Ploss (W)
60
Ploss (W)
60
fsw="to" kHz
fsw="to" kHz
50
50
40
40
30
30
20
20
10
10
fsw="from" kHz
fsw="from" kHz
0
0
0
10
20
30
40
50
0
10
20
30
40
Conditions:
Sw. freq.
Tj=
125
350
Vout =
fsw from
16
in steps of factor 2
copyright by Vincotech
°C
V
Conditions:
kHz to
128
50
Iin (A)
Iin (A)
kHz
Sw. freq.
1
Tj=
125
Vout =
350
fsw from
16
in steps of factor 2
°C
V
kHz to
128
kHz
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
DC Boost Application
flowSOL 1 BI
Figure 5.
per PHASE
650V / 41mOhm
Figure 6.
Typical available input current as a function of
Vin/Vout
Iin=f(Vin/Vout)
per PHASE
Typical available input current as a function of
switching frequency
Iin=f(fsw)
40
Iin (A)
Iin (A)
50
40
30
Th=60°C
30
Th=60°C
20
20
Th=100°C
Th=100°C
10
10
0
0
0,0
0,2
0,4
0,6
0,8
1,0
1
10
100
1000
Vin/Vout
Conditions:
DC link=
parameter:
Tj= 125°C
V
350
Heatsink temp.
Th from
in
fsw=
20
fsw (kHz)
Conditions:
DC link=
kHz
parameter:
60
10
°C to
°C
100
steps
Figure 7.
°C
per PHASE
350
Tj= 125°C
V
Heatsink temp.
Th from
in
Vin
60
10
°C to
°C
250
V
100
steps
°C
Figure 8.
per PHASE
Typical available input current as a function of
Typical available electric input power as a function
fsw and Vin/Vout
Iin=f(fsw,Vin/Vout)
of heatsink temperature
Pin=f(Th)
0,10
Iin (A)
Pin (kW)
Vin/Vout
0,20
8
0,30
6
"from" kHz
32,0-36,0
0,40
28,0-32,0
0,50
24,0-28,0
4
20,0-24,0
to" kHz
0,60
16,0-20,0
12,0-16,0
0,70
2
8,0-12,0
0,80
8
16
32
64
128
0,90
256
0
60
70
80
90
Conditions:
Tj= 125°C
DC link=
Th=
copyright by Vincotech
100
Th (oC)
fsw (kHz)
Conditions:
Vin
Sw. freq.
350 V
80 °C
2
Tj= 125°C
250 V
fsw from
16
DC link=
kHz to
350 V
128
kHz
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
DC Boost Application
flowSOL 1 BI
Figure 9.
650V / 41mOhm
per PHASE
Typical efficiency as a function of
input power
η=f(Pin)
efficiency (%)
100
"from" kHz
99
98
"to" kHz
97
96
0
2
4
6
8
10
12
Pin (kW)
Conditions:
Vin
parameter:
Sw. freq.
Tj= 125°C
250 V
fsw from
copyright by Vincotech
16
DC link=
350 V
kHz to
128 kHz
3
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Output Inverter Application
flowSOL 1 BI
650V / 41mOhm
General conditions
H Bridge SPWM
VGEon = 10 V
VGEoff = 0 V
Rgon = 2 Ω
Rgoff = 2 Ω
MOSFET
Figure 1
Ploss = f(Iout)
30
Ploss (W)
40
Ploss (W)
FWD
Figure 2
Typical average static loss as a function of output current
Ploss = f(Iout)
35
Voutpk/Vin*
cosfi=1
30
Voutpk/Vin*
cosfi=-1
25
20
25
15
20
15
10
10
5
5
Voutpk/Vin*
cosfi=1
Voutpk/Vin*
cosfi=-1
0
0
0
5
10
15
20
25
30
0
35
5
10
15
20
25
Iout (A)
At
Tj =
125
At
Tj =
°C
125
°C
Mi*cosfi from -1 to 1 in steps of 0,2
MOSFET
Figure 3
Typical average switching loss
as a function of output current
FWD
Figure 4
Typical average switching loss
as a function of output current
Ploss = f(Iout)
10
Ploss = f(Iout)
10
Ploss (W)
Ploss (W)
35
Iout (A)
Mi*cosfi from -1 to 1 in steps of 0,2
fsw="to"kHz
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
0
5
10
15
20
25
fsw="to" kHz
1
fsw="from" kHz
0
30
fsw="from" kHz
0
35
0
5
10
15
20
Iout (A)
At
Tj =
30
125
At
Tj =
°C
DC link = 350
V
fsw from 8 kHz to 64 kHz in steps of factor 2
copyright by Vincotech
125
25
30
Iout (A)
35
°C
DC link = 350
V
fsw from 8 kHz to 64 kHz in steps of factor 2
4
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Output Inverter Application
flowSOL 1 BI
Phase
Figure 5
Typical available 50Hz output current
as a function Mi*cosfi
Typical available 50Hz output current
as a function of switching frequency
Iout = f(Mi*cosfi)
Iout (A)
Iout (A)
Phase
Figure 6
70
60
650V / 41mOhm
Th=60°C
Iout = f(fsw)
60
Th=60°C
50
50
40
40
30
Th=100°C
Th=100°C
30
20
20
10
10
0
-1,0
-0,6
-0,2
0,2
0,6
0
1,0
1
10
100
Voutpk/Vin*cosfi
At
Tj =
At
Tj =
°C
125
1000
fsw (kHz)
DC link = 350
V
fsw =
16
kHz
Th from 60 °C to 100 °C in steps of 5 °C
125
°C
DC link = 350
V
Mi*cosfi = 1
Th from 60 °C to 100 °C in steps of 5 °C
Phase
Figure 7
-0,60
70
Iout (A)
-0,80
Iout (A)
Typical available output current
as a function of switching frequency
Iout=f(fsw)
Voutpk/Vin*cosfi
-1,00
Phase
Figure 8
Typical available 50Hz output current
as a function of Voutpk/Vin*cosfi and switching frequency
Iout=f(fsw,Mi*cosfi)
Th=60°C
60
50
-0,40
50,0-55,0
45,0-50,0
-0,20
40
40,0-45,0
35,0-40,0
0,00
Th=100°C
30,0-35,0
25,0-30,0
30
0,20
20,0-25,0
15,0-20,0
0,40
20
10,0-15,0
5,0-10,0
0,60
0,0-5,0
10
0,80
4
8
16
32
64
1,00
128
0
1
10
fsw (kHz)
100
1000
fsw (kHz)
At
Tj =
125
°C
At
Tj =
125
°C
DC link =
Th =
350
80
V
°C
DC link =
Mi*cosfi =
350
0
V
Th from 60 °C to 100 °C in steps of 5 °C
copyright by Vincotech
5
Revision: 1
10-FY07BIA041MF-M528E68
preliminary datasheet
Output Inverter Application
flowSOL 1 BI
Inverter
Figure 9
Inverter
Figure 10
Typical available peak output power as a function of
Pout=f(Th)
heatsink temperature
Typical efficiency as a function of output power
efficiency=f(Pout)
100,0
efficiency (%)
14
Pout (kW)
650V / 41mOhm
12
99,5
"from" kHz
99,0
10
"to" kHz
98,5
8
98,0
"from" kHz
6
97,5
"to" kHz
4
97,0
2
96,5
96,0
0
60
70
80
90
0
100
1
2
3
4
Th (oC)
At
Tj =
125
6
7
8
Pout (kW)
At
Tj =
°C
DC link = 350
V
Mi =
1
cosfi =
1
fsw from 8 kHz to 64 kHz in steps of factor 2
copyright by Vincotech
5
125
°C
DC link = 350
V
Mi =
1
cosfi =
1
fsw from 8 kHz to 64 kHz in steps of factor 2
6
Revision: 1