10-F006PPA006SB-M682B preliminary datasheet Output Inverter Application flowPIM0+PFC 2nd 600V/6A General conditions 3phase SPWM VGEon = 15 V VGEoff = -15 V Rgon = 64 Ω Rgoff = 64 Ω IGBT Figure 1 FWD Figure 2 Typical average static loss as a function of output current Ploss = f(Iout) Typical average static loss as a function of output current Ploss = f(Iout) Ploss (W) 16 Ploss (W) 25 Mi*cosfi = 1 14 Mi*cosf i= -1 20 12 10 15 8 10 6 4 5 2 Mi*cosfi = 1 Mi*cosfi = -1 0 0 0 At Tj = 2 4 6 8 10 12 14 Iout (A) 0 16 At Tj = °C 125 Mi*cosφ from -1 to 1 in steps of 0,2 2 4 125 6 8 10 12 14 Iout (A) 16 °C Mi*cosφ from -1 to 1 in steps of 0,2 IGBT Figure 3 Typical average switching loss as a function of output current Typical average switching loss as a function of output current Ploss = f(Iout) Ploss (W) 10 Ploss (W) FWD Figure 4 fsw = 16kHz Ploss = f(Iout) 3,0 2,5 fsw = 16kHz 8 2,0 6 1,5 4 1,0 2 0,5 fsw = 2kHz fsw = 2kHz 0 0,0 0 2 4 6 8 10 12 14 16 0 Iout (A) At Tj = 125 DC link = fsw from 400 V 2 kHz to 16 kHz in steps of factor 2 copyright by Vincotech °C 1 2 4 6 8 10 At Tj = 125 DC link = fsw from 400 V 2 kHz to 16 kHz in steps of factor 2 12 14 Iout (A) 16 °C Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Output Inverter Application flowPIM0+PFC 2nd Phase Figure 5 Typical available 50Hz output current as a function Mi*cosφ 600V/6A Phase Figure 6 Typical available 50Hz output current as a function of switching frequency Iout = f(Mi*cos φ) 10 Iout = f(fsw) Iout (A) Iout (A) 10 Th = 60°C Th = 60°C 8 8 Th = 100°C Th = 100°C 6 6 4 4 2 2 0 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 At Tj = 125 DC link = fsw = Th from 400 V 4 kHz 60 °C to 100 °C in steps of 5 °C 0,4 0,6 0 0,8 1,0 Mi*cos φ 1 At Tj = °C 125 fsw (kHz) 100 °C DC link = 400 V Mi*cos φ = 0,8 Th from 60 °C to 100 °C in steps of 5 °C Phase Figure 7 Typical available 0Hz output current as a function Ioutpeak = f(fsw) of switching frequency -1,0 Iout (Apeak) 10 -0,6 6,5-7,0 Mi*cosfi -0,8 Iout (A) Phase Figure 8 Typical available 50Hz output current as a function of Iout = f(fsw, Mi*cos φ) Mi*cos φ and switching frequency 6,0-6,5 10 Th = 60°C 8 -0,4 -0,2 7,0-7,5 6 0,0 7,5-8,0 Th = 100°C 0,2 4 0,4 8,0-8,5 0,6 2 0,8 1,0 1 2 4 8 16fsw (kHz) 32 0 64 1 10 At Tj = 125 °C At Tj = 125 DC link = Th = 400 80 V °C DC link = Th from 400 V 60 °C to 100 °C in steps of 5 °C Mi = 0 copyright by Vincotech 2 fsw (kHz) 100 °C Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Output Inverter Application flowPIM0+PFC 2nd Inverter Figure 9 Inverter Figure 10 Typical efficiency as a function of output power efficiency=f(Pout) efficiency (%) Typical available peak output power as a function of Pout=f(Th) heatsink temperature Pout (kW) 600V/6A 3,0 2kHz 2,5 100 99 16kHz 2kHz 2,0 98 1,5 97 1,0 16kHz 96 0,5 95 0,0 60 70 80 90 At Tj = 125 DC link = Mi = cos φ= fsw from 400 V 1 0,80 2 kHz to 16 kHz in steps of factor 2 0 100 Th ( o C) 1 2 3 4 5 6 Pout (kW) °C At Tj = 125 DC link = Mi = cos φ= fsw from 400 V 1 0,80 2 kHz to 16 kHz in steps of factor 2 °C Inverter Figure 11 Overload (%) Typical available overload factor as a function of Ppeak / Pnom=f(Pnom,fsw) motor power and switching frequency 400 350 300 250 200 Switching frequency (kHz) 150 Motor nominal power (HP/kW) 100 0,75 / 0,55 1,00 / 0,74 1,50 / 1,10 2,00 / 1,47 3,00 / 2,21 5,00 / 3,68 1 399 300 200 150 0 0 2 399 300 200 150 0 0 4 399 300 200 150 0 0 8 399 300 200 150 0 0 16 399 300 200 150 0 0 At Tj = 125 °C DC link = Mi = 400 1 V cos φ= fsw from Th = 0,8 1 kHz to 16kHz in steps of factor 2 80 °C Motor eff = 0,85 copyright by Vincotech 3 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Boost PFC Application flowPIM0+PFC 2nd 600V/6A General conditions Boost PFC VGEon VGEoff Rgon Rgoff Vin = = = = = 10 V 0V 4Ω 4Ω Vinpk*sinωt MOSFET Figure 1 FWD Figure 2 Typical average static loss as a function of input current Ploss = f(Iin) Typical average static loss as a function of input current Ploss = f(Iin) 35 Ploss (W) Ploss (W) 90 Vinpk/Vout =0.1 75 30 Vinpk/Vout=1 25 60 20 45 15 30 10 15 5 Vinpk/Vout =0.1 Vinpk/Vout=1 0 0 0 At Tj = 2 4 6 8 10 12 14 Iin (A) 16 0 At Tj = °C 125 Vinpk / Vout from 0,1 to 1 in steps of 0,1 4 125 6 8 10 12 14 Iin (A) 16 °C Vinpk / Vout from 0,1 to 1 in steps of 0,1 MOSFET Figure 3 Typical average switching loss as a function of input current FWD Figure 4 Typical average switching loss as a function of input current Ploss = f(Iin) 30 Ploss = f(Iin) 15 Ploss (W) Ploss (W) 2 fsw=160kHz fsw=160kHz 25 12 20 9 15 6 10 3 5 fsw=20kHz fsw=20kHz 0 0 0 At Tj = 2 4 125 6 8 10 12 14 Iin (A) 0 16 4 6 8 10 12 14 16 Iin (A) At Tj = °C DC link = 400 V fsw from 20 kHz to 160 kHz in steps of factor 2 copyright by Vincotech 2 125 °C DC link = 400 V fsw from 20 kHz to 160 kHz in steps of factor 2 4 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Boost PFC Application flowPIM0+PFC 2nd PFC Figure 5 Typical available input current as a function of Vinpk / Vout PFC Figure 6 Typical available input current as a function of switching frequency Iin = f(Vinpk/Vout) Iin = f(fsw) 10 Iin (A) 10 Iin(A) 600V/6A Th=60°C Th=60°C 8 8 Th=100°C 6 6 4 4 Th=100°C 2 2 0 0,2 0,1 0,3 0,4 0,5 0,6 0,7 0,8 0 0,9 1,0 Vinpk/Vout 10 100 At Tj = 125 °C At Tj = 125 °C DC link = fsw = 400 20 V kHz DC link = 400 Vinpk/Vout = 0,8 V Th from 60 °C to 100 °C in steps of 5 °C PFC Typical available input current as a function of switching frequency 5,0-5,5 5,5-6,0 0,3 Iin(A) Vinpk/Vout 0,2 Iin = f(fsw) 10 0,1 Iin (A) PFC Figure 8 Typical available input current as a function of of Vinpk / Vout and switching frequency Iin = f(fsw, Vinpk/Vout) 4,5-5,0 1000 Th from 60 °C to 100 °C in steps of 5 °C Figure 7 4,0-4,5 fsw (kHz) Th=60°C 8 0,4 6 0,5 6,0-6,5 6,5-7,0 7,0-7,5 7,5-8,0 0,6 4 0,7 0,8 8,0-8,5 Th=100°C 2 0,9 10 20 40 80 160 1,0 320 0 fsw (kHz) 10 100 At Tj = 125 °C At Tj = 125 °C DC link = Th = 400 80 V °C DC link = 400 Vinpk/Vout = 0,4 V fsw (kHz) 1000 Th from 60 °C to 100 °C in steps of 5 °C copyright by Vincotech 5 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Boost PFC Application flowPIM0+PFC 2nd PFC Figure 9 600V/6A PFC Figure 10 Typical available electric input power as a function of Pin = f(Th) heatsink temperature Typical efficiency as a function of input power efficiency = f(Pin) 2,0 100 Pin (kW) efficiency (%) 20kHz 99 20kHz 1,5 160kHz 98 1,0 160kHz 97 0,5 96 0,0 95 60 At Tj = 70 125 DC link = 400 Vinpk/Vout = 0,8 80 90 Th ( o C) 100 0 1 °C At Tj = V kHz DC link = 400 Vinpk/Vout = 0,8 fsw from 20 kHz to 160 kHz in steps of factor 2 125 2 3 Pin (kW) 4 °C V kHz fsw from 20 kHz to 160 kHz in steps of factor 2 PFC Figure 11 PFC Figure 12 Typical available electric input power as a function of Pin = f(Th) heatsink temperature Typical efficiency as a function of input power efficiency = f(Pin) efficiency (%) 100 Pin (kW) 1,0 20kHz 0,8 98 20kHz 0,6 96 160kHz 160kHz 0,4 94 0,2 92 0,0 90 60 At Tj = 70 80 125 °C DC link = 400 Vinpk/Vout = 0,4 V 90 Th ( o C) 100 0,0 At Tj = fsw from 20 kHz to 160 kHz in steps of factor 2 copyright by Vincotech 0,2 0,4 0,6 125 °C DC link = 400 Vinpk/Vout = 0,4 V 0,8 1,0 1,2 1,4 1,6 Pin (kW) 1,8 fsw from 20 kHz to 160 kHz in steps of factor 2 6 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Boost PFC Application flowPIM0+PFC 2nd Rectifier Figure 13 600V/6A Rectifier Bridge Figure 14 Typical average static loss as a function of input current Ploss = f(Iin) Typical efficiency as a function of input power efficiency = f(Pin) 100,0 efficiency (%) Ploss (W) 8 99,5 Vinpk/Vout= 0,8 6 99,0 4 98,5 Vinpk/Vout= 0,4 98,0 2 97,5 0 97,0 0 2 At Tj = 4 6 8 10 12 14 Iin (A) 16 0 At Tj = °C 125 Overall Figure 15 125 2 Pin (kW) 4 °C Overall Typical efficiency as a function of input power efficiency = f(Pin) 100 efficiency (%) 100 99 98 96 98 160kHz 20kHz 94 97 92 96 160kHz 20kHz 90 95 88 94 0 At Tj = 3 Figure 16 Typical efficiency as a function of input power efficiency = f(Pin) efficiency (%) 1 1 125 DC link = 400 Vinpk/Vout = 0,8 2 3 Pin (kW) 0,0 4 0,4 0,6 °C At Tj = °C V kHz DC link = 400 Vinpk/Vout = 0,4 V kHz fsw from 20 kHz to 160 kHz in steps of factor 2 copyright by Vincotech 0,2 0,8 1,0 1,2 1,4 1,6 Pin (kW) 1,8 fsw from 20 kHz to 160 kHz in steps of factor 2 7 Revision: 1