...the world's most energy friendly microcontrollers EFM32G890 DATASHEET F128/F64/F32 • ARM Cortex-M3 CPU platform • High Performance 32-bit processor @ up to 32 MHz • Memory Protection Unit • Wake-up Interrupt Controller • Flexible Energy Management System • 20 nA @ 3 V Shutoff Mode • 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention • 0.9 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention • 45 µA/MHz @ 3 V Sleep Mode • 180 µA/MHz @ 3 V Run Mode, with code executed from flash • 128/64/32 KB Flash • 16/16/8 KB RAM • 90 General Purpose I/O pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • 16 asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • 8 Channel DMA Controller • 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • Hardware AES with 128/256-bit keys in 54/75 cycles • Timers/Counters • 3× 16-bit Timer/Counter • 3×3 Compare/Capture/PWM channels • Dead-Time Insertion on TIMER0 • 16-bit Low Energy Timer • 1× 24-bit Real-Time Counter • 3× 8-bit Pulse Counter • Watchdog Timer with dedicated RC oscillator @ 50 nA • Integrated LCD Controller for up to 4×40 segments • Voltage boost, adjustable contrast and autonomous animation • External Bus Interface for up to 4x64 MB of external memory mapped space • Communication interfaces • 3× Universal Synchronous/Asynchronous Receiver/Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA • Triple buffered full/half-duplex operation • 1× Universal Asynchronous Receiver/Transmitter • 2× Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode 2 • I C Interface with SMBus support • Address recognition in Stop Mode • Ultra low power precision analog peripherals • 12-bit 1 Msamples/s Analog to Digital Converter • 8 single ended channels/4 differential channels • On-chip temperature sensor • 12-bit 500 ksamples/s Digital to Analog Converter • 2 single ended channels/1 differential channel • 2× Analog Comparator • Capacitive sensing with up to 16 inputs • Supply Voltage Comparator • Ultra efficient Power-on Reset and Brown-Out Detector • 2-pin Serial Wire Debug interface • 1-pin Serial Wire Viewer • Pre-Programmed UART Bootloader • Temperature range -40 to 85 ºC • Single power supply 1.98 to 3.8 V • BGA112 package 32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for: • Energy, gas, water and smart metering • Health and fitness applications • Smart accessories • Alarm and security systems • Industrial and home automation ...the world's most energy friendly microcontrollers 1 Ordering Information Table 1.1 (p. 2) shows the available EFM32G890 devices. Table 1.1. Ordering Information Ordering Code Flash (kB) RAM (kB) Max Speed (MHz) Supply Voltage (V) Temperature (ºC) Package EFM32G890F32-BGA112 32 8 32 1.98 - 3.8 -40 - 85 BGA112 EFM32G890F64-BGA112 64 16 32 1.98 - 3.8 -40 - 85 BGA112 EFM32G890F128-BGA112 128 16 32 1.98 - 3.8 -40 - 85 BGA112 Adding the suffix 'T' to the part number (e.g. EFM32G890F32-BGA112T) denotes tray. Visit www.silabs.com for information on global distributors and representatives. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 2 www.silabs.com ...the world's most energy friendly microcontrollers 2 System Summary 2.1 System Introduction The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32G microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32G890 devices. For a complete feature set and in-depth information on the modules, the reader is referred to the EFM32G Reference Manual. A block diagram of the EFM32G890 is shown in Figure 2.1 (p. 3) . Figure 2.1. Block Diagram G890F32/ 64/ 128 Core and Memory Clock Managem ent Memory Protection Unit ARM Cortex™- M3 processor Flash Memory [KB] 32/ 64/ 128 RAM Memory [KB] Debug Interface DMA Controller 8/ 16/ 16 Energy Managem ent High Frequency Crystal Oscilla tor High Frequency RC Oscilla tor Aux High Freq RC Oscillator Lo w Frequency RC Oscilla tor Lo w Frequency Crystal Oscilla tor Watchdog Oscillator Voltage Regulator Voltage Comparator Power-on Reset Brown-out Detector 32-bit bus Peripheral Reflex System Serial Interfaces USA RT UART I/O Ports Ex ternal Bus Interface General Purpose I/ O 3x Low Energy UART™ 90 pins I2C Ex ternal Interrupts 2x Pin Reset Timers and Triggers Timer/ Counter 3x Peripheral Reflex Sys tem Low Energy Timer™ Real Time Counter Analog Interfaces ADC DAC Security AES 2x Pulse Counter 3x Watchdog Timer LCD Controller Analog Comparator 4x 40 2x 2.1.1 ARM Cortex-M3 Core The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in EFM32G Cortex-M3 Reference Manual. 2.1.2 Debug Interface (DBG) This device includes hardware debug support through a 2-pin serial-wire debug interface . In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages. 2.1.3 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EFM32G microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 3 www.silabs.com ...the world's most energy friendly microcontrollers into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1. 2.1.4 Direct Memory Access Controller (DMA) The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM. 2.1.5 Reset Management Unit (RMU) The RMU is responsible for handling the reset functionality of the EFM32G. 2.1.6 Energy Management Unit (EMU) The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32G microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks. 2.1.7 Clock Management Unit (CMU) The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32G. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure. 2.1.9 Peripheral Reflex System (PRS) The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS. 2.1.10 External Bus Interface (EBI) The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables seamless access from software without manually manipulating the IO settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface the external devices. The timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices. 2.1.11 Inter-Integrated Circuit Interface (I2C) 2 2 The I C module provides an interface between the MCU and a serial I C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 4 www.silabs.com ...the world's most energy friendly microcontrollers Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. 2 The interface provided to software by the I C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes. 2.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, and IrDA devices. 2.1.13 Pre-Programmed UART Bootloader The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note. 2.1.14 Universal Asynchronous Receiver/Transmitter (UART) The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module. It supports full- and half-duplex asynchronous UART communication. 2.1.15 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) TM The unique LEUART , the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.16 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/PulseWidth Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications. 2.1.17 Real Time Counter (RTC) The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 2.1.18 Low Energy Timer (LETIMER) TM The unique LETIMER , the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC. 2.1.19 Pulse Counter (PCNT) The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 5 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.20 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.21 Voltage Comparator (VCMP) The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.22 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals. 2.1.23 Digital to Analog Converter (DAC) The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output. 2.1.24 Advanced Encryption Standard Accelerator (AES) The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 2.1.25 General Purpose Input/Output (GPIO) In the EFM32G890, there are 90 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals. 2.1.26 Liquid Crystal Display Driver (LCD) The LCD driver is capable of driving a segmented LCD display with up to 4x40 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data. 2.2 Configuration Summary The features of the EFM32G890 is a subset of the feature set described in the EFM32G Reference Manual. Table 2.1 (p. 7) describes device specific implementation of the features. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 6 www.silabs.com ...the world's most energy friendly microcontrollers Table 2.1. Configuration Summary Module Configuration Pin Connections Cortex-M3 Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO, DBG_SWO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA EBI Full configuration EBI_ARDY, EBI_ALE, EBI_WEn, EBI_REn, EBI_CS[3:0], EBI_AD[15:0] I2C0 Full configuration I2C0_SDA, I2C0_SCL USART0 Full configuration with IrDA US0_TX, US0_RX. US0_CLK, US0_CS USART1 Full configuration US1_TX, US1_RX, US1_CLK, US1_CS USART2 Full configuration US2_TX, US2_RX, US2_CLK, US2_CS UART0 Full configuration U0_TX, U0_RX LEUART0 Full configuration LEU0_TX, LEU0_RX LEUART1 Full configuration LEU1_TX, LEU1_RX TIMER0 Full configuration with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 Full configuration TIM1_CC[2:0] TIMER2 Full configuration TIM2_CC[2:0] RTC Full configuration NA LETIMER0 Full configuration LET0_O[1:0] PCNT0 Full configuration, 8-bit count register PCNT0_S[1:0] PCNT1 Full configuration, 8-bit count register PCNT1_S[1:0] PCNT2 Full configuration, 8-bit count register PCNT2_S[1:0] ACMP0 Full configuration ACMP0_CH[7:0], ACMP0_O ACMP1 Full configuration ACMP1_CH[7:0], ACMP1_O VCMP Full configuration NA ADC0 Full configuration ADC0_CH[7:0] DAC0 Full configuration DAC0_OUT[1:0] AES Full configuration NA GPIO 90 pins Available pins are shown in Table 4.3 (p. 57) LCD Full configuration LCD_SEG[39:0], LCD_COM[3:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 7 www.silabs.com ...the world's most energy friendly microcontrollers 2.3 Memory Map The EFM32G890 memory map is shown in Figure 2.2 (p. 8) , with RAM and Flash sizes for the largest memory configuration. Figure 2.2. EFM32G890 Memory Map with largest RAM and Flash sizes 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 8 www.silabs.com ...the world's most energy friendly microcontrollers 3 Electrical Characteristics 3.1 Test Conditions 3.1.1 Typical Values The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 9) , by simulation and/or technology characterisation unless otherwise specified. 3.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 9), by simulation and/or technology characterisation unless otherwise specified. 3.2 Absolute Maximum Ratings The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 9) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 9) . Table 3.1. Absolute Maximum Ratings Symbol Parameter Condition Min Typ Max TSTG Storage temperature range TS Maximum soldering temperature VDDMAX External main supply voltage 0 3.8 V VIOPIN Voltage on any I/O pin -0.3 VDD+0.3 V -40 Unit 150 Latest IPC/JEDEC J-STD-020 Standard 1 °C 260 °C Current per I/O pin (sink) 100 mA Current per I/O pin (source) -100 mA IIOMAX 1 Based on programmed devices tested for 10000 hours at 150°C. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. 3.3 General Operating Conditions 3.3.1 General Operating Conditions Table 3.2. General Operating Conditions Symbol Parameter TAMB Ambient temperature range VDDOP Operating supply voltage fAPB Internal APB clock frequency 32 MHz fAHB Internal AHB clock frequency 32 MHz 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 Min Typ -40 1.98 9 Max Unit 85 °C 3.8 V www.silabs.com ...the world's most energy friendly microcontrollers 3.4 Current Consumption Table 3.3. Current Consumption Symbol IEM0 IEM1 IEM2 IEM3 IEM4 Parameter EM0 current. No prescaling. Running prime number calculation code from Flash. (Production test condition = 14 MHz) EM1 current (Production test condition = 14 MHz) Condition Min Typ Max Unit 32 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V 180 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 181 206 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 183 207 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 185 211 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 186 215 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 191 218 µA/ MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 220 µA/ MHz 32 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V 45 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 47 62 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 48 64 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 50 69 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 51 72 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 56 83 µA/ MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V 103 µA/ MHz EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=25°C 0.9 1.5 µA EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=85°C 3.0 6.0 µA VDD= 3.0 V, TAMB=25°C 0.59 1.0 µA VDD= 3.0 V, TAMB=85°C 2.75 5.8 µA VDD= 3.0 V, TAMB=25°C 0.02 0.045 µA VDD= 3.0 V, TAMB=85°C 0.25 0.7 µA EM2 current EM3 current EM4 current 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 10 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.1 EM0 Current Consumption Figure 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 28 MHz 5.3 5.3 85.0°C 65.0°C 5.2 5.2 45.0°C 5.1 5.1 25.0°C 5.0 Idd [m A] 5.0°C - 15.0°C Idd [m A] 5.0 4.9 4.9 - 40.0°C 4.8 4.8 4.7 4.6 2.0 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 4.7 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 4.6 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 Figure 3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz 4.0 4.0 85.0°C 65.0°C 3.9 3.9 45.0°C 25.0°C Idd [m A] 3.8 Idd [m A] 3.8 5.0°C - 15.0°C 3.7 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 3.7 - 40.0°C 3.6 3.5 2.0 3.6 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 3.4 3.6 3.5 –40 3.8 11 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14 MHz 2.75 2.75 85.0°C 2.70 2.70 65.0°C 2.65 2.65 45.0°C 2.60 2.60 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V Idd [m A] Idd [m A] 25.0°C 2.55 5.0°C 2.50 - 15.0°C 2.50 2.45 - 40.0°C 2.45 2.40 2.35 2.0 2.55 2.40 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.35 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 Figure 3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11 MHz 2.20 2.20 85.0°C 2.15 2.15 65.0°C 2.10 2.10 45.0°C 25.0°C 2.05 Idd [m A] Idd [m A] 2.05 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 5.0°C 2.00 2.00 - 15.0°C 1.95 - 40.0°C 1.90 1.85 2.0 1.95 1.90 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 3.4 3.6 1.85 –40 3.8 12 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 7 MHz 1.45 1.45 85.0°C 1.40 1.40 65.0°C 45.0°C 1.35 Idd [m A] 25.0°C 5.0°C Idd [m A] 1.35 - 15.0°C 1.30 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 1.30 - 40.0°C 1.25 1.20 2.0 1.25 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 1.20 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 3.4.2 EM1 Current Consumption Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28 MHz 1.40 1.40 85.0°C 65.0°C 1.35 1.35 Vdd= 2.0V Vdd= 2.4V Vdd= 2.8V Vdd= 3.0V Vdd= 3.4V Vdd= 3.8V 45.0°C 25.0°C 1.30 1.30 - 15.0°C - 40.0°C 1.25 1.20 1.15 2.0 Idd [m A] Idd [m A] 5.0°C 1.25 1.20 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 3.4 3.6 1.15 –40 3.8 13 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz 1.08 1.08 85.0°C 1.06 1.04 65.0°C 1.04 1.02 45.0°C 1.02 25.0°C 1.00 5.0°C Idd [m A] Idd [m A] 1.06 1.00 0.98 - 15.0°C 0.98 0.96 - 40.0°C 0.96 0.94 0.92 2.0 Vdd= 2.0V Vdd= 2.4V Vdd= 2.8V Vdd= 3.0V Vdd= 3.4V Vdd= 3.8V 0.94 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 0.92 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 Figure 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz 0.76 0.76 85.0°C 0.74 0.74 65.0°C 0.72 Vdd= 2.0V Vdd= 2.4V Vdd= 2.8V Vdd= 3.0V Vdd= 3.4V Vdd= 3.8V 0.72 25.0°C 0.70 5.0°C Idd [m A] Idd [m A] 45.0°C 0.70 - 15.0°C 0.68 0.68 - 40.0°C 0.66 0.64 2.0 0.66 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 3.4 3.6 0.64 –40 3.8 14 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz 0.62 0.60 65.0°C 0.60 0.58 45.0°C 0.58 25.0°C 5.0°C 0.56 Vdd= 2.0V Vdd= 2.4V Vdd= 2.8V Vdd= 3.0V Vdd= 3.4V Vdd= 3.8V Idd [m A] 85.0°C Idd [m A] 0.62 0.56 - 15.0°C - 40.0°C 0.54 0.52 2.0 0.54 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 0.52 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 Figure 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 7 MHz 0.44 0.44 85.0°C 0.43 0.43 65.0°C 0.42 Vdd= 2.0V Vdd= 2.4V Vdd= 2.8V Vdd= 3.0V Vdd= 3.4V Vdd= 3.8V 0.42 0.41 0.41 25.0°C 0.40 5.0°C - 15.0°C 0.39 Idd [m A] Idd [m A] 45.0°C 0.40 0.39 - 40.0°C 0.38 0.38 0.37 0.37 0.36 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 3.4 3.6 0.36 –40 3.8 15 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.3 EM2 Current Consumption Figure 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. 3.5 3.5 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 3.0 3.0 2.5 Idd [uA] Idd [uA] 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 1.8 Vdd= 1.8V Vdd= 2.2V Vdd= 2.6V Vdd= 3.0V Vdd= 3.4V Vdd= 3.8V 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 0.5 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 5 25 Tem perature [°C] 45 65 85 3.4.4 EM3 Current Consumption Figure 3.12. EM3 current consumption. 3.0 3.0 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 2.5 2.5 2.0 Idd [uA] Idd [uA] 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 1.8 Vdd= 1.8V Vdd= 2.2V Vdd= 2.6V Vdd= 3.0V Vdd= 3.4V Vdd= 3.8V 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 3.4 3.6 0.0 –40 3.8 16 –15 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.5 EM4 Current Consumption Figure 3.13. EM4 current consumption. 0.45 0.40 0.40 0.35 0.30 0.30 0.25 0.25 Idd [uA] Idd [uA] 0.35 0.45 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.20 0.20 0.15 0.15 0.10 0.10 0.05 0.05 0.00 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd= 1.8V Vdd= 2.2V Vdd= 2.6V Vdd= 3.0V Vdd= 3.4V Vdd= 3.8V 0.00 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 3.5 Transition between Energy Modes The transition times are measured from the trigger to the first clock edge in the CPU. Table 3.4. Energy Modes Transitions Symbol Parameter Min Typ Max Unit tEM10 Transition time from EM1 to EM0 0 HFCORECLK cycles tEM20 Transition time from EM2 to EM0 2 µs tEM30 Transition time from EM3 to EM0 2 µs tEM40 Transition time from EM4 to EM0 163 µs 3.6 Power Management The EFM32G requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations". 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 17 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.5. Power Management Symbol Parameter VBODextthr- BOD threshold on falling external supply voltage VBODextthr+ BOD threshold on rising external supply voltage VPORthr+ Power-on Reset (POR) threshold on rising external supply voltage tRESETdly Delay from reset is released until program execution starts tRESET negative pulse length to ensure complete reset of device CDECOUPLE Voltage regulator decoupling capacitor. Condition Min Typ Max 1.74 Unit 1.96 V 1.85 V 1.98 V Applies to Power-on Reset, Brown-out Reset and pin reset. 163 µs 50 ns X5R capacitor recommended. Apply between DECOUPLE pin and GROUND 1 µF 3.7 Flash Table 3.6. Flash Symbol Parameter ECFLASH Flash erase cycles before failure Condition Min TAMB<150°C RETFLASH Flash data retention Typ Max Unit 20000 cycles 10000 h TAMB<85°C 10 years TAMB<70°C 20 years µs tW_PROG Word (32-bit) programming time 20 tP_ERASE Page erase time 20 20.4 20.8 ms tD_ERASE Device erase time 40 40.8 41.6 ms IERASE Erase current IWRITE Write current VFLASH Supply voltage during flash erase and write 1.98 7 1 mA 7 1 mA 3.8 V 1 Measured at 25°C 3.8 General Purpose Input Output Table 3.7. GPIO Symbol Parameter VIOIL Input low voltage Condition 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 Min Typ Max Unit 1 0.30VDD 18 V www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter VIOIH Input high voltage VIOOH VIOOL IIOLEAK Output high voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Output low voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Input leakage current Condition Min Typ Max 1 0.70VDD Unit V Sourcing 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.80VDD V Sourcing 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.90VDD V Sourcing 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.85VDD V Sourcing 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.90VDD V Sourcing 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.75VDD V Sourcing 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.85VDD V Sourcing 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.60VDD V Sourcing 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.80VDD V Sinking 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.20VDD V Sinking 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.10VDD V Sinking 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.10VDD V Sinking 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.05VDD V Sinking 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.30VDD V Sinking 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.20VDD V Sinking 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.35VDD V Sinking 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.25VDD V High Impedance IO connected to GROUND or VDD 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 19 ±0.1 ±40 nA www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter RPU I/O pin pull-up resistor 40 kOhm RPD I/O pin pull-down resistor 40 kOhm RIOESD Internal ESD series resistor 200 Ohm tIOGLITCH Pulse width of pulses to be removed by the glitch suppression filter tIOOF VIOHYST Condition Min Typ Max Unit 10 50 ns GPIO_Px_CTRL DRIVEMODE = LOWEST and load capacitance CL=12.5-25pF. 20+0.1CL 250 ns GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance CL=350-600pF 20+0.1CL 250 ns Output fall time I/O pin hysteresis (VIOTHR+ - VIOTHR-) VDD = 1.98 - 3.8 V 0.1VDD V 1 If the GPIO input voltage is between 0.3VDD and 0.7VDD, the current consumption will increase. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 20 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.14. Typical Low-Level Output Current, 2V Supply Voltage 5 0.20 4 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.15 0.10 3 2 0.05 1 - 40°C 25°C 85°C 0.00 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] - 40°C 25°C 85°C 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 45 20 40 35 Low- Level Output Current [m A] Low- Level Output Current [m A] 15 10 30 25 20 15 5 10 5 - 40°C 25°C 85°C 0 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 - 40°C 25°C 85°C 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 21 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.15. Typical High-Level Output Current, 2V Supply Voltage 0.00 0.0 - 40°C 25°C 85°C - 40°C 25°C 85°C –0.5 High- Level Output Current [m A] High- Level Output Current [m A] –0.05 –0.10 –1.0 –1.5 –0.15 –2.0 –0.20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –2.5 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] High- Level Output Current [m A] –5 –10 –20 –30 –15 –40 –20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –50 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 22 www.silabs.com ...the world's most energy friendly microcontrollers 0.5 10 0.4 8 Low- Level Output Current [m A] Low- Level Output Current [m A] Figure 3.16. Typical Low-Level Output Current, 3V Supply Voltage 0.3 0.2 0.1 6 4 2 - 40°C 25°C 85°C 0.0 0.0 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = LOW 40 50 35 40 Low- Level Output Current [m A] Low- Level Output Current [m A] 30 25 20 15 30 20 10 10 5 0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 23 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.17. Typical High-Level Output Current, 3V Supply Voltage 0.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –1 High- Level Output Current [m A] High- Level Output Current [m A] –0.1 –0.2 –0.3 –2 –3 –4 –0.4 –5 –0.5 0.0 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –6 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 2.5 3.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –50 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 24 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage 0.8 14 0.7 12 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.6 0.5 0.4 0.3 10 8 6 4 0.2 2 0.1 0.0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 50 50 40 40 30 20 10 30 20 10 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOW Low- Level Output Current [m A] Low- Level Output Current [m A] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 25 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.19. Typical High-Level Output Current, 3.8V Supply Voltage 0.0 –0.1 0 - 40°C 25°C 85°C –1 - 40°C 25°C 85°C –2 High- Level Output Current [m A] High- Level Output Current [m A] –0.2 –0.3 –0.4 –0.5 –3 –4 –5 –6 –0.6 –7 –0.7 –0.8 0.0 –8 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –9 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOWEST 3.0 3.5 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –50 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 26 www.silabs.com ...the world's most energy friendly microcontrollers 3.9 Oscillators 3.9.1 LFXO Table 3.8. LFXO Symbol Parameter Condition Min Typ Max Unit fLFXO Supported nominal crystal frequency ESRLFXO Supported crystal equivalent series resistance (ESR) CLFXOL Supported crystal external load range ILFXO Current consumption for core and buffer after startup. ESR=30 kOhm, CL=10 pF, LFXOBOOST in CMU_CTRL is 1 190 nA tLFXO Start- up time. ESR=30 kOhm, CL=10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1 400 ms 32.768 30 X 1 kHz 120 kOhm 25 pF 1 See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in Configurator in Simplicity Studio For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration". 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 27 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.2 HFXO Table 3.9. HFXO Symbol Parameter fHFXO Supported nominal crystal Frequency ESRHFXO Min Typ The transconductance of the HFXO input transistor at crystal startup CHFXOL Supported crystal external load range Current consumption for HFXO after startup Startup time Max 4 HFXOBOOST in CMU_CTRL equals 0b11 Unit 32 MHz Supported crystal Crystal frequency 32 MHz equivalent series reCrystal frequency 4 MHz sistance (ESR) gmHFXO IHFXO Condition 30 60 Ohm 400 1500 Ohm 20 mS 5 25 pF 4 MHz: ESR=400 Ohm, CL=20 pF, HFXOBOOST in CMU_CTRL equals 0b11 85 µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 165 µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 400 µs tHFXO Pulse width removed by glitch detector 1 4 ns 3.9.3 LFRCO Table 3.10. LFRCO Symbol Parameter fLFRCO Oscillation frequency , VDD= 3.0 V, TAMB=25°C tLFRCO Startup time not including software calibration 150 µs ILFRCO Current consumption 190 nA TCLFRCO Temperature coefficient VCLFRCO Supply voltage coefficient ±15 TUNESTEPL- Frequency step for LSB change in TUNING value 1.5 FRCO Condition 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 Min Typ 31.29 Max 32.768 ±0.02 28 Unit 34.24 kHz %/°C %/V % www.silabs.com ...the world's most energy friendly microcontrollers 42 42 40 40 38 38 Frequency [MHz] Frequency [MHz] Figure 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage - 40°C 25°C 85°C 36 34 34 32 32 30 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 36 30 –40 3.8 –15 5 25 Tem perature [°C] 45 Typ Max 65 85 3.9.4 HFRCO Table 3.11. HFRCO Symbol fHFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C Condition Min 28 MHz frequency band 27.16 28 28.84 MHz 21 MHz frequency band 20.37 21 21.63 MHz 14 MHz frequency band 13.58 14 14.42 MHz 11 MHz frequency band 10.67 11 11.33 MHz 6.402 1 6.798 MHz 2 1.236 MHz 7 MHz frequency band 1 MHz frequency band Settling time after start-up Unit 1.164 fHFRCO = 14 MHz 6.6 1.2 0.6 Cycles 25 Cycles tHFRCO_settling Settling time after band switch IHFRCO Current consumption (Production test condition = 14 MHz) DCHFRCO Duty cycle TUNESTEPH- Frequency step for LSB change in TUNING value FRCO fHFRCO = 28 MHz 106 190 µA fHFRCO = 21 MHz 93 155 µA fHFRCO = 14 MHz 77 120 µA fHFRCO = 11 MHz 72 110 µA fHFRCO = 6.6 MHz 63 90 µA fHFRCO = 1.2 MHz 22 32 µA 50 51 % 3 % fHFRCO = 14 MHz 48.5 0.3 1 For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable. For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable. 3 The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions. 2 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 29 www.silabs.com ...the world's most energy friendly microcontrollers 1.45 1.45 1.40 1.40 1.35 1.35 Frequency [MHz] Frequency [MHz] Figure 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature 1.30 - 40°C 25°C 85°C 1.25 1.20 1.30 1.25 1.20 1.15 1.15 1.10 1.10 1.05 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 1.05 –40 3.8 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 6.70 6.70 6.65 6.65 6.60 6.60 Frequency [MHz] Frequency [MHz] Figure 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature 6.55 6.50 6.45 6.40 6.50 6.45 6.40 - 40°C 25°C 85°C 6.35 6.30 2.0 6.55 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 6.35 6.30 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 11.2 11.2 11.1 11.1 11.0 11.0 Frequency [MHz] Frequency [MHz] Figure 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature 10.9 10.8 10.8 10.7 10.6 2.0 10.9 10.7 - 40°C 25°C 85°C 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 3.4 3.6 10.6 –40 3.8 30 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 14.2 14.2 14.1 14.1 14.0 14.0 Frequency [MHz] Frequency [MHz] Figure 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature 13.9 13.8 13.7 13.6 13.8 13.7 13.6 - 40°C 25°C 85°C 13.5 13.4 2.0 13.9 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 13.5 13.4 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 21.2 21.2 21.0 21.0 Frequency [MHz] Frequency [MHz] Figure 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature 20.8 20.6 20.4 20.8 20.6 20.4 - 40°C 25°C 85°C 20.2 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 20.2 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 Figure 3.26. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature 28.2 28.4 28.2 28.0 28.0 Frequency [MHz] Frequency [MHz] 27.8 27.6 27.4 27.8 27.6 27.4 27.2 27.2 - 40°C 25°C 85°C 27.0 26.8 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 3.4 3.6 2.0 V 3.0 V 3.8 V 27.0 26.8 –40 3.8 31 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.5 AUXHFRCO Table 3.12. AUXHFRCO Symbol Parameter Condition Min fAUXHFRCO Oscillation frequency, VDD= 3.0 V, TAMB=25°C 14 MHz frequency band tAUXHFRCO_settlingSettling time after start-up fAUXHFRCO = 14 MHz DCAUXHFRCO fAUXHFRCO = 14 MHz Duty cycle Typ 13.580 Max 14.0 14.420 MHz 0.6 48.5 TUNESTEPAUX- Frequency step for LSB change in HFRCO TUNING value Unit Cycles 50 51 % 1 % 0.3 1 The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value in the 14 MHz range across operating conditions. 3.9.6 ULFRCO Table 3.13. ULFRCO Symbol Parameter Condition Min Typ Max fULFRCO Oscillation frequency 25°C, 3V TCULFRCO Temperature coefficient 0.05 %/°C VCULFRCO Supply voltage coefficient -18.2 %/V 0.70 Unit 1.75 kHz 3.10 Analog Digital Converter (ADC) Table 3.14. ADC Symbol Parameter VADCIN Input voltage range Condition Min Single ended Differential VADCREFIN Input range of external reference voltage, single ended and differential Typ Max Unit 0 VREF V -VREF/2 VREF/2 V 1.25 VDD V VADCREFIN_CH7 Input range of external negative reference voltage on channel 7 See VADCREFIN 0 VDD - 1.1 V VADCREFIN_CH6 Input range of external positive reference voltage on channel 6 See VADCREFIN 0.625 VDD V 0 VDD V VADCCMIN Common mode input range IADCIN Input current 2pF sampling capacitors 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 32 <100 nA www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter CMRRADC Analog input common mode rejection ratio IADC Average active current CADCIN Input capacitance RADCIN Input ON resistance RADCFILT Input RC filter resistance CADCFILT Input RC filter/decoupling capacitance fADCCLK ADC Clock Frequency tADCCONV Min Typ Max Acquisition time tADCACQVDD3 Required acquisition time for VDD/3 reference Unit 65 dB 1 MSamples/s, 12 bit, external reference 351 µA 1 MSamples/s, 12 bit, internal reference 411 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b00, ADC_CLK running at 13MHz 67 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b01, ADC_CLK running at 13MHz 63 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b10, ADC_CLK running at 13MHz 64 µA 2 pF 1 MOhm 10 250 kOhm fF 13 MHz 6 bit 7 ADCCLK Cycles 8 bit 11 ADCCLK Cycles 12 bit 13 ADCCLK Cycles 1 256 ADCCLK Cycles Conversion time tADCACQ tADCSTART Condition Programmable 2 µs Startup time of reference generator and ADC core in NORMAL mode 5 µs Startup time of reference generator and ADC core in 1 µs 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 33 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ Max Unit KEEPADCWARM mode SNRADC Signal to Noise Ratio (SNR) 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 59 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 1 MSamples/s, 12 bit, single ended, VDD reference 65 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 65 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 67 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 69 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 200 kSamples/s, 12 bit, single ended, VDD reference 67 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 69 dB 200 kSamples/s, 12 bit, differential, 2xVDD reference 70 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 62 dB 1 MSamples/s, 12 bit, single ended, VDD reference 64 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 64 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 200 kSamples/s, 12 bit, differential, VDD reference SINADADC SIgnal-to-Noise And Distortion-ratio (SINAD) 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 34 63 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Spurious-Free Dynamic Range (SFDR) Max Unit 1 MSamples/s, 12 bit, differential, VDD reference 66 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 68 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 61 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 65 dB 200 kSamples/s, 12 bit, single ended, VDD reference 66 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 68 dB 200 kSamples/s, 12 bit, differential, 2xVDD reference 69 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 64 dBc 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 76 dBc 1 MSamples/s, 12 bit, single ended, VDD reference 73 dBc 1 MSamples/s, 12 bit, differential, internal 1.25V reference 66 dBc 1 MSamples/s, 12 bit, differential, internal 2.5V reference 77 dBc 1 MSamples/s, 12 bit, differential, VDD reference 76 dBc 1 MSamples/s, 12 bit, differential, 2xVDD reference 75 dBc 1 MSamples/s, 12 bit, differential, 5V reference 69 dBc 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 75 dBc 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 75 dBc 200 kSamples/s, 12 bit, single ended, VDD reference 76 dBc 200 kSamples/s, 12 bit, differential, internal 1.25V reference 79 dBc 200 kSamples/s, 12 bit, differential, internal 2.5V reference 79 dBc 200 kSamples/s, 12 bit, differential, VDD reference SFDRADC Typ 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 35 62 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ 200 kSamples/s, 12 bit, differential, 5V reference 200 kSamples/s, 12 bit, differential, VDD reference 68 200 kSamples/s, 12 bit, differential, 2xVDD reference After calibration, single ended VADCOFFSET -4 Unit 78 dBc 79 dBc 79 dBc 0.3 4 mV 0.3 mV Offset voltage After calibration, differential TGRADADCTH Max Thermometer output gradient DNLADC Differential non-linearity (DNL) VDD = 3.0 V, external 2.5V reference INLADC Integral non-linearity (INL), End point method VDD = 3.0 V, external 2.5V reference MCADC No missing codes -1 11.999 1 -1.92 mV/°C -6.3 ADC Codes/ °C ±0.7 4 LSB ±1.2 ±3 LSB 12 bits 1 On the average every ADC will have one missing code, most likely to appear around 2048 ± n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale input for chips that have the missing code issue. The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.27 (p. 36) and Figure 3.28 (p. 37) , respectively. Figure 3.27. Integral Non-Linearity (INL) Digital ouput code INL= | [(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2 N - 1 4095 4094 4093 4092 Actual ADC tranfer function before offset and gain correction Actual ADC tranfer function after offset and gain correction INL Error (End Point INL) 3 Ideal transfer curve 2 1 VOFFSET 0 Analog Input 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 36 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.28. Differential Non-Linearity (DNL) Digital ouput code DNL= | [(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2 N - 2 Full Scale Range 4095 4094 Example: Adjacent input value VD+ 1 corrresponds to digital output code D+ 1 4093 4092 Actual transfer function with one m issing code. Example: Input value VD corrresponds to digital output code D Code width = 2 LSB DNL= 1 LSB Ideal transfer curve 5 0.5 LSB Ideal spacing between two adjacent codes VLSBIDEAL= 1 LSB 4 3 2 1 Ideal 50% Transition Point Ideal Code Center 0 Analog Input 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 37 www.silabs.com ...the world's most energy friendly microcontrollers 3.10.1 Typical performance Figure 3.29. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 38 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.30. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 39 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.31. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 40 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.32. ADC Absolute Offset, Common Mode = Vdd /2 5 2.0 Vref= 1V25 Vref= 2V5 Vref= 2XVDDVSS Vref= 5VDIFF Vref= VDD 4 1.5 2 1.0 Actual Offset [LSB] Actual Offset [LSB] 3 VRef= 1V25 VRef= 2V5 VRef= 2XVDDVSS VRef= 5VDIFF VRef= VDD 1 0 –1 0.5 0.0 –2 –0.5 –3 –4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd (V) 3.2 3.4 3.6 –1.0 –40 3.8 Offset vs Supply Voltage, Temp = 25°C –15 5 45 25 Tem p (C) 65 85 Offset vs Temperature, Vdd = 3V Figure 3.33. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V 79.4 71 2XVDDVSS 70 1V25 79.2 Vdd 69 79.0 67 5VDIFF 2V5 66 SFDR [dB] SNR [dB] 68 Vdd 2V5 78.8 78.6 2XVDDVSS 78.4 65 78.2 64 63 –40 –15 5 25 Tem perature [°C] 45 65 5VDIFF 1V25 85 78.0 –40 Signal to Noise Ratio (SNR) –15 5 25 Tem perature [°C] 45 65 85 Spurious-Free Dynamic Range (SFDR) 3.11 Digital Analog Converter (DAC) Table 3.15. DAC Symbol Parameter VDACOUT Output voltage range VDACCM IDAC Condition Min Max Unit VDD voltage reference, single ended 0 VDD V VDD voltage reference, differential -VDD VDD V 0 VDD V Output common mode voltage range Active current including references for 2 channels Typ 500 kSamples/s, 12bit 400 1 650 µA 100 kSamples/s, 12 bit 200 1 250 µA 1 25 µA 1 kSamples/s 12 bit 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 17 41 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter SRDAC Sample rate fDAC DAC clock frequency Condition Min Typ Max 500 ksamples/s Continuous Mode CYCDACCONV Clock cyckles per conversion tDACCONV Conversion time tDACSETTLE Settling time SNRDAC SNDRDAC SFDRDAC VDACOFFSET VDACSHMDRIFT Signal to Noise Ratio (SNR) Signal to Noisepulse Distortion Ratio (SNDR) Spurious-Free Dynamic Range(SFDR) Unit 1000 kHz Sample/Hold Mode 250 kHz Sample/Off Mode 250 kHz 2 2 µs 5 µs 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 59 dB 500 kSamples/s, 12 bit, differential, internal 1.25V reference 58 dB 500 kSamples/s, 12 bit, differential, internal 2.5V reference 58 dB 500 kSamples/s, 12 bit, differential, VDD reference 59 dB 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 57 dB 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 54 dB 500 kSamples/s, 12 bit, differential, internal 1.25V reference 56 dB 500 kSamples/s, 12 bit, differential, internal 2.5V reference 53 dB 500 kSamples/s, 12 bit, differential, VDD reference 55 dB 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dBc 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 56 dBc 500 kSamples/s, 12 bit, differential, internal 1.25V reference 61 dBc 500 kSamples/s, 12 bit, differential, internal 2.5V reference 55 dBc 500 kSamples/s, 12 bit, differential, VDD reference 60 dBc After calibration, single ended 2 mV After calibration, differential 2 mV Offset voltage Sample-hold mode voltage drift 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 540 42 µV/ms www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ Max Unit DNLDAC Differential non-linearity ±1 LSB INLDAC Integral non-linearity ±5 LSB MCDAC No missing codes 12 bits 1 Measured with a static input code and no loading on the output. 3.12 Analog Comparator (ACMP) Table 3.16. ACMP Symbol Parameter VACMPIN Input voltage range 0 VDD V VACMPCM ACMP Common Mode voltage range 0 VDD V IACMP Active current Condition Min Typ Current consumption of internal voltage reference Unit BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in ACMPn_CTRL register 55 600 nA BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register 2.82 12 µA BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in ACMPn_CTRL register 195 520 µA 0 0.5 µA Internal voltage reference, LPREF=1 0.050 3 µA Internal voltage reference, LPREF=0 6 µA 0 12 mV Internal voltage reference off. Using external voltage reference IACMPREF Max VACMPOFFSET Offset voltage BIASPROG= 0b1010, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register VACMPHYST ACMP hysteresis Programmable 17 mV CSRESSEL=0b00 in ACMPn_INPUTSEL 39 kOhm CSRESSEL=0b01 in ACMPn_INPUTSEL 71 kOhm CSRESSEL=0b10 in ACMPn_INPUTSEL 104 kOhm CSRESSEL=0b11 in ACMPn_INPUTSEL 136 kOhm RCSRES tACMPSTART Capacitive Sense Internal Resistance Startup time -12 10 µs The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 43) . IACMPREF is zero if an external voltage reference is used. Total ACMP Active Current 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 43 www.silabs.com ...the world's most energy friendly microcontrollers IACMPTOTAL = IACMP + IACMPREF (3.1) Figure 3.34. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 4.5 2.5 HYSTSEL= 0.0 HYSTSEL= 2.0 HYSTSEL= 4.0 HYSTSEL= 6.0 4.0 3.5 Response Tim e [us] Current [uA] 2.0 1.5 1.0 3.0 2.5 2.0 1.5 1.0 0.5 0.5 0.0 4 8 ACMP_CTRL_BIASPROG 0 0.0 12 Current consumption, HYSTSEL = 4 0 2 4 6 8 10 ACMP_CTRL_BIASPROG 12 14 Response time 100 BIASPROG= 0.0 BIASPROG= 4.0 BIASPROG= 8.0 BIASPROG= 12.0 Hysteresis [m V] 80 60 40 20 0 0 1 2 4 3 ACMP_CTRL_HYSTSEL 5 6 7 Hysteresis 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 44 www.silabs.com ...the world's most energy friendly microcontrollers 3.13 Voltage Comparator (VCMP) Table 3.17. VCMP Symbol Parameter VVCMPIN Input voltage range VDD V VVCMPCM VCMP Common Mode voltage range VDD V IVCMP Condition Min Typ Max Unit BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register 0.3 1 µA BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0. 22 30 µA NORMAL 10 µs Single ended 10 mV Differential 10 mV 17 mV Active current tVCMPREF Startup time reference generator VVCMPOFFSET Offset voltage VVCMPHYST VCMP hysteresis tVCMPSTART Startup time 10 µs The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation: VCMP Trigger Level as a Function of Level Setting VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 45 (3.2) www.silabs.com ...the world's most energy friendly microcontrollers 3.14 LCD Table 3.18. LCD Symbol Parameter fLCDFR Frame rate NUMSEG Number of segments supported VLCD LCD supply voltage range Condition Min Max 30 Unit 200 Hz 4×40 Internal boost circuit enabled 2.0 seg 3.8 V Display disconnected, static mode, framerate 32 Hz, all segments on. 250 nA 550 nA 0 µA Internal voltage boost on, boosting from 2.2 V to 3.0 V. 8.4 µA VBLEV of LCD_DISPCTRL register to LEVEL0 3.0 V VBLEV of LCD_DISPCTRL register to LEVEL1 3.08 V VBLEV of LCD_DISPCTRL register to LEVEL2 3.17 V VBLEV of LCD_DISPCTRL register to LEVEL3 3.26 V VBLEV of LCD_DISPCTRL register to LEVEL4 3.34 V VBLEV of LCD_DISPCTRL register to LEVEL5 3.43 V VBLEV of LCD_DISPCTRL register to LEVEL6 3.52 V VBLEV of LCD_DISPCTRL register to LEVEL7 3.6 V ILCD Steady state current consumption. Display disconnected, quadruplex mode, framerate 32 Hz, all segments on, bias mode to ONETHIRD in LCD_DISPCTRL register. Internal voltage boost off ILCDBOOST Steady state Current contribution of internal boost. VBOOST Typ Boost Voltage The total LCD current is given by Equation 3.3 (p. 46) . ILCDBOOST is zero if internal boost is off. Total LCD Current Based on Operational Mode and Internal Boost ILCDTOTAL = ILCD + ILCDBOOST 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 46 (3.3) www.silabs.com ...the world's most energy friendly microcontrollers 3.15 I2C Table 3.19. I2C Standard-mode (Sm) Symbol Parameter Min Typ Max fSCL SCL clock frequency tLOW SCL clock low time 4.7 µs tHIGH SCL clock high time 4.0 µs tSU,DAT SDA set-up time 250 0 Unit 100 1 kHz ns 2,3 tHD,DAT SDA hold time 8 3450 ns tSU,STA Repeated START condition set-up time 4.7 µs tHD,STA (Repeated) START condition hold time 4.0 µs tSU,STO STOP condition set-up time 4.0 µs tBUF Bus free time between a STOP and START condition 4.7 µs 1 For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32G Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10 [s] * fHFPERCLK [Hz]) - 4). 2 Table 3.20. I2C Fast-mode (Fm) Symbol Parameter Min Typ fSCL SCL clock frequency tLOW SCL clock low time 1.3 µs tHIGH SCL clock high time 0.6 µs tSU,DAT SDA set-up time 100 ns tHD,DAT SDA hold time tSU,STA Repeated START condition set-up time 0.6 µs tHD,STA (Repeated) START condition hold time 0.6 µs tSU,STO STOP condition set-up time 0.6 µs tBUF Bus free time between a STOP and START condition 1.3 µs 0 8 Max Unit 400 1 2,3 900 kHz ns 1 For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32G Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10 [s] * fHFPERCLK [Hz]) - 4). 2 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 47 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.21. I2C Fast-mode Plus (Fm+) Symbol Parameter Min Typ Max Unit fSCL SCL clock frequency tLOW SCL clock low time 0.5 µs tHIGH SCL clock high time 0.26 µs tSU,DAT SDA set-up time 50 ns tHD,DAT SDA hold time 8 ns tSU,STA Repeated START condition set-up time 0.26 µs tHD,STA (Repeated) START condition hold time 0.26 µs tSU,STO STOP condition set-up time 0.26 µs tBUF Bus free time between a STOP and START condition 0.5 µs 1 0 1000 kHz 1 For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32G Reference Manual. 3.16 Digital Peripherals Table 3.22. Digital Peripherals Symbol Parameter Condition Min IUSART USART current USART idle current, clock enabled IUART UART current ILEUART Typ Max Unit 7.5 µA/ MHz UART idle current, clock enabled 5.63 µA/ MHz LEUART current LEUART idle current, clock enabled 150 nA II2C I2C current I2C idle current, clock enabled 6.25 µA/ MHz ITIMER TIMER current TIMER_0 idle current, clock enabled 8.75 µA/ MHz ILETIMER LETIMER current LETIMER idle current, clock enabled 150 nA IPCNT PCNT current PCNT idle current, clock enabled 100 nA IRTC RTC current RTC idle current, clock enabled 100 nA ILCD LCD current LCD idle current, clock enabled 100 nA IAES AES current AES idle current, clock enabled 2.5 µA/ MHz IGPIO GPIO current GPIO idle current, clock enabled 5.31 µA/ MHz IEBI EBI current EBI idle current, clock enabled 1.56 µA/ MHz IPRS PRS current PRS idle current 2,81 µA/ MHz IDMA DMA current Clock enable 8.12 µA/ MHz 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 48 www.silabs.com ...the world's most energy friendly microcontrollers 4 Pinout and Package Note Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32G890. 4.1 Pinout The EFM32G890 pinout is shown in Figure 4.1 (p. 49) and Table 4.1 (p. 49). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question. Figure 4.1. EFM32G890 Pinout (top view, not to scale) Table 4.1. Device Pinout Pin Alternate Functionality / Description Pin # BGA112 Pin# and Name Pin Name Analog EBI A1 PE15 LCD_SEG11 EBI_AD07 #0 LEU0_RX #2 A2 PE14 LCD_SEG10 EBI_AD06 #0 LEU0_TX #2 A3 PE12 LCD_SEG8 EBI_AD04 #0 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 Timers TIM1_CC2 #1 49 Communication Other US0_CLK #0 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # BGA112 Pin# and Name Pin Name Analog EBI Timers A4 PE9 LCD_SEG5 EBI_AD01 #0 PCNT2_S1IN #1 A5 PD10 LCD_SEG29 EBI_CS1 #0 A6 PF7 LCD_SEG25 A7 PF5 LCD_SEG3 EBI_REn #0 TIM0_CDTI2 #2 A8 PF4 LCD_SEG2 EBI_WEn #0 TIM0_CDTI1 #2 A9 PE4 LCD_COM0 A10 PC14 ACMP1_CH6 TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0 U0_TX #3 A11 PC15 ACMP1_CH7 TIM0_CDTI2 #1/3 TIM1_CC2 #0 U0_RX #3 DBG_SWO #1 B1 PA15 LCD_SEG12 EBI_AD08 #0 B2 PE13 LCD_SEG9 EBI_AD05 #0 US0_CS #0 ACMP0_O #0 B3 PE11 LCD_SEG7 EBI_AD03 #0 TIM1_CC1 #1 US0_RX #0 BOOT_RX B4 PE8 LCD_SEG4 EBI_AD00 #0 PCNT2_S0IN #1 B5 PD11 LCD_SEG30 EBI_CS2 #0 B6 PF8 LCD_SEG26 TIM0_CC2 #2 B7 PF6 LCD_SEG24 TIM0_CC0 #2 B8 PF3 LCD_SEG1 B9 PE5 LCD_COM1 B10 PC12 ACMP1_CH4 B11 PC13 ACMP1_CH5 C1 PA1 LCD_SEG14 EBI_AD10 #0 TIM0_CC1 #0/1 I2C0_SCL #0 C2 PA0 LCD_SEG13 EBI_AD09 #0 TIM0_CC0 #0/1 I2C0_SDA #0 C3 PE10 LCD_SEG6 EBI_AD02 #0 TIM1_CC0 #1 US0_TX #0 C4 PD13 C5 PD12 LCD_SEG31 EBI_CS3 #0 C6 PF9 LCD_SEG27 C7 VSS C8 PF2 LCD_SEG0 C9 PE6 LCD_COM2 C10 PC10 ACMP1_CH2 C11 PC11 ACMP1_CH3 D1 PA3 LCD_SEG16 EBI_AD12 #0 TIM0_CDTI0 #0 D2 PA2 LCD_SEG15 EBI_AD11 #0 TIM0_CC2 #0/1 D3 PB15 D4 VSS D5 IOVDD_6 Digital IO power supply 6. D6 PD9 LCD_SEG28 TIM0_CC1 #2 Communication Other U0_RX #0 US0_CS #1 EBI_ALE #0 U0_TX #0 TIM0_CDTI0 #2 US0_CLK #1 CMU_CLK0 #1 TIM0_CDTI0 #1/3 TIM1_CC0 #0 PCNT0_S0IN #0 CMU_CLK1 #0 BOOT_TX Ground. ACMP1_O #0 DBG_SWO #0 EBI_ARDY #0 US0_RX #1 TIM2_CC2 #2 US0_RX #2 US0_TX #2 U0_TX #2 CMU_CLK0 #0 Ground. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 EBI_CS0 #0 50 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # BGA112 Pin# and Name Pin Name Analog EBI Timers Communication D7 IOVDD_5 Digital IO power supply 5. D8 PF1 D9 PE7 LCD_COM3 D10 PC8 ACMP1_CH0 TIM2_CC0 #2 US0_CS #2 D11 PC9 ACMP1_CH1 TIM2_CC1 #2 US0_CLK #2 E1 PA6 LCD_SEG19 EBI_AD15 #0 E2 PA5 LCD_SEG18 EBI_AD14 #0 TIM0_CDTI2 #0 LEU1_TX #1 E3 PA4 LCD_SEG17 EBI_AD13 #0 TIM0_CDTI1 #0 U0_RX #2 E4 PB0 LCD_SEG32 E8 PF0 LETIM0_OUT0 #2 E9 PE0 PCNT0_S0IN #1 U0_TX #1 E10 PE1 PCNT0_S1IN #1 U0_RX #1 E11 PE3 F1 PB1 LCD_SEG33 TIM1_CC1 #2 F2 PB2 LCD_SEG34 TIM1_CC2 #2 F3 PB3 LCD_SEG20 PCNT1_S0IN #1 US2_TX #1 F4 PB4 LCD_SEG21 PCNT1_S1IN #1 US2_RX #1 F8 VDD_DREG Power supply for on-chip voltage regulator. F9 VSS_DREG Ground for on-chip voltage regulator. F10 PE2 F11 DECOUPLE G1 PB5 LCD_SEG22 US2_CLK #1 G2 PB6 LCD_SEG23 US2_CS #1 G3 VSS G4 IOVDD_0 Digital IO power supply 0. G8 IOVDD_4 Digital IO power supply 4. G9 VSS G10 PC6 ACMP0_CH6 LEU1_TX #0 I2C0_SDA #2 G11 PC7 ACMP0_CH7 LEU1_RX #0 I2C0_SCL #2 H1 PC0 ACMP0_CH0 H2 PC2 ACMP0_CH2 H3 PD14 H4 PA7 LCD_SEG35 H5 PA8 LCD_SEG36 H6 VSS H7 IOVDD_3 H8 PD8 H9 PD5 LETIM0_OUT1 #2 Other DBG_SWDIO #0/1 US0_TX #1 LEU1_RX #1 TIM1_CC0 #2 DBG_SWCLK #0/1 ACMP1_O #1 ACMP0_O #1 Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin. Ground. Ground. PCNT0_S0IN #2 US1_TX #0 US2_TX #0 I2C0_SDA #3 TIM2_CC0 #0 Ground. Digital IO power supply 3. CMU_CLK1 #1 ADC0_CH5 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 LEU0_RX #0 51 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # BGA112 Pin# and Name Pin Name Analog H10 PD6 H11 EBI Timers Communication Other ADC0_CH6 LETIM0_OUT0 #0 I2C0_SDA #1 PD7 ADC0_CH7 LETIM0_OUT1 #0 I2C0_SCL #1 J1 PC1 ACMP0_CH1 PCNT0_S1IN #2 US1_RX #0 J2 PC3 ACMP0_CH3 J3 PD15 J4 PA12 LCD_BCAP_P TIM2_CC0 #1 J5 PA9 LCD_SEG37 TIM2_CC1 #0 J6 PA10 LCD_SEG38 TIM2_CC2 #0 J7 PB9 J8 PB10 J9 PD2 ADC0_CH2 TIM0_CC1 #3 US1_CLK #1 J10 PD3 ADC0_CH3 TIM0_CC2 #3 US1_CS #1 J11 PD4 ADC0_CH4 LEU0_TX #0 K1 PB7 LFXTAL_P US1_CLK #0 K2 PC4 ACMP0_CH4 LETIM0_OUT0 #3 PCNT1_S0IN #0 K3 PA13 LCD_BCAP_N TIM2_CC1 #1 K4 VSS K5 PA11 K6 RESETn Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. K7 AVSS_1 Analog ground 1. K8 AVDD_2 Analog power supply 2. K9 AVDD_1 Analog power supply 1. K10 AVSS_0 Analog ground 0. K11 PD1 ADC0_CH1 L1 PB8 LFXTAL_N L2 PC5 ACMP0_CH5 LETIM0_OUT1 #3 PCNT1_S1IN #0 L3 PA14 LCD_BEXT TIM2_CC2 #1 L4 IOVDD_1 Digital IO power supply 1. L5 PB11 DAC0_OUT0 LETIM0_OUT0 #1 L6 PB12 DAC0_OUT1 LETIM0_OUT1 #1 L7 AVSS_2 L8 PB13 HFXTAL_P LEU0_TX #1 L9 PB14 HFXTAL_N LEU0_RX #1 L10 AVDD_0 Analog power supply 0. L11 PD0 ADC0_CH0 US2_RX #0 I2C0_SCL #3 US2_CLK #0 Ground. LCD_SEG39 TIM0_CC0 #3 PCNT2_S1IN #0 US1_RX #1 US1_CS #0 US2_CS #0 Analog ground 2. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 PCNT2_S0IN #0 52 US1_TX #1 www.silabs.com ...the world's most energy friendly microcontrollers 4.2 Alternate Functionality Pinout A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 53) . The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 4.2. Alternate functionality overview Alternate LOCATION Functionality 0 1 2 3 Description ACMP0_CH0 PC0 Analog comparator ACMP0, channel 0. ACMP0_CH1 PC1 Analog comparator ACMP0, channel 1. ACMP0_CH2 PC2 Analog comparator ACMP0, channel 2. ACMP0_CH3 PC3 Analog comparator ACMP0, channel 3. ACMP0_CH4 PC4 Analog comparator ACMP0, channel 4. ACMP0_CH5 PC5 Analog comparator ACMP0, channel 5. ACMP0_CH6 PC6 Analog comparator ACMP0, channel 6. ACMP0_CH7 PC7 Analog comparator ACMP0, channel 7. ACMP0_O PE13 ACMP1_CH0 PC8 Analog comparator ACMP1, channel 0. ACMP1_CH1 PC9 Analog comparator ACMP1, channel 1. ACMP1_CH2 PC10 Analog comparator ACMP1, channel 2. ACMP1_CH3 PC11 Analog comparator ACMP1, channel 3. ACMP1_CH4 PC12 Analog comparator ACMP1, channel 4. ACMP1_CH5 PC13 Analog comparator ACMP1, channel 5. ACMP1_CH6 PC14 Analog comparator ACMP1, channel 6. ACMP1_CH7 PC15 Analog comparator ACMP1, channel 7. ACMP1_O PF2 ADC0_CH0 PD0 Analog to digital converter ADC0, input channel number 0. ADC0_CH1 PD1 Analog to digital converter ADC0, input channel number 1. ADC0_CH2 PD2 Analog to digital converter ADC0, input channel number 2. ADC0_CH3 PD3 Analog to digital converter ADC0, input channel number 3. ADC0_CH4 PD4 Analog to digital converter ADC0, input channel number 4. ADC0_CH5 PD5 Analog to digital converter ADC0, input channel number 5. ADC0_CH6 PD6 Analog to digital converter ADC0, input channel number 6. ADC0_CH7 PD7 Analog to digital converter ADC0, input channel number 7. BOOT_RX PE11 Bootloader RX. BOOT_TX PE10 Bootloader TX. CMU_CLK0 PA2 PC12 Clock Management Unit, clock output number 0. CMU_CLK1 PA1 PD8 Clock Management Unit, clock output number 1. DAC0_OUT0 PB11 Digital to Analog Converter DAC0 output channel number 0. DAC0_OUT1 PB12 Digital to Analog Converter DAC0 output channel number 1. PE2 Analog comparator ACMP0, digital output. PE3 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 Analog comparator ACMP1, digital output. 53 www.silabs.com ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 Description Debug-interface Serial Wire clock input. DBG_SWCLK PF0 PF0 DBG_SWDIO PF1 PF1 Note that this function is enabled to pin out of reset, and has a built-in pull down. Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up. Debug-interface Serial Wire viewer Output. DBG_SWO PF2 PC15 EBI_AD00 PE8 External Bus Interface (EBI) address and data input / output pin 00. EBI_AD01 PE9 External Bus Interface (EBI) address and data input / output pin 01. EBI_AD02 PE10 External Bus Interface (EBI) address and data input / output pin 02. EBI_AD03 PE11 External Bus Interface (EBI) address and data input / output pin 03. EBI_AD04 PE12 External Bus Interface (EBI) address and data input / output pin 04. EBI_AD05 PE13 External Bus Interface (EBI) address and data input / output pin 05. EBI_AD06 PE14 External Bus Interface (EBI) address and data input / output pin 06. EBI_AD07 PE15 External Bus Interface (EBI) address and data input / output pin 07. EBI_AD08 PA15 External Bus Interface (EBI) address and data input / output pin 08. EBI_AD09 PA0 External Bus Interface (EBI) address and data input / output pin 09. EBI_AD10 PA1 External Bus Interface (EBI) address and data input / output pin 10. EBI_AD11 PA2 External Bus Interface (EBI) address and data input / output pin 11. EBI_AD12 PA3 External Bus Interface (EBI) address and data input / output pin 12. EBI_AD13 PA4 External Bus Interface (EBI) address and data input / output pin 13. EBI_AD14 PA5 External Bus Interface (EBI) address and data input / output pin 14. EBI_AD15 PA6 External Bus Interface (EBI) address and data input / output pin 15. EBI_ALE PF3 External Bus Interface (EBI) Address Latch Enable output. EBI_ARDY PF2 External Bus Interface (EBI) Hardware Ready Control input. EBI_CS0 PD9 External Bus Interface (EBI) Chip Select output 0. EBI_CS1 PD10 External Bus Interface (EBI) Chip Select output 1. EBI_CS2 PD11 External Bus Interface (EBI) Chip Select output 2. EBI_CS3 PD12 External Bus Interface (EBI) Chip Select output 3. EBI_REn PF5 External Bus Interface (EBI) Read Enable output. EBI_WEn PF4 External Bus Interface (EBI) Write Enable output. HFXTAL_N PB14 High Frequency Crystal negative pin. Also used as external optional clock input pin. HFXTAL_P PB13 High Frequency Crystal positive pin. I2C0_SCL PA1 PD7 PC7 PD15 I2C0 Serial Clock Line input / output. I2C0_SDA PA0 PD6 PC6 PD14 I2C0 Serial Data input / output. LCD_BCAP_N PA13 LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P. LCD_BCAP_P PA12 LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P. LCD_BEXT PA14 LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 Note that this function is not enabled after reset, and must be enabled by software to be used. 54 www.silabs.com ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 Description An external LCD voltage may also be applied to this pin if the booster is not enabled. If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO. LCD_COM0 PE4 LCD driver common line number 0. LCD_COM1 PE5 LCD driver common line number 1. LCD_COM2 PE6 LCD driver common line number 2. LCD_COM3 PE7 LCD driver common line number 3. LCD_SEG0 PF2 LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0. LCD_SEG1 PF3 LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0. LCD_SEG2 PF4 LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0. LCD_SEG3 PF5 LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0. LCD_SEG4 PE8 LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1. LCD_SEG5 PE9 LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1. LCD_SEG6 PE10 LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1. LCD_SEG7 PE11 LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1. LCD_SEG8 PE12 LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2. LCD_SEG9 PE13 LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2. LCD_SEG10 PE14 LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2. LCD_SEG11 PE15 LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2. LCD_SEG12 PA15 LCD segment line 12. Segments 12, 13, 14 and 15 are controlled by SEGEN3. LCD_SEG13 PA0 LCD segment line 13. Segments 12, 13, 14 and 15 are controlled by SEGEN3. LCD_SEG14 PA1 LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3. LCD_SEG15 PA2 LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3. LCD_SEG16 PA3 LCD segment line 16. Segments 16, 17, 18 and 19 are controlled by SEGEN4. LCD_SEG17 PA4 LCD segment line 17. Segments 16, 17, 18 and 19 are controlled by SEGEN4. LCD_SEG18 PA5 LCD segment line 18. Segments 16, 17, 18 and 19 are controlled by SEGEN4. LCD_SEG19 PA6 LCD segment line 19. Segments 16, 17, 18 and 19 are controlled by SEGEN4. LCD_SEG20 PB3 LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5. LCD_SEG21 PB4 LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5. LCD_SEG22 PB5 LCD segment line 22. Segments 20, 21, 22 and 23 are controlled by SEGEN5. LCD_SEG23 PB6 LCD segment line 23. Segments 20, 21, 22 and 23 are controlled by SEGEN5. LCD_SEG24 PF6 LCD segment line 24. Segments 24, 25, 26 and 27 are controlled by SEGEN6. LCD_SEG25 PF7 LCD segment line 25. Segments 24, 25, 26 and 27 are controlled by SEGEN6. LCD_SEG26 PF8 LCD segment line 26. Segments 24, 25, 26 and 27 are controlled by SEGEN6. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 55 www.silabs.com ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 Description LCD_SEG27 PF9 LCD segment line 27. Segments 24, 25, 26 and 27 are controlled by SEGEN6. LCD_SEG28 PD9 LCD segment line 28. Segments 28, 29, 30 and 31 are controlled by SEGEN7. LCD_SEG29 PD10 LCD segment line 29. Segments 28, 29, 30 and 31 are controlled by SEGEN7. LCD_SEG30 PD11 LCD segment line 30. Segments 28, 29, 30 and 31 are controlled by SEGEN7. LCD_SEG31 PD12 LCD segment line 31. Segments 28, 29, 30 and 31 are controlled by SEGEN7. LCD_SEG32 PB0 LCD segment line 32. Segments 32, 33, 34 and 35 are controlled by SEGEN8. LCD_SEG33 PB1 LCD segment line 33. Segments 32, 33, 34 and 35 are controlled by SEGEN8. LCD_SEG34 PB2 LCD segment line 34. Segments 32, 33, 34 and 35 are controlled by SEGEN8. LCD_SEG35 PA7 LCD segment line 35. Segments 32, 33, 34 and 35 are controlled by SEGEN8. LCD_SEG36 PA8 LCD segment line 36. Segments 36, 37, 38 and 39 are controlled by SEGEN9. LCD_SEG37 PA9 LCD segment line 37. Segments 36, 37, 38 and 39 are controlled by SEGEN9. LCD_SEG38 PA10 LCD segment line 38. Segments 36, 37, 38 and 39 are controlled by SEGEN9. LCD_SEG39 PA11 LCD segment line 39. Segments 36, 37, 38 and 39 are controlled by SEGEN9. LETIM0_OUT0 PD6 PB11 PF0 PC4 Low Energy Timer LETIM0, output channel 0. LETIM0_OUT1 PD7 PB12 PF1 PC5 Low Energy Timer LETIM0, output channel 1. LEU0_RX PD5 PB14 PE15 LEUART0 Receive input. LEU0_TX PD4 PB13 PE14 LEUART0 Transmit output. Also used as receive input in half duplex communication. LEU1_RX PC7 PA6 LEUART1 Receive input. LEU1_TX PC6 PA5 LEUART1 Transmit output. Also used as receive input in half duplex communication. LFXTAL_N PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. LFXTAL_P PB7 Low Frequency Crystal (typically 32.768 kHz) positive pin. PCNT0_S0IN PC13 PE0 PC0 Pulse Counter PCNT0 input number 0. PCNT0_S1IN PC14 PE1 PC1 Pulse Counter PCNT0 input number 1. PCNT1_S0IN PC4 PB3 Pulse Counter PCNT1 input number 0. PCNT1_S1IN PC5 PB4 Pulse Counter PCNT1 input number 1. PCNT2_S0IN PD0 PE8 Pulse Counter PCNT2 input number 0. PCNT2_S1IN PD1 PE9 Pulse Counter PCNT2 input number 1. TIM0_CC0 PA0 PA0 PF6 PD1 Timer 0 Capture Compare input / output channel 0. TIM0_CC1 PA1 PA1 PF7 PD2 Timer 0 Capture Compare input / output channel 1. TIM0_CC2 PA2 PA2 PF8 PD3 Timer 0 Capture Compare input / output channel 2. TIM0_CDTI0 PA3 PC13 PF3 PC13 Timer 0 Complimentary Deat Time Insertion channel 0. TIM0_CDTI1 PA4 PC14 PF4 PC14 Timer 0 Complimentary Deat Time Insertion channel 1. TIM0_CDTI2 PA5 PC15 PF5 PC15 Timer 0 Complimentary Deat Time Insertion channel 2. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 56 www.silabs.com ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 Description TIM1_CC0 PC13 PE10 PB0 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 PC14 PE11 PB1 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 PC15 PE12 PB2 Timer 1 Capture Compare input / output channel 2. TIM2_CC0 PA8 PA12 PC8 Timer 2 Capture Compare input / output channel 0. TIM2_CC1 PA9 PA13 PC9 Timer 2 Capture Compare input / output channel 1. TIM2_CC2 PA10 PA14 PC10 Timer 2 Capture Compare input / output channel 2. U0_RX PF7 PE1 PA4 PC15 UART0 Receive input. U0_TX PF6 PE0 PA3 PC14 UART0 Transmit output. Also used as receive input in half duplex communication. US0_CLK PE12 PE5 PC9 USART0 clock input / output. US0_CS PE13 PE4 PC8 USART0 chip select input / output. US0_RX PE11 PE6 PC10 USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO). US0_TX PE10 PE7 USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. PC11 USART0 Synchronous mode Master Output / Slave Input (MOSI). US1_CLK PB7 PD2 USART1 clock input / output. US1_CS PB8 PD3 USART1 chip select input / output. US1_RX PC1 PD1 USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO). US1_TX PC0 USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. PD0 USART1 Synchronous mode Master Output / Slave Input (MOSI). US2_CLK PC4 PB5 USART2 clock input / output. US2_CS PC5 PB6 USART2 chip select input / output. US2_RX PC3 PB4 USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO). US2_TX PC2 USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. PB3 USART2 Synchronous mode Master Output / Slave Input (MOSI). 4.3 GPIO Pinout Overview The specific GPIO pins available in EFM32G890 is shown in Table 4.3 (p. 57) . Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0. Table 4.3. GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Port A PA15 PA14 PA13 PA12 PA11 PA10 PA9 PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 Port B PB15 PB14 PB13 PB12 PB11 PB10 PB9 PB8 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 Port C PC15 PC14 PC13 PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 Port D PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 Port E PE15 PE14 PE13 PE12 PE11 PE10 PE9 PE8 PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0 Port F - - - - - - PF9 PF8 PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 57 www.silabs.com ...the world's most energy friendly microcontrollers 4.4 BGA112 Package Figure 4.2. BGA112 Note: 1. The dimensions in parenthesis are reference. 2. Datum 'C' and seating plane are defined by the crown of the solder balls. 3. All dimensions are in millimeters. The BGA112 Package uses SAC105 solderballs. All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb). For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 58 www.silabs.com ...the world's most energy friendly microcontrollers 5 PCB Layout and Soldering 5.1 Recommended PCB Layout Figure 5.1. BGA112 PCB Land Pattern b a e d Table 5.1. BGA112 PCB Land Pattern Dimensions (Dimensions in mm) Symbol Dim. (mm) a 0.35 b 0.80 d 8.00 e 8.00 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 59 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.2. BGA112 PCB Solder Mask b a e d Table 5.2. BGA112 PCB Solder Mask Dimensions (Dimensions in mm) Symbol Dim. (mm) a 0.48 b 0.80 d 8.00 e 8.00 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 60 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.3. BGA112 PCB Stencil Design b a e d Table 5.3. BGA112 PCB Stencil Design Dimensions (Dimensions in mm) 1. 2. 3. 4. 5. 6. Symbol Dim. (mm) a 0.33 b 0.80 d 8.00 e 8.00 The drawings are not to scale. All dimensions are in millimeters. All drawings are subject to change without notice. The PCB Land Pattern drawing is in compliance with IPC-7351B. Stencil thickness 0.125 mm. For detailed pin-positioning, see Figure 4.2 (p. 58) . 5.2 Soldering Information The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 61 www.silabs.com ...the world's most energy friendly microcontrollers 6 Chip Marking, Revision and Errata 6.1 Chip Marking In the illustration below package fields and position are shown. Figure 6.1. Example Chip Marking (top view) 6.2 Revision The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 62) . 6.3 Errata Please see the errata document for EFM32G890 for description and resolution of device erratas. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 62 www.silabs.com ...the world's most energy friendly microcontrollers 7 Revision History 7.1 Revision 1.90 May 22nd, 2015 Added clarification on conditions for INLADC and DNLADC parameters. Corrected EM2 current consumption condition in Electrical Characteristics section. Added AUXHFRCO to block diagram and Electrical Characteristics. Updated HFRCO table in the Electrical Characteristics section. Updated EM0, EM2, EM3, and EM4 maximum current specifications in the Electrical Characteristics section. Updated the Output Low Voltage maximum for sinking 20 mA with VDD = 3.0 V in the Electrical Characteristics section. Updated the Input Leakage Current maximum in the Electrical Characteristics section. Updated the minimum and maximum frequency specifications for the LFRCO, HFRCO, and AUXHFRCO in the Electrical Characteristics section. Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section. Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section. Added some minimum ADC SNR, SNDR, and SFDR specifications in the Electrical Characteristics section. Added some minimum and maximum ADC offset voltage, DNL, and INL specifications in the Electrical Characteristics section. Added maximum DAC current specifications in the Electrical Characteristics section. Added maximum ACMP current and maximum and minimum offset voltage specifications in the Electrical Characteristics section. Added maximum VCMP current and updated typical VCMP current specifications in the Electrical Characteristics section. Updated references to energyAware Designer to Configurator. 7.2 Revision 1.80 July 2nd, 2014 Corrected single power supply voltage minimum value from 1.85V to 1.98V. Updated current consumption. Updated transition between energy modes. Updated power management data. Updated GPIO data. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 63 www.silabs.com ...the world's most energy friendly microcontrollers Updated LFXO, HFXO, HFRCO and ULFRCO data. Updated LFRCO and HFRCO plots. Updated ACMP data. 7.3 Revision 1.71 November 21st, 2013 Updated figures. Updated errata-link. Updated chip marking. Added link to Environmental and Quality information. Re-added missing DAC-data. 7.4 Revision 1.70 September 30th, 2013 Added I2C characterization data. Corrected GPIO operating voltage from 1.8 V to 1.85 V. Corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. Updated Environmental information. Updated trademark, disclaimer and contact information. Other minor corrections. 7.5 Revision 1.60 June 28th, 2013 Updated PCB Land Pattern, PCB Solder Mask and PCB Stencil Design figures. Updated power requirements in the Power Management section. Removed minimum load capacitance figure and table. Added reference to application note. Other minor corrections. 7.6 Revision 1.50 September 11th, 2012 Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. Corrected BGA solder balls material from Sn96.5/Ag3/Cu0.5 to SAC105. Other minor corrections. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 64 www.silabs.com ...the world's most energy friendly microcontrollers 7.7 Revision 1.40 February 27th, 2012 Updated Power Management section. Corrected operating voltage from 1.8 V to 1.85 V. Corrected TGRADADCTH parameter. Corrected BGA112 package drawing. Updated PCB land pattern, solder mask and stencil design. 7.8 Revision 1.30 May 20th, 2011 Updated LFXO load capacitance section. 7.9 Revision 1.20 December 17th, 2010 Increased max storage temperature. Added data for <150°C and <70°C on Flash data retention. Changed latch-up sensitivity test description. Added IO leakage current. Added Flash current consumption. Updated HFRCO data. Updated LFRCO data. Added graph for ADC Absolute Offset over temperature. Added graph for ADC Temperature sensor readout. 7.10 Revision 1.11 November 17th, 2010 Corrected maximum DAC clock speed for continuous mode. Added DAC sample-hold mode voltage drift rate. Added pulse widths detected by the HFXO glitch detector. Added power sequencing information to Power Management section. 7.11 Revision 1.10 September 13th, 2010 Added typical values for RADCFILT and CADCFILT. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 65 www.silabs.com ...the world's most energy friendly microcontrollers Added two conditions for DAC clock frequency; one for sample/hold and one for sample/off. Added RoHS information and specified leadframe/solderballs material. Added Serial Bootloader to feature list and system summary. Updated ADC characterization data. Updated DAC characterization data. Updated RCO characterization data. Updated ACMP characterization data. Updated VCMP characterization data. 7.12 Revision 1.00 April 23rd, 2010 ADC_VCM line removed. Added pinout illustration and additional pinout table. Changed "Errata" chapter. Errata description moved to separate document. Document changed status from "Preliminary". Updated "Electrical Characteristics" chapter. 7.13 Revision 0.85 February 19th, 2010 Renamed DBG_SWV pin to DBG_SWO. 7.14 Revision 0.83 January 25th, 2010 Updated errata section. Specified flash word width in Section 3.7 (p. 18) . Added Capacitive Sense Internal Resistor values in Section 3.12 (p. 43) . 7.15 Revision 0.82 December 9th, 2009 Updated contact information. ADC current consumption numbers updated in Section 3.10 (p. 32) . Updated LCD supply voltage range in Section 3.14 (p. 46) . 7.16 Revision 0.81 November 20th, 2009 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 66 www.silabs.com ...the world's most energy friendly microcontrollers Section 3.1 (p. 9) updated. Storage temperature in Section 3.2 (p. 9) updated. Temperature coefficient of band-gap reference in Section 3.6 (p. 17) added. Erase times in Section 3.7 (p. 18) updated. Definitions of DNL and INL added in Figure 3.27 (p. 36) and Figure 3.28 (p. 37) . Section 3.14 (p. 46) added. Current consumption of digital peripherals added in Section 3.16 (p. 48) . Pinout information in Table 4.1 (p. 49) corrected. Updated errata section. 7.17 Revision 0.80 Initial preliminary revision, October 19th, 2009 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 67 www.silabs.com ...the world's most energy friendly microcontrollers A Disclaimer and Trademarks A.1 Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. A.2 Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 68 www.silabs.com ...the world's most energy friendly microcontrollers B Contact Information Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Please visit the Silicon Labs Technical Support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 69 www.silabs.com ...the world's most energy friendly microcontrollers Table of Contents 1. Ordering Information .................................................................................................................................. 2 2. System Summary ...................................................................................................................................... 3 2.1. System Introduction ......................................................................................................................... 3 2.2. Configuration Summary .................................................................................................................... 6 2.3. Memory Map ................................................................................................................................. 8 3. Electrical Characteristics ............................................................................................................................. 9 3.1. Test Conditions .............................................................................................................................. 9 3.2. Absolute Maximum Ratings .............................................................................................................. 9 3.3. General Operating Conditions ........................................................................................................... 9 3.4. Current Consumption ..................................................................................................................... 10 3.5. Transition between Energy Modes .................................................................................................... 17 3.6. Power Management ....................................................................................................................... 17 3.7. Flash .......................................................................................................................................... 18 3.8. General Purpose Input Output ......................................................................................................... 18 3.9. Oscillators .................................................................................................................................... 27 3.10. Analog Digital Converter (ADC) ...................................................................................................... 32 3.11. Digital Analog Converter (DAC) ...................................................................................................... 41 3.12. Analog Comparator (ACMP) .......................................................................................................... 43 3.13. Voltage Comparator (VCMP) ......................................................................................................... 45 3.14. LCD .......................................................................................................................................... 46 3.15. I2C ........................................................................................................................................... 47 3.16. Digital Peripherals ....................................................................................................................... 48 4. Pinout and Package ................................................................................................................................. 49 4.1. Pinout ......................................................................................................................................... 49 4.2. Alternate Functionality Pinout .......................................................................................................... 53 4.3. GPIO Pinout Overview ................................................................................................................... 57 4.4. BGA112 Package .......................................................................................................................... 58 5. PCB Layout and Soldering ........................................................................................................................ 59 5.1. Recommended PCB Layout ............................................................................................................ 59 5.2. Soldering Information ..................................................................................................................... 61 6. Chip Marking, Revision and Errata .............................................................................................................. 62 6.1. Chip Marking ................................................................................................................................ 62 6.2. Revision ...................................................................................................................................... 62 6.3. Errata ......................................................................................................................................... 62 7. Revision History ...................................................................................................................................... 63 7.1. Revision 1.90 ............................................................................................................................... 63 7.2. Revision 1.80 ............................................................................................................................... 63 7.3. Revision 1.71 ............................................................................................................................... 64 7.4. Revision 1.70 ............................................................................................................................... 64 7.5. Revision 1.60 ............................................................................................................................... 64 7.6. Revision 1.50 ............................................................................................................................... 64 7.7. Revision 1.40 ............................................................................................................................... 65 7.8. Revision 1.30 ............................................................................................................................... 65 7.9. Revision 1.20 ............................................................................................................................... 65 7.10. Revision 1.11 .............................................................................................................................. 65 7.11. Revision 1.10 .............................................................................................................................. 65 7.12. Revision 1.00 .............................................................................................................................. 66 7.13. Revision 0.85 .............................................................................................................................. 66 7.14. Revision 0.83 .............................................................................................................................. 66 7.15. Revision 0.82 .............................................................................................................................. 66 7.16. Revision 0.81 .............................................................................................................................. 66 7.17. Revision 0.80 .............................................................................................................................. 67 A. Disclaimer and Trademarks ....................................................................................................................... 68 A.1. Disclaimer ................................................................................................................................... 68 A.2. Trademark Information ................................................................................................................... 68 B. Contact Information ................................................................................................................................. 69 B.1. ................................................................................................................................................. 69 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 70 www.silabs.com ...the world's most energy friendly microcontrollers List of Figures 2.1. Block Diagram ....................................................................................................................................... 3 2.2. EFM32G890 Memory Map with largest RAM and Flash sizes .......................................................................... 8 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 28 MHz ........................................................................................................................................................ 11 3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz ........................................................................................................................................................ 11 3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14 MHz ........................................................................................................................................................ 12 3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11 MHz ........................................................................................................................................................ 12 3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 7 MHz ........................................................................................................................................................ 13 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28 MHz .............................. 13 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz .............................. 14 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz .............................. 14 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz .............................. 15 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 7 MHz .............................. 15 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ....................................................... 16 3.12. EM3 current consumption. ................................................................................................................... 16 3.13. EM4 current consumption. ................................................................................................................... 17 3.14. Typical Low-Level Output Current, 2V Supply Voltage ................................................................................ 21 3.15. Typical High-Level Output Current, 2V Supply Voltage ................................................................................ 22 3.16. Typical Low-Level Output Current, 3V Supply Voltage ................................................................................ 23 3.17. Typical High-Level Output Current, 3V Supply Voltage ................................................................................ 24 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage .............................................................................. 25 3.19. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................. 26 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 29 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31 3.26. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31 3.27. Integral Non-Linearity (INL) ................................................................................................................... 36 3.28. Differential Non-Linearity (DNL) .............................................................................................................. 37 3.29. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 38 3.30. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 39 3.31. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 40 3.32. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 41 3.33. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 41 3.34. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 44 4.1. EFM32G890 Pinout (top view, not to scale) ............................................................................................... 49 4.2. BGA112 .............................................................................................................................................. 58 5.1. BGA112 PCB Land Pattern ..................................................................................................................... 59 5.2. BGA112 PCB Solder Mask ..................................................................................................................... 60 5.3. BGA112 PCB Stencil Design ................................................................................................................... 61 6.1. Example Chip Marking (top view) ............................................................................................................. 62 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 71 www.silabs.com ...the world's most energy friendly microcontrollers List of Tables 1.1. Ordering Information ................................................................................................................................ 2 2.1. Configuration Summary ............................................................................................................................ 7 3.1. Absolute Maximum Ratings ...................................................................................................................... 9 3.2. General Operating Conditions ................................................................................................................... 9 3.3. Current Consumption ............................................................................................................................. 10 3.4. Energy Modes Transitions ...................................................................................................................... 17 3.5. Power Management ............................................................................................................................... 18 3.6. Flash .................................................................................................................................................. 18 3.7. GPIO .................................................................................................................................................. 18 3.8. LFXO .................................................................................................................................................. 27 3.9. HFXO ................................................................................................................................................. 28 3.10. LFRCO .............................................................................................................................................. 28 3.11. HFRCO ............................................................................................................................................. 29 3.12. AUXHFRCO ....................................................................................................................................... 32 3.13. ULFRCO ............................................................................................................................................ 32 3.14. ADC .................................................................................................................................................. 32 3.15. DAC .................................................................................................................................................. 41 3.16. ACMP ............................................................................................................................................... 43 3.17. VCMP ............................................................................................................................................... 45 3.18. LCD .................................................................................................................................................. 46 3.19. I2C Standard-mode (Sm) ...................................................................................................................... 47 3.20. I2C Fast-mode (Fm) ............................................................................................................................ 47 3.21. I2C Fast-mode Plus (Fm+) .................................................................................................................... 48 3.22. Digital Peripherals ............................................................................................................................... 48 4.1. Device Pinout ....................................................................................................................................... 49 4.2. Alternate functionality overview ................................................................................................................ 53 4.3. GPIO Pinout ........................................................................................................................................ 57 5.1. BGA112 PCB Land Pattern Dimensions (Dimensions in mm) ......................................................................... 59 5.2. BGA112 PCB Solder Mask Dimensions (Dimensions in mm) ......................................................................... 60 5.3. BGA112 PCB Stencil Design Dimensions (Dimensions in mm) ....................................................................... 61 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 72 www.silabs.com ...the world's most energy friendly microcontrollers List of Equations 3.1. Total ACMP Active Current ..................................................................................................................... 43 3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 45 3.3. Total LCD Current Based on Operational Mode and Internal Boost ................................................................. 46 2015-05-22 - EFM32G890FXX - d0010_Rev1.90 73 www.silabs.com