216-ball Mobile LPDDR2 SDRAM

PRELIMINARY DATA SHEET
4G bits DDR2 Mobile RAM™ PoP
(12mm × 12mm, 216-ball FBGA)
EDB4432BAPC
Specifications
Features
• Density: 4G bits
• Organization
— 16M words × 32 bits × 8 banks
• Data rate: 1066Mbps (max.)
• Package: 216-ball FBGA
— Package size: 12.0mm × 12.0mm
— Ball pitch: 0.4mm
— Lead-free (RoHS compliant) and Halogen-free
• Power supply
— VDD1 = 1.70V to 1.95V
— VDD2, VDDQ = 1.14V to 1.30V
• Interface: HSUL_12
• Operating case temperature range
— TC = -30°C to +85°C
• JEDEC LPDDR2-S4B compliance
• DLL is not implemented
• Low power consumption
• Mobile RAM functions
— Partial Array Self-Refresh (PASR)
— Auto Temperature Compensated Self-Refresh
(ATCSR) by built-in temperature sensor
— Deep power-down mode
— Per Bank Refresh
• This FBGA is suitable for Package on Package (PoP)
Block Diagram
CKE /CS
VDD1
VDD2
VDDQ
CK, /CK
CA0 to CA9
VREFCA
VREFDQ
VSS
4G bits
(128M x 32)
DQS0 to DQS3
/DQS0 to /DQS3
DQ0 to DQ31
DM0 to DM3
ZQ
Document No. E1891E10 (Ver. 1.0)
Date Published February 2012 (K) Japan
Printed in Japan
URL: http://www.elpida.com
Elpida Memory, Inc. 2012
EDB4432BAPC
Ordering Information
Part number
Organization
(words x bits)
Clock frequency
Data rate
Read latency
Package
EDB4432BAPC-1D-F
128M x 32
533MHz
1066Mbps
8
216-ball FBGA
Part Number
E D B 44 32 B A PC - 1D - F
Elpida Memory
Environment Code
F: Lead Free (RoHS compliant)
and Halogen Free
Type
D: Packaged Device
Product Family
B: DDR2 Mobile RAM
Speed
1D: 1066Mbps
Density/Chip select
44: 4Gb/1-CS
Package
PC: BGA for PoP
Organization
32: x32
Power Supply, Interface
B: VDD1 = 1.8V, VDD2 = VDDQ = 1.2V,
S4B device, HSUL
Revision
Preliminary Data Sheet E1891E10 (Ver. 1.0)
2
EDB4432BAPC
CONTENTS
Specifications ........................................................................................................................................ 1
Block Diagram ....................................................................................................................................... 1
Features ................................................................................................................................................ 1
Ordering Information ............................................................................................................................. 2
Part Number .......................................................................................................................................... 2
Pin Configurations ................................................................................................................................. 4
Pin Descriptions .................................................................................................................................... 5
Pin Capacitance .................................................................................................................................... 6
Package Drawing .................................................................................................................................. 7
Mode Register Specification ................................................................................................................. 8
1. Electrical Conditions ...................................................................................................................... 9
1.1 Absolute Maximum Ratings .............................................................................................. 9
1.2 Recommended DC Operating Conditions ........................................................................ 9
2. Electrical Specifications ............................................................................................................... 10
2.1 DC Characteristics 1 ....................................................................................................... 10
2.2 DC Characteristics 2 ....................................................................................................... 12
2.3 AC Characteristics .......................................................................................................... 13
Preliminary Data Sheet E1891E10 (Ver. 1.0)
3
EDB4432BAPC
Pin Configurations
/xxx indicate active low signal.
*
!"# %&'()
Preliminary Data Sheet E1891E10 (Ver. 1.0)
4
EDB4432BAPC
Pin Descriptions
Pin name
Function
CK, /CK
Clock
CKE
Clock enable
/CS
Chip select
CA0 to CA9
DDR command/address inputs
DM0 to DM3
Input data mask
DQ0 to DQ31
Data input/output
DQS0 to DQS3, /DQS0 to /DQS3
Data strobe
VDD1
Core power supply 1
VDD2
Core power supply 2 and input receiver power supply
VDDQ
I/O power supply
VREFCA
Reference voltage for CA input receiver
VREFDQ
Reference voltage for DQ input receiver
VSS
Ground
ZQ
Reference pin for output drive strength calibration
NC
*1
Note: 1.
No connection
Not internally connected.
Preliminary Data Sheet E1891E10 (Ver. 1.0)
5
(Address configurations: Row:R0-R13,
Column:C0-C9,
Bank:BA0-BA2)
EDB4432BAPC
Pin Capacitance
Parameter
Symbol
Pins
min.
max.
Unit
Note
Input capacitance
CI1
CK, /CK
1.5
3.5
pF
1, 2
CI2
All other DDR2 Mobile RAM
input only pins
1.5
3.5
pF
1, 2
CI/O
DQ, DM, DQS, /DQS
2.0
5.0
pF
1, 2, 3
CZQ
ZQ
1.5
3.5
pF
1, 2, 3
Data input/output capacitance
Notes: 1. This parameter is not subject to production test. It is verified by design and characterization.
2. These parameters are measured on f = 100MHz, VOUT = VDDQ/2, TA = +25°C.
3. DOUT circuits are disabled.
Preliminary Data Sheet E1891E10 (Ver. 1.0)
6
EDB4432BAPC
Package Drawing
216-ball FBGA
Solder ball: Lead free
12.00 ± 0.10
Unit: mm
0.15 S B
12.00 ± 0.10
INDEX MARK
0.15 S A
0.10 S
0.66 ± 0.065
S
0.08 S
0.18 ± 0.05
216−φ0.25 ± 0.05
φ0.06 M S AB
0.4
B
11.20
A
INDEX MARK
0.4
11.20
ECA-TS2-0465-01
Preliminary Data Sheet E1891E10 (Ver. 1.0)
7
EDB4432BAPC
Mode Register Specification
The following table shows the specifications of mode register values (MR5, 6, 7, 8) for the manufacturer ID and
the device descriptions such as DRAM type, density, I/O and die revision.
MR#
MA <7:0>
5
05h
OP7
OP6
OP5
OP4
OP3
OP2
OP1
OP0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
Manufacturer ID : ELPIDA
0
6
0
0
0
0
06h
Die Revision : Revision A
7
0
0
0
0
0
0
0
0
07h
RFU : Default value
8
08h
Note: 1.
1
I/O : ×32
1
Density of Die : 4Gbit
Type : S4
The register values specify monolithic die information in a package.
Therefore, please refer to the block diagram for understanding whole memory configuration of the
product containing multiple dice in a package.
Preliminary Data Sheet E1891E10 (Ver. 1.0)
8
EDB4432BAPC
1. Electrical Conditions
• All voltages are referenced to VSS (GND)
• Execute power-up and Initialization sequence before proper device operation is achieved.
• Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper
operation, the DDR2 Mobile RAM Device must be powered down and then restarted through the
specialized initialization sequence before normal operation can continue.
1.1
Absolute Maximum Ratings
Table 1 Absolute Maximum Ratings
Parameter
Symbol
min.
max.
Unit
Note
VDD1 supply voltage relative to VSS
VDD1
-0.4
2.3
V
2
VDD2 supply voltage relative to VSS
VDD2
-0.4
1.6
V
2
VDDQ supply voltage relative to VSSQ
VDDQ
-0.4
1.6
V
2, 3
Voltage on any ball relative to VSS
VIN, VOUT
-0.4
1.6
V
Storage Temperature
TSTG
-55
125
°C
Notes: 1.
Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.
2.
See Power-Ramp section “Power-up, initialization and Power-Off” in the individual DDR2 Mobile RAM data sheet for
relationship between power supplies.
3.
VREF ≤ 0.6 x VDDQ; however, VREF may be ≥ VDDQ provided that VREF ≤ 300mV.
4.
Storage Temperature is the case surface temperature on the center/top side of the DDR2 Mobile RAM Device. For the
measurement conditions, please refer to JESD51-2 standard.
Caution
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be operated under conditions outside the limits
described in the operational section of this specification. Exposure to Absolute Maximum
Rating conditions for extended periods may affect device reliability.
1.2
Recommended DC Operating Conditions
Table 2 Recommended DC Operating Conditions(TC = -30°C to +85°C)
Parameter
Symbol
min.
typ.
max.
Unit
Core Power1
VDD1
1.70
1.80
1.95
V
Core Power2, Input Buffer Power
VDD2
1.14
1.20
1.30
V
I/O Buffer Power
VDDQ
1.14
1.20
1.30
V
Preliminary Data Sheet E1891E10 (Ver. 1.0)
9
EDB4432BAPC
2. Electrical Specifications
2.1
DC Characteristics 1
(TC = -30°C to +85°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V)
Table 3 IDD Specification Parameters and Operating Conditions
Symbol
Power
Supply
1066
Unit
Parameter/Condition
Operating one bank active-pecharge current:
tCK = tCK(avg)min; tRC = tRCmin; CKE is HIGH;
/CS is HIGH between valid commands;
CA bus inputs are SWITCHING;
Data bus inputs are STABLE
max.
IDD0_1
VDD1
11
mA
IDD0_2
VDD2
55
mA
IDD0_IN
VDDQ
1.0
mA
IDD2P_1
VDD1
0.4
mA
IDD2P_2
VDD2
0.9
mA
IDD2P_IN
VDDQ
0.1
mA
IDD2PS_1
VDD1
0.4
mA
IDD2PS_2
VDD2
0.9
mA
IDD2PS_IN
VDDQ
0.1
mA
IDD2N_1
VDD1
0.6
mA
IDD2N_2
VDD2
15
mA
IDD2N_IN
VDDQ
1.0
mA
IDD2NS_1
VDD1
0.6
mA
IDD2NS_2
VDD2
7.0
mA
IDD2NS_IN
VDDQ
1.0
mA
IDD3P_1
VDD1
0.7
mA
IDD3P_2
VDD2
5.5
mA
IDD3P_IN
VDDQ
0.1
mA
IDD3PS_1
VDD1
0.7
mA
IDD3PS_2
VDD2
5.5
mA
IDD3PS_IN
VDDQ
0.1
mA
IDD3N_1
VDD1
1.0
mA
IDD3N_2
VDD2
22
mA
IDD3N_IN
VDDQ
1.0
mA
IDD3NS_1
VDD1
1.0
mA
IDD3NS_2
VDD2
15
mA
IDD3NS_IN
VDDQ
1.0
mA
IDD4R_1
VDD1
2.0
mA
IDD4R_2
VDD2
190
mA
Idle power-down standby current:
tCK = tCK(avg)min; CKE is LOW; /CS is HIGH; All banks idle;
CA bus inputs are SWITCHING;
Data bus inputs are STABLE
Idle power-down standby current with clock stop:
CK = LOW, /CK = HIGH; CKE is LOW; /CS is HIGH; All banks idle;
CA bus inputs are STABLE;
Data bus inputs are STABLE
Idle non power-down standby current:
tCK = tCK(avg)min; CKE is HIGH; /CS is HIGH; All banks idle;
CA bus inputs are SWITCHING;
Data bus inputs are STABLE
Idle non power-down standby current with clock stop:
CK = LOW, /CK = HIGH; CKE is HIGH; /CS is HIGH; All banks idle;
CA bus inputs are STABLE;
Data bus inputs are STABLE
Active power-down standby current:
tCK = tCK(avg)min; CKE is LOW; /CS is HIGH; One bank active;
CA bus inputs are SWITCHING;
Data bus inputs are STABLE
Active power-down standby current with clock stop:
CK = LOW, /CK = HIGH; CKE is LOW; /CS is HIGH; One bank active;
CA bus inputs are STABLE;
Data bus inputs are STABLE
Active non power-down standby current:
tCK = tCK(avg)min; CKE is HIGH; /CS is HIGH; One bank active;
CA bus inputs are SWITCHING;
Data bus inputs are STABLE
Active non power-down standby current with clock stop:
CK = LOW, /CK = HIGH; CKE is HIGH; /CS is HIGH; One bank active;
CA bus inputs are STABLE;
Data bus inputs are STABLE
Operating burst read current:
tCK = tCK(avg)min; /CS is HIGH between valid commands;
One bank active; BL = 4; RL = RLmin;
CA bus inputs are SWITCHING;
50% data change each burst transfer;
Preliminary Data Sheet E1891E10 (Ver. 1.0)
10
EDB4432BAPC
Table 3 IDD Specification Parameters and Operating Conditions (cont’d)
Symbol
Power
Supply
1066
Unit
Parameter/Condition
Operating burst write current:
tCK = tCK(avg)min; /CS is HIGH between valid commands;
One bank active; BL = 4; WL = WLmin;
CA bus inputs are SWITCHING;
50% data change each burst transfer;
max.
IDD4W_1
VDD1
2.0
mA
IDD4W_2
VDD2
220
mA
IDD4W_IN
VDDQ
1.0
mA
IDD5_1
VDD1
40
mA
IDD5_2
VDD2
150
mA
IDD5_IN
VDDQ
1.0
mA
IDD5AB_1
VDD1
2.0
mA
IDD5AB_2
VDD2
16
mA
IDD5AB_IN
VDDQ
1.0
mA
IDD5PB_1
VDD1
2.0
mA
IDD5PB_2
VDD2
16
mA
IDD5PB_IN
VDDQ
1.0
mA
IDD8_1
VDD1
16
µA
IDD8_2
VDD2
6.0
µA
IDD8_IN
VDDQ
12
µA
Notes: 1.
2.
All Bank Auto Refresh Burst current:
tCK = tCK(avg)min; CKE is HIGH between valid commands;
tRC = tRFCabmin; Burst refresh;
CA bus inputs are SWITCHING;
Data bus inputs are STABLE;
All Bank Auto Refresh Average current:
tCK = tCK(avg)min; CKE is HIGH between valid commands; tRC = tREFI;
CA bus inputs are SWITCHING;
Data bus inputs are STABLE;
Per Bank Auto Refresh Average current:
tCK = tCK(avg)min; CKE is HIGH between valid commands;
tRC = tREFI/8;
CA bus inputs are SWITCHING;
Data bus inputs are STABLE;
Deep Power-Down current:
CK = LOW, /CK = HIGH; CKE is LOW;
CA bus inputs are STABLE;
Data bus inputs are STABLE;
IDD values published are the maximum of the distribution of the arithmetic mean.
IDD current specifications are tested after the device is properly initialized.
Preliminary Data Sheet E1891E10 (Ver. 1.0)
11
EDB4432BAPC
Table 4 IDD6 Full and Partial Array Self-Refresh Current
Parameter
Self-Refresh Current
+45°C
Full Array
1/2 Array
1/4 Array
1/8 Array
Self-Refresh Current
+85°C
Full Array
1/2 Array
1/4 Array
1/8 Array
Note: 1.
2.2
Symbol
Value
Unit
Condition
IDD6_1
300
µA
IDD6_2
850
µA
CK = LOW, /CK = HIGH;
CKE is LOW;
CA bus inputs are STABLE;
Data bus inputs are STABLE;
IDD6_IN
10
µA
IDD6_1
200
µA
IDD6_2
500
µA
IDD6_IN
10
µA
IDD6_1
150
µA
IDD6_2
300
µA
IDD6_IN
10
µA
IDD6_1
120
µA
IDD6_2
200
µA
IDD6_IN
10
µA
IDD6_1
900
µA
IDD6_2
3200
µA
IDD6_IN
12
µA
IDD6_1
550
µA
IDD6_2
2400
µA
IDD6_IN
12
µA
IDD6_1
400
µA
IDD6_2
2000
µA
IDD6_IN
12
µA
IDD6_1
320
µA
IDD6_2
1800
µA
IDD6_IN
12
µA
IDD6 85°C is the maximum and IDD6 45°C is typical of the distribution of the arithmetic mean.
DC Characteristics 2
(TC = -30°C to +85°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V)
Table 5 Electrical Characteristics and Operating Conditions
Symbol
min.
max.
Unit
Parameter/Condition
IL
-2
+2
µA
Input leakage current:
For CA, CKE, /CS, CK, /CK
Any input 0V ≤ VIN ≤ VDD2
(All other pins not under test = 0V)
IVREF
-1
+1
µA
VREF supply leakage current:
VREFDQ = VDDQ/2 or VREFCA = VDD2/2
(All other pins not under test = 0V)
Notes: 1.
2.
Note
2
1
The minimum limit requirement is for testing purposes. The leakage current on VREFCA and VREFDQ pins should be
minimal.
Although DM is for input only, the DM leakage shall match the DQ and DQS, /DQS output leakage specification.
Preliminary Data Sheet E1891E10 (Ver. 1.0)
12
EDB4432BAPC
2.3
AC Characteristics
(TC = -30°C to +85°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V)
Table 6 AC Characteristics Table*6
Parameter
Symbol
min. min.
max. tCK*9
Max. Frequency*4
1066
Unit
—
533
MHz
min.
—
1.875
ns
max.
—
100
ns
min.
—
0.45
max.
—
0.55
min.
—
0.45
max.
—
0.55
Clock Timing
Average Clock Period
Average high pulse width
Average low pulse width
tCK(avg)
tCH(avg)
tCK(avg)
tCL(avg)
tCK(avg)
Absolute Clock Period
tCK(abs)
min.
—
tCK(avg)(min.) + tJIT(per)(min.)
Absolute clock HIGH pulse width
(with allowed jitter)
tCH(abs),
allowed
min.
—
0.43
max.
—
0.57
Absolute clock LOW pulse width
(with allowed jitter)
tCL(abs),
allowed
min.
—
0.43
max.
—
0.57
tJIT(per),
allowed
min.
—
-90
Clock Period Jitter (with allowed jitter)
max.
—
90
max.
—
180
min.
—
min((tCH(abs),min tCH(avg),min), (tCL(abs),min tCL(avg),min)) × tCK(avg)
max.
—
max((tCH(abs),max tCH(avg),max), (tCL(abs),max tCL(avg),max)) × tCK(avg)
tERR(2per),
allowed
min.
—
-132
max.
—
132
tERR(3per),
allowed
min.
—
-157
max.
—
157
min.
—
-175
max.
—
175
Maximum Clock Jitter between two
consecutive clock cycles (with allowed jitter)
Duty cycle Jitter (with allowed jitter)
Cumulative error across 2 cycles
Cumulative error across 3 cycles
Cumulative error across 4 cycles
Cumulative error across 5 cycles
Cumulative error across 6 cycles
Cumulative error across 7 cycles
tJIT(cc),
allowed
tCK(avg)
tCK(avg)
ps
tJIT(duty),
allowed
tERR(4per),
allowed
ps
ps
ps
min.
—
-188
—
188
tERR(6per),
allowed
min.
—
-200
max.
—
200
tERR(7per),
allowed
min.
—
-209
max.
—
209
Preliminary Data Sheet E1891E10 (Ver. 1.0)
13
ps
ps
max.
tERR(5per),
allowed
ps
ps
ps
ps
EDB4432BAPC
Table 6 AC Characteristics Table*6 (cont’d)
Parameter
Cumulative error across 8 cycles
Cumulative error across 9 cycles
Cumulative error across 10 cycles
Cumulative error across 11 cycles
Cumulative error across 12 cycles
Cumulative error across n = 13, 14
. . . 49, 50 cycles
min. min.
max. tCK*9
1066
tERR(8per),
allowed
min.
—
-217
max.
—
217
tERR(9per),
allowed
min.
—
-224
max.
—
224
tERR(10per), min.
allowed
max.
—
-231
—
231
tERR(11per), min.
allowed
max.
—
-237
—
237
tERR(12per), min.
allowed
max.
—
-242
—
242
min.
—
tERR(nper),allowed,min. =
(1 + 0.68ln(n)) ×
tJIT(per),allowed,min.
max.
—
tERR(nper),allowed,max. =
(1 + 0.68ln(n)) ×
tJIT(per),allowed,max.
min.
—
2500
max.
—
5500
Symbol
Unit
ps
ps
ps
ps
ps
tERR(nper),
allowed
ps
Read Parameters
DQS output access time from CK, /CK
tDQSCK
ps
DQSCK Delta Short*15
tDQSCKDS
max.
—
330
ps
DQSCK Delta Medium*16
tDQSCKDM
max.
—
680
ps
DQSCK Delta Long*17
tDQSCKDL
max.
—
920
ps
DQS – DQ skew
tDQSQ
max.
—
200
ps
Data hold skew factor
tQHS
max.
—
230
ps
DQS Output High Pulse Width
tQSH
min.
—
tCH(abs) - 0.05
tCK(avg)
DQS Output Low Pulse Width
tQSL
min.
—
tCL(abs) - 0.05
tCK(avg)
Data Half Period
tQHP
min.
—
min(tQSH, tQSL)
tCK(avg)
DQ / DQS output hold time from DQS
tQH
min.
—
tQHP - tQHS
Read preamble*12,*13
tRPRE
min.
—
0.9
tCK(avg)
Read postamble*12,*14
tRPST
min.
—
tCL(abs) - 0.05
tCK(avg)
DQS low-Z from clock*12
tLZ(DQS)
min.
—
tDQSCK(min.) - 300
ps
DQ low-Z from clock*12
tLZ(DQ)
min.
—
tDQSCK(min.) (1.4 × tQHS(max.))
ps
DQS high-Z from clock*12
tHZ(DQS)
max.
—
tDQSCK(max.) - 100
ps
DQ high-Z from clock*12
tHZ(DQ)
max.
—
tDQSCK(max.) +
(1.4 × tDQSQ(max.))
ps
Preliminary Data Sheet E1891E10 (Ver. 1.0)
14
ps
EDB4432BAPC
Table 6 AC Characteristics Table*6 (cont’d)
Parameter
Symbol
min. min.
max. tCK*9
1066
Unit
Write Parameters*11
DQ and DM input hold time (VREF based)
tDH
min.
—
210
ps
DQ and DM input setup time (VREF based)
tDS
min.
—
210
ps
DQ and DM input pulse width
tDIPW
min.
—
0.35
tCK(avg)
min.
—
0.75
Write command to 1st DQS latching transition
tDQSS
max.
—
1.25
tCK(avg)
DQS input high-level width
tDQSH
min.
—
0.4
tCK(avg)
DQS input low-level width
tDQSL
min.
—
0.4
tCK(avg)
DQS falling edge to CK setup time
tDSS
min.
—
0.2
tCK(avg)
DQS falling edge hold time from CK
tDSH
min.
—
0.2
tCK(avg)
Write postamble
tWPST
min.
—
0.4
tCK(avg)
Write preamble
tWPRE
min.
—
0.35
tCK(avg)
CKE min. pulse width (high and low pulse width)
tCKE
min.
3
3
tCK(avg)
CKE input setup time
tISCKE*2
min.
—
0.25
tCK(avg)
CKE input hold time
tIHCKE*3
min.
—
0.25
tCK(avg)
Address and control input setup time
(VREF based)
tIS*1
min.
—
220
ps
Address and control input hold time
(VREF based)
tIH*1
min.
—
220
ps
Address and control input pulse width
tIPW
min.
—
0.40
tCK(avg)
max.
—
100
min.
—
18
CKE Input Parameters
Command Address Input Parameters*11
Boot Parameters (10 MHz – 55 MHz)*5,*7,*8
Clock Cycle Time
tCKb
ns
CKE Input Setup Time
tISCKEb
min.
—
2.5
ns
CKE Input Hold Time
tIHCKEb
min.
—
2.5
ns
Address & Control Input Setup Time
tISb
min.
—
1150
ps
Address & Control Input Hold Time
tIHb
min.
—
1150
ps
DQS Output Data Access Time from
CK, /CK
min.
—
2.0
tDQSCKb
max.
—
10.0
Data Strobe Edge to Ouput Data Edge
tDQSQb - 1.2
tDQSQb
max.
—
1.2
ns
Data Hold Skew Factor
tQHSb
max.
—
1.2
ns
Mode Register Write command period
tMRW
min.
5
5
tCK(avg)
Mode Register Read command period
tMRR
min.
2
2
tCK(avg)
ns
Mode Register Parameters
Preliminary Data Sheet E1891E10 (Ver. 1.0)
15
EDB4432BAPC
Table 6 AC Characteristics Table*6 (cont’d)
Parameter
Symbol
min. min.
max. tCK*9
1066
Unit
DDR2 Mobile RAM Core Parameters*9
Read Latency
RL
min.
3
8
tCK(avg)
Write Latency
WL
min.
1
4
tCK(avg)
ACTIVE to ACTIVE command period
tRC
min.
—
tRAS + tRPab
(with all-bank Precharge)
tRAS + tRPpb
(with per-bank Precharge)
ns
CKE min. pulse width during Self-Refresh
(low pulse width during Self-Refresh)
tCKESR
min.
3
15
ns
Self-refresh exit to next valid command delay
tXSR
min.
2
tRFCab + 10
ns
Exit power down to next valid command delay
tXP
min.
2
7.5
ns
CAS to CAS delay
tCCD
min.
2
2
tCK(avg)
Internal Read to Precharge command delay
tRTP
min.
2
7.5
ns
RAS to CAS Delay
tRCD
min.
3
18
ns
Row Precharge Time (single bank)
tRPpb
min.
3
18
ns
Row Precharge Time (all banks)
tRPab
min.
3
21
ns
min.
3
42
ns
Row Active Time
tRAS
max.
—
70
µs
Write Recovery Time
tWR
min.
3
15
ns
Internal Write to Read Command Delay
tWTR
min.
2
7.5
ns
Active bank A to Active bank B
tRRD
min.
2
10
ns
Four Bank Activate Window
tFAW
min.
8
50
ns
Minimum Deep Power Down Time
tDPD
min.
—
500
µs
Refresh Window
tREFW
max.
—
32
ms
Required number of REFRESH commands
R
min.
—
8192
Average time between REFRESH commands
(for reference only)
tREFI
max.
—
3.9
µs
tREFIpb
max.
—
0.4875
µs
Refresh Cycle time
tRFCab
min.
—
130
ns
Per Bank Refresh Cycle time
tRFCpb
min.
—
60
ns
Burst Refresh Window
= 4 × 8 × tRFCab
tREFBW
min.
—
4.16
µs
Initialization Calibration Time
tZQINIT
min.
—
1
µs
Long Calibration Time
tZQCL
min.
6
360
ns
Short Calibration Time
tZQCS
min.
6
90
ns
Calibration Reset Time
tZQRESET
min.
3
50
ns
DDR2 Mobile RAM Refresh Requirement Parameters
ZQ Calibration Parameters*9
Preliminary Data Sheet E1891E10 (Ver. 1.0)
16
EDB4432BAPC
Notes: 1.
Input set-up/hold time for signal(CA0 – CA9, /CS).
2.
CKE input setup time is measured from CKE reaching high/low voltage level to CK, /CK crossing.
3.
CKE input hold time is measured from CK, /CK crossing to CKE reaching high/low voltage level.
4.
Frequency values are for reference only. Clock cycle time (tCK) shall be used to determine device capabilities.
5.
To guarantee device operation before the DDR2 Mobile RAM Device is configured a number of AC boot timing parameters are defined in the Table 6 on page 13. Boot parameter symbols have the letter b appended, e.g. tCK during boot is
tCKb.
6.
Frequency values are for reference only. Clock cycle time (tCK or tCKb) shall be used to determine device capabilities.
7.
The DDR2 Mobile RAM will set some Mode register default values upon receiving a RESET (MRW) command as specified in “Mode Register Definition” in the individual DDR2 Mobile RAM data sheet.
8.
The output skew parameters are measured with Ron default settings into the reference load.
9.
These parameters should be satisfied with both specification, analog (ns) value and min. tCK.
10.
All AC timings assume an input slew rate of 1V/ns.
11.
Read, Write, and Input Setup and Hold values are referenced to VREF.
12. For low-to-high and high-to-low transitions the timing reference will be at the point when the signal crosses VTT. tHZ
and tLZ transitions occur in the same access time (with respect to clock) as valid data transitions. These parameters
are not referenced to a specific voltage level but to the time when the device output is no longer driving (for tRPST,
tHZ(DQS) and tHZ(DQ) ), or begins driving (for tRPRE, tLZ(DQS), tLZ(DQ) ). Figure 1 shows a method to calculate the
point when device is no longer driving tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS), tLZ(DQ) by measuring the
signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent.
VOH
X
VOH - X mV
2x X
VTT + 2x Y mV
VTT + Y mV
VOH - 2x X mV
tLZ(DQS), tLZ(DQ)
VTT
VTT
Y
actual waveform
2x Y
VTT - Y mV
tHZ(DQS), tHZ(DQ)
VOL + 2x X mV
VTT - 2x Y mV
VOL + X mV
T1 T2
VOL
T1 T2
stop driving point = 2 x T1 - T2
begin driving point = 2 x T1 - T2
Figure 1 — tLZ and tHZ Method for Calculating Transition and Endpoints
The parameters tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as single-ended. The
timing parameters tRPRE and tRPST are determined from the differential signal DQS-/DQS.
13.
Measured from the start driving of DQS – /DQS to the start driving the first rising strobe edge.
14.
Measured from the from start driving the last falling strobe edge to the stop driving DQS – /DQS.
15. tDQSCKDS is the absolute value of the difference between any two tDQSCK measurements (within a byte lane) within
a contiguous sequence of bursts within a 160ns rolling window. tDQSCKDS is not tested and is guaranteed by design.
Temperature drift in the system is < 10°C/s. Values do not include clock
jitter.
16.
tDQSCKDM is the absolute value of the difference between any two tDQSCK measurements (within a byte lane) within
a 1.6µs rolling window. tDQSCKDM is not tested and is guaranteed by design. Temperature drift in the system is <
10°C/s. Values do not include clock jitter.
17.
tDQSCKDL is the absolute value of the difference between any two tDQSCK measurements (within a byte lane) within
a 32ms rolling window. tDQSCKDL is not tested and is guaranteed by design. Temperature drift in the system is <
10°C/s. Values do not include clock jitter.
Preliminary Data Sheet E1891E10 (Ver. 1.0)
17
EDB4432BAPC
2.3.1
HSUL_12 Driver Output Timing Reference Load
These ‘Timing Reference Loads’ are not intended as a precise representation of any particular system
environment or a depiction of the actual load presented by a production tester. System designers should
use IBIS or other simulation tools to correlate the timing reference load to a system environment.
Manufacturers correlate to their production test conditions, generally one or more coaxial transmission
lines terminated at the tester electronics.
VREF
0.5 x VDDQ
DDR2
Mobile RAM
RTT = 50 Ω
Output
VTT = 0.5 x VDDQ
Cload = 5pF
Figure 2 — HSUL_12 Driver Output Reference Load for Timing and Slew Rate
Note: 1.
All output timing parameter values (like tDQSCK, tDQSQ, tQHS, tHZ, tRPRE etc) are reported with respect to this
reference load. This reference load is also used to report slew rate.
Preliminary Data Sheet E1891E10 (Ver. 1.0)
18
EDB4432BAPC
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR MOS DEVICES
Exposing the MOS devices to a strong electric field can cause destruction of the gate
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it, when once
it has occurred. Environmental control must be adequate. When it is dry, humidifier
should be used. It is recommended to avoid using insulators that easily build static
electricity. MOS devices must be stored and transported in an anti-static container,
static shielding bag or conductive material. All test and measurement tools including
work bench and floor should be grounded. The operator should be grounded using
wrist strap. MOS devices must not be touched with bare hands. Similar precautions
need to be taken for PW boards with semiconductor MOS devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES
No connection for CMOS devices input pins can be a cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input level may be
generated due to noise, etc., hence causing malfunction. CMOS devices behave
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected
to VDD or GND with a resistor, if it is considered to have a possibility of being an output
pin. The unused pins must be handled in accordance with the related specifications.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Power-on does not necessarily define initial status of MOS devices. Production process
of MOS does not define the initial operation status of the device. Immediately after the
power source is turned ON, the MOS devices with reset function have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or
contents of registers. MOS devices are not initialized until the reset signal is received.
Reset operation must be executed immediately after power-on for MOS devices having
reset function.
CME0107
Preliminary Data Sheet E1891E10 (Ver. 1.0)
19
EDB4432BAPC
Mobile RAM is a trademark of Elpida Memory, Inc.
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Elpida Memory, Inc.
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or
third parties by or arising from the use of the products or information listed in this document. No license,
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property
rights of Elpida Memory, Inc. or others.
Descriptions of circuits, software and other related information in this document are provided for
illustrative purposes in semiconductor product operation and application examples. The incorporation of
these circuits, software and information in the design of the customer's equipment shall be done under
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses
incurred by customers or third parties arising from the use of these circuits, software and information.
[Product applications]
Be aware that this product is for use in typical electronic equipment for general-purpose applications.
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.
However, this product is not intended for use in the product in aerospace, aeronautics, nuclear power,
combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other
such application in which especially high quality and reliability is demanded or where its failure or
malfunction may directly threaten human life or cause risk of bodily injury. Customers are instructed to
contact Elpida Memory's sales office before using this product for such applications.
[Product usage]
Design your application so that the product is used within the ranges and conditions guaranteed by
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no
responsibility for failure or damage when the product is used beyond the guaranteed ranges and
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other
consequential damage due to the operation of the Elpida Memory, Inc. product.
[Usage environment]
Usage in environments with special characteristics as listed below was not considered in the design.
Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in
environments with the special characteristics listed below.
Example:
1) Usage in liquids, including water, oils, chemicals and organic solvents.
2) Usage in exposure to direct sunlight or the outdoors, or in dusty places.
3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL 2 , H 2 S, NH 3 ,
SO 2 , and NO x .
4) Usage in environments with static electricity, or strong electromagnetic waves or radiation.
5) Usage in places where dew forms.
6) Usage in environments with mechanical vibration, impact, or stress.
7) Usage near heating elements, igniters, or flammable items.
If you export the products or technology described in this document that are controlled by the Foreign
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by
U.S. export control regulations, or another country's export control laws or regulations, you must follow
the necessary procedures in accordance with such laws or regulations.
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted
license to use these products, that third party must be made aware that they are responsible for
compliance with the relevant laws and regulations.
M01E1007
Preliminary Data Sheet E1891E10 (Ver. 1.0)
20