Data Sheet Rev. 2.20 / April 2015 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Power Management ICs Power and Precision ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Brief Description Benefits ZSPM15xx family ICs are controllers designed for high-current, non-isolated DC/DC step-down point of load (POL) converters. The ZSPM15xx has a digital control loop that is optimized for maximum stability as well as load step and steady-state performance. ZSPM15xx family ICs have a rich set of integrated fault protection features including over-voltage/ under-voltage, output over-current, and over-temperature protections. To facilitate ease of use, the ZSPM15xx is pre-programmed and available for common output voltages. To provide flexibility for the end-customer, the over-current protection threshold and the control loop compensation are selectable by the end-customer to match a number of selected power stages. ZSPM15xx family ICs have been optimized for maximum efficiency when used with ZMDI’s DrMOS devices. Reference designs and application instructions enable a high performance turnkey solution without extensive engineering development. Available Support Advanced digital control techniques Tru-sample Technology™ State-Law Control™ (SLC) Preconfigured compensation for selected inductance values. Improved transient response and noise immunity Protection features Configuration for over-current protection Over-voltage protection (VIN, VOUT) Under-voltage protection (VIN, VOUT) Over-temperature protection Overloaded startup Restart and delay Reference designs Evaluation kits Physical Characteristics Features Factory pre-configured for industry standard output voltages and currents enabling fast time-to-market Simplified design and integration FPGA designer-friendly solution Highest power density with smallest footprint Higher energy efficiency across all output loading conditions Operation from a single 5V supply Operation temperature: -40°C to +125°C VIN for POL application:10.8V to 13.2V VDD50 voltage supply: 4.75 to 5.25V Available Output Voltages: 0.85V, 1.0V, 1.2V, 1.5V, 1.8V, 2.0V, 2.5V, 3.3V, and 5.0V Lead free (RoHS compliant) 24-pin QFN package (4mm x 4mm) ZSPM15xx Typical Application Diagram ZSPM15xx QFN 4x4 mm ZSPM90xx PQFN 6x6 mm Current Sensing Digital Control Loop Power Management (Sequencing, Protection,…) Driver Driver Housekeeping and Communication For more information, contact ZMDI via [email protected]. © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 — April 27, 2015. All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Current Sensing ISNSP Current Limiting Average Current Sensing ISNSN ZSPM15xx Block Diagram Digital Control Loop VFBP VFB FLASH ADC VFBN Adaptive Digital Controller PWM PWM DRVEN DAC OC Detection Sequencer OV Detection Typical Applications DAC Servers and Storage Bias Current Source Base Stations Configurable Error Handler OT Detection Telecom Switches Vin OV/UV Detection Int. Temp Sense Vout UV Detection Network Routers TEMP HKADC CPU Core CONFIG1 Product Code PGOOD Clock Generation CONTROL THSHDN GPIO Ordering Information 1.8V Reg Analog AVDD18 1.8V Reg Digital VDD18 3.3V Reg VDD33 NVM (OTP) VIN ADCVREF Single-Rail/Single-Phase Supplies for Processors, ASICs, FPGAs, DSPs VREFP VDD50 Industrial Applications CONFIG0 VREF Description Package ZSPM1501ZA1W0 ZSPM1501 lead-free QFN24; output voltage: 0.85V; inductance: 330nH; temperature: -40°C to +125°C Reel ZSPM1502ZA1W0 ZSPM1502 lead-free QFN24; output voltage: 1.00V; inductance: 330nH; temperature: -40°C to +125°C Reel ZSPM1503ZA1W0 ZSPM1503 lead-free QFN24; output voltage: 1.20V; inductance: 330nH; temperature: -40°C to +125°C Reel ZSPM1504ZA1W0 ZSPM1504 lead-free QFN24; output voltage: 1.50V; inductance: 470nH; temperature: -40°C to +125°C Reel ZSPM1505ZA1W0 ZSPM1505 lead-free QFN24; output voltage: 1.80V; inductance: 470nH; temperature: -40°C to +125°C Reel ZSPM1506ZA1W0 ZSPM1506 lead-free QFN24; output voltage: 2.00V; inductance: 470nH; temperature: -40°C to +125°C Reel ZSPM1507ZA1W0 ZSPM1507 lead-free QFN24; output voltage: 2.50V; inductance: 1000nH; temperature: -40°C to +125°C Reel ZSPM1508ZA1W0 ZSPM1508 lead-free QFN24; output voltage: 3.30V; inductance: 2200nH; temperature: -40°C to +125°C Reel ZSPM1509ZA1W0 ZSPM1509 lead-free QFN24; output voltage: 5.00V; inductance: 2200nH; temperature: -40°C to +125°C Reel ZSPM1511ZA1W0 ZSPM1511 lead-free QFN24; output voltage: 0.85V; inductance: 680nH; temperature: -40°C to +125°C Reel ZSPM1512ZA1W0 ZSPM1512 lead-free QFN24; output voltage: 1.00V; inductance: 680nH; temperature: -40°C to +125°C Reel ZSPM1513ZA1W0 ZSPM1513 lead-free QFN24; output voltage: 1.20V; inductance: 680nH; temperature: -40°C to +125°C Reel Sales and Further Information www.zmdi.com [email protected] Zentrum Mikroelektronik Dresden AG Global Headquarters Grenzstrasse 28 01109 Dresden, Germany ZMD America, Inc. 1525 McCarthy Blvd., #212 Milpitas, CA 95035-7453 USA Central Office: Phone +49.351.8822.306 Fax +49.351.8822.337 USA Phone 1.855.275.9634 Phone +1.408.883.6310 Fax +1.408.883.6358 European Technical Support Phone +49.351.8822.7.772 Fax +49.351.8822.87.772 DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Zentrum Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be true and accurate. However, under no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for any damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty, tort (including negligence), strict liability, or otherwise. European Sales (Stuttgart) Phone +49.711.674517.55 Fax +49.711.674517.87955 Zentrum Mikroelektronik Dresden AG, Japan Office 2nd Floor, Shinbashi Tokyu Bldg. 4-21-3, Shinbashi, Minato-ku Tokyo, 105-0004 Japan ZMD FAR EAST, Ltd. 3F, No. 51, Sec. 2, Keelung Road 11052 Taipei Taiwan Phone +81.3.6895.7410 Fax +81.3.6895.7301 Phone +886.2.2377.8189 Fax +886.2.2377.8199 Zentrum Mikroelektronik Dresden AG, Korea Office U-space 1 Building Unit B, 906-1 660, Daewangpangyo-ro Bundang-gu, Seongnam-si Gyeonggi-do, 463-400 Korea Phone +82.31.950.7679 Fax +82.504.841.3026 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 — April 27, 2015 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Contents 1 IC Characteristics ........................................................................................................................................... 14 1.1. Absolute Maximum Ratings ..................................................................................................................... 14 1.2. Recommended Operating Conditions ..................................................................................................... 15 1.3. Electrical Parameters .............................................................................................................................. 15 1.4. Device-Specific System Parameters ....................................................................................................... 18 1.4.1. ZSPM1501 ........................................................................................................................................ 18 1.4.2. ZSPM1502 ........................................................................................................................................ 18 1.4.3. ZSPM1503 ........................................................................................................................................ 19 1.4.4. ZSPM1504 ........................................................................................................................................ 20 1.4.5. ZSPM1505 ........................................................................................................................................ 20 1.4.6. ZSPM1506 ........................................................................................................................................ 21 1.4.7. ZSPM1507 ........................................................................................................................................ 22 1.4.8. ZSPM1508 ........................................................................................................................................ 22 1.4.9. ZSPM1509 ........................................................................................................................................ 23 1.4.10. ZSPM1511 ........................................................................................................................................ 23 1.4.11. ZSPM1512 ........................................................................................................................................ 24 1.4.12. ZSPM1513 ........................................................................................................................................ 24 2 Product Summary........................................................................................................................................... 25 2.1. Overview .................................................................................................................................................. 25 2.2. Pin Description......................................................................................................................................... 27 2.3. Available Packages ................................................................................................................................. 28 3 Functional Description .................................................................................................................................... 29 3.1. Power Supply Circuitry, Reference Decoupling, and Grounding ............................................................ 29 3.2. Reset/Start-up Behavior .......................................................................................................................... 29 3.3. Digital Power Control ............................................................................................................................... 29 3.3.1. Overview ........................................................................................................................................... 29 3.3.2. Output Voltage Feedback ................................................................................................................. 29 3.3.3. Digital Compensator ......................................................................................................................... 30 3.3.4. Power Sequencing and the CONTROL Pin ...................................................................................... 31 3.4. Fault Monitoring and Response Generation ............................................................................................ 32 3.4.1. Output Over/Under-Voltage .............................................................................................................. 32 3.4.2. Output Current Protection ................................................................................................................. 32 3.4.3. Input Voltage Protection .................................................................................................................... 33 3.4.4. Over-Temperature Protection ........................................................................................................... 33 4 Application Information ................................................................................................................................... 34 4.1. Application Schematic ............................................................................................................................. 34 4.2. Device-Specific Passive Components ..................................................................................................... 36 4.3. Output Voltage Feedback Components .................................................................................................. 38 4.4. DCR Current Sensing Components ........................................................................................................ 38 4.5. Input Voltage Sensing ............................................................................................................................. 39 4.6. External Temperature Sensing ................................................................................................................ 39 Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 4 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 4.7. CONFIG0 – Over-Current Protection Threshold ..................................................................................... 40 4.8. CONFIG1 – Compensation Loop and Output Voltage Slew Rate ........................................................... 41 5 Typical Performance Data .............................................................................................................................. 46 5.1. ZSPM1501 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 47 5.2. ZSPM1501 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 48 5.3. ZSPM1501 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 49 5.4. ZSPM1501 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 50 5.5. ZSPM1502 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 51 5.6. ZSPM1502 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 52 5.7. ZSPM1502 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 53 5.8. ZSPM1502 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 54 5.9. ZSPM1503 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 55 5.10. ZSPM1503 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 56 5.11. ZSPM1503 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 57 5.12. ZSPM1503 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 58 5.13. ZSPM1504 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 59 5.14. ZSPM1504 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 60 5.15. ZSPM1504 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 61 5.16. ZSPM1504 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 62 5.17. ZSPM1505 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 63 5.18. ZSPM1505 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 64 5.19. ZSPM1505 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 65 5.20. ZSPM1505 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 66 5.21. ZSPM1506 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 67 5.22. ZSPM1506 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 68 5.23. ZSPM1506 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 69 5.24. ZSPM1506 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 70 5.25. ZSPM1507 – Typical Load Transient Response –Capacitor Range 1 – Comp0 .................................... 71 5.26. ZSPM1507 – Typical Load Transient Response –Capacitor Range 2 – Comp1 .................................... 72 5.27. ZSPM1507 – Typical Load Transient Response –Capacitor Range 3 – Comp2 .................................... 73 5.28. ZSPM1507 – Typical Load Transient Response –Capacitor Range 4 – Comp3 .................................... 74 5.29. ZSPM1508 – Typical Load Transient Response –Capacitor Range 1 – Comp0 .................................... 75 5.30. ZSPM1508 – Typical Load Transient Response –Capacitor Range 2 – Comp1 .................................... 76 5.31. ZSPM1508 – Typical Load Transient Response –Capacitor Range 3 – Comp2 .................................... 77 5.32. ZSPM1508 – Typical Load Transient Response –Capacitor Range 4 – Comp3 .................................... 78 5.33. ZSPM1509 – Typical Load Transient Response –Capacitor Range 1 – Comp0 .................................... 79 5.34. ZSPM1509 – Typical Load Transient Response –Capacitor Range 2 – Comp1 .................................... 80 5.35. ZSPM1509 – Typical Load Transient Response –Capacitor Range 3 – Comp2 .................................... 81 5.36. ZSPM1509 – Typical Load Transient Response –Capacitor Range 4 – Comp3 .................................... 82 5.37. ZSPM1511 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 83 5.38. ZSPM1511 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 84 5.39. ZSPM1511 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 85 5.40. ZSPM1511 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 86 Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 5 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) ZSPM1512 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 87 ZSPM1512 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 88 ZSPM1512 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 89 ZSPM1512 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 90 ZSPM1513 – Typical Load Transient Response – Capacitor Range #1 – Comp0 ................................. 91 ZSPM1513 – Typical Load Transient Response – Capacitor Range #2 – Comp1 ................................. 92 ZSPM1513 – Typical Load Transient Response – Capacitor Range #3 – Comp2 ................................. 93 ZSPM1513 – Typical Load Transient Response – Capacitor Range #4 – Comp3 ................................. 94 Typical Efficiency Curves – ZSPM1502 with ZSPM9000, ZSPM9015, and ZSPM9060 DrMOS ........... 95 Typical Efficiency Curves – ZSPM9000 DrMOS with ZSPM1504, ZSPM1505, and ZSPM1506 ........... 96 Typical Efficiency Curves – ZSPM9000 and ZSPM9060 DrMOS with ZSPM1508 and ZSPM1509 ...... 97 Typical Efficiency Curves – ZSPM9000 and ZSPM9060 DrMOS with ZSPM1511, ZSPM1512, and ZSPM1513 ........................................................................................................................................ 98 6 Mechanical Specifications .............................................................................................................................. 99 7 Ordering Information .................................................................................................................................... 100 8 Related Documents ...................................................................................................................................... 100 9 Glossary ....................................................................................................................................................... 101 10 Document Revision History .......................................................................................................................... 101 5.41. 5.42. 5.43. 5.44. 5.45. 5.46. 5.47. 5.48. 5.49. 5.50. 5.51. 5.52. List of Figures Figure 2.1 Figure 2.2 Figure 2.3 Figure 3.1 Figure 3.2 Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 Figure 5.6 Figure 5.7 Figure 5.8 Figure 5.9 Figure 5.10 Figure 5.11 Data Sheet April 27, 2015 Typical Application Circuit with a 5V Supply Voltage ..................................................................... 25 Block Diagram ................................................................................................................................ 26 Pin-out QFN24 Package ................................................................................................................ 28 Simplified Block Diagram of the Digital Compensation .................................................................. 30 Power Sequencing ......................................................................................................................... 31 ZSPM15xx – Application Circuit with a 5V Supply Voltage ........................................................... 34 Output Voltage Sense Circuitry ...................................................................................................... 38 Inductor Current Sensing Using the DCR Method ......................................................................... 38 Input Voltage Sense Circuitry......................................................................................................... 39 External Temperature Sense Circuitry ........................................................................................... 39 ZSPM1501 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 47 ZSPM1501 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 47 ZSPM1501 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 47 ZSPM1501 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 47 Open Loop Bode Plots for ZSPM1501 with Comp0....................................................................... 47 ZSPM1501 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 48 ZSPM1501 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 48 ZSPM1501 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 48 ZSPM1501 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 48 Open Loop Bode Plots for ZSPM1501 with Comp1....................................................................... 48 ZSPM1501 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 49 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 6 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Figure 5.12 Figure 5.13 Figure 5.14 Figure 5.15 Figure 5.16 Figure 5.17 Figure 5.18 Figure 5.19 Figure 5.20 Figure 5.21 Figure 5.22 Figure 5.23 Figure 5.24 Figure 5.25 Figure 5.26 Figure 5.27 Figure 5.28 Figure 5.29 Figure 5.30 Figure 5.31 Figure 5.32 Figure 5.33 Figure 5.34 Figure 5.35 Figure 5.36 Figure 5.37 Figure 5.38 Figure 5.39 Figure 5.40 Figure 5.41 Figure 5.42 Figure 5.43 Figure 5.44 Figure 5.45 Figure 5.46 Figure 5.47 Figure 5.48 Figure 5.49 Figure 5.50 Figure 5.51 Figure 5.52 Figure 5.53 Figure 5.54 Data Sheet April 27, 2015 ZSPM1501 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 49 ZSPM1501 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 49 ZSPM1501 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 49 Open Loop Bode Plots for ZSPM1501 with Comp2....................................................................... 49 ZSPM1501 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 50 ZSPM1501 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 50 ZSPM1501 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 50 ZSPM1501 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 50 Open Loop Bode Plots for ZSPM1501 with Comp3....................................................................... 50 ZSPM1502 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 51 ZSPM1502 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 51 ZSPM1502 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 51 ZSPM1502 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 51 Open Loop Bode Plots for ZSPM1502 with Comp0....................................................................... 51 ZSPM1502 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 52 ZSPM1502 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 52 ZSPM1502 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 52 ZSPM1502 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 52 Open Loop Bode Plots for ZSPM1502 with Comp1....................................................................... 52 ZSPM1502 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 53 ZSPM1502 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 53 ZSPM1502 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 53 ZSPM1502 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 53 Open Loop Bode Plots for ZSPM1502 with Comp2....................................................................... 53 ZSPM1502 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 54 ZSPM1502 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 54 ZSPM1502 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 54 ZSPM1502 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 54 Open Loop Bode Plots for ZSPM1502 with Comp3....................................................................... 54 ZSPM1503 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 55 ZSPM1503 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 55 ZSPM1503 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 55 ZSPM1503 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 55 Open Loop Bode Plots for ZSPM1503 with Comp0....................................................................... 55 ZSPM1503 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 56 ZSPM1503 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 56 ZSPM1503 with Comp1; 5 to 15A Load Step; and Max. Capacitance .......................................... 56 ZSPM1503 with Comp1; 15 to 5A Load Step; and Max. Capacitance .......................................... 56 Open Loop Bode Plots for ZSPM1503 with Comp1....................................................................... 56 ZSPM1503 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 57 ZSPM1503 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 57 ZSPM1503 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 57 ZSPM1503 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 57 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 7 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Figure 5.55 Figure 5.56 Figure 5.57 Figure 5.58 Figure 5.59 Figure 5.60 Figure 5.61 Figure 5.62 Figure 5.63 Figure 5.64 Figure 5.65 Figure 5.66 Figure 5.67 Figure 5.68 Figure 5.69 Figure 5.70 Figure 5.71 Figure 5.72 Figure 5.73 Figure 5.74 Figure 5.75 Figure 5.76 Figure 5.77 Figure 5.78 Figure 5.79 Figure 5.80 Figure 5.81 Figure 5.82 Figure 5.83 Figure 5.84 Figure 5.85 Figure 5.86 Figure 5.87 Figure 5.88 Figure 5.89 Figure 5.90 Figure 5.91 Figure 5.92 Figure 5.93 Figure 5.94 Figure 5.95 Figure 5.96 Figure 5.97 Data Sheet April 27, 2015 Open Loop Bode Plots for ZSPM1503 with Comp2....................................................................... 57 ZSPM1503 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 58 ZSPM1503 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 58 ZSPM1503 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 58 ZSPM1503 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 58 Open Loop Bode Plots for ZSPM1503 with Comp3....................................................................... 58 ZSPM1504 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 59 ZSPM1504 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 59 ZSPM1504 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 59 ZSPM1504 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 59 Open Loop Bode Plots for ZSPM1504 with Comp0....................................................................... 59 ZSPM1504 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 60 ZSPM1504 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 60 ZSPM1504 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 60 ZSPM1504 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 60 Open Loop Bode Plots for ZSPM1504 with Comp1....................................................................... 60 ZSPM1504 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 61 ZSPM1504 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 61 ZSPM1504 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 61 ZSPM1504 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 61 Open Loop Bode Plots for ZSPM1504 with Comp2....................................................................... 61 ZSPM1504 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 62 ZSPM1504 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 62 ZSPM1504 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 62 ZSPM1504 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 62 Open Loop Bode Plots for ZSPM1504 with Comp3....................................................................... 62 ZSPM1505 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 63 ZSPM1505 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 63 ZSPM1505 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 63 ZSPM1505 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 63 Open Loop Bode Plots for ZSPM1505 with Comp0....................................................................... 63 ZSPM1505 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 64 ZSPM1505 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 64 ZSPM1505 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 64 ZSPM1505 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 64 Open Loop Bode Plots for ZSPM1505 with Comp1....................................................................... 64 ZSPM1505 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 65 ZSPM1505 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 65 ZSPM1505 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 65 ZSPM1505 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 65 Open Loop Bode Plots for ZSPM1505 with Comp2....................................................................... 65 ZSPM1505 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 66 ZSPM1505 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 66 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 8 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Figure 5.98 Figure 5.99 Figure 5.100 Figure 5.101 Figure 5.102 Figure 5.103 Figure 5.104 Figure 5.105 Figure 5.106 Figure 5.107 Figure 5.108 Figure 5.109 Figure 5.110 Figure 5.111 Figure 5.112 Figure 5.113 Figure 5.114 Figure 5.115 Figure 5.116 Figure 5.117 Figure 5.118 Figure 5.119 Figure 5.120 Figure 5.121 Figure 5.122 Figure 5.123 Figure 5.124 Figure 5.125 Figure 5.126 Figure 5.127 Figure 5.128 Figure 5.129 Figure 5.130 Figure 5.131 Figure 5.132 Figure 5.133 Figure 5.134 Figure 5.135 Figure 5.136 Figure 5.137 Figure 5.138 Figure 5.139 Figure 5.140 Data Sheet April 27, 2015 ZSPM1505 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 66 ZSPM1505 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 66 Open Loop Bode Plots for ZSPM1505 with Comp3....................................................................... 66 ZSPM1506 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 67 ZSPM1506 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 67 ZSPM1506 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 67 ZSPM1506 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 67 Open Loop Bode Plots for ZSPM1506 with Comp0....................................................................... 67 ZSPM1506 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 68 ZSPM1506 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 68 ZSPM1506 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 68 ZSPM1506 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 68 Open Loop Bode Plots for ZSPM1506 with Comp1....................................................................... 68 ZSPM1506 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 69 ZSPM1506 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 69 ZSPM1506 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 69 ZSPM1506 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 69 Open Loop Bode Plots for ZSPM1506 with Comp2....................................................................... 69 ZSPM1506 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 70 ZSPM1506 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 70 ZSPM1506 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 70 ZSPM1506 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 70 Open Loop Bode Plots for ZSPM1506 with Comp3....................................................................... 70 ZSPM1507 with Comp0; 5 to 15A Load Step; and Min. Capacitance ........................................... 71 ZSPM1507 with Comp0; 15 to 5A Load Step; and Min. Capacitance ........................................... 71 ZSPM1507 with Comp0; 5 to 15A Load Step; and Max. Capacitance .......................................... 71 ZSPM1507 with Comp0; 15 to 5A Load Step; and Max. Capacitance .......................................... 71 Open Loop Bode Plots for ZSPM1507 with Comp0....................................................................... 71 ZSPM1507 with Comp1; 5 to 15A Load Step; and Min. Capacitance ........................................... 72 ZSPM1507 with Comp1; 15 to 5A Load Step; and Min. Capacitance ........................................... 72 ZSPM1507 with Comp1; 5 to 15A Load Step; and Max. Capacitance .......................................... 72 ZSPM1507 with Comp1; 15 to 5A Load Step; and Max. Capacitance .......................................... 72 Open Loop Bode Plots for ZSPM1507 with Comp1....................................................................... 72 ZSPM1507 with Comp2; 5 to 15A Load Step; and Min. Capacitance ........................................... 73 ZSPM1507 with Comp2; 15 to 5A Load Step; and Min. Capacitance ........................................... 73 ZSPM1507 with Comp2; 5 to 15A Load Step; and Max. Capacitance .......................................... 73 ZSPM1507 with Comp2; 15 to 5A Load Step; and Max. Capacitance .......................................... 73 Open Loop Bode Plots for ZSPM1507 with Comp2....................................................................... 73 ZSPM1507 with Comp3; 5 to 15A Load Step; and Min. Capacitance ........................................... 74 ZSPM1507 with Comp3; 15 to 5A Load Step; and Min. Capacitance ........................................... 74 ZSPM1507 with Comp3; 5 to 15A Load Step; and Max. Capacitance .......................................... 74 ZSPM1507 with Comp3; 15 to 5A Load Step; and Max. Capacitance .......................................... 74 Open Loop Bode Plots for ZSPM1507 with Comp3....................................................................... 74 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 9 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Figure 5.141 Figure 5.142 Figure 5.143 Figure 5.144 Figure 5.145 Figure 5.146 Figure 5.147 Figure 5.148 Figure 5.149 Figure 5.150 Figure 5.151 Figure 5.152 Figure 5.153 Figure 5.154 Figure 5.155 Figure 5.156 Figure 5.157 Figure 5.158 Figure 5.159 Figure 5.160 Figure 5.161 Figure 5.162 Figure 5.163 Figure 5.164 Figure 5.165 Figure 5.166 Figure 5.167 Figure 5.168 Figure 5.169 Figure 5.170 Figure 5.171 Figure 5.172 Figure 5.173 Figure 5.174 Figure 5.175 Figure 5.176 Figure 5.177 Figure 5.178 Figure 5.179 Figure 5.180 Figure 5.181 Figure 5.182 Figure 5.183 Data Sheet April 27, 2015 ZSPM1508 with Comp0; 5A to 10A Load Step; and Min. Capacitance ......................................... 75 ZSPM1508 with Comp0; 10A to 5A Load Step; and Min. Capacitance ......................................... 75 ZSPM1508 with Comp0; 5A to 10A Load Step; and Max. Capacitance ........................................ 75 ZSPM1508 with Comp0; 10A to 5A Load Step; and Max. Capacitance ........................................ 75 Open Loop Bode Plots for ZSPM1508 with Comp0....................................................................... 75 ZSPM1508 with Comp1; 5A to 10A Load Step; and Min. Capacitance ......................................... 76 ZSPM1508 with Comp1; 10A to 5A Load Step; and Min. Capacitance ......................................... 76 ZSPM1508 with Comp1; 5A to 10A Load Step; and Max. Capacitance ........................................ 76 ZSPM1508 with Comp1; 10A to 5A Load Step; and Max. Capacitance ........................................ 76 Open Loop Bode Plots for ZSPM1508 with Comp1....................................................................... 76 ZSPM1508 with Comp2; 5A to 10A Load Step; and Min. Capacitance ......................................... 77 ZSPM1508 with Comp2; 10A to 5A Load Step; and Min. Capacitance ......................................... 77 ZSPM1508 with Comp2; 5A to 10A Load Step; and Max. Capacitance ........................................ 77 ZSPM1508 with Comp2; 10A to 5A Load Step; and Max. Capacitance ........................................ 77 Open Loop Bode Plots for ZSPM1508 with Comp2....................................................................... 77 ZSPM1508 with Comp3; 5A to 10A Load Step; and Min. Capacitance ......................................... 78 ZSPM1508 with Comp3; 10A to 5A Load Step; and Min. Capacitance ......................................... 78 ZSPM1508 with Comp3; 5A to 10A Load Step; and Max. Capacitance ........................................ 78 ZSPM1508 with Comp3; 10A to 5A Load Step; and Max. Capacitance ........................................ 78 Open Loop Bode Plots for ZSPM1508 with Comp3....................................................................... 78 ZSPM1509 with Comp0; 3A to 8A Load Step; and Min. Capacitance ........................................... 79 ZSPM1509 with Comp0; 8A to 3A Load Step; and Min. Capacitance ........................................... 79 ZSPM1509 with Comp0; 3A to 8A Load Step; and Max. Capacitance .......................................... 79 ZSPM1509 with Comp0; 8A to 3A Load Step; and Max. Capacitance .......................................... 79 Open Loop Bode Plots for ZSPM1509 with Comp0....................................................................... 79 ZSPM1509 with Comp1; 3A to 8A Load Step; and Min. Capacitance ........................................... 80 ZSPM1509 with Comp1; 8A to 3A Load Step; and Min. Capacitance ........................................... 80 ZSPM1509 with Comp1; 3A to 8A Load Step; and Max. Capacitance .......................................... 80 ZSPM1509 with Comp1; 8A to 3A Load Step; and Max. Capacitance .......................................... 80 Open Loop Bode Plots for ZSPM1509 with Comp1....................................................................... 80 ZSPM1509 with Comp2; 3A to 8A Load Step; and Min. Capacitance ........................................... 81 ZSPM1509 with Comp2; 8A to 3A Load Step; and Min. Capacitance ........................................... 81 ZSPM1509 with Comp2; 3A to 8A Load Step; and Max. Capacitance .......................................... 81 ZSPM1509 with Comp2; 8A to 3A Load Step; and Max. Capacitance .......................................... 81 Open Loop Bode Plots for ZSPM1509 with Comp2....................................................................... 81 ZSPM1509 with Comp3; 3A to 8A Load Step; and Min. Capacitance ........................................... 82 ZSPM1509 with Comp3; 8A to 3A Load Step; and Min. Capacitance ........................................... 82 ZSPM1509 with Comp3; 3A to 8A Load Step; and Max. Capacitance .......................................... 82 ZSPM1509 with Comp3; 8A to 3A Load Step; and Max. Capacitance .......................................... 82 Open Loop Bode Plots for ZSPM1509 with Comp3....................................................................... 82 ZSPM1511 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 83 ZSPM1511 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 83 ZSPM1511 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 83 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 10 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Figure 5.184 Figure 5.185 Figure 5.186 Figure 5.187 Figure 5.188 Figure 5.189 Figure 5.190 Figure 5.191 Figure 5.192 Figure 5.193 Figure 5.194 Figure 5.195 Figure 5.196 Figure 5.197 Figure 5.198 Figure 5.199 Figure 5.200 Figure 5.201 Figure 5.202 Figure 5.203 Figure 5.204 Figure 5.205 Figure 5.206 Figure 5.207 Figure 5.208 Figure 5.209 Figure 5.210 Figure 5.211 Figure 5.212 Figure 5.213 Figure 5.214 Figure 5.215 Figure 5.216 Figure 5.217 Figure 5.218 Figure 5.219 Figure 5.220 Figure 5.221 Figure 5.222 Figure 5.223 Figure 5.224 Figure 5.225 Figure 5.226 Data Sheet April 27, 2015 ZSPM1511 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 83 Open Loop Bode Plots for ZSPM1511 with Comp0....................................................................... 83 ZSPM1511 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 84 ZSPM1511 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 84 ZSPM1511 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 84 ZSPM1511 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 84 Open Loop Bode Plots for ZSPM1511 with Comp1....................................................................... 84 ZSPM1511 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 85 ZSPM1511 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 85 ZSPM1511 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 85 ZSPM1511 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 85 Open Loop Bode Plots for ZSPM1511 with Comp2....................................................................... 85 ZSPM1511 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 86 ZSPM1511 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 86 ZSPM1511 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 86 ZSPM1511 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 86 Open Loop Bode Plots for ZSPM1511 with Comp3....................................................................... 86 ZSPM1512 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 87 ZSPM1512 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 87 ZSPM1512 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 87 ZSPM1512 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 87 Open Loop Bode Plots for ZSPM1512 with Comp0....................................................................... 87 ZSPM1512 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 88 ZSPM1512 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 88 ZSPM1512 with Comp1; 5A to 15A Load Step; and Max. Capacitance ........................................ 88 ZSPM1512 with Comp1; 15A to 5A Load Step; and Max. Capacitance ........................................ 88 Open Loop Bode Plots for ZSPM1512 with Comp1....................................................................... 88 ZSPM1512 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 89 ZSPM1512 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 89 ZSPM1512 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 89 ZSPM1512 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 89 Open Loop Bode Plots for ZSPM1512 with Comp2....................................................................... 89 ZSPM1512 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 90 ZSPM1512 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 90 ZSPM1512 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 90 ZSPM1512 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 90 Open Loop Bode Plots for ZSPM1512 with Comp3....................................................................... 90 ZSPM1513 with Comp0; 5A to 15A Load Step; and Min. Capacitance ......................................... 91 ZSPM1513 with Comp0; 15A to 5A Load Step; and Min. Capacitance ......................................... 91 ZSPM1513 with Comp0; 5A to 15A Load Step; and Max. Capacitance ........................................ 91 ZSPM1513 with Comp0; 15A to 5A Load Step; and Max. Capacitance ........................................ 91 Open Loop Bode Plots for ZSPM1513 with Comp0....................................................................... 91 ZSPM1513 with Comp1; 5A to 15A Load Step; and Min. Capacitance ......................................... 92 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 11 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Figure 5.227 Figure 5.228 Figure 5.229 Figure 5.230 Figure 5.231 Figure 5.232 Figure 5.233 Figure 5.234 Figure 5.235 Figure 5.236 Figure 5.237 Figure 5.238 Figure 5.239 Figure 5.240 Figure 5.241 ZSPM1513 with Comp1; 15A to 5A Load Step; and Min. Capacitance ......................................... 92 ZSPM1513 with Comp1; 5 to 15A Load Step; and Max. Capacitance .......................................... 92 ZSPM1513 with Comp1; 15 to 5A Load Step; and Max. Capacitance .......................................... 92 Open Loop Bode Plots for ZSPM1513 with Comp1....................................................................... 92 ZSPM1513 with Comp2; 5A to 15A Load Step; and Min. Capacitance ......................................... 93 ZSPM1513 with Comp2; 15A to 5A Load Step; and Min. Capacitance ......................................... 93 ZSPM1513 with Comp2; 5A to 15A Load Step; and Max. Capacitance ........................................ 93 ZSPM1513 with Comp2; 15A to 5A Load Step; and Max. Capacitance ........................................ 93 Open Loop Bode Plots for ZSPM1513 with Comp2....................................................................... 93 ZSPM1513 with Comp3; 5A to 15A Load Step; and Min. Capacitance ......................................... 94 ZSPM1513 with Comp3; 15A to 5A Load Step; and Min. Capacitance ......................................... 94 ZSPM1513 with Comp3; 5A to 15A Load Step; and Max. Capacitance ........................................ 94 ZSPM1513 with Comp3; 15A to 5A Load Step; and Max. Capacitance ........................................ 94 Open Loop Bode Plots for ZSPM1513 with Comp3....................................................................... 94 Typical Efficiency Curves: ZSPM1502 with ZSPM9000, ZSPM9015, and ZSPM9060 DrMOS (VIN= 12V; Vout = 1.0V) .................................................................................................................. 95 Figure 5.242 Typical Efficiency Curves: ZSPM9000 DrMOS with ZSPM1504, ZSPM1505, and ZSPM1506 (VIN = 12V) ...................................................................................................................................... 96 Figure 5.243 Typical Efficiency Curves: ZSPM9000 and ZSPM9060 DrMOS with ZSPM1508 and ZSPM150997 Figure 5.244 Typical Efficiency Curves: ZSPM9000 and ZSPM9060 DrMOS with ZSPM1511, ZSPM1512, and ZSPM1513 .............................................................................................................................. 98 Figure 6.1 24-Pin QFN Package Drawing ....................................................................................................... 99 Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 12 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) List of Tables Table 2.1 Table 3.1 Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 4.6 Table 4.7 Table 4.8 Table 4.9 Table 4.10 Table 4.11 Table 4.12 Data Sheet April 27, 2015 ZSPM15xx Pin Descriptions ........................................................................................................... 27 Fault Configuration Overview ......................................................................................................... 32 Passive Component Values for the Application Circuits ................................................................ 35 Passive Components for the ZSPM1501, ZSPM1502, and ZSPM1503 ....................................... 36 Passive Components for the ZSPM1504, ZSPM1505, and ZSPM1506 ....................................... 36 Passive Components for the ZSPM1507 ....................................................................................... 37 Passive Components for the ZSPM1508 and ZSPM1509 ............................................................. 37 Passive Components for the ZSPM1511, ZSPM1512, and ZSPM1513 ....................................... 37 ZSPM15xx – OCP Pin Strap Resistor Selection ............................................................................ 40 Recommended Output Capacitor Ranges ..................................................................................... 41 Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1501 to ZSPM1506 and the ZSPM1511 to ZSPM1513 .............................................................................. 42 Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1507.................. 43 Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1508 .................. 44 Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1509 .................. 45 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 13 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 1 IC Characteristics Note: The absolute maximum ratings are stress ratings only. The ZSPM15xx might not function or be operable above the recommended operating conditions. Stresses exceeding the absolute maximum ratings might also damage the device. In addition, extended exposure to stresses above the recommended operating conditions might affect device reliability. ZMDI does not recommend designing to the “Absolute Maximum Ratings.” 1.1. Absolute Maximum Ratings PARAMETER PINS CONDITIONS MIN TYPICAL MAX UNITS Supply voltages 5V supply voltage VDD50 dV/dt < 0.15V/µs -0.3 Maximum slew rate 5.5 V 0.15 V/µs 3.3V supply voltage VDD33 -0.3 3.6 V 1.8V supply voltage VDD18 AVDD18 -0.3 2.0 V THSHDN CONTROL PGOOD DRVEN PWM -0.3 5.5 V Current sensing ISNSP, ISNSN -0.3 5.5 V Voltage feedback VFBP VFBN -0.3 2.0 V All other analog pins ADCVREF VREFP TEMP VIN CONFIG0 CONFIG1 -0.3 2.0 V Digital pins Digital I/O pins Analog pins Ambient Conditions Junction temperature TJ Storage temperature -40 125 °C 150 °C Electrostatic discharge – Human Body Model ESD testing is performed according to the respective JESD22 JEDEC standard. +/-2k V Electrostatic discharge – Charge Device Model ESD testing is performed according to the respective JESD22 JEDEC standard. +/- 500 V Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 14 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 1.2. Recommended Operating Conditions PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS 125 °C Ambient conditions Operation temperature TJ Thermal resistance junction to ambient JA 1.3. -40 40 K/W Electrical Parameters PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS 4.75 5.0 5.25 V Supply voltages 5V supply voltage VVDD50 5V supply current IVDD50 VDD50=5.0V 3.3V supply voltage VVDD33 Supply for both the VDD33 and VDD50 pins if the internal 3.3V regulator is not used. 3.3V supply current IVDD33 VDD50=VDD33=3.3V 23 3.0 3.3 mA 3.6 23 V mA Internally generated supply voltages 3.3V supply voltage VVDD33 VDD50=5.0V 3.3V output current IVDD33 VDD50=5.0V 1.8V supply voltages VAVDD18 VVDD18 VDD50=5.0V 3.0 1.72 3.3 1.80 1.8V output current 3.6 V 2.0 mA 1.98 V 0 mA Power-on reset (POR) Power-on reset threshold – on VTH_POR_ON 2.8 V Power-on reset threshold – off VTH_POR_OFF 2.6 V 5 ms Initialization period / internal startup time Digital IO pins (CONTROL, PGOOD, DRVEN, THSHDN) Input high voltage VDD33=3.3V Input low voltage VDD33=3.3V Output high voltage VDD33=3.3V 2.0 V 0.8 V VDD33 V Output low voltage 0.5 V Input leakage current ±1.0 µA Output current – high 2.0 mA Output current – low 2.0 mA Data Sheet April 27, 2015 2.4 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 15 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS VDD33 V Output low voltage 0.5 V Output current – high 2.0 mA Output current – low 2.0 mA Tri-state leakage current ±1.0 µA Digital IO pins with tri-state capability (PWM) Output high voltage VDD33=3.3V 2.4 Output voltage Output voltage The output voltage set-point is determined by product code. Set-point accuracy VOUT=1.4V (Refer to section 1.4) 1 % 1 ms Output voltage sequencing (see Figure 3.2) Turn-on delay - tON_DELAY Turn-on rise time (slew rate) tON_RISE Turn-on timeout tON_MAX 10 ms Turn-off delay tOFF_DELAY 0 ms Turn-off fall time tOFF_FALL Turn-off timeout tOFF_MAX Power good turn-on level The rise time is configurable via pin strapping. (Refer to section 4.8) 6 The power good threshold is a percentage of the nominal output voltage (VOUT_NOM), which is preconfigured for the ZSPM15xx part number (see section 1.4). Power good turn-off level 10 ms 500 ms 95% VOUT_NOM 90% VOUT_NOM Inductor current measurement Common mode voltage across ISNSP and ISNSN pins 0 Differential voltage range across ISNSP and ISNSN pins Accuracy April 27, 2015 V ±100 mV 5 Over-current protection threshold Data Sheet 5.0 The over-current protection threshold is configurable via pin strapping % (Refer to section 4.7) © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 16 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS Digital pulse width modulator Switching frequency fSW 500 kHz Resolution 163 ps Frequency accuracy 2.0 % Duty cycle 2.5 100 % External temperature measurement (note: only PN-junction sense elements are supported) Offset voltage at 25°C 583 mV Temperature coefficient -2.2 mV/K Bias currents for external temperature sensing 60 µA Accuracy of measurement ±5.0 K Over-temperature threshold 105 °C ±5.0 K 95 °C Internal temperature measurement Accuracy of measurement Over-temperature threshold Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 17 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 1.4. 1.4.1. Device-Specific System Parameters ZSPM1501 Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit. Refer to Figure 2.1 for the components referenced below. PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage VOUT_NOM R5=1.0kΩ, R4=DNP kHz 13.2 V 0.85 V Output voltage under-voltage lockout threshold 0.764 V Output voltage over-voltage lockout threshold 1.019 V Input voltage over-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 13.80 V Input voltage under-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 9.60 V 330 nH Feedback divider: R5 1.0 kΩ Feedback divider: R4 DNP Application circuit Optimal output inductance: L1 1.4.2. LOUT ZSPM1502 Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit. Refer to Figure 2.1 for the components referenced below. PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage V V Output voltage under-voltage lockout threshold 0.90 V Output voltage over-voltage lockout threshold 1.20 V April 27, 2015 R5=1.0kΩ, R4=DNP 13.2 1.0 Data Sheet VOUT_NOM kHz © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 18 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS Input voltage over-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 13.80 V Input voltage under-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 9.60 V 330 nH Feedback divider – R5 1.0 kΩ Feedback divider – R4 DNP Application circuit Optimal output inductance – L1 1.4.3. LOUT ZSPM1503 Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit. Refer to Figure 2.1 for the components referenced below. PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage VOUT_NOM R5=1.0kΩ, R4=DNP kHz 13.2 V 1.20 V Output voltage under-voltage lockout threshold 1.08 V Output voltage over-voltage lockout threshold 1.44 V Input voltage over-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 13.80 V Input voltage under-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 9.60 V 330 nH Feedback divider – R5 1.0 kΩ Feedback divider – R4 DNP Application circuit Optimal output inductance – L1 Data Sheet April 27, 2015 LOUT © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 19 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 1.4.4. ZSPM1504 Note: Refer to Figure 2.1 for the components referenced below. PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage VOUT_NOM R5=750Ω, R4=1.0kΩ kHz 13.2 V 1.5 V Output voltage under-voltage lockout threshold 1.35 V Output voltage over-voltage lockout threshold 1.80 V Input voltage over-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 13.80 V Input voltage under-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 9.60 V 470 nH Feedback divider – R5 750 Ω Feedback divider – R4 1.0 kΩ Application circuit Optimal output inductance – L1 1.4.5. LOUT ZSPM1505 Note: Refer to Figure 2.1 for the components referenced below. PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage VOUT_NOM R5=750Ω, R4=1.0kΩ kHz 13.2 V 1.8 V Output voltage under-voltage lockout threshold 1.62 V Output voltage over-voltage lockout threshold 2.16 V Input voltage over-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 13.80 V Input voltage under-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 9.60 V Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 20 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS Application circuit Optimal output inductance – L1 470 nH Feedback divider – R5 750 Ω Feedback divider – R4 1.0 kΩ 1.4.6. LOUT ZSPM1506 Note: Refer to Figure 2.1 for the components referenced below. PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage VOUT_NOM R5=750Ω, R4=1.0kΩ kHz 13.2 V 2.0 V Output voltage under-voltage lockout threshold 1.80 V Output voltage over-voltage lockout threshold 2.40 V Input voltage over-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 13.80 V Input voltage under-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 9.60 V 470 nH Feedback divider – R5 750 Ω Feedback divider – R4 1.0 kΩ Application circuit Optimal output inductance – L1 Data Sheet April 27, 2015 LOUT © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 21 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 1.4.7. ZSPM1507 PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage VOUT_NOM R5=1.0kΩ, R4=1.0kΩ 12 kHz 13.2 V 2.5V V Output voltage under-voltage lockout threshold 2.25 V Output voltage over-voltage lockout threshold 3.0 V Input voltage over-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 13.8 V Input voltage under-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 9.6 V 1000 nH Feedback divider: R5 1.0 kΩ Feedback divider: R4 1.0 kΩ Application circuit Optimal output inductance: L1 1.4.8. LOUT ZSPM1508 PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage VOUT_NOM R5=3.3kΩ, R4=1.0kΩ kHz 13.2 V 3.3 V Output voltage under-voltage lockout threshold 2.97 V Output voltage over-voltage lockout threshold 3.96 V Input voltage over-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 13.80 V Input voltage under-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 9.60 V 2.20 µH Feedback divider: R5 3.3 kΩ Feedback divider: R4 1.0 kΩ Application circuit Optimal output inductance: L1 Data Sheet April 27, 2015 LOUT © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 22 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 1.4.9. ZSPM1509 PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage VOUT_NOM R5=3.3k Ω, R4=1.0kΩ kHz 13.2 V 5.0 V Output voltage under-voltage lockout threshold 4.50 V Output voltage over-voltage lockout threshold 5.50 V Input voltage over-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 13.80 V Input voltage under-voltage lockout threshold R9=9.1kΩ, R8=1.0kΩ 9.60 V 2.20 µH Feedback divider: R5 3.3 kΩ Feedback divider: R4 1.0 kΩ Application circuit Optimal output inductance: L1 1.4.10. LOUT ZSPM1511 Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit. PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage VOUT_NOM R5=1.0k Ω, R4=DNP kHz 13.2 V 0.85 V Output voltage under-voltage lockout threshold 0.764 V Output voltage over-voltage lockout threshold 1.019 V Input voltage over-voltage lockout threshold R9=9.1 kΩ, R8=1.0kΩ 13.80 V Input voltage under-voltage lockout threshold R9=9.1 kΩ, R8=1.0kΩ 9.60 V 680 ƞH Feedback divider – R5 1.0 kΩ Feedback divider – R4 DNP Application circuit Optimal output inductance – L1 Data Sheet April 27, 2015 LOUT © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 23 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 1.4.11. ZSPM1512 Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit. PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage VOUT_NOM R5=1.0k Ω, R4=DNP kHz 13.2 V 1.0 V Output voltage under-voltage lockout threshold 0.90 V Output voltage over-voltage lockout threshold 1.20 V Input voltage over-voltage lockout threshold R9=9.1 kΩ, R8=1.0kΩ 13.80 V Input voltage under-voltage lockout threshold R9=9.1 kΩ, R8=1.0kΩ 9.60 V 680 ƞH Feedback divider – R5 1.0 kΩ Feedback divider – R4 DNP kΩ Application circuit Optimal output inductance – L1 1.4.12. LOUT ZSPM1513 Note: In the following table, DNP (“do not place”) indicates the component is not used in the application circuit. PARAMETER SYMBOL CONDITIONS MIN TYPICAL MAX UNITS System power parameters Switching frequency fSW 500 Input voltage 10.8 Nominal output voltage VOUT_NOM R5=1.0k Ω, R4=DNP kHz 13.2 V 1.20 V Output voltage under-voltage lockout threshold 1.08 V Output voltage over-voltage lockout threshold 1.44 V Input voltage over-voltage lockout threshold R9=9.1 kΩ, R8=1.0kΩ 13.80 V Input voltage under-voltage lockout threshold R9=9.1 kΩ, R8=1.0kΩ 9.60 V 680 ƞH Feedback divider – R5 1.0 kΩ Feedback divider – R4 DNP kΩ Application circuit Optimal output inductance – L1 Data Sheet April 27, 2015 LOUT © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 24 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 2 2.1. Product Summary Overview The ZSPM15xx is a configurable true-digital single-phase PWM controller for high-current, non-isolated DC/DC supplies. It incorporates a pre-configured digital control loop, which is optimized for different power stages, bundled with output voltage sensing, average inductor current sensing, and extensive fault monitoring and handling options. Several different functional units are incorporated in the device. A dedicated digital control loop is used to provide fast loop response and optimal output voltage regulation. This includes output voltage sensing, average inductor current sensing, a digital control law, and a digital pulse-width modulator (DPWM). In parallel, a dedicated, configurable error handler allows fast detection of error signals and their appropriate handling. A housekeeping analog-to-digital converter (HKADC) ensures the reliable and efficient measurement of environmental signals, such as input voltage and temperature. An application-specific, low-power integrated microcontroller is used to control the overall system. It manages configuration of the various logic units according to the preprogrammed configuration look-up tables and the external configuration resistors connected to the CONFIG0 and CONFIG1 pins. These pin-strapping resistors expedite configuration of the over-current protection threshold, compensation, and output voltage slew rate. A high-reliability, high-temperature one-time programmable memory (OTP) is used to store configuration parameters. All required bias and reference voltages are internally derived from the external supply voltage. Figure 2.1 Typical Application Circuit with a 5V Supply Voltage +5V VDD50 VDD33 VDD18 C1,C2,C3 Vin TEMP C11 GND AVDD18 VREFP R9 VIN R1 C4,C5,C6 C10, R8 ADCVREF AGND CONFIG0 CONFIG1 D1 L1 PWM DRVEN THSHDN +Vout DrMOS Cin R7,C8 Cout R2,R3 PGND ISNSP ISNSN R6, C9 CONTROL VFBP PGOOD VFBN ZSPM15xx Data Sheet April 27, 2015 C7 R4 R5 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 25 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Figure 2.2 Block Diagram Current Sensing ISNSP Current Limiting Average Current Sensing ISNSN Digital Control Loop VFBP VFB FLASH ADC VFBN Adaptive Digital Controller PWM PWM DRVEN DAC OC Detection Sequencer OV Detection DAC Configurable Error Handler Vin OV/UV Detection Int. Temp Sense Vout UV Detection TEMP CONFIG0 HKADC CPU Core CONFIG1 April 27, 2015 PGOOD CONTROL THSHDN ADCVREF Data Sheet VREFP 1.8V Reg Analog AVDD18 1.8V Reg Digital VDD18 3.3V Reg VDD33 NVM (OTP) VIN GPIO VREF Clock Generation VDD50 Bias Current Source OT Detection © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 26 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 2.2. Pin Description Table 2.1 ZSPM15xx Pin Descriptions Pin Name Direction Type 1 AGND Input Supply Analog Ground 2 VREFP Output Supply Reference Terminal 3 VFBP Input Analog Positive Input of Differential Feedback Voltage Sensing 4 VFBN Input Analog Negative Input of Differential Feedback Voltage Sensing 5 ISNSP Input Analog Positive Input of Differential Current Sensing 6 ISNSN Input Analog Negative Input of Differential Current Sensing 7 TEMP Input Analog Connection to External Temperature Sensing Element 8 VIN Input Analog Power Supply Input Voltage Sensing 9 CONFIG0 Input Analog Configuration Selection 0 10 CONFIG1 Input Analog Configuration Selection 1 11 PWM Output Digital High-side FET Control Signal 12 DRVEN Output Digital Driver Enable Signal 13 PGOOD Output Digital PGOOD Output (Internal Pull-Down) 14 CONTROL Input Digital Control Input 15 THSHDN Input Digital Thermal-Shut Down Input from Power Stage 16 N.C. No connection – pin must be allowed to float 17 N.C. No connection – pin must be allowed to float 18 N.C. No connection – pin must be allowed to float 19 GND Input Supply Digital Ground 20 VDD18 Output Supply Internal 1.8V Digital Supply Terminal 21 VDD33 Input/Output Supply 3.3V Supply Voltage Terminal 22 VDD50 Input Supply 5.0V Supply Voltage Terminal 23 AVDD18 Output Supply Internal 1.8V Analog Supply Terminal 24 ADCVREF Input Analog Analog-to-Digital Converter (ADC) Reference Terminal PAD PAD Input Supply Exposed PAD, Digital Ground Data Sheet April 27, 2015 Description © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 27 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 2.3. Available Packages The ZSPM15xx is available in a 24-pin QFN package. The pin-out is shown in Figure 2.3. The mechanical drawing of the package can be found in Figure 6.1. GND VDD18 VDD33 VDD50 AVDD18 Pin-out QFN24 Package ADCVREF Figure 2.3 24 23 22 21 20 19 AGND 1 18 N.C. VREFP 2 17 N.C. VFBP 3 Data Sheet April 27, 2015 16 N.C. PAD VFBN 4 15 THSHDN 9 10 11 12 CONFIG1 DRVEN 8 PWM 7 CONFIG0 13 PGOOD VIN 14 CONTROL ISNSN 6 TEMP ISNSP 5 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 28 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 3 3.1. Functional Description Power Supply Circuitry, Reference Decoupling, and Grounding The ZSPM15xx incorporates several internal power regulators in order to derive all required supply and bias voltages from a single external supply voltage of 5.0V. Decoupling capacitors are required at the VDD33, VDD18, and AVDD18 pins (1.0µF minimum; 4.7µF recommended). The reference voltages required for operation are generated within the ZSPM15xx. External decoupling must be provided between the VREFP and ADCVREF pins. Therefore, a 4.7µF capacitor is required at the VREFP pin and a 100nF capacitor at ADCVREF pin. The two pins should be connected with approximately 50Ω resistance in order to provide sufficient decoupling between the pins. Three different ground connections are available on the outside of the package. These should be connected together to a single ground tie. A differentiation between analog and digital ground is not required. 3.2. Reset/Start-up Behavior The ZSPM15xx employs an internal power-on-reset (POR) circuit to ensure proper start-up and shut-down with a changing supply voltage. Once the supply voltage increases above the POR threshold voltage (see section 1.3), the ZSPM15xx begins the internal start-up process. Upon its completion, the device is ready for operation. 3.3. 3.3.1. Digital Power Control Overview The digital power control loop consists of the integral parts required for the control functionality of the ZSPM15xx. A high-speed analog front-end is used to digitize the output voltage. A digital control core uses the acquired information to provide duty-cycle information to the PWM, which controls the drive signals to the power stage. See section 7 for the pre-configured nominal output voltages for the different part codes available in the ZSPM15xx family. 3.3.2. Output Voltage Feedback The voltage feedback signal is sampled with a high-speed analog front-end. The feedback voltage is differentially measured and subtracted from an internal voltage reference using an error amplifier. A flash ADC is then used to convert the voltage into its digital equivalent. This is followed by internal digital filtering to improve the system’s noise rejection. For some applications, an external feedback divider (R4 and R5; see Figure 4.1) is required to allow for output voltage operations above the internal reference voltage. For details, refer to the application section 4.3. Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 29 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 3.3.3. Digital Compensator The sampled output voltage is processed by a digital control loop in order to modulate the DPWM output signals controlling the power stage. This digital control loop works as a voltage-mode controller using a PID-type compensation. The basic structure of the controller is shown in Figure 3.1. The proprietary State-Law™ Control (SLC) concept features two parallel compensators for steady-state operation and fast transient operation. This allows tuning the compensators individually for the respective needs; i.e., quiet steady state and fast transient performance. The ZSPM15xx implements fast, reliable switching between the different compensation modes in order to ensure good transient performance and a quiet steady state. Figure 3.1 Simplified Block Diagram of the Digital Compensation Coefficients Steady-state Operation Mode Detection Digital Error Signal Transient Digital PID Compensator Non-linear Gain Duty Cycle Two techniques are used to improve transient performance further: Tru-sample Technology™ is used to acquire fast, accurate, and continuous information about the output voltage so that the device can react quickly to any change in output voltage. Tru-sample Technology™ reduces phase-lag caused by sampling delays, reduces noise sensitivity, and improves transient performance. A nonlinear gain adjustment is used during large load transients to boost the loop gain and reduce the settling time. The control loops in the ZSPM15xx are preconfigured and can be selected using a pin-strapping option. A range of different output capacitors is supported. Refer to section 4.8 for detailed information. Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 30 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 3.3.4. Power Sequencing and the CONTROL Pin The ZSPM15xx has a set of pre-configured power-sequencing features. The typical sequence of events is shown in Figure 3.2. The individual values for the delay (tON_DELAY and tOFF_DELAY), ramp time (tON_RISE and tOFF_FALL) and time-outs (tON_MAX and tOFF_MAX) are listed in section 1.3. Note that the device is slew-rate controlled for tON_RISE ramping via the pin-strapping options. The slew rate can be selected in the application circuit using the pin-strap options as explained in section 4.8. The CONTROL pin is pre-configured for active high operation. The ZSPM15xx features a power good (PGOOD) output, which can be used to indicate the state of the power rail. If the output voltage level is above the power good ON threshold, the pin is set to active, indicating a stable output voltage on the rail. Figure 3.2 Power Sequencing CONTROL VOUT_NOM VPGOOD_ON VPGOOD_OFF 0V tON_DELAY tON_RISE tON_MAX tOFF_DELAY tOFF_FALL t tOFF_MAX PGOOD Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 31 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 3.4. Fault Monitoring and Response Generation The ZSPM15xx monitors various signals during operation and compares them with fault thresholds (see the “Threshold” column in Table 3.1). If a parameter exceeds a fault threshold, the respective fault signal is asserted and the ZSPM15xx will disable the output voltage as described below. Note that the ZSPM15xx features internal blanking times for voltage and temperature faults in order to improve noise-immunity. Three different response types are supported by the ZSPM15xx. The “low-impedance” response turns off the top MOSFET and enables the low-side MOSFET; i.e., PWM=0. After tOFF_MAX, both MOSFETs will be turned off, PWM=Z, DRVEN=0. A “high-impedance” response will disable both MOSFETs instantaneously, PWM=Z. A “softoff” response ramps the output voltage down, similar to a power-down operation via the CONTROL pin. After tOFF_MAX, the controller will disable the power stage by turning both switches off, PWM=Z, DRVEN=0. The ZSPM15xx features a “hiccup mode,” which allows it to re-enable its output voltage after the fault condition has been removed. Table 3.1 Fault Configuration Overview Fault Response Type Blanking Threshold Output Over-Voltage Low-impedance 25µs Preconfigured; see section 1.4. Output Under-Voltage High-impedance 450µs Preconfigured; see section 1.4. Input Over-Voltage High-impedance 450µs Preconfigured; see section 1.4. Input Under-Voltage High-impedance 450µs Preconfigured; see section 1.4. Over-Current Low-impedance None Pin-strap selectable; see section 4.7. Internal Over-Temperature Soft-off 5ms See specification in section 1.3. External Over-Temperature Soft-off 5ms See specification in section 1.3. 3.4.1. Output Over/Under-Voltage To prevent damage to the load, the ZSPM15xx utilizes an output over-voltage protection circuit. The voltage at VFBP is continuously compared with a preconfigured threshold using a high-speed analog comparator. If the voltage exceeds the configured threshold, the fault response is generated. The ZSPM15xx also monitors the output voltage with a lower threshold. If the output voltage falls below the under-voltage fault level, a fault event is generated. See section 1.4 for the device-specific threshold levels. 3.4.2. Output Current Protection The ZSPM15xx offers cycle-by-cycle average current sensing with configurable over-current protection. A dedicated ADC is used to provide fast and accurate current information over the switching period. The acquired information is compared with a selectable over-current threshold to detect faults. DCR current sensing across the inductor is supported. Additionally, the device uses DCR temperature compensation via the external temperature sense element. This increases the accuracy of the current sense method by counteracting the significant change of the DCR over temperature. The ZSPM15xx continuously monitors the average inductor current and utilizes this information to protect the power supply against excessive output current. If the average inductor current exceeds the selected over-current fault threshold, the fault response will be generated. See section 4.7 for instructions for configuring the threshold. Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 32 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 3.4.3. Input Voltage Protection The ZSPM15xx continuously monitors the input voltage via the VIN pin. If the input voltage is outside an operation range defined by a lower and higher input voltage threshold, a fault is detected and a response generated. See section 1.4 for device-specific specifications for the thresholds. 3.4.4. Over-Temperature Protection The ZSPM15xx features two independent temperature measurement units for internal and external temperature measurement. The internal temperature sensing measures the temperatures inside the ZSPM15xx. Place the external temperature sense element close to the inductor to measure its temperature. Use a PN-junction as the external temperature sense element. Small-signal transistors, such the 3904, are widely used for this application. The ZSPM15xx monitors these internal and external temperature measurements. If either of the temperatures exceeds the over-temperature threshold (see section 1.3), the fault response will be generated. For additional information on the external temperature sensing, refer to section 4.6. Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 33 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 4 Application Information 4.1. Application Schematic Figure 4.1 +5V ZSPM15xx – Application Circuit with a 5V Supply Voltage VDD50 VDD33 VDD18 C1,C2,C3 Vin TEMP C11 GND AVDD18 VREFP R9 VIN R1 C4,C5,C6 C10, R8 ADCVREF AGND CONFIG0 CONFIG1 D1 L1 PWM DRVEN THSHDN +Vout DrMOS Cin R7,C8 Cout R2,R3 ZSPM90xx PGND ISNSP ISNSN R6, C9 CONTROL VFBP PGOOD VFBN ZSPM15xx Data Sheet April 27, 2015 C7 R4 R5 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 34 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Table 4.1 Passive Component Values for the Application Circuits Reference Designator Component Value C1 1.0µF Ceramic capacitor. C2 4.7µF Ceramic capacitor. Recommended: 4.7µF; minimum: 1.0µF. C3 4.7µF Ceramic capacitor. Recommended: 4.7µF; minimum: 1.0µF. C4 4.7µF Ceramic capacitor. Recommended: 4.7µF; minimum: 1.0µF. C5 4.7µF* Ceramic capacitor. C6 100nF* Ceramic capacitor. C7 22pF C8, C9 ** C10 100nF Filter capacitor for input voltage – optional. C11 100nF Filter capacitor for external temperature – optional. L1 ** Cin Description Output voltage sense filtering capacitor. Recommended: 22pF; maximum: 1nF. DCR current-sense filter capacitor. Inductor. Input filter capacitors. Can be a combination of ceramic and electrolytic capacitors. Cout . Output filter capacitors. See section 4.8 for more information on the output capacitor selection. R1 51Ω* R2, R3 . Pin-strap configuration resistors. See sections 4.7 and 4.8. R4 ** Output voltage feedback divider bottom resistor. Connect between the VFBP and VFBN pins. Important: Refer to section 1.4 to determine if R4 should be placed or not depending on the specific ZSPM15xx product code. R5 ** Output voltage feedback divider top resistor. Connect between the output terminal and the VFBP pin. R6, R7 ** DCR current-sense filter resistors. R8 1.0kΩ* Input voltage divider bottom resistor. Connect between the VIN and AGND pins of the ZSPM15xx. R9 9.1kΩ* Input voltage divider top resistor. Connect between the main power input and the VIN pin of the ZSPM15xx. D1 3904 Resistor. External temperature sense element (PN-junction). See section 4.6. * Fixed component values marked with an asterisk (*) must not be changed. ** Refer to section 4.2 for components marked with a double asterisk (**). Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 35 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 4.2. Device-Specific Passive Components Each product in the ZSPM15xx family requires external device-specific passive components. These are listed in the following tables. If specified in the following tables, the feedback divider (R4, R5) is mandatory to achieve the specified output voltage. The control loop has been optimized for the inductance specified, but inductors from different venders can be used. Note: The ZSPM15xx has been optimized for the specific Würth inductors recommended in the following tables depending on the ZSPM15xx product number. If a different inductor is used, its specifications should be comparable to the recommended Würth inductor; otherwise the full optimization provided by the ZSPM15xx might not be achieved. If a different inductor is used, the current sense components (R6, R7, C8) must be recalculated according to section 4.4. Components specified as DNP must not be placed. Table 4.2 Passive Components for the ZSPM1501, ZSPM1502, and ZSPM1503 Reference Designator Component Value Description R4 DNP Output voltage feedback divider bottom resistor. Important: Do not place R4 for the ZSPM1501, ZSPM1502, and ZSPM1503. R5 1.0kΩ Output voltage feedback divider top resistor. Connect between the output terminal and the VFBP pin. Feedback divider Inductor and current sensing L1 L=330nH R6, R7 1050Ω DCR current-sense filter resistors. C8, C9 1000nF DCR current-sense filter capacitor. Table 4.3 Recommended inductor: Würth WE-HCM 744301033. Passive Components for the ZSPM1504, ZSPM1505, and ZSPM1506 Reference Designator Component Value Description Feedback divider R4 1kΩ R5 750Ω Output voltage feedback divider bottom resistor. Output voltage feedback divider top resistor. Connect between the output terminal and the VFBP pin. Inductor and current sensing L1 L=470nH R6, R7 1000Ω DCR current-sense filter resistors. C8, C9 1000nF DCR current-sense filter capacitor. Data Sheet April 27, 2015 Recommended inductor: Würth WE-HCM 744301047. © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 36 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Table 4.4 Passive Components for the ZSPM1507 Reference Designator Component Value Description Feedback divider R4 1kΩ Output voltage feedback divider bottom resistor. R5 1kΩ Output voltage feedback divider top resistor. Connect between the output terminal and the VFBP pin. L1 L=1000nH Recommended inductor: Würth WE-HCM 7443310100. R6, R7 1.05kΩ DCR current-sense filter resistors. C8, C9 820nF DCR current-sense filter capacitor. Inductor and current sensing Table 4.5 Passive Components for the ZSPM1508 and ZSPM1509 Reference Designator Component Value Description Feedback divider R4 1kΩ Output voltage feedback divider bottom resistor. R5 3.3kΩ Output voltage feedback divider top resistor. Connect between the output terminal and the VFBP pin. L1 L=2.2µH Recommended inductor: Wurth WE-HCC 7443310220. R6, R7 1180Ω DCR current-sense filter resistors. C8, C9 470nF DCR current-sense filter capacitor. Inductor and current sensing Table 4.6 Passive Components for the ZSPM1511, ZSPM1512, and ZSPM1513 Reference Designator Component Value Description Feedback divider R4 DNP Output voltage feedback divider bottom resistor. Important: Do not place R4 for the ZSPM1511, ZSPM1512, and ZSPM1513. R5 1.0kΩ Output voltage feedback divider top resistor. Connect between the output terminal and the VFBP pin. Inductor and current sensing L1 L= 680ƞH R6, R7 1.0kΩ DCR current-sense filter resistors. C8, C9 1.0µF DCR current-sense filter capacitor. Data Sheet April 27, 2015 Recommended inductor: Wurth WE-HCC 7443310068 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 37 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 4.3. Output Voltage Feedback Components The ZSPM15xx supports output voltage feedback via a resistive feedback divider. However, adding a highfrequency low-pass filter in the sense path is highly recommended to remove high-frequency disturbances from the sense signals. Placing these components as close as possible to the ZSPM15xx is recommended. For larger output voltages, a feedback divider is required. Using resistors with small tolerances is recommended to guarantee good output voltage accuracy. Important: The feedback divider components specified in section 1.4 are mandatory if they are specified for the specific ZSPM15xx product. Components specified as DNP in section 1.4 must not be placed. Figure 4.2 Output Voltage Sense Circuitry VFBP VFBN C7 R4 R5 VOUT PGND ZSPM15xx 4.4. DCR Current Sensing Components Figure 4.3 Inductor Current Sensing Using the DCR Method L1 R7 DCR +Vout C8 R6, C9 ISNSP ISNSN ZSPM15xx The ZSPM15xx supports the loss-less DCR current sense method. The equivalent DC resistance (DCR) of the inductor is used to measure the inductor current without adding any additional components in the power path. The technique is based on matching the time constants of the inductor and the parallel low-pass filter. Therefore the components (R6 and R7) and (C8 and C9) must be selected depending on the selected inductor. Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 38 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) For design guidance using one of the preselected power stages, refer to section 4.2. Otherwise, the following procedure is recommended: 1.) Set R7’ = 1kΩ 2.) Calculate C8’ = L / (DCR * R7’). 3.) Select capacitor C8 = C9 from the appropriate E-series close to C8. 4.) Recalculate R6 = R7 = L / (DCR * C8) based on the capacitor selected for C8. 4.5. Input Voltage Sensing The ZSPM15xx supports input voltage sensing for input voltage protection. Therefore a voltage divider between the input voltage and the VIN pin is required. An optional capacitor C10 can be connected to the VIN pin to help improve noise immunity. See Table 4.1 for the recommended values for R8, R9, and C10. Figure 4.4 Input Voltage Sense Circuitry Vin R9 VIN C10, R8 ZSPM15xx 4.6. External Temperature Sensing The ZSPM15xx features external temperature sensing via a PN-junction. Typically, a small signal transistor, such as the 3904, is used for this purpose. The sense elements should be placed thermally close to the inductor to allow accurate temperature measurement. For information about the required device parameters, refer to the electrical specification in section 1.3. An additional capacitor (C11, 100nF) can be used to improve noise performance. Figure 4.5 External Temperature Sense Circuitry TEMP C11 D1 ZSPM15xx Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 39 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 4.7. CONFIG0 – Over-Current Protection Threshold The ZSPM15xx can be configured to support a wide range of different over-current protection (OCP) thresholds based on the user’s selection for the inductor. The over-current threshold voltage between the ISNSP and ISNSN pins can be configured by using a pull-down resistor (R2) on the CONFIG0 pin. This voltage represents the overcurrent threshold because faults are detected by measuring the voltage across the DCR of the selected inductor. The different configuration options are listed in Table 4.7. Table 4.7 ZSPM15xx – OCP Pin Strap Resistor Selection Index Resistor Value Using the E96 Series OCP Voltage Selection at 25°C Index Resistor Value Using the E96 Series OCP Voltage Selection at 25°C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0Ω 392Ω 576Ω 787Ω 1.000kΩ 1.240kΩ 1.500kΩ 1.780kΩ 2.100kΩ 2.430kΩ 2.800kΩ 3.240kΩ 3.740kΩ 4.220kΩ 4.750kΩ 3.0mV 4.0mV 5.0mV 6.0mV 7.0mV 8.0mV 9.0mV 10.0mV 11.25mV 12.5mV 13.75mV 15.0mV 16.25mV 17.5mV 18.75mV 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 5.360kΩ 6.040kΩ 6.810kΩ 7.680kΩ 8.660kΩ 9.530kΩ 10.50kΩ 11.80kΩ 13.00kΩ 14.30kΩ 15.80kΩ 17.40kΩ 19.10kΩ 21.00kΩ 23.20kΩ 20.0mV 22.5mV 25.0mV 27.5mV 30.0mV 32.5mV 35.0mV 37.5mV 40.0mV 45.0mV 50.0mV 55.0mV 60.0mV 65.0mV 70.0mV Note that due to the temperature compensation feature, the ZSPM15xx over-current threshold should be based on the current sense signal at 25°C. Temperature drift is automatically compensated within the device. Recommendation: For the selection of the over-current threshold voltage, include the tolerance of the inductor’s DCR and take the parasitic effects of the circuit board layout into account. Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 40 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 4.8. CONFIG1 – Compensation Loop and Output Voltage Slew Rate The ZSPM15xx controllers can be configured to operate over a wide range of output capacitance. Four ranges of output capacitance have been specified to match typical customer requirements (see Table 4.8). For each output capacitance range, an optimized compensation loop can be selected. The appropriate compensator should be selected based on the application requirements. Typical performance measurements for both load transient performance and open-loop Bode plots can be found in section 5. Note: Using less output capacitance than the minimum capacitance given in Table 4.8 is not recommended. Table 4.8 Recommended Output Capacitor Ranges Capacitor Range Ceramic Capacitor Bulk Electrolytic Capacitors #1 Minimum 200µF Maximum 500µF None #2 Minimum 500µF Maximum 1000µF None #3 Minimum 200µF Maximum 500µF Minimum 2 x 470µF, 7mΩ ESR Maximum 4 x 470µF, 7mΩ ESR Comp2 #4 Minimum 500µF Maximum 1000µF Minimum 4 x 470µF, 7mΩ ESR Maximum 6 x 470µF, 7mΩ ESR Comp3 Suitable Compensator Comp0 Comp1 To achieve the optimal performance for a given output capacitor range, one of four sets of compensation loop parameters, Comp0 to Comp3, should be selected with a resistor between the CONFIG1 and GND pins. The compensation loop parameters have been configured to ensure optimal transient performance and good control loop stability margins. For each set of compensation loop parameters, there is a choice of seven slew rates for the output voltage during power-up. The selection of the slew rate can be used to limit the input current of the DC/DC converter while it is ramping up the output voltage. The current needed to charge the output capacitors increases in direct proportion to the slew rate. Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 41 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Table 4.9 gives a complete list of the selectable compensation loop parameters and slew rates together with the equivalent pin-strap resistor values (R3) for the ZSPM1501 to ZSPM1506 and the ZSPM1511 to ZSPM1513. Table 4.10, Table 4.11, and Table 4.12 provide the values and settings for the ZSPM1507, ZSPM1508, and ZSPM1509 respectively. Table 4.9 Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1501 to ZSPM1506 and the ZSPM1511 to ZSPM1513 Index Resistor Value Using the E96 Series 0 0Ω 2.700 V/ms 14 4.750kΩ 2.700 V/ms 1 392Ω 1.350 V/ms 15 5.360kΩ 1.350 V/ms 2 576Ω 0.675 V/ms 16 6.040kΩ 3 787Ω 0.300 V/ms 17 6.810kΩ 4 1.000kΩ 0.200 V/ms 18 7.680kΩ 5 1.240kΩ 0.150 V/ms 19 8.660kΩ 0.150 V/ms 6 1.500kΩ 0.100 V/ms 20 9.530kΩ 0.100 V/ms 7 1.780kΩ 2.700 V/ms 21 10.50kΩ 2.700 V/ms 8 2.100kΩ 1.350 V/ms 22 11.80kΩ 1.350 V/ms 9 2.430kΩ 0.675 V/ms 23 13.00kΩ 10 2.800kΩ 0.300 V/ms 24 14.30kΩ 11 3.240kΩ 0.200 V/ms 25 15.80kΩ 12 3.740kΩ 0.150 V/ms 26 17.40kΩ 0.150 V/ms 13 4.220kΩ 0.100 V/ms 27 19.10kΩ 0.100 V/ms Data Sheet April 27, 2015 Compensator Comp0 (Capacitor Range #1) Comp1 (Capacitor Range #2) Vout Slew Rate Index Resistor Value Using the E96 Series Compensator Comp2 (Capacitor Range #3) Comp3 (Capacitor Range #4) © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. Vout Slew Rate 0.675 V/ms 0.300 V/ms 0.200 V/ms 0.675 V/ms 0.300 V/ms 0.200 V/ms 42 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Table 4.10 Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1507 Index Resistor Value Using the E96 Series 0 0Ω 6.756 V/ms 14 4.750kΩ 6.756 V/ms 1 392Ω 3.378 V/ms 15 5.360kΩ 3.378 V/ms 2 576Ω 1.689 V/ms 16 6.040kΩ 3 787Ω 0.750 V/ms 17 6.810kΩ 4 1.000kΩ 0.517 V/ms 18 7.680kΩ 5 1.240kΩ 0.374 V/ms 19 8.660kΩ 0.374 V/ms 6 1.500kΩ 0.250 V/ms 20 9.530kΩ 0.250 V/ms 7 1.780kΩ 6.756 V/ms 21 10.50kΩ 6.756 V/ms 8 2.100kΩ 3.378 V/ms 22 11.80kΩ 3.378 V/ms 9 2.430kΩ 1.689 V/ms 23 13.00kΩ 10 2.800kΩ 0.750 V/ms 24 14.30kΩ 11 3.240kΩ 0.517 V/ms 25 15.80kΩ 12 3.740kΩ 0.374 V/ms 26 17.40kΩ 0.374 V/ms 13 4.220kΩ 0.250 V/ms 27 19.10kΩ 0.250 V/ms Data Sheet April 27, 2015 Compensator Comp0 (Capacitor Range #1) Comp1 (Capacitor Range #2) Vout Slew Rate Index Resistor Value Using the E96 Series Compensator Comp2 (Capacitor Range #3) Comp3 (Capacitor Range #4) © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. Vout Slew Rate 1.689 V/ms 0.750 V/ms 0.517 V/ms 1.689 V/ms 0.750 V/ms 0.517 V/ms 43 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Table 4.11 Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1508 Index Resistor Value Using the E96 Series 0 0Ω 2.896 V/ms 14 4.750kΩ 2.896 V/ms 1 392Ω 1.659 V/ms 15 5.360kΩ 1.659 V/ms 2 576Ω 1.051 V/ms 16 6.040kΩ 3 787Ω 0.827 V/ms 17 6.810kΩ 4 1.000kΩ 0.643 V/ms 18 7.680kΩ 5 1.240kΩ 0.428 V/ms 19 8.660kΩ 0.428 V/ms 6 1.500kΩ 0.330 V/ms 20 9.530kΩ 0.330 V/ms 7 1.780kΩ 2.896 V/ms 21 10.50kΩ 2.896 V/ms 8 2.100kΩ 1.659 V/ms 22 11.80kΩ 1.659 V/ms 9 2.430kΩ 1.051 V/ms 23 13.00kΩ 10 2.800kΩ 0.827 V/ms 24 14.30kΩ 11 3.240kΩ 0.643 V/ms 25 15.80kΩ 12 3.740kΩ 0.428 V/ms 26 17.40kΩ 0.428 V/ms 13 4.220kΩ 0.330 V/ms 27 19.10kΩ 0.330 V/ms Data Sheet April 27, 2015 Compensator Comp0 (Capacitor Range #1) Comp1 (Capacitor Range #2) Vout Slew Rate Index Resistor Value Using the E96 Series Compensator Comp2 (Capacitor Range #3) Comp3 (Capacitor Range #4) © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. Vout Slew Rate 1.051 V/ms 0.827 V/ms 0.643 V/ms 1.051 V/ms 0.827 V/ms 0.643 V/ms 44 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) Table 4.12 Compensator and VOUT Slew Rate Pin Strap Resistor Selection for the ZSPM1509 Index Resistor Value Using the E96 Series 0 0Ω 2.907 V/ms 14 4.750kΩ 2.907 V/ms 1 392Ω 1.938 V/ms 15 5.360kΩ 1.938 V/ms 2 576Ω 1.656 V/ms 16 6.040kΩ 3 787Ω 1.160 V/ms 17 6.810kΩ 4 1.000kΩ 0.967 V/ms 18 7.680kΩ 5 1.240kΩ 0.683 V/ms 19 8.660kΩ 0.683 V/ms 6 1.500kΩ 0.504 V/ms 20 9.530kΩ 0.504 V/ms 7 1.780kΩ 2.907 V/ms 21 10.50kΩ 2.907 V/ms 8 2.100kΩ 1.938 V/ms 22 11.80kΩ 1.938 V/ms 9 2.430kΩ 1.656 V/ms 23 13.00kΩ 10 2.800kΩ 1.160 V/ms 24 14.30kΩ 11 3.240kΩ 0.967 V/ms 25 15.80kΩ 12 3.740kΩ 0.683 V/ms 26 17.40kΩ 0.683 V/ms 13 4.220kΩ 0.504 V/ms 27 19.10kΩ 0.504 V/ms Data Sheet April 27, 2015 Compensator Comp0 (Capacitor Range #1) Comp1 (Capacitor Range #2) Vout Slew Rate Index Resistor Value Using the E96 Series Compensator Comp2 (Capacitor Range #3) Comp3 (Capacitor Range #4) © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. Vout Slew Rate 1.656 V/ms 1.160 V/ms 0.967 V/ms 1.656 V/ms 1.160 V/ms 0.967 V/ms 45 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5 Typical Performance Data This section gives typical performance data for the individual products in the ZSPM15xx family. The preprogrammed compensation loop parameters for the ZSPM15xx have been designed to ensure stability and optimal transient performance for the specified inductance in combination with one of the four output capacitor ranges (see Table 4.8). The transient load steps have been generated with a load resistor and a power MOSFET located on the same circuit board as the ZSPM15xx and the recommended reference layout. The Evaluation Kit for the specific ZSPM15xx product can be used to further evaluate the performance of the ZSPM15xx for the four output capacitor ranges. Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 46 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.1. ZSPM1501 – Typical Load Transient Response – Capacitor Range #1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 0.85V Minimum output capacitance: 2 x 100µF/6.3V X5R Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R ZSPM1501 with Comp0; 5A to 15A Load Step; and Min. Capacitance Figure 5.2 Ch1 (Blue): VOUT 100mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Ch1 (Blue): VOUT 100mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.3 ZSPM1501 with Comp0; 5A to 15A Load Step; and Max. Capacitance Figure 5.4 Ch1: (Blue): VOUT 100mV/div AC Ch2: (Cyan): PWM 5V/div DC Ch4: (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.5 ZSPM1501 with Comp0; 15A to 5A Load Step; and Max. Capacitance Ch1: (Blue): VOUT 100mV/div AC Ch2: (Cyan): PWM 5V/div DC Ch4: (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Open Loop Bode Plots for ZSPM1501 with Comp0 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1501 with Comp0; 15A to 5A Load Step; and Min. Capacitance 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.1 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 47 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.2. ZSPM1501 – Typical Load Transient Response – Capacitor Range #2 – Comp1 Test conditions: VIN = 12.0V, VOUT = 0.85V Minimum output capacitance: 5 x 100µF/6.3V X5R Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R ZSPM1501 with Comp1; 5A to 15A Load Step; and Min. Capacitance Figure 5.7 Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.8 ZSPM1501 with Comp1; 5A to 15A Load Step; and Max. Capacitance Figure 5.9 Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.10 ZSPM1501 with Comp1; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Open Loop Bode Plots for ZSPM1501 with Comp1 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1501 with Comp1; 15A to 5A Load Step; and Min. Capacitance 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.6 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 48 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.3. ZSPM1501 – Typical Load Transient Response – Capacitor Range #3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 0.85V Minimum output capacitance: 2 x 100µF/6.3V X5R + 2x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ ZSPM1501 with Comp2; 5A to 15A Load Step; and Min. Capacitance Figure 5.12 Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.13 ZSPM1501 with Comp2; 5A to 15A Load Step; and Max. Capacitance Figure 5.14 Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.15 ZSPM1501 with Comp2; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Open Loop Bode Plots for ZSPM1501 with Comp2 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1501 with Comp2; 15A to 5A Load Step; and Min. Capacitance 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.11 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 49 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) ZSPM1501 – Typical Load Transient Response – Capacitor Range #4 – Comp3 5.4. Test conditions: VIN = 12.0V, VOUT = 0.85V Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ ZSPM1501 with Comp3; 5A to 15A Load Step; and Min. Capacitance Figure 5.17 Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.18 ZSPM1501 with Comp3; 5A to 15A Load Step; and Max. Capacitance Figure 5.19 Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.20 ZSPM1501 with Comp3; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Open Loop Bode Plots for ZSPM1501 with Comp3 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1501 with Comp3; 15A to 5A Load Step; and Min. Capacitance 10 0 0 -30 -60 -90 -10 -120 -20 Phase [degrees] Figure 5.16 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 50 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.5. ZSPM1502 – Typical Load Transient Response – Capacitor Range #1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 1.00V Minimum output capacitance: 2 x 100µF/6.3V X5R Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R ZSPM1502 with Comp0; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.23 Figure 5.24 VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div Figure 5.25 VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1502 with Comp0; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div Open Loop Bode Plots for ZSPM1502 with Comp0 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1502 with Comp0; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1502 with Comp0; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.22 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.21 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 51 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.6. ZSPM1502 – Typical Load Transient Response – Capacitor Range #2 – Comp1 Test conditions: VIN = 12.0V, VOUT = 1.00V Minimum output capacitance: 5 x 100µF/6.3V X5R Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R ZSPM1502 with Comp1; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.28 Figure 5.29 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div Figure 5.30 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1502 with Comp1; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div Open Loop Bode Plots for ZSPM1502 with Comp1 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1502 with Comp1; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1502 with Comp1; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.27 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.26 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 52 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.7. ZSPM1502 – Typical Load Transient Response – Capacitor Range #3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 1.00V Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ ZSPM1502 with Comp2; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.33 Figure 5.34 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div Figure 5.35 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1502 with Comp2; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div Open Loop Bode Plots for ZSPM1502 with Comp2 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1502 with Comp2; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1502 with Comp2; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.32 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.31 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 53 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.8. ZSPM1502 – Typical Load Transient Response – Capacitor Range #4 – Comp3 Test conditions: VIN = 12.0V, VOUT = 1.00V Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ ZSPM1502 with Comp3; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.38 Figure 5.39 VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div Figure 5.40 VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1502 with Comp3; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div Open Loop Bode Plots for ZSPM1502 with Comp3 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1502 with Comp3; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1502 with Comp3; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.37 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.36 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 54 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.9. ZSPM1503 – Typical Load Transient Response – Capacitor Range #1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 1.20V Minimum output capacitance: 2 x 100µF/6.3V X5R Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R ZSPM1503 with Comp0; 5A to 15A Load Step; and Min. Capacitance Figure 5.42 Ch1 (Blue): VOUT 100mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Ch1 (Blue): VOUT 100mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.43 ZSPM1503 with Comp0; 5A to 15A Load Step; and Max. Capacitance Figure 5.44 Ch1 (Blue): VOUT 100mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.45 ZSPM1503 with Comp0; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 100mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Open Loop Bode Plots for ZSPM1503 with Comp0 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1503 with Comp0; 15A to 5A Load Step; and Min. Capacitance 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.41 -20 -150 -30 -40 1 10 Frequency [kHz] -180 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 55 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.10. ZSPM1503 – Typical Load Transient Response – Capacitor Range #2 – Comp1 Test conditions: VIN = 12.0V, VOUT = 1.20V Minimum output capacitance: 5 x 100µF/6.3V X5R Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R ZSPM1503 with Comp1; 5A to 15A Load Step; and Min. Capacitance Figure 5.47 Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.48 ZSPM1503 with Comp1; 5 to 15A Load Step; and Max. Capacitance Figure 5.49 Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.50 ZSPM1503 with Comp1; 15 to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Open Loop Bode Plots for ZSPM1503 with Comp1 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1503 with Comp1; 15A to 5A Load Step; and Min. Capacitance 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.46 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 56 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.11. ZSPM1503 – Typical Load Transient Response – Capacitor Range #3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 1.20V Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ ZSPM1503 with Comp2; 5A to 15A Load Step; and Min. Capacitance Figure 5.52 Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.53 ZSPM1503 with Comp2; 5A to 15A Load Step; and Max. Capacitance Figure 5.54 Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.55 ZSPM1503 with Comp2; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Open Loop Bode Plots for ZSPM1503 with Comp2 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1503 with Comp2; 15A to 5A Load Step; and Min. Capacitance 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.51 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 57 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.12. ZSPM1503 – Typical Load Transient Response – Capacitor Range #4 – Comp3 Test conditions: VIN = 12.0V, VOUT = 1.20V Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ ZSPM1503 with Comp3; 5A to 15A Load Step; and Min. Capacitance Figure 5.57 Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.58 ZSPM1503 with Comp3; 5A to 15A Load Step; and Max. Capacitance Figure 5.59 Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Figure 5.60 ZSPM1503 with Comp3; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Green): Load Trigger 5V/div DC Time Scale: 8µs/div Open Loop Bode Plots for ZSPM1503 with Comp3 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1503 with Comp3; 15A to 5A Load Step; and Min. Capacitance 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.56 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 58 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.13. ZSPM1504 – Typical Load Transient Response – Capacitor Range #1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 1.50V Minimum output capacitance: 2 x 100µF/6.3V X5R Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R ZSPM1504 with Comp0; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.63 Figure 5.64 VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.65 VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1504 with Comp0; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Open Loop Bode Plots for ZSPM1504 with Comp0 40 Gain [dB] ZSPM1504 with Comp0; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1504 with Comp0; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.62 Max Caps - Gain 30 Min Caps - Gain 20 Max Caps - Phase 10 Min Caps - Phase 0 0 -30 -60 -90 -10 -120 Phase [degrees] Figure 5.61 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 59 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.14. ZSPM1504 – Typical Load Transient Response – Capacitor Range #2 – Comp1 Test conditions: VIN = 12.0V, VOUT = 1.50V Minimum output capacitance: 5 x 100µF/6.3V X5R Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R ZSPM1504 with Comp1; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.68 Figure 5.69 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.70 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1504 with Comp1; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Open Loop Bode Plots for ZSPM1504 with Comp1 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1504 with Comp1; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1504 with Comp1; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.67 10 0 0 -30 -60 -90 -10 -120 Phase [degrees] Figure 5.66 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 60 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.15. ZSPM1504 – Typical Load Transient Response – Capacitor Range #3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 1.50V Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ ZSPM1504 with Comp2; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.73 Figure 5.74 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.75 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1504 with Comp2; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Open Loop Bode Plots for ZSPM1504 with Comp2 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1504 with Comp2; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1504 with Comp2; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.72 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.71 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 61 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.16. ZSPM1504 – Typical Load Transient Response – Capacitor Range #4 – Comp3 Test conditions: VIN = 12.0V, VOUT = 1.50V Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ ZSPM1504 with Comp3; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.78 Figure 5.79 VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.80 VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1504 with Comp3; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Open Loop Bode Plots for ZSPM1504 with Comp3 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1504 with Comp3; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1504 with Comp3; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.77 10 0 0 -30 -60 -90 -10 -120 Phase [degrees] Figure 5.76 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 62 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.17. ZSPM1505 – Typical Load Transient Response – Capacitor Range #1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 1.80V Minimum output capacitance: 2 x 100µF/6.3V X5R Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R ZSPM1505 with Comp0; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.83 Figure 5.84 VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.85 VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1505 with Comp0; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Open Loop Bode Plots for ZSPM1505 with Comp0 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1505 with Comp0; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1505 with Comp0; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.82 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.81 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 63 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.18. ZSPM1505 – Typical Load Transient Response – Capacitor Range #2 – Comp1 Test conditions: VIN = 12.0V, VOUT = 1.80V Minimum output capacitance: 5 x 100µF/6.3V X5R Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R ZSPM1505 with Comp1; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch4 (Green): Time Scale: Figure 5.88 Figure 5.89 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div Figure 5.90 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1505 with Comp1; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch4 (Green): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div Open Loop Bode Plots for ZSPM1505 with Comp1 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1505 with Comp1; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch4 (Green): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1505 with Comp1; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch4 (Green): Time Scale: Figure 5.87 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] Figure 5.86 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 64 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.19. ZSPM1505 – Typical Load Transient Response – Capacitor Range #3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 1.80V Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ ZSPM1505 with Comp2; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.93 Figure 5.94 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.95 VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1505 with Comp2; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3: (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Open Loop Bode Plots for ZSPM1505 with Comp2 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] ZSPM1505 with Comp2; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div ZSPM1505 with Comp2; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.92 10 0 0 -30 -60 -90 -10 -120 -20 Phase [degrees] Figure 5.91 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 65 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.20. ZSPM1505 – Typical Load Transient Response – Capacitor Range #4 – Comp3 Test conditions: VIN = 12.0V, VOUT = 1.80V Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ Figure 5.96 ZSPM1505 with Comp3; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch4 (Green): Time Scale: Figure 5.98 ZSPM1505 with Comp3; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch4 (Green): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1505 with Comp3; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch4 (Green): Time Scale: Figure 5.97 Figure 5.99 VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div ZSPM1505 with Comp3; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch4 (Green): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 8µs/div Figure 5.100 Open Loop Bode Plots for ZSPM1505 with Comp3 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] 40 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 66 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.21. ZSPM1506 – Typical Load Transient Response – Capacitor Range #1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 2.00V Minimum output capacitance: 2 x 100µF/6.3V X5R Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R Figure 5.101 ZSPM1506 with Comp0; 5A to 15A Load Step; and Min. Capacitance Figure 5.102 ZSPM1506 with Comp0; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.103 ZSPM1506 with Comp0; 5A to 15A Load Step; and Max. Capacitance Figure 5.104 ZSPM1506 with Comp0; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Open Loop Bode Plots for ZSPM1506 with Comp0 40 Max Caps - Gain 30 Min Caps - Gain 20 Max Caps - Phase Gain [dB] Min Caps - Phase 10 0 0 -30 -60 -90 -10 -120 Phase [degrees] Figure 5.105 VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 67 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.22. ZSPM1506 – Typical Load Transient Response – Capacitor Range #2 – Comp1 Test conditions: VIN = 12.0V, VOUT = 2.00V Minimum output capacitance: 5 x 100µF/6.3V X5R Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R Figure 5.106 ZSPM1506 with Comp1; 5A to 15A Load Step; and Min. Capacitance Figure 5.107 ZSPM1506 with Comp1; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.108 ZSPM1506 with Comp1; 5A to 15A Load Step; and Max. Capacitance Figure 5.109 ZSPM1506 with Comp1; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.110 Open Loop Bode Plots for ZSPM1506 with Comp1 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] 40 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 68 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.23. ZSPM1506 – Typical Load Transient Response – Capacitor Range #3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 2.00V Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ Figure 5.111 ZSPM1506 with Comp2; 5A to 15A Load Step; and Min. Capacitance Figure 5.112 ZSPM1506 with Comp2; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.113 ZSPM1506 with Comp2; 5A to 15A Load Step; and Max. Capacitance Figure 5.114 ZSPM1506 with Comp2; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.115 Open Loop Bode Plots for ZSPM1506 with Comp2 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] 40 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 69 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.24. ZSPM1506 – Typical Load Transient Response – Capacitor Range #4 – Comp3 Test conditions: VIN = 12.0V, VOUT = 2.00V Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ Figure 5.116 ZSPM1506 with Comp3; 5A to 15A Load Step; and Min. Capacitance Figure 5.117 ZSPM1506 with Comp3; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.118 ZSPM1506 with Comp3; 5A to 15A Load Step; and Max. Capacitance Figure 5.119 ZSPM1506 with Comp3; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.120 Open Loop Bode Plots for ZSPM1506 with Comp3 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] 40 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 70 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.25. ZSPM1507 – Typical Load Transient Response –Capacitor Range 1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 2.50V Minimum output capacitance: 2 x 100µF/6.3V X5R Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R Figure 5.121 ZSPM1507 with Comp0; 5 to 15A Load Step; and Min. Capacitance Figure 5.122 ZSPM1507 with Comp0; 15 to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.123 ZSPM1507 with Comp0; 5 to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.124 ZSPM1507 with Comp0; 15 to 5A Load Step; and Max. Capacitance VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.125 Open Loop Bode Plots for ZSPM1507 with Comp0 30 20 Gain [dB] 0 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase -30 -60 10 0 -90 -10 -120 Phase [degrees] 40 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 71 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) ZSPM1507 – Typical Load Transient Response –Capacitor Range 2 – Comp1 5.26. Test conditions: VIN = 12.0V, VOUT = 2.50V Minimum output capacitance: 5 x 100µF/6.3V X5R Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R Figure 5.126 ZSPM1507 with Comp1; 5 to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.128 ZSPM1507 with Comp1; 5 to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.127 ZSPM1507 with Comp1; 15 to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.129 ZSPM1507 with Comp1; 15 to 5A Load Step; and Max. Capacitance VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.130 Open Loop Bode Plots for ZSPM1507 with Comp1 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] 40 -20 -150 -30 -40 -180 1 Data Sheet April 27, 2015 10 Frequency [kHz] 100 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 72 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.27. ZSPM1507 – Typical Load Transient Response –Capacitor Range 3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 2.50V Minimum output capacitance: 2 x 100µF/6.3V X5R + 2x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ Figure 5.131 ZSPM1507 with Comp2; 5 to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.133 ZSPM1507 with Comp2; 5 to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.132 ZSPM1507 with Comp2; 15 to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.134 ZSPM1507 with Comp2; 15 to 5A Load Step; and Max. Capacitance VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.135 Open Loop Bode Plots for ZSPM1507 with Comp2 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] 40 -20 -150 -30 -40 -180 1 Data Sheet April 27, 2015 10 Frequency [kHz] 100 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 73 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.28. ZSPM1507 – Typical Load Transient Response –Capacitor Range 4 – Comp3 Test conditions: VIN = 12.0V, VOUT = 2.50V Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ Figure 5.136 ZSPM1507 with Comp3; 5 to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.138 ZSPM1507 with Comp3; 5 to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.137 ZSPM1507 with Comp3; 15 to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.139 ZSPM1507 with Comp3; 15 to 5A Load Step; and Max. Capacitance VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.140 Open Loop Bode Plots for ZSPM1507 with Comp3 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 0 -30 -60 10 0 -90 -10 -120 Phase [degrees] 40 -20 -150 -30 -40 -180 1 10 Frequency [kHz] 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 74 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.29. ZSPM1508 – Typical Load Transient Response –Capacitor Range 1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 3.30V Minimum output capacitance: 2 x 100µF/10V X5R Maximum output capacitance: 4 x 100µF/10V X5R + 2 x 47µF/10V X7R Figure 5.141 ZSPM1508 with Comp0; 5A to 10A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.143 ZSPM1508 with Comp0; 5A to 10A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.142 ZSPM1508 with Comp0; 10A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.144 ZSPM1508 with Comp0; 10A to 5A Load Step; and Max. Capacitance VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 0.1 1 Frequency [kHz] 10 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.145 Open Loop Bode Plots for ZSPM1508 with Comp0 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 75 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.30. ZSPM1508 – Typical Load Transient Response –Capacitor Range 2 – Comp1 Test conditions: VIN = 12.0V, VOUT = 3.30V Minimum output capacitance: 5 x 100µF/10V X5R Maximum output capacitance: 8 x 100µF/10V X5R + 4 x 47µF/10V X7R Figure 5.146 ZSPM1508 with Comp1; 5A to 10A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.148 ZSPM1508 with Comp1; 5A to 10A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.147 ZSPM1508 with Comp1; 10A to 5A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.149 ZSPM1508 with Comp1; 10A to 5A Load Step; and Max. Capacitance VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 0.1 1 Frequency [kHz] 10 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.150 Open Loop Bode Plots for ZSPM1508 with Comp1 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 76 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.31. ZSPM1508 – Typical Load Transient Response –Capacitor Range 3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 3.30V Minimum output capacitance: 2 x 100µF/10V X5R + 2x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/10V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ Figure 5.151 ZSPM1508 with Comp2; 5A to 10A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.152 ZSPM1508 with Comp2; 10A to 5A Load Step; and Min. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 40µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.153 ZSPM1508 with Comp2; 5A to 10A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 40µs/div Figure 5.154 ZSPM1508 with Comp2; 10A to 5A Load Step; and Max. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 40µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 40µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 0.1 1 Frequency [kHz] 10 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.155 Open Loop Bode Plots for ZSPM1508 with Comp2 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 77 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.32. ZSPM1508 – Typical Load Transient Response –Capacitor Range 4 – Comp3 Test conditions: VIN = 12.0V, VOUT = 3.30V Minimum output capacitance: 5 x 100µF/10V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/10V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ Figure 5.156 ZSPM1508 with Comp3; 5A to 10A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.157 ZSPM1508 with Comp3; 10A to 5A Load Step; and Min. Capacitance VOUT 10mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 40µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.158 ZSPM1508 with Comp3; 5A to 10A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 10mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 40µs/div Figure 5.159 ZSPM1508 with Comp3; 10A to 5A Load Step; and Max. Capacitance VOUT 10mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 40µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 10mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 40µs/div Figure 5.160 Open Loop Bode Plots for ZSPM1508 with Comp3 40 30 Phase [degrees] 20 Gain [dB] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 10 0 -10 -20 -30 -40 0.1 1 Frequency [kHz] 10 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 78 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.33. ZSPM1509 – Typical Load Transient Response –Capacitor Range 1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 5.00V Minimum output capacitance: 2 x 100µF/10 X5R Maximum output capacitance: 4 x 100µF/10V X5R + 2 x 47µF/10V X7R Figure 5.161 ZSPM1509 with Comp0; 3A to 8A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Figure 5.163 ZSPM1509 with Comp0; 3A to 8A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.162 ZSPM1509 with Comp0; 8A to 3A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Figure 5.164 ZSPM1509 with Comp0; 8A to 3A Load Step; and Max. Capacitance VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 0.1 1 Frequency [kHz] 10 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.165 Open Loop Bode Plots for ZSPM1509 with Comp0 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 79 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.34. ZSPM1509 – Typical Load Transient Response –Capacitor Range 2 – Comp1 Test conditions: VIN = 12.0V, VOUT =5.00V Minimum output capacitance: 5 x 100µF/10V X5R Maximum output capacitance: 8 x 100µF/10V X5R + 4 x 47µF/10V X7R Figure 5.166 ZSPM1509 with Comp1; 3A to 8A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.167 ZSPM1509 with Comp1; 8A to 3A Load Step; and Min. Capacitance VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.168 ZSPM1509 with Comp1; 3A to 8A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Figure 5.169 ZSPM1509 with Comp1; 8A to 3A Load Step; and Max. Capacitance VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 0.1 1 Frequency [kHz] 10 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.170 Open Loop Bode Plots for ZSPM1509 with Comp1 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 80 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.35. ZSPM1509 – Typical Load Transient Response –Capacitor Range 3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 5.00V Minimum output capacitance: 2 x 100µF/10V X5R + 2x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/10V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ Figure 5.171 ZSPM1509 with Comp2; 3A to 8A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.172 ZSPM1509 with Comp2; 8A to 3A Load Step; and Min. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.173 ZSPM1509 with Comp2; 3A to 8A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Figure 5.174 ZSPM1509 with Comp2; 8A to 3A Load Step; and Max. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 20µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 0.1 1 Frequency [kHz] 10 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.175 Open Loop Bode Plots for ZSPM1509 with Comp2 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 81 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.36. ZSPM1509 – Typical Load Transient Response –Capacitor Range 4 – Comp3 Test conditions: VIN = 12.0V, VOUT =5.00V Minimum output capacitance: 5 x 100µF/10V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/10V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ Figure 5.176 ZSPM1509 with Comp3; 3A to 8A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3:(Violet): Time Scale: Figure 5.177 ZSPM1509 with Comp3; 8A to 3A Load Step; and Min. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 100µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.178 ZSPM1509 with Comp3; 3A to 8A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 100µs/div Figure 5.179 ZSPM1509 with Comp3; 8A to 3A Load Step; and Max. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 100µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 100µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 0.1 1 Frequency [kHz] 10 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.180 Open Loop Bode Plots for ZSPM1509 with Comp3 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 82 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.37. ZSPM1511 – Typical Load Transient Response – Capacitor Range #1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 0.85V Minimum output capacitance: 2 x 100µF/6.3V X5R Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R Figure 5.181 ZSPM1511 with Comp0; 5A to 15A Load Step; and Min. Capacitance Figure 5.182 ZSPM1511 with Comp0; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Figure 5.183 ZSPM1511 with Comp0; 5A to 15A Load Step; and Max. Capacitance Figure 5.184 ZSPM1511 with Comp0; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch4 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.185 Open Loop Bode Plots for ZSPM1511 with Comp0 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 83 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.38. ZSPM1511 – Typical Load Transient Response – Capacitor Range #2 – Comp1 Test conditions: VIN = 12.0V, VOUT = 0.85V Minimum output capacitance: 5 x 100µF/6.3V X5R Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R Figure 5.186 ZSPM1511 with Comp1; 5A to 15A Load Step; and Min. Capacitance Figure 5.187 ZSPM1511 with Comp1; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Figure 5.188 ZSPM1511 with Comp1; 5A to 15A Load Step; and Max. Capacitance Figure 5.189 ZSPM1511 with Comp1; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.190 Open Loop Bode Plots for ZSPM1511 with Comp1 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 84 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.39. ZSPM1511 – Typical Load Transient Response – Capacitor Range #3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 0.85V Minimum output capacitance: 2 x 100µF/6.3V X5R + 2x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ Figure 5.191 ZSPM1511 with Comp2; 5A to 15A Load Step; and Min. Capacitance Figure 5.192 ZSPM1511 with Comp2; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Figure 5.193 ZSPM1511 with Comp2; 5A to 15A Load Step; and Max. Capacitance Figure 5.194 ZSPM1511 with Comp2; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 10mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Ch1 (Blue): VOUT 10mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.195 Open Loop Bode Plots for ZSPM1511 with Comp2 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 85 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.40. ZSPM1511 – Typical Load Transient Response – Capacitor Range #4 – Comp3 Test conditions: VIN = 12.0V, VOUT = 0.85V Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ Figure 5.196 ZSPM1511 with Comp3; 5A to 15A Load Step; and Min. Capacitance Figure 5.197 ZSPM1511 with Comp3; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 4µs/div Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 4µs/div Figure 5.198 ZSPM1511 with Comp3; 5A to 15A Load Step; and Max. Capacitance Figure 5.199 ZSPM1511 with Comp3; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 4µs/div Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 4µs/div 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.200 Open Loop Bode Plots for ZSPM1511 with Comp3 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 86 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.41. ZSPM1512 – Typical Load Transient Response – Capacitor Range #1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 1.00V Minimum output capacitance: 2 x 100µF/6.3V X5R Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R Figure 5.201 ZSPM1512 with Comp0; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.202 ZSPM1512 with Comp0; 15A to 5A Load Step; and Min. Capacitance VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.203 ZSPM1512 with Comp0; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.204 ZSPM1512 with Comp0; 15A to 5A Load Step; and Max. Capacitance VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.205 Open Loop Bode Plots for ZSPM1512 with Comp0 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 87 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.42. ZSPM1512 – Typical Load Transient Response – Capacitor Range #2 – Comp1 Test conditions: VIN = 12.0V, VOUT = 1.00V Minimum output capacitance: 5 x 100µF/6.3V X5R Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R Figure 5.206 ZSPM1512 with Comp1; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.207 ZSPM1512 with Comp1; 15A to 5A Load Step; and Min. Capacitance VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.208 ZSPM1512 with Comp1; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.209 ZSPM1512 with Comp1; 15A to 5A Load Step; and Max. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.210 Open Loop Bode Plots for ZSPM1512 with Comp1 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 88 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.43. ZSPM1512 – Typical Load Transient Response – Capacitor Range #3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 1.00V Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ Figure 5.211 ZSPM1512 with Comp2; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.212 ZSPM1512 with Comp2; 15A to 5A Load Step; and Min. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10 µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.213 ZSPM1512 with Comp2; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10 µs/div Figure 5.214 ZSPM1512 with Comp2; 15A to 5A Load Step; and Max. Capacitance VOUT 10mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 10mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.215 Open Loop Bode Plots for ZSPM1512 with Comp2 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 89 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.44. ZSPM1512 – Typical Load Transient Response – Capacitor Range #4 – Comp3 Test conditions: VIN = 12.0V, VOUT = 1.00V Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ Figure 5.216 ZSPM1512 with Comp3; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.217 ZSPM1512 with Comp3; 15A to 5A Load Step; and Min. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.218 ZSPM1512 with Comp3; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.219 ZSPM1512 with Comp3; 15A to 5A Load Step; and Max. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.220 Open Loop Bode Plots for ZSPM1512 with Comp3 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 90 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.45. ZSPM1513 – Typical Load Transient Response – Capacitor Range #1 – Comp0 Test conditions: VIN = 12.0V, VOUT = 1.20V Minimum output capacitance: 2 x 100µF/6.3V X5R Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R Figure 5.221 ZSPM1513 with Comp0; 5A to 15A Load Step; and Min. Capacitance VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.223 ZSPM1513 with Comp0; 5A to 15A Load Step; and Max. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.224 ZSPM1513 with Comp0; 15A to 5A Load Step; and Max. Capacitance VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Figure 5.225 Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: VOUT 50mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div Open Loop Bode Plots for ZSPM1513 with Comp0 40 Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 20 Gain [dB] VOUT 100mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 10µs/div 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.222 ZSPM1513 with Comp0; 15A to 5A Load Step; and Min. Capacitance 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 91 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.46. ZSPM1513 – Typical Load Transient Response – Capacitor Range #2 – Comp1 Test conditions: VIN = 12.0V, VOUT = 1.20V Minimum output capacitance: 5 x 100µF/6.3V X5R Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R Figure 5.226 ZSPM1513 with Comp1; 5A to 15A Load Step; and Min. Capacitance Figure 5.227 ZSPM1513 with Comp1; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): VOUT 100mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Ch1 (Blue): VOUT 100mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Figure 5.228 ZSPM1513 with Comp1; 5 to 15A Load Step; and Max. Capacitance Figure 5.229 ZSPM1513 with Comp1; 15 to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Ch1 (Blue): VOUT 50mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.230 Open Loop Bode Plots for ZSPM1513 with Comp1 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 92 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.47. ZSPM1513 – Typical Load Transient Response – Capacitor Range #3 – Comp2 Test conditions: VIN = 12.0V, VOUT = 1.20V Minimum output capacitance: 2 x 100µF/6.3V X5R + 2 x 470µF/7mΩ Maximum output capacitance: 4 x 100µF/6.3V X5R + 2 x 47µF/10V X7R + 4 x 470µF/7mΩ Figure 5.231 ZSPM1513 with Comp2; 5A to 15A Load Step; and Min. Capacitance Figure 5.232 ZSPM1513 with Comp2; 15A to 5A Load Step; and Min. Capacitance Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Figure 5.233 ZSPM1513 with Comp2; 5A to 15A Load Step; and Max. Capacitance Figure 5.234 ZSPM1513 with Comp2; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 10mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Ch1 (Blue): VOUT 10mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.235 Open Loop Bode Plots for ZSPM1513 with Comp2 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 93 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.48. ZSPM1513 – Typical Load Transient Response – Capacitor Range #4 – Comp3 Test conditions: VIN = 12.0V, VOUT = 1.20V Minimum output capacitance: 5 x 100µF/6.3V X5R + 4 x 470µF/7mΩ Maximum output capacitance: 8 x 100µF/6.3V X5R + 4 x 47µF/10V X7R + 6 x 470µF/7mΩ Figure 5.236 ZSPM1513 with Comp3; 5A to 15A Load Step; and Min. Capacitance Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.237 ZSPM1513 with Comp3; 15A to 5A Load Step; and Min. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 4µs/div Ch1 (Blue): Ch2 (Cyan): Ch3 (Violet): Time Scale: Figure 5.238 ZSPM1513 with Comp3; 5A to 15A Load Step; and Max. Capacitance VOUT 20mV/div AC PWM 5V/div DC Load Trigger 5V/div DC 4µs/div Figure 5.239 ZSPM1513 with Comp3; 15A to 5A Load Step; and Max. Capacitance Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Ch1 (Blue): VOUT 20mV/div AC Ch2 (Cyan): PWM 5V/div DC Ch3 (Violet): Load Trigger 5V/div DC Time Scale: 10µs/div Max Caps - Gain Min Caps - Gain Max Caps - Phase Min Caps - Phase 30 Gain [dB] 20 10 0 -10 -20 -30 -40 1 10 Frequency [kHz] 180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180 Phase [degrees] Figure 5.240 Open Loop Bode Plots for ZSPM1513 with Comp3 40 100 Thousands Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 94 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.49. Typical Efficiency Curves – ZSPM1502 with ZSPM9000, ZSPM9015, and ZSPM9060 DrMOS The following graph shows typical efficiency curves for the ZSPM1502 with three different ZMDI DrMOS power stage options: the ZSPM9000, ZSPM9015, and ZSPM9060. (Note: The ZSPM1502 is also compatible with the ZSPM9010, which is not shown.) Figure 5.241 Typical Efficiency Curves: ZSPM1502 with ZSPM9000, ZSPM9015, and ZSPM9060 DrMOS (VIN= 12V; Vout = 1.0V) 88.00% 87.00% 86.00% 85.00% 84.00% Efficiency (%) 83.00% 82.00% 81.00% 80.00% 79.00% 78.00% 77.00% VIN = 12V Vout = 1.0V 76.00% 75.00% 0 5 10 15 20 25 30 35 40 45 Iout (A) Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 95 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.50. Typical Efficiency Curves – ZSPM9000 DrMOS with ZSPM1504, ZSPM1505, and ZSPM1506 The following graph shows typical efficiency curves for the ZSPM9000 power stage with three different ZSPM15xx controllers: the ZSPM1504, ZSPM1505, and ZSPM1506. Figure 5.242 Typical Efficiency Curves: ZSPM9000 DrMOS with ZSPM1504, ZSPM1505, and ZSPM1506 (VIN = 12V) 95 90 Efficiency (%) 85 80 75 70 65 VIN = 12V 60 0 5 10 15 20 25 30 35 Iout (A) Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 96 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.51. Typical Efficiency Curves – ZSPM9000 and ZSPM9060 DrMOS with ZSPM1508 and ZSPM1509 The following graph shows typical efficiency curves for the ZSPM9000 and ZSPM9060 power stages with two different ZSPM15xx controllers: the ZSPM1508 and ZSPM1509. Figure 5.243 Typical Efficiency Curves: ZSPM9000 and ZSPM9060 DrMOS with ZSPM1508 and ZSPM1509 100 95 90 Efficiency (%) 85 80 75 70 65 VIN = 12V 60 0 2 4 6 8 10 12 14 16 Iout (A) Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 97 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 5.52. Typical Efficiency Curves – ZSPM9000 and ZSPM9060 DrMOS with ZSPM1511, ZSPM1512, and ZSPM1513 The following graph shows typical efficiency curves for the ZSPM9000 and ZSPM9060 power stages with three different ZSPM15xx controllers: the ZSPM1511, ZSPM1512, and ZSPM1513. Figure 5.244 Typical Efficiency Curves: ZSPM9000 and ZSPM9060 DrMOS with ZSPM1511, ZSPM1512, and ZSPM1513 90 85 80 Efficiency (%) 75 70 65 60 55 VIN = 12V 50 0 Data Sheet April 27, 2015 2 4 6 8 Iout (A) 10 12 14 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 16 98 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 6 Mechanical Specifications Based on JEDEC MO-220. All dimensions are in millimeters. Figure 6.1 24-Pin QFN Package Drawing Dimensions Minimum (mm) Maximum (mm) A 0.8 0.90 A1 0.00 0.05 b 0.18 0.30 e Data Sheet April 27, 2015 0.5 nominal HD 3.90 4.1 HE 3.90 4.1 L 0.35 0.45 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 99 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 7 Ordering Information Product Code Description Package ZSPM1501ZA1W0 ZSPM1501 lead-free QFN24; output voltage: 0.85V; inductance: 330nH; temperature: -40°C to +125°C Reel ZSPM1502ZA1W0 ZSPM1502 lead-free QFN24; output voltage: 1.00V; inductance: 330nH; temperature: -40°C to +125°C Reel ZSPM1503ZA1W0 ZSPM1503 lead-free QFN24; output voltage: 1.20V; inductance: 330nH; temperature: -40°C to +125°C Reel ZSPM1504ZA1W0 ZSPM1504 lead-free QFN24; output voltage: 1.50V; inductance: 470nH; temperature: -40°C to +125°C Reel ZSPM1505ZA1W0 ZSPM1505 lead-free QFN24; output voltage: 1.80V; inductance: 470nH; temperature: -40°C to +125°C Reel ZSPM1506ZA1W0 ZSPM1506 lead-free QFN24; output voltage: 2.00V; inductance: 470nH; temperature: -40°C to +125°C Reel ZSPM1507ZA1W0 ZSPM1507 lead-free QFN24; output voltage: 2.50V; inductance: 1000nH; temperature: -40°C to +125°C Reel ZSPM1508ZA1W0 ZSPM1508 lead-free QFN24; output voltage: 3.30V; inductance: 2200nH; temperature: -40°C to +125°C Reel ZSPM1509ZA1W0 ZSPM1509 lead-free QFN24; output voltage: 5.00V; inductance: 2200nH; temperature: -40°C to +125°C Reel ZSPM1511ZA1W0 ZSPM1511 lead-free QFN24; output voltage: 0.85V; inductance: 680nH; temperature: -40°C to +125°C Reel ZSPM1512ZA1W0 ZSPM1512 lead-free QFN24; output voltage: 1.00V; inductance: 680nH; temperature: -40°C to +125°C Reel ZSPM1513ZA1W0 ZSPM1513 lead-free QFN24; output voltage: 1.20V; inductance: 680nH; temperature: -40°C to +125°C Reel 8 Related Documents Note: X_xy refers to the current revision of the document. Document File Name ZSPM15xx Family Feature Sheet ZSPM15xx_Feature_Sheet_Rev_X_xy.pdf ZSPM15XX-KIT01 Kit Description ZSPM15XX-Kit_Description_Rev_X_xy.pdf Visit the ZSPM15xx product page www.zmdi.com/zspm15xx on ZMDI’s website www.zmdi.com or contact your nearest sales office for the latest version of these documents. Data Sheet April 27, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 100 of 101 ZSPM15xx True-Digital PWM Controller (Single-Phase, Single-Rail) 9 Glossary Term Description DCR Equivalent DC Resistance DNP Do Not Place (Component) DPWM Digital Pulse-Width Modulator DSP Digital Signal Processing FPGA Field-Programmable Gate Array HKADC Housekeeping Analog-To-Digital Converter OCP Over-Current Protection OT Over-Temperature OV Over-Voltage PID Proportional/Integral/Derivative SLC State-Law Control™ SPM Smart Power Management 10 Document Revision History Revision Date Description 2.00 November 24, 2014 First release of full revision. 2.10 March 9, 2015 Addition of ZSPM1507, ZSPM1508, and ZSPM1509 to family of products. 2.20 April 27, 2015 Addition of ZSPM1511, ZSPM1512, and ZSPM1513 to family of products. Removal of references to Sub-cycle Response (SCR) as this is not activated in the ZSPM15xx. Addition of Table 4.10, Table 4.11, and Table 4.12 for CONFIG 1 settings for the ZSPM1507, ZSPM1508, and ZSPM1509 respectively. Correction of C9 to C10 in section 4.5. Sales and Further Information www.zmdi.com [email protected] Zentrum Mikroelektronik Dresden AG Global Headquarters Grenzstrasse 28 01109 Dresden, Germany ZMD America, Inc. 1525 McCarthy Blvd., #212 Milpitas, CA 95035-7453 USA Central Office: Phone +49.351.8822.306 Fax +49.351.8822.337 USA Phone 1.855.275.9634 Phone +1.408.883.6310 Fax +1.408.883.6358 European Technical Support Phone +49.351.8822.7.772 Fax +49.351.8822.87.772 DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Zentrum Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be true and accurate. However, under no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for any damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty, tort (including negligence), strict liability, or otherwise. European Sales (Stuttgart) Phone +49.711.674517.55 Fax +49.711.674517.87955 Data Sheet April 27, 2015 Zentrum Mikroelektronik Dresden AG, Japan Office 2nd Floor, Shinbashi Tokyu Bldg. 4-21-3, Shinbashi, Minato-ku Tokyo, 105-0004 Japan ZMD FAR EAST, Ltd. 3F, No. 51, Sec. 2, Keelung Road 11052 Taipei Taiwan Phone +81.3.6895.7410 Fax +81.3.6895.7301 Phone +886.2.2377.8189 Fax +886.2.2377.8199 Zentrum Mikroelektronik Dresden AG, Korea Office U-space 1 Building Unit B, 906-1 660, Daewangpangyo-ro Bundang-gu, Seongnam-si Gyeonggi-do, 463-400 Korea Phone +82.31.950.7679 Fax +82.504.841.3026 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 2.20 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 101 of 101