Data Sheet

Data Sheet
Rev. 2.20 / April 2015
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Power Management ICs
Power and Precision
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Brief Description
Benefits
ZSPM15xx family ICs are controllers designed for
high-current, non-isolated DC/DC step-down point of
load (POL) converters. The ZSPM15xx has a digital
control loop that is optimized for maximum stability
as well as load step and steady-state performance.

ZSPM15xx family ICs have a rich set of integrated
fault protection features including over-voltage/
under-voltage, output over-current, and over-temperature protections. To facilitate ease of use, the
ZSPM15xx is pre-programmed and available for
common output voltages. To provide flexibility for the
end-customer, the over-current protection threshold
and the control loop compensation are selectable by
the end-customer to match a number of selected
power stages.

ZSPM15xx family ICs have been optimized for maximum efficiency when used with ZMDI’s DrMOS
devices. Reference designs and application instructions enable a high performance turnkey solution
without extensive engineering development.




Available Support



Advanced digital control techniques
Tru-sample Technology™

State-Law Control™ (SLC)
 Preconfigured compensation for selected
inductance values.
 Improved transient response and noise immunity
 Protection features

Configuration for over-current protection

Over-voltage protection (VIN, VOUT)

Under-voltage protection (VIN, VOUT)

Over-temperature protection

Overloaded startup

Restart and delay

Reference designs
Evaluation kits
Physical Characteristics



Features
Factory pre-configured for industry standard
output voltages and currents enabling fast
time-to-market
Simplified design and integration
FPGA designer-friendly solution
Highest power density with smallest footprint
Higher energy efficiency across all output loading
conditions
Operation from a single 5V supply


Operation temperature: -40°C to +125°C
VIN for POL application:10.8V to 13.2V
VDD50 voltage supply: 4.75 to 5.25V
Available Output Voltages: 0.85V, 1.0V, 1.2V,
1.5V, 1.8V, 2.0V, 2.5V, 3.3V, and 5.0V
Lead free (RoHS compliant) 24-pin QFN package
(4mm x 4mm)
ZSPM15xx Typical Application Diagram
ZSPM15xx
QFN 4x4 mm
ZSPM90xx
PQFN 6x6 mm
Current Sensing
Digital Control Loop
Power Management
(Sequencing, Protection,…)
Driver
Driver
Housekeeping
and
Communication
For more information, contact ZMDI via [email protected].
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 — April 27, 2015. All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated,
stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Current Sensing
ISNSP
Current
Limiting
Average Current
Sensing
ISNSN
ZSPM15xx Block Diagram
Digital Control Loop
VFBP
VFB
FLASH
ADC
VFBN
Adaptive Digital
Controller
PWM
PWM
DRVEN
DAC
OC Detection
Sequencer
OV Detection
Typical Applications
DAC
 Servers and Storage
Bias
Current
Source
 Base Stations
Configurable
Error Handler
OT Detection
 Telecom Switches
Vin OV/UV
Detection
Int. Temp
Sense
Vout UV Detection
 Network Routers
TEMP
HKADC
CPU Core
CONFIG1
Product Code
PGOOD
Clock
Generation
CONTROL
THSHDN
GPIO
Ordering Information
1.8V Reg
Analog
AVDD18
1.8V Reg
Digital
VDD18
3.3V
Reg
VDD33
NVM
(OTP)
VIN
ADCVREF
 Single-Rail/Single-Phase
Supplies for Processors,
ASICs, FPGAs, DSPs
VREFP
VDD50
 Industrial Applications
CONFIG0
VREF
Description
Package
ZSPM1501ZA1W0
ZSPM1501 lead-free QFN24; output voltage: 0.85V; inductance: 330nH; temperature: -40°C to +125°C
Reel
ZSPM1502ZA1W0
ZSPM1502 lead-free QFN24; output voltage: 1.00V; inductance: 330nH; temperature: -40°C to +125°C
Reel
ZSPM1503ZA1W0
ZSPM1503 lead-free QFN24; output voltage: 1.20V; inductance: 330nH; temperature: -40°C to +125°C
Reel
ZSPM1504ZA1W0
ZSPM1504 lead-free QFN24; output voltage: 1.50V; inductance: 470nH; temperature: -40°C to +125°C
Reel
ZSPM1505ZA1W0
ZSPM1505 lead-free QFN24; output voltage: 1.80V; inductance: 470nH; temperature: -40°C to +125°C
Reel
ZSPM1506ZA1W0
ZSPM1506 lead-free QFN24; output voltage: 2.00V; inductance: 470nH; temperature: -40°C to +125°C
Reel
ZSPM1507ZA1W0
ZSPM1507 lead-free QFN24; output voltage: 2.50V; inductance: 1000nH; temperature: -40°C to +125°C
Reel
ZSPM1508ZA1W0
ZSPM1508 lead-free QFN24; output voltage: 3.30V; inductance: 2200nH; temperature: -40°C to +125°C
Reel
ZSPM1509ZA1W0
ZSPM1509 lead-free QFN24; output voltage: 5.00V; inductance: 2200nH; temperature: -40°C to +125°C
Reel
ZSPM1511ZA1W0
ZSPM1511 lead-free QFN24; output voltage: 0.85V; inductance: 680nH; temperature: -40°C to +125°C
Reel
ZSPM1512ZA1W0
ZSPM1512 lead-free QFN24; output voltage: 1.00V; inductance: 680nH; temperature: -40°C to +125°C
Reel
ZSPM1513ZA1W0
ZSPM1513 lead-free QFN24; output voltage: 1.20V; inductance: 680nH; temperature: -40°C to +125°C
Reel
Sales and Further Information
www.zmdi.com
[email protected]
Zentrum Mikroelektronik
Dresden AG
Global Headquarters
Grenzstrasse 28
01109 Dresden, Germany
ZMD America, Inc.
1525 McCarthy Blvd., #212
Milpitas, CA 95035-7453
USA
Central Office:
Phone +49.351.8822.306
Fax
+49.351.8822.337
USA Phone 1.855.275.9634
Phone +1.408.883.6310
Fax
+1.408.883.6358
European Technical Support
Phone +49.351.8822.7.772
Fax
+49.351.8822.87.772
DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Zentrum Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The
information furnished hereby is believed to be true and accurate. However, under no circumstances shall ZMD AG be liable to any customer,
licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or
in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any
customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for
any damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty,
tort (including negligence), strict liability, or otherwise.
European Sales (Stuttgart)
Phone +49.711.674517.55
Fax
+49.711.674517.87955
Zentrum Mikroelektronik
Dresden AG, Japan Office
2nd Floor, Shinbashi Tokyu Bldg.
4-21-3, Shinbashi, Minato-ku
Tokyo, 105-0004
Japan
ZMD FAR EAST, Ltd.
3F, No. 51, Sec. 2,
Keelung Road
11052 Taipei
Taiwan
Phone +81.3.6895.7410
Fax
+81.3.6895.7301
Phone +886.2.2377.8189
Fax
+886.2.2377.8199
Zentrum Mikroelektronik
Dresden AG, Korea Office
U-space 1 Building
Unit B, 906-1
660, Daewangpangyo-ro
Bundang-gu, Seongnam-si
Gyeonggi-do, 463-400
Korea
Phone +82.31.950.7679
Fax
+82.504.841.3026
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 — April 27, 2015
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Contents
1
IC Characteristics ........................................................................................................................................... 14
1.1. Absolute Maximum Ratings ..................................................................................................................... 14
1.2. Recommended Operating Conditions ..................................................................................................... 15
1.3. Electrical Parameters .............................................................................................................................. 15
1.4. Device-Specific System Parameters ....................................................................................................... 18
1.4.1. ZSPM1501 ........................................................................................................................................ 18
1.4.2. ZSPM1502 ........................................................................................................................................ 18
1.4.3. ZSPM1503 ........................................................................................................................................ 19
1.4.4. ZSPM1504 ........................................................................................................................................ 20
1.4.5. ZSPM1505 ........................................................................................................................................ 20
1.4.6. ZSPM1506 ........................................................................................................................................ 21
1.4.7. ZSPM1507 ........................................................................................................................................ 22
1.4.8. ZSPM1508 ........................................................................................................................................ 22
1.4.9. ZSPM1509 ........................................................................................................................................ 23
1.4.10. ZSPM1511 ........................................................................................................................................ 23
1.4.11. ZSPM1512 ........................................................................................................................................ 24
1.4.12. ZSPM1513 ........................................................................................................................................ 24
2 Product Summary........................................................................................................................................... 25
2.1. Overview .................................................................................................................................................. 25
2.2. Pin Description......................................................................................................................................... 27
2.3. Available Packages ................................................................................................................................. 28
3 Functional Description .................................................................................................................................... 29
3.1. Power Supply Circuitry, Reference Decoupling, and Grounding ............................................................ 29
3.2. Reset/Start-up Behavior .......................................................................................................................... 29
3.3. Digital Power Control ............................................................................................................................... 29
3.3.1. Overview ........................................................................................................................................... 29
3.3.2. Output Voltage Feedback ................................................................................................................. 29
3.3.3. Digital Compensator ......................................................................................................................... 30
3.3.4. Power Sequencing and the CONTROL Pin ...................................................................................... 31
3.4. Fault Monitoring and Response Generation ............................................................................................ 32
3.4.1. Output Over/Under-Voltage .............................................................................................................. 32
3.4.2. Output Current Protection ................................................................................................................. 32
3.4.3. Input Voltage Protection .................................................................................................................... 33
3.4.4. Over-Temperature Protection ........................................................................................................... 33
4 Application Information ................................................................................................................................... 34
4.1. Application Schematic ............................................................................................................................. 34
4.2. Device-Specific Passive Components ..................................................................................................... 36
4.3. Output Voltage Feedback Components .................................................................................................. 38
4.4. DCR Current Sensing Components ........................................................................................................ 38
4.5. Input Voltage Sensing ............................................................................................................................. 39
4.6. External Temperature Sensing ................................................................................................................ 39
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
4 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
4.7. CONFIG0 – Over-Current Protection Threshold ..................................................................................... 40
4.8. CONFIG1 – Compensation Loop and Output Voltage Slew Rate ........................................................... 41
5 Typical Performance Data .............................................................................................................................. 46
5.1. ZSPM1501 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 47
5.2. ZSPM1501 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 48
5.3. ZSPM1501 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 49
5.4. ZSPM1501 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 50
5.5. ZSPM1502 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 51
5.6. ZSPM1502 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 52
5.7. ZSPM1502 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 53
5.8. ZSPM1502 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 54
5.9. ZSPM1503 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 55
5.10. ZSPM1503 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 56
5.11. ZSPM1503 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 57
5.12. ZSPM1503 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 58
5.13. ZSPM1504 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 59
5.14. ZSPM1504 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 60
5.15. ZSPM1504 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 61
5.16. ZSPM1504 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 62
5.17. ZSPM1505 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 63
5.18. ZSPM1505 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 64
5.19. ZSPM1505 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 65
5.20. ZSPM1505 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 66
5.21. ZSPM1506 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 67
5.22. ZSPM1506 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 68
5.23. ZSPM1506 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 69
5.24. ZSPM1506 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 70
5.25. ZSPM1507 – Typical Load Transient Response –Capacitor Range 1 – Comp0 .................................... 71
5.26. ZSPM1507 – Typical Load Transient Response –Capacitor Range 2 – Comp1 .................................... 72
5.27. ZSPM1507 – Typical Load Transient Response –Capacitor Range 3 – Comp2 .................................... 73
5.28. ZSPM1507 – Typical Load Transient Response –Capacitor Range 4 – Comp3 .................................... 74
5.29. ZSPM1508 – Typical Load Transient Response –Capacitor Range 1 – Comp0 .................................... 75
5.30. ZSPM1508 – Typical Load Transient Response –Capacitor Range 2 – Comp1 .................................... 76
5.31. ZSPM1508 – Typical Load Transient Response –Capacitor Range 3 – Comp2 .................................... 77
5.32. ZSPM1508 – Typical Load Transient Response –Capacitor Range 4 – Comp3 .................................... 78
5.33. ZSPM1509 – Typical Load Transient Response –Capacitor Range 1 – Comp0 .................................... 79
5.34. ZSPM1509 – Typical Load Transient Response –Capacitor Range 2 – Comp1 .................................... 80
5.35. ZSPM1509 – Typical Load Transient Response –Capacitor Range 3 – Comp2 .................................... 81
5.36. ZSPM1509 – Typical Load Transient Response –Capacitor Range 4 – Comp3 .................................... 82
5.37. ZSPM1511 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 83
5.38. ZSPM1511 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 84
5.39. ZSPM1511 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 85
5.40. ZSPM1511 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 86
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
5 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
ZSPM1512 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 87
ZSPM1512 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 88
ZSPM1512 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 89
ZSPM1512 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 90
ZSPM1513 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 91
ZSPM1513 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 92
ZSPM1513 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 93
ZSPM1513 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 94
Typical Efficiency Curves – ZSPM1502 with ZSPM9000, ZSPM9015, and ZSPM9060 DrMOS ........... 95
Typical Efficiency Curves – ZSPM9000 DrMOS with ZSPM1504, ZSPM1505, and ZSPM1506 ........... 96
Typical Efficiency Curves – ZSPM9000 and ZSPM9060 DrMOS with ZSPM1508 and ZSPM1509 ...... 97
Typical Efficiency Curves – ZSPM9000 and ZSPM9060 DrMOS with ZSPM1511, ZSPM1512,
and ZSPM1513 ........................................................................................................................................ 98
6 Mechanical Specifications .............................................................................................................................. 99
7 Ordering Information .................................................................................................................................... 100
8 Related Documents ...................................................................................................................................... 100
9 Glossary ....................................................................................................................................................... 101
10 Document Revision History .......................................................................................................................... 101
5.41.
5.42.
5.43.
5.44.
5.45.
5.46.
5.47.
5.48.
5.49.
5.50.
5.51.
5.52.
List of Figures
Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Data Sheet
April 27, 2015
Typical Application Circuit with a 5V Supply Voltage ..................................................................... 25
Block Diagram ................................................................................................................................ 26
Pin-out QFN24 Package ................................................................................................................ 28
Simplified Block Diagram of the Digital Compensation .................................................................. 30
Power Sequencing ......................................................................................................................... 31
ZSPM15xx – Application Circuit with a 5V Supply Voltage ........................................................... 34
Output Voltage Sense Circuitry ...................................................................................................... 38
Inductor Current Sensing Using the DCR Method ......................................................................... 38
Input Voltage Sense Circuitry......................................................................................................... 39
External Temperature Sense Circuitry ........................................................................................... 39
ZSPM1501 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 47
ZSPM1501 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 47
ZSPM1501 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 47
ZSPM1501 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 47
Open Loop Bode Plots for ZSPM1501 with Comp0....................................................................... 47
ZSPM1501 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 48
ZSPM1501 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 48
ZSPM1501 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 48
ZSPM1501 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 48
Open Loop Bode Plots for ZSPM1501 with Comp1....................................................................... 48
ZSPM1501 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 49
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
6 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33
Figure 5.34
Figure 5.35
Figure 5.36
Figure 5.37
Figure 5.38
Figure 5.39
Figure 5.40
Figure 5.41
Figure 5.42
Figure 5.43
Figure 5.44
Figure 5.45
Figure 5.46
Figure 5.47
Figure 5.48
Figure 5.49
Figure 5.50
Figure 5.51
Figure 5.52
Figure 5.53
Figure 5.54
Data Sheet
April 27, 2015
ZSPM1501 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 49
ZSPM1501 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 49
ZSPM1501 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 49
Open Loop Bode Plots for ZSPM1501 with Comp2....................................................................... 49
ZSPM1501 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 50
ZSPM1501 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 50
ZSPM1501 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 50
ZSPM1501 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 50
Open Loop Bode Plots for ZSPM1501 with Comp3....................................................................... 50
ZSPM1502 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 51
ZSPM1502 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 51
ZSPM1502 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 51
ZSPM1502 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 51
Open Loop Bode Plots for ZSPM1502 with Comp0....................................................................... 51
ZSPM1502 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 52
ZSPM1502 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 52
ZSPM1502 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 52
ZSPM1502 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 52
Open Loop Bode Plots for ZSPM1502 with Comp1....................................................................... 52
ZSPM1502 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 53
ZSPM1502 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 53
ZSPM1502 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 53
ZSPM1502 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 53
Open Loop Bode Plots for ZSPM1502 with Comp2....................................................................... 53
ZSPM1502 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 54
ZSPM1502 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 54
ZSPM1502 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 54
ZSPM1502 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 54
Open Loop Bode Plots for ZSPM1502 with Comp3....................................................................... 54
ZSPM1503 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 55
ZSPM1503 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 55
ZSPM1503 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 55
ZSPM1503 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 55
Open Loop Bode Plots for ZSPM1503 with Comp0....................................................................... 55
ZSPM1503 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 56
ZSPM1503 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 56
ZSPM1503 with Comp1; 5 to 15A Load Step; and Max. Capacitance .......................................... 56
ZSPM1503 with Comp1; 15 to 5A Load Step; and Max. Capacitance .......................................... 56
Open Loop Bode Plots for ZSPM1503 with Comp1....................................................................... 56
ZSPM1503 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 57
ZSPM1503 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 57
ZSPM1503 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 57
ZSPM1503 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 57
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
7 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Figure 5.55
Figure 5.56
Figure 5.57
Figure 5.58
Figure 5.59
Figure 5.60
Figure 5.61
Figure 5.62
Figure 5.63
Figure 5.64
Figure 5.65
Figure 5.66
Figure 5.67
Figure 5.68
Figure 5.69
Figure 5.70
Figure 5.71
Figure 5.72
Figure 5.73
Figure 5.74
Figure 5.75
Figure 5.76
Figure 5.77
Figure 5.78
Figure 5.79
Figure 5.80
Figure 5.81
Figure 5.82
Figure 5.83
Figure 5.84
Figure 5.85
Figure 5.86
Figure 5.87
Figure 5.88
Figure 5.89
Figure 5.90
Figure 5.91
Figure 5.92
Figure 5.93
Figure 5.94
Figure 5.95
Figure 5.96
Figure 5.97
Data Sheet
April 27, 2015
Open Loop Bode Plots for ZSPM1503 with Comp2....................................................................... 57
ZSPM1503 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 58
ZSPM1503 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 58
ZSPM1503 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 58
ZSPM1503 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 58
Open Loop Bode Plots for ZSPM1503 with Comp3....................................................................... 58
ZSPM1504 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 59
ZSPM1504 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 59
ZSPM1504 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 59
ZSPM1504 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 59
Open Loop Bode Plots for ZSPM1504 with Comp0....................................................................... 59
ZSPM1504 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 60
ZSPM1504 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 60
ZSPM1504 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 60
ZSPM1504 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 60
Open Loop Bode Plots for ZSPM1504 with Comp1....................................................................... 60
ZSPM1504 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 61
ZSPM1504 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 61
ZSPM1504 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 61
ZSPM1504 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 61
Open Loop Bode Plots for ZSPM1504 with Comp2....................................................................... 61
ZSPM1504 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 62
ZSPM1504 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 62
ZSPM1504 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 62
ZSPM1504 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 62
Open Loop Bode Plots for ZSPM1504 with Comp3....................................................................... 62
ZSPM1505 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 63
ZSPM1505 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 63
ZSPM1505 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 63
ZSPM1505 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 63
Open Loop Bode Plots for ZSPM1505 with Comp0....................................................................... 63
ZSPM1505 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 64
ZSPM1505 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 64
ZSPM1505 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 64
ZSPM1505 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 64
Open Loop Bode Plots for ZSPM1505 with Comp1....................................................................... 64
ZSPM1505 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 65
ZSPM1505 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 65
ZSPM1505 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 65
ZSPM1505 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 65
Open Loop Bode Plots for ZSPM1505 with Comp2....................................................................... 65
ZSPM1505 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 66
ZSPM1505 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 66
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
8 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Figure 5.98
Figure 5.99
Figure 5.100
Figure 5.101
Figure 5.102
Figure 5.103
Figure 5.104
Figure 5.105
Figure 5.106
Figure 5.107
Figure 5.108
Figure 5.109
Figure 5.110
Figure 5.111
Figure 5.112
Figure 5.113
Figure 5.114
Figure 5.115
Figure 5.116
Figure 5.117
Figure 5.118
Figure 5.119
Figure 5.120
Figure 5.121
Figure 5.122
Figure 5.123
Figure 5.124
Figure 5.125
Figure 5.126
Figure 5.127
Figure 5.128
Figure 5.129
Figure 5.130
Figure 5.131
Figure 5.132
Figure 5.133
Figure 5.134
Figure 5.135
Figure 5.136
Figure 5.137
Figure 5.138
Figure 5.139
Figure 5.140
Data Sheet
April 27, 2015
ZSPM1505 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 66
ZSPM1505 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 66
Open Loop Bode Plots for ZSPM1505 with Comp3....................................................................... 66
ZSPM1506 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 67
ZSPM1506 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 67
ZSPM1506 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 67
ZSPM1506 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 67
Open Loop Bode Plots for ZSPM1506 with Comp0....................................................................... 67
ZSPM1506 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 68
ZSPM1506 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 68
ZSPM1506 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 68
ZSPM1506 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 68
Open Loop Bode Plots for ZSPM1506 with Comp1....................................................................... 68
ZSPM1506 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 69
ZSPM1506 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 69
ZSPM1506 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 69
ZSPM1506 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 69
Open Loop Bode Plots for ZSPM1506 with Comp2....................................................................... 69
ZSPM1506 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 70
ZSPM1506 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 70
ZSPM1506 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 70
ZSPM1506 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 70
Open Loop Bode Plots for ZSPM1506 with Comp3....................................................................... 70
ZSPM1507 with Comp0; 5 to 15A Load Step; and Min. Capacitance ........................................... 71
ZSPM1507 with Comp0; 15 to 5A Load Step; and Min. Capacitance ........................................... 71
ZSPM1507 with Comp0; 5 to 15A Load Step; and Max. Capacitance .......................................... 71
ZSPM1507 with Comp0; 15 to 5A Load Step; and Max. Capacitance .......................................... 71
Open Loop Bode Plots for ZSPM1507 with Comp0....................................................................... 71
ZSPM1507 with Comp1; 5 to 15A Load Step; and Min. Capacitance ........................................... 72
ZSPM1507 with Comp1; 15 to 5A Load Step; and Min. Capacitance ........................................... 72
ZSPM1507 with Comp1; 5 to 15A Load Step; and Max. Capacitance .......................................... 72
ZSPM1507 with Comp1; 15 to 5A Load Step; and Max. Capacitance .......................................... 72
Open Loop Bode Plots for ZSPM1507 with Comp1....................................................................... 72
ZSPM1507 with Comp2; 5 to 15A Load Step; and Min. Capacitance ........................................... 73
ZSPM1507 with Comp2; 15 to 5A Load Step; and Min. Capacitance ........................................... 73
ZSPM1507 with Comp2; 5 to 15A Load Step; and Max. Capacitance .......................................... 73
ZSPM1507 with Comp2; 15 to 5A Load Step; and Max. Capacitance .......................................... 73
Open Loop Bode Plots for ZSPM1507 with Comp2....................................................................... 73
ZSPM1507 with Comp3; 5 to 15A Load Step; and Min. Capacitance ........................................... 74
ZSPM1507 with Comp3; 15 to 5A Load Step; and Min. Capacitance ........................................... 74
ZSPM1507 with Comp3; 5 to 15A Load Step; and Max. Capacitance .......................................... 74
ZSPM1507 with Comp3; 15 to 5A Load Step; and Max. Capacitance .......................................... 74
Open Loop Bode Plots for ZSPM1507 with Comp3....................................................................... 74
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
9 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Figure 5.141
Figure 5.142
Figure 5.143
Figure 5.144
Figure 5.145
Figure 5.146
Figure 5.147
Figure 5.148
Figure 5.149
Figure 5.150
Figure 5.151
Figure 5.152
Figure 5.153
Figure 5.154
Figure 5.155
Figure 5.156
Figure 5.157
Figure 5.158
Figure 5.159
Figure 5.160
Figure 5.161
Figure 5.162
Figure 5.163
Figure 5.164
Figure 5.165
Figure 5.166
Figure 5.167
Figure 5.168
Figure 5.169
Figure 5.170
Figure 5.171
Figure 5.172
Figure 5.173
Figure 5.174
Figure 5.175
Figure 5.176
Figure 5.177
Figure 5.178
Figure 5.179
Figure 5.180
Figure 5.181
Figure 5.182
Figure 5.183
Data Sheet
April 27, 2015
ZSPM1508 with Comp0; 5A to 10A Load Step; and Min. Capacitance ......................................... 75
ZSPM1508 with Comp0; 10A to 5A Load Step; and Min. Capacitance ......................................... 75
ZSPM1508 with Comp0; 5A to 10A Load Step; and Max. Capacitance ........................................ 75
ZSPM1508 with Comp0; 10A to 5A Load Step; and Max. Capacitance ........................................ 75
Open Loop Bode Plots for ZSPM1508 with Comp0....................................................................... 75
ZSPM1508 with Comp1; 5A to 10A Load Step; and Min. Capacitance ......................................... 76
ZSPM1508 with Comp1; 10A to 5A Load Step; and Min. Capacitance ......................................... 76
ZSPM1508 with Comp1; 5A to 10A Load Step; and Max. Capacitance ........................................ 76
ZSPM1508 with Comp1; 10A to 5A Load Step; and Max. Capacitance ........................................ 76
Open Loop Bode Plots for ZSPM1508 with Comp1....................................................................... 76
ZSPM1508 with Comp2; 5A to 10A Load Step; and Min. Capacitance ......................................... 77
ZSPM1508 with Comp2; 10A to 5A Load Step; and Min. Capacitance ......................................... 77
ZSPM1508 with Comp2; 5A to 10A Load Step; and Max. Capacitance ........................................ 77
ZSPM1508 with Comp2; 10A to 5A Load Step; and Max. Capacitance ........................................ 77
Open Loop Bode Plots for ZSPM1508 with Comp2....................................................................... 77
ZSPM1508 with Comp3; 5A to 10A Load Step; and Min. Capacitance ......................................... 78
ZSPM1508 with Comp3; 10A to 5A Load Step; and Min. Capacitance ......................................... 78
ZSPM1508 with Comp3; 5A to 10A Load Step; and Max. Capacitance ........................................ 78
ZSPM1508 with Comp3; 10A to 5A Load Step; and Max. Capacitance ........................................ 78
Open Loop Bode Plots for ZSPM1508 with Comp3....................................................................... 78
ZSPM1509 with Comp0; 3A to 8A Load Step; and Min. Capacitance ........................................... 79
ZSPM1509 with Comp0; 8A to 3A Load Step; and Min. Capacitance ........................................... 79
ZSPM1509 with Comp0; 3A to 8A Load Step; and Max. Capacitance .......................................... 79
ZSPM1509 with Comp0; 8A to 3A Load Step; and Max. Capacitance .......................................... 79
Open Loop Bode Plots for ZSPM1509 with Comp0....................................................................... 79
ZSPM1509 with Comp1; 3A to 8A Load Step; and Min. Capacitance ........................................... 80
ZSPM1509 with Comp1; 8A to 3A Load Step; and Min. Capacitance ........................................... 80
ZSPM1509 with Comp1; 3A to 8A Load Step; and Max. Capacitance .......................................... 80
ZSPM1509 with Comp1; 8A to 3A Load Step; and Max. Capacitance .......................................... 80
Open Loop Bode Plots for ZSPM1509 with Comp1....................................................................... 80
ZSPM1509 with Comp2; 3A to 8A Load Step; and Min. Capacitance ........................................... 81
ZSPM1509 with Comp2; 8A to 3A Load Step; and Min. Capacitance ........................................... 81
ZSPM1509 with Comp2; 3A to 8A Load Step; and Max. Capacitance .......................................... 81
ZSPM1509 with Comp2; 8A to 3A Load Step; and Max. Capacitance .......................................... 81
Open Loop Bode Plots for ZSPM1509 with Comp2....................................................................... 81
ZSPM1509 with Comp3; 3A to 8A Load Step; and Min. Capacitance ........................................... 82
ZSPM1509 with Comp3; 8A to 3A Load Step; and Min. Capacitance ........................................... 82
ZSPM1509 with Comp3; 3A to 8A Load Step; and Max. Capacitance .......................................... 82
ZSPM1509 with Comp3; 8A to 3A Load Step; and Max. Capacitance .......................................... 82
Open Loop Bode Plots for ZSPM1509 with Comp3....................................................................... 82
ZSPM1511 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 83
ZSPM1511 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 83
ZSPM1511 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 83
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
10 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Figure 5.184
Figure 5.185
Figure 5.186
Figure 5.187
Figure 5.188
Figure 5.189
Figure 5.190
Figure 5.191
Figure 5.192
Figure 5.193
Figure 5.194
Figure 5.195
Figure 5.196
Figure 5.197
Figure 5.198
Figure 5.199
Figure 5.200
Figure 5.201
Figure 5.202
Figure 5.203
Figure 5.204
Figure 5.205
Figure 5.206
Figure 5.207
Figure 5.208
Figure 5.209
Figure 5.210
Figure 5.211
Figure 5.212
Figure 5.213
Figure 5.214
Figure 5.215
Figure 5.216
Figure 5.217
Figure 5.218
Figure 5.219
Figure 5.220
Figure 5.221
Figure 5.222
Figure 5.223
Figure 5.224
Figure 5.225
Figure 5.226
Data Sheet
April 27, 2015
ZSPM1511 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 83
Open Loop Bode Plots for ZSPM1511 with Comp0....................................................................... 83
ZSPM1511 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 84
ZSPM1511 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 84
ZSPM1511 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 84
ZSPM1511 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 84
Open Loop Bode Plots for ZSPM1511 with Comp1....................................................................... 84
ZSPM1511 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 85
ZSPM1511 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 85
ZSPM1511 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 85
ZSPM1511 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 85
Open Loop Bode Plots for ZSPM1511 with Comp2....................................................................... 85
ZSPM1511 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 86
ZSPM1511 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 86
ZSPM1511 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 86
ZSPM1511 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 86
Open Loop Bode Plots for ZSPM1511 with Comp3....................................................................... 86
ZSPM1512 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 87
ZSPM1512 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 87
ZSPM1512 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 87
ZSPM1512 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 87
Open Loop Bode Plots for ZSPM1512 with Comp0....................................................................... 87
ZSPM1512 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 88
ZSPM1512 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 88
ZSPM1512 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 88
ZSPM1512 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 88
Open Loop Bode Plots for ZSPM1512 with Comp1....................................................................... 88
ZSPM1512 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 89
ZSPM1512 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 89
ZSPM1512 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 89
ZSPM1512 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 89
Open Loop Bode Plots for ZSPM1512 with Comp2....................................................................... 89
ZSPM1512 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 90
ZSPM1512 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 90
ZSPM1512 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 90
ZSPM1512 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 90
Open Loop Bode Plots for ZSPM1512 with Comp3....................................................................... 90
ZSPM1513 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 91
ZSPM1513 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 91
ZSPM1513 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 91
ZSPM1513 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 91
Open Loop Bode Plots for ZSPM1513 with Comp0....................................................................... 91
ZSPM1513 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 92
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
11 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Figure 5.227
Figure 5.228
Figure 5.229
Figure 5.230
Figure 5.231
Figure 5.232
Figure 5.233
Figure 5.234
Figure 5.235
Figure 5.236
Figure 5.237
Figure 5.238
Figure 5.239
Figure 5.240
Figure 5.241
ZSPM1513 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 92
ZSPM1513 with Comp1; 5 to 15A Load Step; and Max. Capacitance .......................................... 92
ZSPM1513 with Comp1; 15 to 5A Load Step; and Max. Capacitance .......................................... 92
Open Loop Bode Plots for ZSPM1513 with Comp1....................................................................... 92
ZSPM1513 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 93
ZSPM1513 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 93
ZSPM1513 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 93
ZSPM1513 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 93
Open Loop Bode Plots for ZSPM1513 with Comp2....................................................................... 93
ZSPM1513 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 94
ZSPM1513 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 94
ZSPM1513 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 94
ZSPM1513 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 94
Open Loop Bode Plots for ZSPM1513 with Comp3....................................................................... 94
Typical Efficiency Curves: ZSPM1502 with ZSPM9000, ZSPM9015, and ZSPM9060 DrMOS
(VIN= 12V; Vout = 1.0V) .................................................................................................................. 95
Figure 5.242 Typical Efficiency Curves: ZSPM9000 DrMOS with ZSPM1504, ZSPM1505, and ZSPM1506
(VIN = 12V) ...................................................................................................................................... 96
Figure 5.243 Typical Efficiency Curves: ZSPM9000 and ZSPM9060 DrMOS with ZSPM1508 and ZSPM150997
Figure 5.244 Typical Efficiency Curves: ZSPM9000 and ZSPM9060 DrMOS with ZSPM1511, ZSPM1512,
and ZSPM1513 .............................................................................................................................. 98
Figure 6.1
24-Pin QFN Package Drawing ....................................................................................................... 99
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
12 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
List of Tables
Table 2.1
Table 3.1
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 4.11
Table 4.12
Data Sheet
April 27, 2015
ZSPM15xx Pin Descriptions ........................................................................................................... 27
Fault Configuration Overview ......................................................................................................... 32
Passive Component Values for the Application Circuits ................................................................ 35
Passive Components for the ZSPM1501, ZSPM1502, and ZSPM1503 ....................................... 36
Passive Components for the ZSPM1504, ZSPM1505, and ZSPM1506 ....................................... 36
Passive Components for the ZSPM1507 ....................................................................................... 37
Passive Components for the ZSPM1508 and ZSPM1509 ............................................................. 37
Passive Components for the ZSPM1511, ZSPM1512, and ZSPM1513 ....................................... 37
ZSPM15xx – OCP Pin Strap Resistor Selection ............................................................................ 40
Recommended Output Capacitor Ranges ..................................................................................... 41
Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1501 to
ZSPM1506 and the ZSPM1511 to ZSPM1513 .............................................................................. 42
Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1507.................. 43
Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1508 .................. 44
Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1509 .................. 45
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
13 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
1
IC Characteristics
Note: The absolute maximum ratings are stress ratings only. The ZSPM15xx might not function or be operable
above the recommended operating conditions. Stresses exceeding the absolute maximum ratings might also
damage the device. In addition, extended exposure to stresses above the recommended operating conditions
might affect device reliability. ZMDI does not recommend designing to the “Absolute Maximum Ratings.”
1.1.
Absolute Maximum Ratings
PARAMETER
PINS
CONDITIONS
MIN
TYPICAL
MAX
UNITS
Supply voltages
5V supply voltage
VDD50
dV/dt < 0.15V/µs
-0.3
Maximum slew rate
5.5
V
0.15
V/µs
3.3V supply voltage
VDD33
-0.3
3.6
V
1.8V supply voltage
VDD18
AVDD18
-0.3
2.0
V
THSHDN
CONTROL
PGOOD
DRVEN
PWM
-0.3
5.5
V
Current sensing
ISNSP,
ISNSN
-0.3
5.5
V
Voltage feedback
VFBP
VFBN
-0.3
2.0
V
All other analog pins
ADCVREF
VREFP
TEMP
VIN
CONFIG0
CONFIG1
-0.3
2.0
V
Digital pins
Digital I/O pins
Analog pins
Ambient Conditions
Junction temperature TJ
Storage temperature
-40
125
°C
150
°C
Electrostatic discharge –
Human Body Model
ESD testing is
performed according to
the respective JESD22
JEDEC standard.
+/-2k
V
Electrostatic discharge –
Charge Device Model
ESD testing is
performed according to
the respective JESD22
JEDEC standard.
+/- 500
V
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
14 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
1.2.
Recommended Operating Conditions
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
125
°C
Ambient conditions
Operation temperature
TJ
Thermal resistance junction to
ambient
JA
1.3.
-40
40
K/W
Electrical Parameters
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
4.75
5.0
5.25
V
Supply voltages
5V supply voltage
VVDD50
5V supply current
IVDD50
VDD50=5.0V
3.3V supply voltage
VVDD33
Supply for both the VDD33
and VDD50 pins if the internal
3.3V regulator is not used.
3.3V supply current
IVDD33
VDD50=VDD33=3.3V
23
3.0
3.3
mA
3.6
23
V
mA
Internally generated supply voltages
3.3V supply voltage
VVDD33
VDD50=5.0V
3.3V output current
IVDD33
VDD50=5.0V
1.8V supply voltages
VAVDD18
VVDD18
VDD50=5.0V
3.0
1.72
3.3
1.80
1.8V output current
3.6
V
2.0
mA
1.98
V
0
mA
Power-on reset (POR)
Power-on reset threshold – on
VTH_POR_ON
2.8
V
Power-on reset threshold – off
VTH_POR_OFF
2.6
V
5
ms
Initialization period /
internal startup time
Digital IO pins (CONTROL, PGOOD, DRVEN, THSHDN)
Input high voltage
VDD33=3.3V
Input low voltage
VDD33=3.3V
Output high voltage
VDD33=3.3V
2.0
V
0.8
V
VDD33
V
Output low voltage
0.5
V
Input leakage current
±1.0
µA
Output current – high
2.0
mA
Output current – low
2.0
mA
Data Sheet
April 27, 2015
2.4
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
15 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
VDD33
V
Output low voltage
0.5
V
Output current – high
2.0
mA
Output current – low
2.0
mA
Tri-state leakage current
±1.0
µA
Digital IO pins with tri-state capability (PWM)
Output high voltage
VDD33=3.3V
2.4
Output voltage
Output voltage
The output voltage set-point is
determined by product code.
Set-point accuracy
VOUT=1.4V
(Refer to
section 1.4)
1
%
1
ms
Output voltage sequencing (see Figure 3.2)
Turn-on delay -
tON_DELAY
Turn-on rise time (slew rate)
tON_RISE
Turn-on timeout
tON_MAX
10
ms
Turn-off delay
tOFF_DELAY
0
ms
Turn-off fall time
tOFF_FALL
Turn-off timeout
tOFF_MAX
Power good turn-on level
The rise time is configurable
via pin strapping.
(Refer to section 4.8)
6
The power good threshold is a
percentage of the nominal
output voltage (VOUT_NOM),
which is preconfigured for the
ZSPM15xx part number (see
section 1.4).
Power good turn-off level
10
ms
500
ms
95%
VOUT_NOM
90%
VOUT_NOM
Inductor current measurement
Common mode voltage across
ISNSP and ISNSN pins
0
Differential voltage range
across ISNSP and ISNSN pins
Accuracy
April 27, 2015
V
±100
mV
5
Over-current protection
threshold
Data Sheet
5.0
The over-current protection
threshold is configurable via
pin strapping
%
(Refer to section 4.7)
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
16 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
Digital pulse width modulator
Switching frequency
fSW
500
kHz
Resolution
163
ps
Frequency accuracy
2.0
%
Duty cycle
2.5
100
%
External temperature measurement (note: only PN-junction sense elements are supported)
Offset voltage at 25°C
583
mV
Temperature coefficient
-2.2
mV/K
Bias currents for external
temperature sensing
60
µA
Accuracy of measurement
±5.0
K
Over-temperature threshold
105
°C
±5.0
K
95
°C
Internal temperature measurement
Accuracy of measurement
Over-temperature threshold
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
17 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
1.4.
1.4.1.
Device-Specific System Parameters
ZSPM1501
Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit.
Refer to Figure 2.1 for the components referenced below.
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
VOUT_NOM
R5=1.0kΩ, R4=DNP
kHz
13.2
V
0.85
V
Output voltage under-voltage
lockout threshold
0.764
V
Output voltage over-voltage
lockout threshold
1.019
V
Input voltage over-voltage lockout
threshold
R9=9.1kΩ, R8=1.0kΩ
13.80
V
Input voltage under-voltage
lockout threshold
R9=9.1kΩ, R8=1.0kΩ
9.60
V
330
nH
Feedback divider: R5
1.0
kΩ
Feedback divider: R4
DNP
Application circuit
Optimal output inductance: L1
1.4.2.
LOUT
ZSPM1502
Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit.
Refer to Figure 2.1 for the components referenced below.
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
V
V
Output voltage under-voltage
lockout threshold
0.90
V
Output voltage over-voltage
lockout threshold
1.20
V
April 27, 2015
R5=1.0kΩ, R4=DNP
13.2
1.0
Data Sheet
VOUT_NOM
kHz
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
18 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
Input voltage over-voltage lockout
threshold
R9=9.1kΩ, R8=1.0kΩ
13.80
V
Input voltage under-voltage
lockout threshold
R9=9.1kΩ, R8=1.0kΩ
9.60
V
330
nH
Feedback divider – R5
1.0
kΩ
Feedback divider – R4
DNP
Application circuit
Optimal output inductance – L1
1.4.3.
LOUT
ZSPM1503
Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit.
Refer to Figure 2.1 for the components referenced below.
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
VOUT_NOM
R5=1.0kΩ, R4=DNP
kHz
13.2
V
1.20
V
Output voltage under-voltage
lockout threshold
1.08
V
Output voltage over-voltage
lockout threshold
1.44
V
Input voltage over-voltage lockout
threshold
R9=9.1kΩ, R8=1.0kΩ
13.80
V
Input voltage under-voltage
lockout threshold
R9=9.1kΩ, R8=1.0kΩ
9.60
V
330
nH
Feedback divider – R5
1.0
kΩ
Feedback divider – R4
DNP
Application circuit
Optimal output inductance – L1
Data Sheet
April 27, 2015
LOUT
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
19 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
1.4.4.
ZSPM1504
Note: Refer to Figure 2.1 for the components referenced below.
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
VOUT_NOM
R5=750Ω, R4=1.0kΩ
kHz
13.2
V
1.5
V
Output voltage under-voltage
lockout threshold
1.35
V
Output voltage over-voltage
lockout threshold
1.80
V
Input voltage over-voltage lockout
threshold
R9=9.1kΩ, R8=1.0kΩ
13.80
V
Input voltage under-voltage
lockout threshold
R9=9.1kΩ, R8=1.0kΩ
9.60
V
470
nH
Feedback divider – R5
750
Ω
Feedback divider – R4
1.0
kΩ
Application circuit
Optimal output inductance – L1
1.4.5.
LOUT
ZSPM1505
Note: Refer to Figure 2.1 for the components referenced below.
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
VOUT_NOM
R5=750Ω, R4=1.0kΩ
kHz
13.2
V
1.8
V
Output voltage under-voltage
lockout threshold
1.62
V
Output voltage over-voltage
lockout threshold
2.16
V
Input voltage over-voltage lockout
threshold
R9=9.1kΩ, R8=1.0kΩ
13.80
V
Input voltage under-voltage
lockout threshold
R9=9.1kΩ, R8=1.0kΩ
9.60
V
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
20 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
Application circuit
Optimal output inductance – L1
470
nH
Feedback divider – R5
750
Ω
Feedback divider – R4
1.0
kΩ
1.4.6.
LOUT
ZSPM1506
Note: Refer to Figure 2.1 for the components referenced below.
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
VOUT_NOM
R5=750Ω, R4=1.0kΩ
kHz
13.2
V
2.0
V
Output voltage under-voltage
lockout threshold
1.80
V
Output voltage over-voltage
lockout threshold
2.40
V
Input voltage over-voltage lockout
threshold
R9=9.1kΩ, R8=1.0kΩ
13.80
V
Input voltage under-voltage
lockout threshold
R9=9.1kΩ, R8=1.0kΩ
9.60
V
470
nH
Feedback divider – R5
750
Ω
Feedback divider – R4
1.0
kΩ
Application circuit
Optimal output inductance – L1
Data Sheet
April 27, 2015
LOUT
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
21 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
1.4.7.
ZSPM1507
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
VOUT_NOM
R5=1.0kΩ, R4=1.0kΩ
12
kHz
13.2
V
2.5V
V
Output voltage under-voltage
lockout threshold
2.25
V
Output voltage over-voltage
lockout threshold
3.0
V
Input voltage over-voltage lockout
threshold
R9=9.1kΩ, R8=1.0kΩ
13.8
V
Input voltage under-voltage
lockout threshold
R9=9.1kΩ, R8=1.0kΩ
9.6
V
1000
nH
Feedback divider: R5
1.0
kΩ
Feedback divider: R4
1.0
kΩ
Application circuit
Optimal output inductance: L1
1.4.8.
LOUT
ZSPM1508
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
VOUT_NOM
R5=3.3kΩ, R4=1.0kΩ
kHz
13.2
V
3.3
V
Output voltage under-voltage
lockout threshold
2.97
V
Output voltage over-voltage
lockout threshold
3.96
V
Input voltage over-voltage lockout
threshold
R9=9.1kΩ, R8=1.0kΩ
13.80
V
Input voltage under-voltage
lockout threshold
R9=9.1kΩ, R8=1.0kΩ
9.60
V
2.20
µH
Feedback divider: R5
3.3
kΩ
Feedback divider: R4
1.0
kΩ
Application circuit
Optimal output inductance: L1
Data Sheet
April 27, 2015
LOUT
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
22 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
1.4.9.
ZSPM1509
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
VOUT_NOM
R5=3.3k Ω, R4=1.0kΩ
kHz
13.2
V
5.0
V
Output voltage under-voltage
lockout threshold
4.50
V
Output voltage over-voltage
lockout threshold
5.50
V
Input voltage over-voltage lockout
threshold
R9=9.1kΩ, R8=1.0kΩ
13.80
V
Input voltage under-voltage
lockout threshold
R9=9.1kΩ, R8=1.0kΩ
9.60
V
2.20
µH
Feedback divider: R5
3.3
kΩ
Feedback divider: R4
1.0
kΩ
Application circuit
Optimal output inductance: L1
1.4.10.
LOUT
ZSPM1511
Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit.
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
VOUT_NOM
R5=1.0k Ω, R4=DNP
kHz
13.2
V
0.85
V
Output voltage under-voltage
lockout threshold
0.764
V
Output voltage over-voltage
lockout threshold
1.019
V
Input voltage over-voltage lockout
threshold
R9=9.1 kΩ, R8=1.0kΩ
13.80
V
Input voltage under-voltage
lockout threshold
R9=9.1 kΩ, R8=1.0kΩ
9.60
V
680
ƞH
Feedback divider – R5
1.0
kΩ
Feedback divider – R4
DNP
Application circuit
Optimal output inductance – L1
Data Sheet
April 27, 2015
LOUT
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
23 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
1.4.11.
ZSPM1512
Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit.
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
VOUT_NOM
R5=1.0k Ω, R4=DNP
kHz
13.2
V
1.0
V
Output voltage under-voltage
lockout threshold
0.90
V
Output voltage over-voltage
lockout threshold
1.20
V
Input voltage over-voltage
lockout threshold
R9=9.1 kΩ, R8=1.0kΩ
13.80
V
Input voltage under-voltage
lockout threshold
R9=9.1 kΩ, R8=1.0kΩ
9.60
V
680
ƞH
Feedback divider – R5
1.0
kΩ
Feedback divider – R4
DNP
kΩ
Application circuit
Optimal output inductance – L1
1.4.12.
LOUT
ZSPM1513
Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit.
PARAMETER
SYMBOL
CONDITIONS
MIN
TYPICAL
MAX
UNITS
System power parameters
Switching frequency
fSW
500
Input voltage
10.8
Nominal output voltage
VOUT_NOM
R5=1.0k Ω, R4=DNP
kHz
13.2
V
1.20
V
Output voltage under-voltage
lockout threshold
1.08
V
Output voltage over-voltage
lockout threshold
1.44
V
Input voltage over-voltage
lockout threshold
R9=9.1 kΩ, R8=1.0kΩ
13.80
V
Input voltage under-voltage
lockout threshold
R9=9.1 kΩ, R8=1.0kΩ
9.60
V
680
ƞH
Feedback divider – R5
1.0
kΩ
Feedback divider – R4
DNP
kΩ
Application circuit
Optimal output inductance – L1
Data Sheet
April 27, 2015
LOUT
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
24 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
2
2.1.
Product Summary
Overview
The ZSPM15xx is a configurable true-digital single-phase PWM controller for high-current, non-isolated DC/DC
supplies. It incorporates a pre-configured digital control loop, which is optimized for different power stages,
bundled with output voltage sensing, average inductor current sensing, and extensive fault monitoring and
handling options.
Several different functional units are incorporated in the device. A dedicated digital control loop is used to provide
fast loop response and optimal output voltage regulation. This includes output voltage sensing, average inductor
current sensing, a digital control law, and a digital pulse-width modulator (DPWM). In parallel, a dedicated,
configurable error handler allows fast detection of error signals and their appropriate handling. A housekeeping
analog-to-digital converter (HKADC) ensures the reliable and efficient measurement of environmental signals,
such as input voltage and temperature.
An application-specific, low-power integrated microcontroller is used to control the overall system. It manages
configuration of the various logic units according to the preprogrammed configuration look-up tables and the
external configuration resistors connected to the CONFIG0 and CONFIG1 pins. These pin-strapping resistors
expedite configuration of the over-current protection threshold, compensation, and output voltage slew rate. A
high-reliability, high-temperature one-time programmable memory (OTP) is used to store configuration
parameters. All required bias and reference voltages are internally derived from the external supply voltage.
Figure 2.1
Typical Application Circuit with a 5V Supply Voltage
+5V
VDD50
VDD33
VDD18
C1,C2,C3
Vin
TEMP
C11
GND
AVDD18
VREFP
R9
VIN
R1
C4,C5,C6
C10,
R8
ADCVREF
AGND
CONFIG0
CONFIG1
D1
L1
PWM
DRVEN
THSHDN
+Vout
DrMOS
Cin
R7,C8
Cout
R2,R3
PGND
ISNSP
ISNSN
R6, C9
CONTROL
VFBP
PGOOD
VFBN
ZSPM15xx
Data Sheet
April 27, 2015
C7
R4
R5
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
25 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Figure 2.2
Block Diagram
Current Sensing
ISNSP
Current
Limiting
Average Current
Sensing
ISNSN
Digital Control Loop
VFBP
VFB
FLASH
ADC
VFBN
Adaptive Digital
Controller
PWM
PWM
DRVEN
DAC
OC Detection
Sequencer
OV Detection
DAC
Configurable
Error Handler
Vin OV/UV
Detection
Int. Temp
Sense
Vout UV Detection
TEMP
CONFIG0
HKADC
CPU Core
CONFIG1
April 27, 2015
PGOOD
CONTROL
THSHDN
ADCVREF
Data Sheet
VREFP
1.8V Reg
Analog
AVDD18
1.8V Reg
Digital
VDD18
3.3V
Reg
VDD33
NVM
(OTP)
VIN
GPIO
VREF
Clock
Generation
VDD50
Bias
Current
Source
OT Detection
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
26 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
2.2.
Pin Description
Table 2.1
ZSPM15xx Pin Descriptions
Pin
Name
Direction
Type
1
AGND
Input
Supply
Analog Ground
2
VREFP
Output
Supply
Reference Terminal
3
VFBP
Input
Analog
Positive Input of Differential Feedback Voltage Sensing
4
VFBN
Input
Analog
Negative Input of Differential Feedback Voltage Sensing
5
ISNSP
Input
Analog
Positive Input of Differential Current Sensing
6
ISNSN
Input
Analog
Negative Input of Differential Current Sensing
7
TEMP
Input
Analog
Connection to External Temperature Sensing Element
8
VIN
Input
Analog
Power Supply Input Voltage Sensing
9
CONFIG0
Input
Analog
Configuration Selection 0
10
CONFIG1
Input
Analog
Configuration Selection 1
11
PWM
Output
Digital
High-side FET Control Signal
12
DRVEN
Output
Digital
Driver Enable Signal
13
PGOOD
Output
Digital
PGOOD Output (Internal Pull-Down)
14
CONTROL
Input
Digital
Control Input
15
THSHDN
Input
Digital
Thermal-Shut Down Input from Power Stage
16
N.C.
No connection – pin must be allowed to float
17
N.C.
No connection – pin must be allowed to float
18
N.C.
No connection – pin must be allowed to float
19
GND
Input
Supply
Digital Ground
20
VDD18
Output
Supply
Internal 1.8V Digital Supply Terminal
21
VDD33
Input/Output
Supply
3.3V Supply Voltage Terminal
22
VDD50
Input
Supply
5.0V Supply Voltage Terminal
23
AVDD18
Output
Supply
Internal 1.8V Analog Supply Terminal
24
ADCVREF
Input
Analog
Analog-to-Digital Converter (ADC) Reference Terminal
PAD
PAD
Input
Supply
Exposed PAD, Digital Ground
Data Sheet
April 27, 2015
Description
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
27 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
2.3.
Available Packages
The ZSPM15xx is available in a 24-pin QFN package. The pin-out is shown in Figure 2.3. The mechanical
drawing of the package can be found in Figure 6.1.
GND
VDD18
VDD33
VDD50
AVDD18
Pin-out QFN24 Package
ADCVREF
Figure 2.3
24 23 22 21 20 19
AGND 1
18 N.C.
VREFP 2
17 N.C.
VFBP 3
Data Sheet
April 27, 2015
16 N.C.
PAD
VFBN 4
15 THSHDN
9
10 11 12
CONFIG1
DRVEN
8
PWM
7
CONFIG0
13 PGOOD
VIN
14 CONTROL
ISNSN 6
TEMP
ISNSP 5
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
28 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
3
3.1.
Functional Description
Power Supply Circuitry, Reference Decoupling, and Grounding
The ZSPM15xx incorporates several internal power regulators in order to derive all required supply and bias
voltages from a single external supply voltage of 5.0V. Decoupling capacitors are required at the VDD33, VDD18,
and AVDD18 pins (1.0µF minimum; 4.7µF recommended).
The reference voltages required for operation are generated within the ZSPM15xx. External decoupling must be
provided between the VREFP and ADCVREF pins. Therefore, a 4.7µF capacitor is required at the VREFP pin and
a 100nF capacitor at ADCVREF pin. The two pins should be connected with approximately 50Ω resistance in
order to provide sufficient decoupling between the pins.
Three different ground connections are available on the outside of the package. These should be connected
together to a single ground tie. A differentiation between analog and digital ground is not required.
3.2.
Reset/Start-up Behavior
The ZSPM15xx employs an internal power-on-reset (POR) circuit to ensure proper start-up and shut-down with a
changing supply voltage. Once the supply voltage increases above the POR threshold voltage (see section 1.3),
the ZSPM15xx begins the internal start-up process. Upon its completion, the device is ready for operation.
3.3.
3.3.1.
Digital Power Control
Overview
The digital power control loop consists of the integral parts required for the control functionality of the ZSPM15xx.
A high-speed analog front-end is used to digitize the output voltage. A digital control core uses the acquired
information to provide duty-cycle information to the PWM, which controls the drive signals to the power stage.
See section 7 for the pre-configured nominal output voltages for the different part codes available in the
ZSPM15xx family.
3.3.2.
Output Voltage Feedback
The voltage feedback signal is sampled with a high-speed analog front-end. The feedback voltage is differentially
measured and subtracted from an internal voltage reference using an error amplifier. A flash ADC is then used to
convert the voltage into its digital equivalent. This is followed by internal digital filtering to improve the system’s
noise rejection.
For some applications, an external feedback divider (R4 and R5; see Figure 4.1) is required to allow for output
voltage operations above the internal reference voltage. For details, refer to the application section 4.3.
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
29 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
3.3.3.
Digital Compensator
The sampled output voltage is processed by a digital control loop in order to modulate the DPWM output signals
controlling the power stage. This digital control loop works as a voltage-mode controller using a PID-type
compensation. The basic structure of the controller is shown in Figure 3.1. The proprietary State-Law™ Control
(SLC) concept features two parallel compensators for steady-state operation and fast transient operation. This
allows tuning the compensators individually for the respective needs; i.e., quiet steady state and fast transient
performance. The ZSPM15xx implements fast, reliable switching between the different compensation modes in
order to ensure good transient performance and a quiet steady state.
Figure 3.1
Simplified Block Diagram of the Digital Compensation
Coefficients
Steady-state
Operation
Mode
Detection
Digital Error Signal
Transient
Digital PID
Compensator
Non-linear
Gain
Duty Cycle
Two techniques are used to improve transient performance further:


Tru-sample Technology™ is used to acquire fast, accurate, and continuous information about the output voltage so that the device can react quickly to any change in output voltage. Tru-sample Technology™ reduces
phase-lag caused by sampling delays, reduces noise sensitivity, and improves transient performance.
A nonlinear gain adjustment is used during large load transients to boost the loop gain and reduce the
settling time.
The control loops in the ZSPM15xx are preconfigured and can be selected using a pin-strapping option. A range
of different output capacitors is supported. Refer to section 4.8 for detailed information.
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
30 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
3.3.4.
Power Sequencing and the CONTROL Pin
The ZSPM15xx has a set of pre-configured power-sequencing features. The typical sequence of events is shown
in Figure 3.2. The individual values for the delay (tON_DELAY and tOFF_DELAY), ramp time (tON_RISE and tOFF_FALL) and
time-outs (tON_MAX and tOFF_MAX) are listed in section 1.3. Note that the device is slew-rate controlled for tON_RISE
ramping via the pin-strapping options. The slew rate can be selected in the application circuit using the pin-strap
options as explained in section 4.8.
The CONTROL pin is pre-configured for active high operation.
The ZSPM15xx features a power good (PGOOD) output, which can be used to indicate the state of the power rail.
If the output voltage level is above the power good ON threshold, the pin is set to active, indicating a stable output
voltage on the rail.
Figure 3.2
Power Sequencing
CONTROL
VOUT_NOM
VPGOOD_ON
VPGOOD_OFF
0V
tON_DELAY
tON_RISE
tON_MAX
tOFF_DELAY
tOFF_FALL
t
tOFF_MAX
PGOOD
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
31 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
3.4.
Fault Monitoring and Response Generation
The ZSPM15xx monitors various signals during operation and compares them with fault thresholds (see the
“Threshold” column in Table 3.1). If a parameter exceeds a fault threshold, the respective fault signal is asserted
and the ZSPM15xx will disable the output voltage as described below. Note that the ZSPM15xx features internal
blanking times for voltage and temperature faults in order to improve noise-immunity.
Three different response types are supported by the ZSPM15xx. The “low-impedance” response turns off the top
MOSFET and enables the low-side MOSFET; i.e., PWM=0. After tOFF_MAX, both MOSFETs will be turned off,
PWM=Z, DRVEN=0. A “high-impedance” response will disable both MOSFETs instantaneously, PWM=Z. A “softoff” response ramps the output voltage down, similar to a power-down operation via the CONTROL pin. After
tOFF_MAX, the controller will disable the power stage by turning both switches off, PWM=Z, DRVEN=0. The
ZSPM15xx features a “hiccup mode,” which allows it to re-enable its output voltage after the fault condition has
been removed.
Table 3.1
Fault Configuration Overview
Fault
Response Type
Blanking
Threshold
Output Over-Voltage
Low-impedance
25µs
Preconfigured; see section 1.4.
Output Under-Voltage
High-impedance
450µs
Preconfigured; see section 1.4.
Input Over-Voltage
High-impedance
450µs
Preconfigured; see section 1.4.
Input Under-Voltage
High-impedance
450µs
Preconfigured; see section 1.4.
Over-Current
Low-impedance
None
Pin-strap selectable; see section 4.7.
Internal Over-Temperature
Soft-off
5ms
See specification in section 1.3.
External Over-Temperature
Soft-off
5ms
See specification in section 1.3.
3.4.1.
Output Over/Under-Voltage
To prevent damage to the load, the ZSPM15xx utilizes an output over-voltage protection circuit. The voltage at
VFBP is continuously compared with a preconfigured threshold using a high-speed analog comparator. If the
voltage exceeds the configured threshold, the fault response is generated.
The ZSPM15xx also monitors the output voltage with a lower threshold. If the output voltage falls below the
under-voltage fault level, a fault event is generated.
See section 1.4 for the device-specific threshold levels.
3.4.2.
Output Current Protection
The ZSPM15xx offers cycle-by-cycle average current sensing with configurable over-current protection. A
dedicated ADC is used to provide fast and accurate current information over the switching period. The acquired
information is compared with a selectable over-current threshold to detect faults. DCR current sensing across the
inductor is supported. Additionally, the device uses DCR temperature compensation via the external temperature
sense element. This increases the accuracy of the current sense method by counteracting the significant change
of the DCR over temperature.
The ZSPM15xx continuously monitors the average inductor current and utilizes this information to protect the
power supply against excessive output current. If the average inductor current exceeds the selected over-current
fault threshold, the fault response will be generated. See section 4.7 for instructions for configuring the threshold.
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
32 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
3.4.3.
Input Voltage Protection
The ZSPM15xx continuously monitors the input voltage via the VIN pin. If the input voltage is outside an operation
range defined by a lower and higher input voltage threshold, a fault is detected and a response generated. See
section 1.4 for device-specific specifications for the thresholds.
3.4.4.
Over-Temperature Protection
The ZSPM15xx features two independent temperature measurement units for internal and external temperature
measurement. The internal temperature sensing measures the temperatures inside the ZSPM15xx. Place the
external temperature sense element close to the inductor to measure its temperature. Use a PN-junction as the
external temperature sense element. Small-signal transistors, such the 3904, are widely used for this application.
The ZSPM15xx monitors these internal and external temperature measurements. If either of the temperatures
exceeds the over-temperature threshold (see section 1.3), the fault response will be generated. For additional
information on the external temperature sensing, refer to section 4.6.
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
33 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
4
Application Information
4.1.
Application Schematic
Figure 4.1
+5V
ZSPM15xx – Application Circuit with a 5V Supply Voltage
VDD50
VDD33
VDD18
C1,C2,C3
Vin
TEMP
C11
GND
AVDD18
VREFP
R9
VIN
R1
C4,C5,C6
C10,
R8
ADCVREF
AGND
CONFIG0
CONFIG1
D1
L1
PWM
DRVEN
THSHDN
+Vout
DrMOS
Cin
R7,C8
Cout
R2,R3
ZSPM90xx
PGND
ISNSP
ISNSN
R6, C9
CONTROL
VFBP
PGOOD
VFBN
ZSPM15xx
Data Sheet
April 27, 2015
C7
R4
R5
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
34 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Table 4.1
Passive Component Values for the Application Circuits
Reference
Designator
Component
Value
C1
1.0µF
Ceramic capacitor.
C2
4.7µF
Ceramic capacitor. Recommended: 4.7µF; minimum: 1.0µF.
C3
4.7µF
Ceramic capacitor. Recommended: 4.7µF; minimum: 1.0µF.
C4
4.7µF
Ceramic capacitor. Recommended: 4.7µF; minimum: 1.0µF.
C5
4.7µF*
Ceramic capacitor.
C6
100nF*
Ceramic capacitor.
C7
22pF
C8, C9
**
C10
100nF
Filter capacitor for input voltage – optional.
C11
100nF
Filter capacitor for external temperature – optional.
L1
**
Cin
Description
Output voltage sense filtering capacitor.
Recommended: 22pF; maximum: 1nF.
DCR current-sense filter capacitor.
Inductor.
Input filter capacitors. Can be a combination of ceramic and electrolytic capacitors.
Cout
.
Output filter capacitors. See section 4.8 for more information on the output capacitor
selection.
R1
51Ω*
R2, R3
.
Pin-strap configuration resistors. See sections 4.7 and 4.8.
R4
**
Output voltage feedback divider bottom resistor. Connect between the VFBP and
VFBN pins.
Important: Refer to section 1.4 to determine if R4 should be placed or not depending on
the specific ZSPM15xx product code.
R5
**
Output voltage feedback divider top resistor. Connect between the output terminal and
the VFBP pin.
R6, R7
**
DCR current-sense filter resistors.
R8
1.0kΩ*
Input voltage divider bottom resistor. Connect between the VIN and AGND pins of the
ZSPM15xx.
R9
9.1kΩ*
Input voltage divider top resistor. Connect between the main power input and the VIN
pin of the ZSPM15xx.
D1
3904
Resistor.
External temperature sense element (PN-junction). See section 4.6.
* Fixed component values marked with an asterisk (*) must not be changed.
** Refer to section 4.2 for components marked with a double asterisk (**).
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
35 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
4.2.
Device-Specific Passive Components
Each product in the ZSPM15xx family requires external device-specific passive components. These are listed in
the following tables.
If specified in the following tables, the feedback divider (R4, R5) is mandatory to achieve the specified output
voltage. The control loop has been optimized for the inductance specified, but inductors from different venders
can be used.
Note: The ZSPM15xx has been optimized for the specific Würth inductors recommended in the following tables
depending on the ZSPM15xx product number. If a different inductor is used, its specifications should be
comparable to the recommended Würth inductor; otherwise the full optimization provided by the ZSPM15xx might
not be achieved. If a different inductor is used, the current sense components (R6, R7, C8) must be recalculated
according to section 4.4.
Components specified as DNP must not be placed.
Table 4.2
Passive Components for the ZSPM1501, ZSPM1502, and ZSPM1503
Reference Designator
Component Value
Description
R4
DNP
Output voltage feedback divider bottom resistor.
Important: Do not place R4 for the ZSPM1501, ZSPM1502, and ZSPM1503.
R5
1.0kΩ
Output voltage feedback divider top resistor.
Connect between the output terminal and the VFBP pin.
Feedback divider
Inductor and current sensing
L1
L=330nH
R6, R7
1050Ω
DCR current-sense filter resistors.
C8, C9
1000nF
DCR current-sense filter capacitor.
Table 4.3
Recommended inductor: Würth WE-HCM 744301033.
Passive Components for the ZSPM1504, ZSPM1505, and ZSPM1506
Reference Designator
Component Value
Description
Feedback divider
R4
1kΩ
R5
750Ω
Output voltage feedback divider bottom resistor.
Output voltage feedback divider top resistor.
Connect between the output terminal and the VFBP pin.
Inductor and current sensing
L1
L=470nH
R6, R7
1000Ω
DCR current-sense filter resistors.
C8, C9
1000nF
DCR current-sense filter capacitor.
Data Sheet
April 27, 2015
Recommended inductor: Würth WE-HCM 744301047.
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
36 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Table 4.4
Passive Components for the ZSPM1507
Reference Designator
Component Value
Description
Feedback divider
R4
1kΩ
Output voltage feedback divider bottom resistor.
R5
1kΩ
Output voltage feedback divider top resistor.
Connect between the output terminal and the VFBP pin.
L1
L=1000nH
Recommended inductor: Würth WE-HCM 7443310100.
R6, R7
1.05kΩ
DCR current-sense filter resistors.
C8, C9
820nF
DCR current-sense filter capacitor.
Inductor and current sensing
Table 4.5
Passive Components for the ZSPM1508 and ZSPM1509
Reference Designator
Component Value
Description
Feedback divider
R4
1kΩ
Output voltage feedback divider bottom resistor.
R5
3.3kΩ
Output voltage feedback divider top resistor.
Connect between the output terminal and the VFBP pin.
L1
L=2.2µH
Recommended inductor: Wurth WE-HCC 7443310220.
R6, R7
1180Ω
DCR current-sense filter resistors.
C8, C9
470nF
DCR current-sense filter capacitor.
Inductor and current sensing
Table 4.6
Passive Components for the ZSPM1511, ZSPM1512, and ZSPM1513
Reference Designator
Component Value
Description
Feedback divider
R4
DNP
Output voltage feedback divider bottom resistor.
Important: Do not place R4 for the ZSPM1511, ZSPM1512, and
ZSPM1513.
R5
1.0kΩ
Output voltage feedback divider top resistor.
Connect between the output terminal and the VFBP pin.
Inductor and current sensing
L1
L= 680ƞH
R6, R7
1.0kΩ
DCR current-sense filter resistors.
C8, C9
1.0µF
DCR current-sense filter capacitor.
Data Sheet
April 27, 2015
Recommended inductor: Wurth WE-HCC 7443310068
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
37 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
4.3.
Output Voltage Feedback Components
The ZSPM15xx supports output voltage feedback via a resistive feedback divider. However, adding a highfrequency low-pass filter in the sense path is highly recommended to remove high-frequency disturbances from
the sense signals. Placing these components as close as possible to the ZSPM15xx is recommended. For larger
output voltages, a feedback divider is required. Using resistors with small tolerances is recommended to
guarantee good output voltage accuracy.
Important: The feedback divider components specified in section 1.4 are mandatory if they are specified for the
specific ZSPM15xx product. Components specified as DNP in section 1.4 must not be placed.
Figure 4.2
Output Voltage Sense Circuitry
VFBP
VFBN
C7
R4
R5
VOUT
PGND
ZSPM15xx
4.4.
DCR Current Sensing Components
Figure 4.3
Inductor Current Sensing Using the DCR Method
L1
R7
DCR
+Vout
C8
R6, C9
ISNSP
ISNSN
ZSPM15xx
The ZSPM15xx supports the loss-less DCR current sense method. The equivalent DC resistance (DCR) of the
inductor is used to measure the inductor current without adding any additional components in the power path. The
technique is based on matching the time constants of the inductor and the parallel low-pass filter. Therefore the
components (R6 and R7) and (C8 and C9) must be selected depending on the selected inductor.
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
38 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
For design guidance using one of the preselected power stages, refer to section 4.2.
Otherwise, the following procedure is recommended:
1.) Set R7’ = 1kΩ
2.) Calculate C8’ = L / (DCR * R7’).
3.) Select capacitor C8 = C9 from the appropriate E-series close to C8.
4.) Recalculate R6 = R7 = L / (DCR * C8) based on the capacitor selected for C8.
4.5.
Input Voltage Sensing
The ZSPM15xx supports input voltage sensing for input voltage protection. Therefore a voltage divider between
the input voltage and the VIN pin is required. An optional capacitor C10 can be connected to the VIN pin to help
improve noise immunity. See Table 4.1 for the recommended values for R8, R9, and C10.
Figure 4.4
Input Voltage Sense Circuitry
Vin
R9
VIN
C10,
R8
ZSPM15xx
4.6.
External Temperature Sensing
The ZSPM15xx features external temperature sensing via a PN-junction. Typically, a small signal transistor, such
as the 3904, is used for this purpose. The sense elements should be placed thermally close to the inductor to
allow accurate temperature measurement. For information about the required device parameters, refer to the
electrical specification in section 1.3. An additional capacitor (C11, 100nF) can be used to improve noise
performance.
Figure 4.5
External Temperature Sense Circuitry
TEMP
C11
D1
ZSPM15xx
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
39 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
4.7.
CONFIG0 – Over-Current Protection Threshold
The ZSPM15xx can be configured to support a wide range of different over-current protection (OCP) thresholds
based on the user’s selection for the inductor. The over-current threshold voltage between the ISNSP and ISNSN
pins can be configured by using a pull-down resistor (R2) on the CONFIG0 pin. This voltage represents the overcurrent threshold because faults are detected by measuring the voltage across the DCR of the selected inductor.
The different configuration options are listed in Table 4.7.
Table 4.7
ZSPM15xx – OCP Pin Strap Resistor Selection
Index
Resistor Value
Using the E96 Series
OCP Voltage
Selection at 25°C
Index
Resistor Value
Using the E96
Series
OCP Voltage
Selection at 25°C
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0Ω
392Ω
576Ω
787Ω
1.000kΩ
1.240kΩ
1.500kΩ
1.780kΩ
2.100kΩ
2.430kΩ
2.800kΩ
3.240kΩ
3.740kΩ
4.220kΩ
4.750kΩ
3.0mV
4.0mV
5.0mV
6.0mV
7.0mV
8.0mV
9.0mV
10.0mV
11.25mV
12.5mV
13.75mV
15.0mV
16.25mV
17.5mV
18.75mV
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
5.360kΩ
6.040kΩ
6.810kΩ
7.680kΩ
8.660kΩ
9.530kΩ
10.50kΩ
11.80kΩ
13.00kΩ
14.30kΩ
15.80kΩ
17.40kΩ
19.10kΩ
21.00kΩ
23.20kΩ
20.0mV
22.5mV
25.0mV
27.5mV
30.0mV
32.5mV
35.0mV
37.5mV
40.0mV
45.0mV
50.0mV
55.0mV
60.0mV
65.0mV
70.0mV
Note that due to the temperature compensation feature, the ZSPM15xx over-current threshold should be based
on the current sense signal at 25°C. Temperature drift is automatically compensated within the device.
Recommendation: For the selection of the over-current threshold voltage, include the tolerance of the inductor’s
DCR and take the parasitic effects of the circuit board layout into account.
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
40 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
4.8.
CONFIG1 – Compensation Loop and Output Voltage Slew Rate
The ZSPM15xx controllers can be configured to operate over a wide range of output capacitance. Four ranges of
output capacitance have been specified to match typical customer requirements (see Table 4.8). For each output
capacitance range, an optimized compensation loop can be selected. The appropriate compensator should be
selected based on the application requirements.
Typical performance measurements for both load transient performance and open-loop Bode plots can be found
in section 5.
Note: Using less output capacitance than the minimum capacitance given in Table 4.8 is not recommended.
Table 4.8
Recommended Output Capacitor Ranges
Capacitor
Range
Ceramic Capacitor
Bulk Electrolytic Capacitors
#1
Minimum 200µF
Maximum 500µF
None
#2
Minimum 500µF
Maximum 1000µF
None
#3
Minimum 200µF
Maximum 500µF
Minimum 2 x 470µF, 7mΩ ESR
Maximum 4 x 470µF, 7mΩ ESR
Comp2
#4
Minimum 500µF
Maximum 1000µF
Minimum 4 x 470µF, 7mΩ ESR
Maximum 6 x 470µF, 7mΩ ESR
Comp3
Suitable Compensator
Comp0
Comp1
To achieve the optimal performance for a given output capacitor range, one of four sets of compensation loop
parameters, Comp0 to Comp3, should be selected with a resistor between the CONFIG1 and GND pins. The
compensation loop parameters have been configured to ensure optimal transient performance and good control
loop stability margins.
For each set of compensation loop parameters, there is a choice of seven slew rates for the output voltage during
power-up. The selection of the slew rate can be used to limit the input current of the DC/DC converter while it is
ramping up the output voltage. The current needed to charge the output capacitors increases in direct proportion
to the slew rate.
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
41 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Table 4.9 gives a complete list of the selectable compensation loop parameters and slew rates together with the
equivalent pin-strap resistor values (R3) for the ZSPM1501 to ZSPM1506 and the ZSPM1511 to ZSPM1513.
Table 4.10, Table 4.11, and Table 4.12 provide the values and settings for the ZSPM1507, ZSPM1508, and
ZSPM1509 respectively.
Table 4.9
Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1501 to ZSPM1506 and the
ZSPM1511 to ZSPM1513
Index
Resistor
Value
Using the
E96 Series
0
0Ω
2.700 V/ms
14
4.750kΩ
2.700 V/ms
1
392Ω
1.350 V/ms
15
5.360kΩ
1.350 V/ms
2
576Ω
0.675 V/ms
16
6.040kΩ
3
787Ω
0.300 V/ms
17
6.810kΩ
4
1.000kΩ
0.200 V/ms
18
7.680kΩ
5
1.240kΩ
0.150 V/ms
19
8.660kΩ
0.150 V/ms
6
1.500kΩ
0.100 V/ms
20
9.530kΩ
0.100 V/ms
7
1.780kΩ
2.700 V/ms
21
10.50kΩ
2.700 V/ms
8
2.100kΩ
1.350 V/ms
22
11.80kΩ
1.350 V/ms
9
2.430kΩ
0.675 V/ms
23
13.00kΩ
10
2.800kΩ
0.300 V/ms
24
14.30kΩ
11
3.240kΩ
0.200 V/ms
25
15.80kΩ
12
3.740kΩ
0.150 V/ms
26
17.40kΩ
0.150 V/ms
13
4.220kΩ
0.100 V/ms
27
19.10kΩ
0.100 V/ms
Data Sheet
April 27, 2015
Compensator
Comp0
(Capacitor
Range #1)
Comp1
(Capacitor
Range #2)
Vout
Slew Rate
Index
Resistor
Value
Using the
E96 Series
Compensator
Comp2
(Capacitor
Range #3)
Comp3
(Capacitor
Range #4)
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
Vout
Slew Rate
0.675 V/ms
0.300 V/ms
0.200 V/ms
0.675 V/ms
0.300 V/ms
0.200 V/ms
42 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Table 4.10
Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1507
Index
Resistor
Value
Using the
E96 Series
0
0Ω
6.756 V/ms
14
4.750kΩ
6.756 V/ms
1
392Ω
3.378 V/ms
15
5.360kΩ
3.378 V/ms
2
576Ω
1.689 V/ms
16
6.040kΩ
3
787Ω
0.750 V/ms
17
6.810kΩ
4
1.000kΩ
0.517 V/ms
18
7.680kΩ
5
1.240kΩ
0.374 V/ms
19
8.660kΩ
0.374 V/ms
6
1.500kΩ
0.250 V/ms
20
9.530kΩ
0.250 V/ms
7
1.780kΩ
6.756 V/ms
21
10.50kΩ
6.756 V/ms
8
2.100kΩ
3.378 V/ms
22
11.80kΩ
3.378 V/ms
9
2.430kΩ
1.689 V/ms
23
13.00kΩ
10
2.800kΩ
0.750 V/ms
24
14.30kΩ
11
3.240kΩ
0.517 V/ms
25
15.80kΩ
12
3.740kΩ
0.374 V/ms
26
17.40kΩ
0.374 V/ms
13
4.220kΩ
0.250 V/ms
27
19.10kΩ
0.250 V/ms
Data Sheet
April 27, 2015
Compensator
Comp0
(Capacitor
Range #1)
Comp1
(Capacitor
Range #2)
Vout
Slew Rate
Index
Resistor
Value
Using the
E96 Series
Compensator
Comp2
(Capacitor
Range #3)
Comp3
(Capacitor
Range #4)
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
Vout
Slew Rate
1.689 V/ms
0.750 V/ms
0.517 V/ms
1.689 V/ms
0.750 V/ms
0.517 V/ms
43 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Table 4.11
Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1508
Index
Resistor
Value
Using the
E96 Series
0
0Ω
2.896 V/ms
14
4.750kΩ
2.896 V/ms
1
392Ω
1.659 V/ms
15
5.360kΩ
1.659 V/ms
2
576Ω
1.051 V/ms
16
6.040kΩ
3
787Ω
0.827 V/ms
17
6.810kΩ
4
1.000kΩ
0.643 V/ms
18
7.680kΩ
5
1.240kΩ
0.428 V/ms
19
8.660kΩ
0.428 V/ms
6
1.500kΩ
0.330 V/ms
20
9.530kΩ
0.330 V/ms
7
1.780kΩ
2.896 V/ms
21
10.50kΩ
2.896 V/ms
8
2.100kΩ
1.659 V/ms
22
11.80kΩ
1.659 V/ms
9
2.430kΩ
1.051 V/ms
23
13.00kΩ
10
2.800kΩ
0.827 V/ms
24
14.30kΩ
11
3.240kΩ
0.643 V/ms
25
15.80kΩ
12
3.740kΩ
0.428 V/ms
26
17.40kΩ
0.428 V/ms
13
4.220kΩ
0.330 V/ms
27
19.10kΩ
0.330 V/ms
Data Sheet
April 27, 2015
Compensator
Comp0
(Capacitor
Range #1)
Comp1
(Capacitor
Range #2)
Vout
Slew Rate
Index
Resistor
Value
Using the
E96 Series
Compensator
Comp2
(Capacitor
Range #3)
Comp3
(Capacitor
Range #4)
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
Vout
Slew Rate
1.051 V/ms
0.827 V/ms
0.643 V/ms
1.051 V/ms
0.827 V/ms
0.643 V/ms
44 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
Table 4.12
Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1509
Index
Resistor
Value
Using the
E96 Series
0
0Ω
2.907 V/ms
14
4.750kΩ
2.907 V/ms
1
392Ω
1.938 V/ms
15
5.360kΩ
1.938 V/ms
2
576Ω
1.656 V/ms
16
6.040kΩ
3
787Ω
1.160 V/ms
17
6.810kΩ
4
1.000kΩ
0.967 V/ms
18
7.680kΩ
5
1.240kΩ
0.683 V/ms
19
8.660kΩ
0.683 V/ms
6
1.500kΩ
0.504 V/ms
20
9.530kΩ
0.504 V/ms
7
1.780kΩ
2.907 V/ms
21
10.50kΩ
2.907 V/ms
8
2.100kΩ
1.938 V/ms
22
11.80kΩ
1.938 V/ms
9
2.430kΩ
1.656 V/ms
23
13.00kΩ
10
2.800kΩ
1.160 V/ms
24
14.30kΩ
11
3.240kΩ
0.967 V/ms
25
15.80kΩ
12
3.740kΩ
0.683 V/ms
26
17.40kΩ
0.683 V/ms
13
4.220kΩ
0.504 V/ms
27
19.10kΩ
0.504 V/ms
Data Sheet
April 27, 2015
Compensator
Comp0
(Capacitor
Range #1)
Comp1
(Capacitor
Range #2)
Vout
Slew Rate
Index
Resistor
Value
Using the
E96 Series
Compensator
Comp2
(Capacitor
Range #3)
Comp3
(Capacitor
Range #4)
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
Vout
Slew Rate
1.656 V/ms
1.160 V/ms
0.967 V/ms
1.656 V/ms
1.160 V/ms
0.967 V/ms
45 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5
Typical Performance Data
This section gives typical performance data for the individual products in the ZSPM15xx family. The preprogrammed compensation loop parameters for the ZSPM15xx have been designed to ensure stability and
optimal transient performance for the specified inductance in combination with one of the four output capacitor
ranges (see Table 4.8).
The transient load steps have been generated with a load resistor and a power MOSFET located on the same
circuit board as the ZSPM15xx and the recommended reference layout. The Evaluation Kit for the specific
ZSPM15xx product can be used to further evaluate the performance of the ZSPM15xx for the four output
capacitor ranges.
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
46 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.1.
ZSPM1501 – Typical Load Transient Response – Capacitor Range #1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 0.85V
Minimum output capacitance: 2 x 100µF/6.3V X5R
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R
ZSPM1501 with Comp0; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.2
Ch1 (Blue): VOUT 100mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Ch1 (Blue): VOUT 100mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.3
ZSPM1501 with Comp0; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.4
Ch1: (Blue): VOUT 100mV/div AC
Ch2: (Cyan): PWM 5V/div DC
Ch4: (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.5
ZSPM1501 with Comp0; 15A to 5A Load Step;
and Max. Capacitance
Ch1: (Blue): VOUT 100mV/div AC
Ch2: (Cyan): PWM 5V/div DC
Ch4: (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Open Loop Bode Plots for ZSPM1501 with Comp0
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1501 with Comp0; 15A to 5A Load Step;
and Min. Capacitance
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.1
-20
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
47 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.2.
ZSPM1501 – Typical Load Transient Response – Capacitor Range #2 – Comp1
Test conditions: VIN = 12.0V, VOUT = 0.85V
Minimum output capacitance: 5 x 100µF/6.3V X5R
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R
ZSPM1501 with Comp1; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.7
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.8
ZSPM1501 with Comp1; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.9
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.10
ZSPM1501 with Comp1; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Open Loop Bode Plots for ZSPM1501 with Comp1
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1501 with Comp1; 15A to 5A Load Step;
and Min. Capacitance
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.6
-20
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
48 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.3.
ZSPM1501 – Typical Load Transient Response – Capacitor Range #3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 0.85V
Minimum output capacitance: 2 x 100µF/6.3V X5R + 2x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
ZSPM1501 with Comp2; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.12
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.13
ZSPM1501 with Comp2; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.14
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.15
ZSPM1501 with Comp2; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Open Loop Bode Plots for ZSPM1501 with Comp2
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1501 with Comp2; 15A to 5A Load Step;
and Min. Capacitance
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.11
-20
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
49 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
ZSPM1501 – Typical Load Transient Response – Capacitor Range #4 – Comp3
5.4.
Test conditions: VIN = 12.0V, VOUT = 0.85V
Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
ZSPM1501 with Comp3; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.17
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.18
ZSPM1501 with Comp3; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.19
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.20
ZSPM1501 with Comp3; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Open Loop Bode Plots for ZSPM1501 with Comp3
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1501 with Comp3; 15A to 5A Load Step;
and Min. Capacitance
10
0
0
-30
-60
-90
-10
-120
-20
Phase [degrees]
Figure 5.16
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
50 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.5.
ZSPM1502 – Typical Load Transient Response – Capacitor Range #1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 1.00V
Minimum output capacitance: 2 x 100µF/6.3V X5R
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R
ZSPM1502 with Comp0; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.23
Figure 5.24
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
Figure 5.25
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1502 with Comp0; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
Open Loop Bode Plots for ZSPM1502 with Comp0
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1502 with Comp0; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1502 with Comp0; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.22
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.21
-20
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
51 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.6.
ZSPM1502 – Typical Load Transient Response – Capacitor Range #2 – Comp1
Test conditions: VIN = 12.0V, VOUT = 1.00V
Minimum output capacitance: 5 x 100µF/6.3V X5R
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R
ZSPM1502 with Comp1; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.28
Figure 5.29
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
Figure 5.30
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1502 with Comp1; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
Open Loop Bode Plots for ZSPM1502 with Comp1
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1502 with Comp1; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1502 with Comp1; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.27
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.26
-20
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
52 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.7.
ZSPM1502 – Typical Load Transient Response – Capacitor Range #3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 1.00V
Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
ZSPM1502 with Comp2; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.33
Figure 5.34
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
Figure 5.35
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1502 with Comp2; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
Open Loop Bode Plots for ZSPM1502 with Comp2
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1502 with Comp2; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1502 with Comp2; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.32
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.31
-20
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
53 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.8.
ZSPM1502 – Typical Load Transient Response – Capacitor Range #4 – Comp3
Test conditions: VIN = 12.0V, VOUT = 1.00V
Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
ZSPM1502 with Comp3; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.38
Figure 5.39
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
Figure 5.40
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1502 with Comp3; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
Open Loop Bode Plots for ZSPM1502 with Comp3
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1502 with Comp3; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1502 with Comp3; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.37
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.36
-20
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
54 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.9.
ZSPM1503 – Typical Load Transient Response – Capacitor Range #1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 1.20V
Minimum output capacitance: 2 x 100µF/6.3V X5R
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R
ZSPM1503 with Comp0; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.42
Ch1 (Blue): VOUT 100mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Ch1 (Blue): VOUT 100mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.43
ZSPM1503 with Comp0; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.44
Ch1 (Blue): VOUT 100mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.45
ZSPM1503 with Comp0; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 100mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Open Loop Bode Plots for ZSPM1503 with Comp0
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1503 with Comp0; 15A to 5A Load Step;
and Min. Capacitance
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.41
-20
-150
-30
-40
1
10 Frequency [kHz]
-180
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
55 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.10. ZSPM1503 – Typical Load Transient Response – Capacitor Range #2 – Comp1
Test conditions: VIN = 12.0V, VOUT = 1.20V
Minimum output capacitance: 5 x 100µF/6.3V X5R
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R
ZSPM1503 with Comp1; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.47
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.48
ZSPM1503 with Comp1; 5 to 15A Load Step;
and Max. Capacitance
Figure 5.49
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.50
ZSPM1503 with Comp1; 15 to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Open Loop Bode Plots for ZSPM1503 with Comp1
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1503 with Comp1; 15A to 5A Load Step;
and Min. Capacitance
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.46
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
56 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.11. ZSPM1503 – Typical Load Transient Response – Capacitor Range #3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 1.20V
Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
ZSPM1503 with Comp2; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.52
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.53
ZSPM1503 with Comp2; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.54
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.55
ZSPM1503 with Comp2; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Open Loop Bode Plots for ZSPM1503 with Comp2
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1503 with Comp2; 15A to 5A Load Step;
and Min. Capacitance
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.51
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
57 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.12. ZSPM1503 – Typical Load Transient Response – Capacitor Range #4 – Comp3
Test conditions: VIN = 12.0V, VOUT = 1.20V
Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
ZSPM1503 with Comp3; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.57
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.58
ZSPM1503 with Comp3; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.59
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Figure 5.60
ZSPM1503 with Comp3; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Green): Load Trigger 5V/div DC
Time Scale: 8µs/div
Open Loop Bode Plots for ZSPM1503 with Comp3
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1503 with Comp3; 15A to 5A Load Step;
and Min. Capacitance
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.56
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
58 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.13. ZSPM1504 – Typical Load Transient Response – Capacitor Range #1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 1.50V
Minimum output capacitance: 2 x 100µF/6.3V X5R
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R
ZSPM1504 with Comp0; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.63
Figure 5.64
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.65
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1504 with Comp0; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Open Loop Bode Plots for ZSPM1504 with Comp0
40
Gain [dB]
ZSPM1504 with Comp0; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1504 with Comp0; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.62
Max Caps - Gain
30
Min Caps - Gain
20
Max Caps - Phase
10
Min Caps - Phase
0
0
-30
-60
-90
-10
-120
Phase [degrees]
Figure 5.61
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
59 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.14. ZSPM1504 – Typical Load Transient Response – Capacitor Range #2 – Comp1
Test conditions: VIN = 12.0V, VOUT = 1.50V
Minimum output capacitance: 5 x 100µF/6.3V X5R
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R
ZSPM1504 with Comp1; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.68
Figure 5.69
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.70
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1504 with Comp1; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Open Loop Bode Plots for ZSPM1504 with Comp1
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1504 with Comp1; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1504 with Comp1; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.67
10
0
0
-30
-60
-90
-10
-120
Phase [degrees]
Figure 5.66
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
60 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.15. ZSPM1504 – Typical Load Transient Response – Capacitor Range #3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 1.50V
Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
ZSPM1504 with Comp2; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.73
Figure 5.74
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.75
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1504 with Comp2; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Open Loop Bode Plots for ZSPM1504 with Comp2
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1504 with Comp2; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1504 with Comp2; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.72
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.71
-20
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
61 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.16. ZSPM1504 – Typical Load Transient Response – Capacitor Range #4 – Comp3
Test conditions: VIN = 12.0V, VOUT = 1.50V
Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
ZSPM1504 with Comp3; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.78
Figure 5.79
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.80
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1504 with Comp3; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Open Loop Bode Plots for ZSPM1504 with Comp3
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1504 with Comp3; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1504 with Comp3; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.77
10
0
0
-30
-60
-90
-10
-120
Phase [degrees]
Figure 5.76
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
62 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.17. ZSPM1505 – Typical Load Transient Response – Capacitor Range #1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 1.80V
Minimum output capacitance: 2 x 100µF/6.3V X5R
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R
ZSPM1505 with Comp0; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.83
Figure 5.84
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.85
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1505 with Comp0; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Open Loop Bode Plots for ZSPM1505 with Comp0
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1505 with Comp0; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1505 with Comp0; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.82
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.81
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
63 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.18. ZSPM1505 – Typical Load Transient Response – Capacitor Range #2 – Comp1
Test conditions: VIN = 12.0V, VOUT = 1.80V
Minimum output capacitance: 5 x 100µF/6.3V X5R
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R
ZSPM1505 with Comp1; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch4 (Green):
Time Scale:
Figure 5.88
Figure 5.89
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
Figure 5.90
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1505 with Comp1; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch4 (Green):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
Open Loop Bode Plots for ZSPM1505 with Comp1
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1505 with Comp1; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch4 (Green):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1505 with Comp1; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch4 (Green):
Time Scale:
Figure 5.87
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
Figure 5.86
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
64 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.19. ZSPM1505 – Typical Load Transient Response – Capacitor Range #3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 1.80V
Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
ZSPM1505 with Comp2; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.93
Figure 5.94
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.95
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1505 with Comp2; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3: (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Open Loop Bode Plots for ZSPM1505 with Comp2
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
ZSPM1505 with Comp2; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
ZSPM1505 with Comp2; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.92
10
0
0
-30
-60
-90
-10
-120
-20
Phase [degrees]
Figure 5.91
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
65 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.20. ZSPM1505 – Typical Load Transient Response – Capacitor Range #4 – Comp3
Test conditions: VIN = 12.0V, VOUT = 1.80V
Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
Figure 5.96
ZSPM1505 with Comp3; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch4 (Green):
Time Scale:
Figure 5.98
ZSPM1505 with Comp3; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch4 (Green):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1505 with Comp3; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch4 (Green):
Time Scale:
Figure 5.97
Figure 5.99
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
ZSPM1505 with Comp3; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch4 (Green):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
8µs/div
Figure 5.100 Open Loop Bode Plots for ZSPM1505 with Comp3
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
40
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
66 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.21. ZSPM1506 – Typical Load Transient Response – Capacitor Range #1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 2.00V
Minimum output capacitance: 2 x 100µF/6.3V X5R
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R
Figure 5.101 ZSPM1506 with Comp0; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.102 ZSPM1506 with Comp0; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.103 ZSPM1506 with Comp0; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.104 ZSPM1506 with Comp0; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Open Loop Bode Plots for ZSPM1506 with Comp0
40
Max Caps - Gain
30
Min Caps - Gain
20
Max Caps - Phase
Gain [dB]
Min Caps - Phase
10
0
0
-30
-60
-90
-10
-120
Phase [degrees]
Figure 5.105
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
67 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.22. ZSPM1506 – Typical Load Transient Response – Capacitor Range #2 – Comp1
Test conditions: VIN = 12.0V, VOUT = 2.00V
Minimum output capacitance: 5 x 100µF/6.3V X5R
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R
Figure 5.106 ZSPM1506 with Comp1; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.107 ZSPM1506 with Comp1; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.108 ZSPM1506 with Comp1; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.109 ZSPM1506 with Comp1; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.110 Open Loop Bode Plots for ZSPM1506 with Comp1
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
40
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
68 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.23. ZSPM1506 – Typical Load Transient Response – Capacitor Range #3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 2.00V
Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
Figure 5.111 ZSPM1506 with Comp2; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.112 ZSPM1506 with Comp2; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.113 ZSPM1506 with Comp2; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.114 ZSPM1506 with Comp2; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.115 Open Loop Bode Plots for ZSPM1506 with Comp2
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
40
-20
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
69 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.24. ZSPM1506 – Typical Load Transient Response – Capacitor Range #4 – Comp3
Test conditions: VIN = 12.0V, VOUT = 2.00V
Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
Figure 5.116 ZSPM1506 with Comp3; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.117 ZSPM1506 with Comp3; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.118 ZSPM1506 with Comp3; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.119 ZSPM1506 with Comp3; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.120 Open Loop Bode Plots for ZSPM1506 with Comp3
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
40
-20
-150
-30
-40
-180
1
10 Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
70 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.25. ZSPM1507 – Typical Load Transient Response –Capacitor Range 1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 2.50V
Minimum output capacitance: 2 x 100µF/6.3V X5R
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R
Figure 5.121 ZSPM1507 with Comp0; 5 to 15A Load Step;
and Min. Capacitance
Figure 5.122 ZSPM1507 with Comp0; 15 to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.123 ZSPM1507 with Comp0; 5 to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.124 ZSPM1507 with Comp0; 15 to 5A Load Step;
and Max. Capacitance
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.125 Open Loop Bode Plots for ZSPM1507 with Comp0
30
20
Gain [dB]
0
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
-30
-60
10
0
-90
-10
-120
Phase [degrees]
40
-20
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
71 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
ZSPM1507 – Typical Load Transient Response –Capacitor Range 2 – Comp1
5.26.
Test conditions: VIN = 12.0V, VOUT = 2.50V
Minimum output capacitance: 5 x 100µF/6.3V X5R
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R
Figure 5.126 ZSPM1507 with Comp1; 5 to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.128 ZSPM1507 with Comp1; 5 to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.127 ZSPM1507 with Comp1; 15 to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.129 ZSPM1507 with Comp1; 15 to 5A Load Step;
and Max. Capacitance
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.130 Open Loop Bode Plots for ZSPM1507 with Comp1
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
40
-20
-150
-30
-40
-180
1
Data Sheet
April 27, 2015
10
Frequency [kHz]
100
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
72 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.27. ZSPM1507 – Typical Load Transient Response –Capacitor Range 3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 2.50V
Minimum output capacitance: 2 x 100µF/6.3V X5R + 2x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
Figure 5.131 ZSPM1507 with Comp2; 5 to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.133 ZSPM1507 with Comp2; 5 to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.132 ZSPM1507 with Comp2; 15 to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.134 ZSPM1507 with Comp2; 15 to 5A Load Step;
and Max. Capacitance
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.135 Open Loop Bode Plots for ZSPM1507 with Comp2
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
40
-20
-150
-30
-40
-180
1
Data Sheet
April 27, 2015
10
Frequency [kHz]
100
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
73 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.28. ZSPM1507 – Typical Load Transient Response –Capacitor Range 4 – Comp3
Test conditions: VIN = 12.0V, VOUT = 2.50V
Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
Figure 5.136 ZSPM1507 with Comp3; 5 to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.138 ZSPM1507 with Comp3; 5 to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.137 ZSPM1507 with Comp3; 15 to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.139 ZSPM1507 with Comp3; 15 to 5A Load Step;
and Max. Capacitance
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.140 Open Loop Bode Plots for ZSPM1507 with Comp3
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
0
-30
-60
10
0
-90
-10
-120
Phase [degrees]
40
-20
-150
-30
-40
-180
1
10
Frequency [kHz]
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
74 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.29. ZSPM1508 – Typical Load Transient Response –Capacitor Range 1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 3.30V
Minimum output capacitance: 2 x 100µF/10V X5R
Maximum output capacitance: 4 x 100µF/10V X5R + 2 x 47µF/10V X7R
Figure 5.141 ZSPM1508 with Comp0; 5A to 10A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.143 ZSPM1508 with Comp0; 5A to 10A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.142 ZSPM1508 with Comp0; 10A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.144 ZSPM1508 with Comp0; 10A to 5A Load Step;
and Max. Capacitance
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
0.1
1
Frequency [kHz]
10
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.145 Open Loop Bode Plots for ZSPM1508 with Comp0
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
75 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.30. ZSPM1508 – Typical Load Transient Response –Capacitor Range 2 – Comp1
Test conditions: VIN = 12.0V, VOUT = 3.30V
Minimum output capacitance: 5 x 100µF/10V X5R
Maximum output capacitance: 8 x 100µF/10V X5R + 4 x 47µF/10V X7R
Figure 5.146 ZSPM1508 with Comp1; 5A to 10A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.148 ZSPM1508 with Comp1; 5A to 10A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.147 ZSPM1508 with Comp1; 10A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.149 ZSPM1508 with Comp1; 10A to 5A Load Step;
and Max. Capacitance
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
0.1
1
Frequency [kHz]
10
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.150 Open Loop Bode Plots for ZSPM1508 with Comp1
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
76 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.31. ZSPM1508 – Typical Load Transient Response –Capacitor Range 3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 3.30V
Minimum output capacitance: 2 x 100µF/10V X5R + 2x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/10V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
Figure 5.151 ZSPM1508 with Comp2; 5A to 10A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.152 ZSPM1508 with Comp2; 10A to 5A Load Step;
and Min. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
40µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.153 ZSPM1508 with Comp2; 5A to 10A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
40µs/div
Figure 5.154 ZSPM1508 with Comp2; 10A to 5A Load Step;
and Max. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
40µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
40µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
0.1
1
Frequency [kHz]
10
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.155 Open Loop Bode Plots for ZSPM1508 with Comp2
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
77 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.32. ZSPM1508 – Typical Load Transient Response –Capacitor Range 4 – Comp3
Test conditions: VIN = 12.0V, VOUT = 3.30V
Minimum output capacitance: 5 x 100µF/10V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/10V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
Figure 5.156 ZSPM1508 with Comp3; 5A to 10A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.157 ZSPM1508 with Comp3; 10A to 5A Load Step;
and Min. Capacitance
VOUT 10mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
40µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.158 ZSPM1508 with Comp3; 5A to 10A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 10mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
40µs/div
Figure 5.159 ZSPM1508 with Comp3; 10A to 5A Load Step;
and Max. Capacitance
VOUT 10mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
40µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 10mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
40µs/div
Figure 5.160 Open Loop Bode Plots for ZSPM1508 with Comp3
40
30
Phase [degrees]
20
Gain [dB]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
10
0
-10
-20
-30
-40
0.1
1
Frequency [kHz]
10
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
78 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.33. ZSPM1509 – Typical Load Transient Response –Capacitor Range 1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 5.00V
Minimum output capacitance: 2 x 100µF/10 X5R
Maximum output capacitance: 4 x 100µF/10V X5R + 2 x 47µF/10V X7R
Figure 5.161 ZSPM1509 with Comp0; 3A to 8A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Figure 5.163 ZSPM1509 with Comp0; 3A to 8A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.162 ZSPM1509 with Comp0; 8A to 3A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Figure 5.164 ZSPM1509 with Comp0; 8A to 3A Load Step;
and Max. Capacitance
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
0.1
1
Frequency [kHz]
10
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.165 Open Loop Bode Plots for ZSPM1509 with Comp0
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
79 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.34. ZSPM1509 – Typical Load Transient Response –Capacitor Range 2 – Comp1
Test conditions: VIN = 12.0V, VOUT =5.00V
Minimum output capacitance: 5 x 100µF/10V X5R
Maximum output capacitance: 8 x 100µF/10V X5R + 4 x 47µF/10V X7R
Figure 5.166 ZSPM1509 with Comp1; 3A to 8A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.167 ZSPM1509 with Comp1; 8A to 3A Load Step;
and Min. Capacitance
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.168 ZSPM1509 with Comp1; 3A to 8A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Figure 5.169 ZSPM1509 with Comp1; 8A to 3A Load Step;
and Max. Capacitance
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
0.1
1
Frequency [kHz]
10
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.170 Open Loop Bode Plots for ZSPM1509 with Comp1
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
80 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.35. ZSPM1509 – Typical Load Transient Response –Capacitor Range 3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 5.00V
Minimum output capacitance: 2 x 100µF/10V X5R + 2x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/10V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
Figure 5.171 ZSPM1509 with Comp2; 3A to 8A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.172 ZSPM1509 with Comp2; 8A to 3A Load Step;
and Min. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.173 ZSPM1509 with Comp2; 3A to 8A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Figure 5.174 ZSPM1509 with Comp2; 8A to 3A Load Step;
and Max. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
20µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
0.1
1
Frequency [kHz]
10
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.175 Open Loop Bode Plots for ZSPM1509 with Comp2
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
81 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.36. ZSPM1509 – Typical Load Transient Response –Capacitor Range 4 – Comp3
Test conditions: VIN = 12.0V, VOUT =5.00V
Minimum output capacitance: 5 x 100µF/10V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/10V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
Figure 5.176 ZSPM1509 with Comp3; 3A to 8A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3:(Violet):
Time Scale:
Figure 5.177 ZSPM1509 with Comp3; 8A to 3A Load Step;
and Min. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
100µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.178 ZSPM1509 with Comp3; 3A to 8A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
100µs/div
Figure 5.179 ZSPM1509 with Comp3; 8A to 3A Load Step;
and Max. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
100µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
100µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
0.1
1
Frequency [kHz]
10
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.180 Open Loop Bode Plots for ZSPM1509 with Comp3
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
82 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.37. ZSPM1511 – Typical Load Transient Response – Capacitor Range #1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 0.85V
Minimum output capacitance: 2 x 100µF/6.3V X5R
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R
Figure 5.181 ZSPM1511 with Comp0; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.182 ZSPM1511 with Comp0; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Figure 5.183 ZSPM1511 with Comp0; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.184 ZSPM1511 with Comp0; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch4 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.185 Open Loop Bode Plots for ZSPM1511 with Comp0
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
83 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.38. ZSPM1511 – Typical Load Transient Response – Capacitor Range #2 – Comp1
Test conditions: VIN = 12.0V, VOUT = 0.85V
Minimum output capacitance: 5 x 100µF/6.3V X5R
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R
Figure 5.186 ZSPM1511 with Comp1; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.187 ZSPM1511 with Comp1; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Figure 5.188 ZSPM1511 with Comp1; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.189 ZSPM1511 with Comp1; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.190 Open Loop Bode Plots for ZSPM1511 with Comp1
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
84 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.39. ZSPM1511 – Typical Load Transient Response – Capacitor Range #3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 0.85V
Minimum output capacitance: 2 x 100µF/6.3V X5R + 2x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
Figure 5.191 ZSPM1511 with Comp2; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.192 ZSPM1511 with Comp2; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Figure 5.193 ZSPM1511 with Comp2; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.194 ZSPM1511 with Comp2; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 10mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Ch1 (Blue): VOUT 10mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.195 Open Loop Bode Plots for ZSPM1511 with Comp2
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
85 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.40. ZSPM1511 – Typical Load Transient Response – Capacitor Range #4 – Comp3
Test conditions: VIN = 12.0V, VOUT = 0.85V
Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
Figure 5.196 ZSPM1511 with Comp3; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.197 ZSPM1511 with Comp3; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 4µs/div
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 4µs/div
Figure 5.198 ZSPM1511 with Comp3; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.199 ZSPM1511 with Comp3; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 4µs/div
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 4µs/div
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.200 Open Loop Bode Plots for ZSPM1511 with Comp3
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
86 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.41. ZSPM1512 – Typical Load Transient Response – Capacitor Range #1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 1.00V
Minimum output capacitance: 2 x 100µF/6.3V X5R
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R
Figure 5.201 ZSPM1512 with Comp0; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.202 ZSPM1512 with Comp0; 15A to 5A Load Step;
and Min. Capacitance
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.203 ZSPM1512 with Comp0; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.204 ZSPM1512 with Comp0; 15A to 5A Load Step;
and Max. Capacitance
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.205 Open Loop Bode Plots for ZSPM1512 with Comp0
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
87 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.42. ZSPM1512 – Typical Load Transient Response – Capacitor Range #2 – Comp1
Test conditions: VIN = 12.0V, VOUT = 1.00V
Minimum output capacitance: 5 x 100µF/6.3V X5R
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R
Figure 5.206 ZSPM1512 with Comp1; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.207 ZSPM1512 with Comp1; 15A to 5A Load Step;
and Min. Capacitance
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.208 ZSPM1512 with Comp1; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.209 ZSPM1512 with Comp1; 15A to 5A Load Step;
and Max. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.210 Open Loop Bode Plots for ZSPM1512 with Comp1
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
88 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.43. ZSPM1512 – Typical Load Transient Response – Capacitor Range #3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 1.00V
Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
Figure 5.211 ZSPM1512 with Comp2; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.212 ZSPM1512 with Comp2; 15A to 5A Load Step;
and Min. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10 µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.213 ZSPM1512 with Comp2; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10 µs/div
Figure 5.214 ZSPM1512 with Comp2; 15A to 5A Load Step;
and Max. Capacitance
VOUT 10mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 10mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.215 Open Loop Bode Plots for ZSPM1512 with Comp2
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
89 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.44. ZSPM1512 – Typical Load Transient Response – Capacitor Range #4 – Comp3
Test conditions: VIN = 12.0V, VOUT = 1.00V
Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
Figure 5.216 ZSPM1512 with Comp3; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.217 ZSPM1512 with Comp3; 15A to 5A Load Step;
and Min. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.218 ZSPM1512 with Comp3; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.219 ZSPM1512 with Comp3; 15A to 5A Load Step;
and Max. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.220 Open Loop Bode Plots for ZSPM1512 with Comp3
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
90 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.45. ZSPM1513 – Typical Load Transient Response – Capacitor Range #1 – Comp0
Test conditions: VIN = 12.0V, VOUT = 1.20V
Minimum output capacitance: 2 x 100µF/6.3V X5R
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R
Figure 5.221 ZSPM1513 with Comp0; 5A to 15A Load Step;
and Min. Capacitance
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.223 ZSPM1513 with Comp0; 5A to 15A Load Step;
and Max. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.224 ZSPM1513 with Comp0; 15A to 5A Load Step;
and Max. Capacitance
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Figure 5.225
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
VOUT 50mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
Open Loop Bode Plots for ZSPM1513 with Comp0
40
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
20
Gain [dB]
VOUT 100mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
10µs/div
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.222 ZSPM1513 with Comp0; 15A to 5A Load Step;
and Min. Capacitance
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
91 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.46. ZSPM1513 – Typical Load Transient Response – Capacitor Range #2 – Comp1
Test conditions: VIN = 12.0V, VOUT = 1.20V
Minimum output capacitance: 5 x 100µF/6.3V X5R
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R
Figure 5.226 ZSPM1513 with Comp1; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.227 ZSPM1513 with Comp1; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue): VOUT 100mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Ch1 (Blue): VOUT 100mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Figure 5.228 ZSPM1513 with Comp1; 5 to 15A Load Step;
and Max. Capacitance
Figure 5.229 ZSPM1513 with Comp1; 15 to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Ch1 (Blue): VOUT 50mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.230 Open Loop Bode Plots for ZSPM1513 with Comp1
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
92 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.47. ZSPM1513 – Typical Load Transient Response – Capacitor Range #3 – Comp2
Test conditions: VIN = 12.0V, VOUT = 1.20V
Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ
Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ
Figure 5.231 ZSPM1513 with Comp2; 5A to 15A Load Step;
and Min. Capacitance
Figure 5.232 ZSPM1513 with Comp2; 15A to 5A Load Step;
and Min. Capacitance
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Figure 5.233 ZSPM1513 with Comp2; 5A to 15A Load Step;
and Max. Capacitance
Figure 5.234 ZSPM1513 with Comp2; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 10mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Ch1 (Blue):
VOUT 10mV/div AC
Ch2 (Cyan):
PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale:
10µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.235 Open Loop Bode Plots for ZSPM1513 with Comp2
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
93 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.48. ZSPM1513 – Typical Load Transient Response – Capacitor Range #4 – Comp3
Test conditions: VIN = 12.0V, VOUT = 1.20V
Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ
Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ
Figure 5.236 ZSPM1513 with Comp3; 5A to 15A Load Step;
and Min. Capacitance
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.237 ZSPM1513 with Comp3; 15A to 5A Load Step;
and Min. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
4µs/div
Ch1 (Blue):
Ch2 (Cyan):
Ch3 (Violet):
Time Scale:
Figure 5.238 ZSPM1513 with Comp3; 5A to 15A Load Step;
and Max. Capacitance
VOUT 20mV/div AC
PWM 5V/div DC
Load Trigger 5V/div DC
4µs/div
Figure 5.239 ZSPM1513 with Comp3; 15A to 5A Load Step;
and Max. Capacitance
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Ch1 (Blue): VOUT 20mV/div AC
Ch2 (Cyan): PWM 5V/div DC
Ch3 (Violet): Load Trigger 5V/div DC
Time Scale: 10µs/div
Max Caps - Gain
Min Caps - Gain
Max Caps - Phase
Min Caps - Phase
30
Gain [dB]
20
10
0
-10
-20
-30
-40
1
10
Frequency [kHz]
180
150
120
90
60
30
0
-30
-60
-90
-120
-150
-180
Phase [degrees]
Figure 5.240 Open Loop Bode Plots for ZSPM1513 with Comp3
40
100
Thousands
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
94 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.49. Typical Efficiency Curves – ZSPM1502 with ZSPM9000, ZSPM9015, and ZSPM9060 DrMOS
The following graph shows typical efficiency curves for the ZSPM1502 with three different ZMDI DrMOS power
stage options: the ZSPM9000, ZSPM9015, and ZSPM9060. (Note: The ZSPM1502 is also compatible with the
ZSPM9010, which is not shown.)
Figure 5.241 Typical Efficiency Curves: ZSPM1502 with ZSPM9000, ZSPM9015, and ZSPM9060 DrMOS (VIN= 12V;
Vout = 1.0V)
88.00%
87.00%
86.00%
85.00%
84.00%
Efficiency (%)
83.00%
82.00%
81.00%
80.00%
79.00%
78.00%
77.00%
VIN = 12V
Vout = 1.0V
76.00%
75.00%
0
5
10
15
20
25
30
35
40
45
Iout (A)
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
95 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.50. Typical Efficiency Curves – ZSPM9000 DrMOS with ZSPM1504, ZSPM1505, and ZSPM1506
The following graph shows typical efficiency curves for the ZSPM9000 power stage with three different ZSPM15xx
controllers: the ZSPM1504, ZSPM1505, and ZSPM1506.
Figure 5.242 Typical Efficiency Curves: ZSPM9000 DrMOS with ZSPM1504, ZSPM1505, and ZSPM1506 (VIN = 12V)
95
90
Efficiency (%)
85
80
75
70
65
VIN = 12V
60
0
5
10
15
20
25
30
35
Iout (A)
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
96 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.51.
Typical Efficiency Curves – ZSPM9000 and ZSPM9060 DrMOS with ZSPM1508
and ZSPM1509
The following graph shows typical efficiency curves for the ZSPM9000 and ZSPM9060 power stages with two
different ZSPM15xx controllers: the ZSPM1508 and ZSPM1509.
Figure 5.243 Typical Efficiency Curves: ZSPM9000 and ZSPM9060 DrMOS with ZSPM1508 and ZSPM1509
100
95
90
Efficiency (%)
85
80
75
70
65
VIN = 12V
60
0
2
4
6
8
10
12
14
16
Iout (A)
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
97 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
5.52.
Typical Efficiency Curves – ZSPM9000 and ZSPM9060 DrMOS with ZSPM1511, ZSPM1512,
and ZSPM1513
The following graph shows typical efficiency curves for the ZSPM9000 and ZSPM9060 power stages with three
different ZSPM15xx controllers: the ZSPM1511, ZSPM1512, and ZSPM1513.
Figure 5.244 Typical Efficiency Curves: ZSPM9000 and ZSPM9060 DrMOS with ZSPM1511, ZSPM1512, and ZSPM1513
90
85
80
Efficiency (%)
75
70
65
60
55
VIN = 12V
50
0
Data Sheet
April 27, 2015
2
4
6
8
Iout (A)
10
12
14
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
16
98 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
6
Mechanical Specifications
Based on JEDEC MO-220. All dimensions are in millimeters.
Figure 6.1
24-Pin QFN Package Drawing
Dimensions
Minimum (mm)
Maximum (mm)
A
0.8
0.90
A1
0.00
0.05
b
0.18
0.30
e
Data Sheet
April 27, 2015
0.5 nominal
HD
3.90
4.1
HE
3.90
4.1
L
0.35
0.45
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
99 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
7
Ordering Information
Product Code
Description
Package
ZSPM1501ZA1W0
ZSPM1501 lead-free QFN24; output voltage: 0.85V; inductance: 330nH; temperature: -40°C to +125°C
Reel
ZSPM1502ZA1W0
ZSPM1502 lead-free QFN24; output voltage: 1.00V; inductance: 330nH; temperature: -40°C to +125°C
Reel
ZSPM1503ZA1W0
ZSPM1503 lead-free QFN24; output voltage: 1.20V; inductance: 330nH; temperature: -40°C to +125°C
Reel
ZSPM1504ZA1W0
ZSPM1504 lead-free QFN24; output voltage: 1.50V; inductance: 470nH; temperature: -40°C to +125°C
Reel
ZSPM1505ZA1W0
ZSPM1505 lead-free QFN24; output voltage: 1.80V; inductance: 470nH; temperature: -40°C to +125°C
Reel
ZSPM1506ZA1W0
ZSPM1506 lead-free QFN24; output voltage: 2.00V; inductance: 470nH; temperature: -40°C to +125°C
Reel
ZSPM1507ZA1W0
ZSPM1507 lead-free QFN24; output voltage: 2.50V; inductance: 1000nH; temperature: -40°C to +125°C
Reel
ZSPM1508ZA1W0
ZSPM1508 lead-free QFN24; output voltage: 3.30V; inductance: 2200nH; temperature: -40°C to +125°C
Reel
ZSPM1509ZA1W0
ZSPM1509 lead-free QFN24; output voltage: 5.00V; inductance: 2200nH; temperature: -40°C to +125°C
Reel
ZSPM1511ZA1W0
ZSPM1511 lead-free QFN24; output voltage: 0.85V; inductance: 680nH; temperature: -40°C to +125°C
Reel
ZSPM1512ZA1W0
ZSPM1512 lead-free QFN24; output voltage: 1.00V; inductance: 680nH; temperature: -40°C to +125°C
Reel
ZSPM1513ZA1W0
ZSPM1513 lead-free QFN24; output voltage: 1.20V; inductance: 680nH; temperature: -40°C to +125°C
Reel
8
Related Documents
Note: X_xy refers to the current revision of the document.
Document
File Name
ZSPM15xx Family Feature Sheet
ZSPM15xx_Feature_Sheet_Rev_X_xy.pdf
ZSPM15XX-KIT01 Kit Description
ZSPM15XX-Kit_Description_Rev_X_xy.pdf
Visit the ZSPM15xx product page www.zmdi.com/zspm15xx on ZMDI’s website www.zmdi.com or contact your
nearest sales office for the latest version of these documents.
Data Sheet
April 27, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
100 of 101
ZSPM15xx
True-Digital PWM Controller (Single-Phase, Single-Rail)
9
Glossary
Term
Description
DCR
Equivalent DC Resistance
DNP
Do Not Place (Component)
DPWM
Digital Pulse-Width Modulator
DSP
Digital Signal Processing
FPGA
Field-Programmable Gate Array
HKADC
Housekeeping Analog-To-Digital Converter
OCP
Over-Current Protection
OT
Over-Temperature
OV
Over-Voltage
PID
Proportional/Integral/Derivative
SLC
State-Law Control™
SPM
Smart Power Management
10 Document Revision History
Revision
Date
Description
2.00
November 24, 2014
First release of full revision.
2.10
March 9, 2015
Addition of ZSPM1507, ZSPM1508, and ZSPM1509 to family of products.
2.20
April 27, 2015
Addition of ZSPM1511, ZSPM1512, and ZSPM1513 to family of products.
Removal of references to Sub-cycle Response (SCR) as this is not activated in the
ZSPM15xx.
Addition of Table 4.10, Table 4.11, and Table 4.12 for CONFIG 1 settings for the
ZSPM1507, ZSPM1508, and ZSPM1509 respectively.
Correction of C9 to C10 in section 4.5.
Sales and Further Information
www.zmdi.com
[email protected]
Zentrum Mikroelektronik
Dresden AG
Global Headquarters
Grenzstrasse 28
01109 Dresden, Germany
ZMD America, Inc.
1525 McCarthy Blvd., #212
Milpitas, CA 95035-7453
USA
Central Office:
Phone +49.351.8822.306
Fax
+49.351.8822.337
USA Phone 1.855.275.9634
Phone +1.408.883.6310
Fax
+1.408.883.6358
European Technical Support
Phone +49.351.8822.7.772
Fax
+49.351.8822.87.772
DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Zentrum Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The
information furnished hereby is believed to be true and accurate. However, under no circumstances shall ZMD AG be liable to any customer,
licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or
in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any
customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for
any damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty,
tort (including negligence), strict liability, or otherwise.
European Sales (Stuttgart)
Phone +49.711.674517.55
Fax
+49.711.674517.87955
Data Sheet
April 27, 2015
Zentrum Mikroelektronik
Dresden AG, Japan Office
2nd Floor, Shinbashi Tokyu Bldg.
4-21-3, Shinbashi, Minato-ku
Tokyo, 105-0004
Japan
ZMD FAR EAST, Ltd.
3F, No. 51, Sec. 2,
Keelung Road
11052 Taipei
Taiwan
Phone +81.3.6895.7410
Fax
+81.3.6895.7301
Phone +886.2.2377.8189
Fax
+886.2.2377.8199
Zentrum Mikroelektronik
Dresden AG, Korea Office
U-space 1 Building
Unit B, 906-1
660, Daewangpangyo-ro
Bundang-gu, Seongnam-si
Gyeonggi-do, 463-400
Korea
Phone +82.31.950.7679
Fax
+82.504.841.3026
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
101 of 101