DATA SHEET 16G bits DDR2 Mobile RAM™, QDP EDBA232B1MA (512M words × 32 bits) Specifications Features • Density: 16G bits • Organization — 32M words × 32 bits × 8 banks × 2 ranks — 4 pieces of 4Gb (×16) in one package • Data rate: 1066Mbps (max.) • Package — 134-ball FBGA, QDP (Quad Die Package) — Package size: 11.5mm × 13.0mm — Ball pitch: 0.65mm — Lead-free (RoHS compliant) and Halogen-free • Power supply — VDD1 = 1.70V to 1.95V — VDD2, VDDQ = 1.14V to 1.30V • Interface: HSUL_12 • Operating case temperature range — TC = -30°C to +85°C • JEDEC LPDDR2-S4B compliance • DLL is not implemented • Low power consumption • Mobile RAM functions — Partial Array Self-Refresh (PASR) — Auto Temperature Compensated Self-Refresh (ATCSR) by built-in temperature sensor — Deep power-down mode — Per Bank Refresh Block Diagram CKE0 /CS0 CKE1 /CS1 CK, /CK CA0 to CA9 4G bits (256M x 16) 4G bits (256M x 16) DQS0, /DQS0 DQS1, /DQS1 DQ0 to DQ15 DM0, DM1 ZQ0 VDD1 VDD2 VDDQ VREFCA VREFDQ VSS 4G bits (256M x 16) 4G bits (256M x 16) DQS2, /DQS2 DQS3, /DQS3 DQ16 to DQ31 DM2, DM3 ZQ1 Document No. E1784E30 (Ver. 3.0) Date Published March 2012 (K) Japan Printed in Japan URL: http://www.elpida.com Elpida Memory, Inc. 2011-2012 EDBA232B1MA Ordering Information Organization (words x bits) Part number EDBA232B1MA-1D-F EDBA232B1MA-8D-F 512M × 32 (256M × 16 × 4pcs) Clock frequency Data rate Read latency 533MHz 1066Mbps 8 400MHz 800Mbps 6 Package 134-ball FBGA Part Number E D B A2 32 B 1 MA - 1D - F Elpida Memory Environment Code F: Lead Free (RoHS compliant) and Halogen Free Type D: Packaged Device Product Family B: DDR2 Mobile RAM Speed 1D: 1066Mbps 8D: 800Mbps Density/Chip select A2: 16Gb/2-CS Package MA: Stacked FBGA Organization 32: x32 Revision Power Supply, Interface B: VDD1 = 1.8V, VDD2 = VDDQ = 1.2V, S4B device, HSUL Data Sheet E1784E30 (Ver. 3.0) 2 EDBA232B1MA CONTENTS Specifications ........................................................................................................................................ 1 Block Diagram ....................................................................................................................................... 1 Features ................................................................................................................................................ 1 Ordering Information ............................................................................................................................. 2 Part Number .......................................................................................................................................... 2 Pin Configurations ................................................................................................................................. 4 Pin Descriptions .................................................................................................................................... 5 Pin Capacitance .................................................................................................................................... 6 Package Drawing .................................................................................................................................. 7 Mode Register Specification ................................................................................................................. 8 1. Electrical Conditions ...................................................................................................................... 9 1.1 Absolute Maximum Ratings .............................................................................................. 9 1.2 Recommended DC Operating Conditions ........................................................................ 9 2. Electrical Specifications ............................................................................................................... 10 2.1 DC Characteristics 1 ....................................................................................................... 10 2.2 DC Characteristics 2 ....................................................................................................... 12 2.3 AC Characteristics .......................................................................................................... 13 Data Sheet E1784E30 (Ver. 3.0) 3 EDBA232B1MA Pin Configurations /xxx indicate active low signal. 134-ball FBGA 1 2 3 4 5 6 7 NU NU NU NC NC VDD2 VDD1 DQ31 VDD1 VSS ZQ1 VSS VSS VSS VDD2 ZQ0 VDDQ VSS CA9 CA8 NC CA6 CA7 8 9 10 NU NU DQ29 DQ26 NU VDDQ DQ25 VSS VDDQ DQ30 DQ27 DQS3 /DQS3 VSS DQ28 DQ24 DM3 DQ15 VDDQ VSS VSS DQ11 DQ13 DQ14 DQ12 VDDQ /DQS1 DQS1 DQ10 DQ9 DQ8 VSS VDD2 VSS VREFDQ A B C D E F G VDD2 CA5 VREFCA H NC VSS /CK DM1 VDDQ VSS NC CK VSS VDDQ CKE0 CKE1 NC DM0 VDDQ /CS0 /CS1 NC CA4 CA3 CA2 VSS VSS NC CA1 VSS VDD2 VDD1 J K L /DQS0 DQS0 DQ5 DQ6 DQ7 VSS DQ4 DQ2 DQ1 DQ3 VDDQ DQ19 DQ23 DM2 DQ0 VDDQ VSS CA0 VDDQ DQ17 DQ20 DQS2 /DQS2 VSS VSS NC VSS VSS VDDQ DQ22 VSS VDDQ NU NC NC VDD2 VDD1 DQ16 DQ18 DQ21 NU NU NU NU NU M N P R T U (Top view) Data Sheet E1784E30 (Ver. 3.0) 4 EDBA232B1MA Pin Descriptions Pin name Function CK, /CK Clock CKE0, CKE1 Clock enable /CS0, /CS1 Chip select CA0 to CA9 DDR command/address inputs DM0 to DM3 Input data mask DQ0 to DQ31 Data input/output DQS0 to DQS3 /DQS0 to /DQS3 Data strobe VDD1 Core power supply 1 VDD2 (Address configurations: Row:R0-R13, Column:C0-C10, Bank:BA0-BA2) *1 Core power supply 2 and input receiver power supply *1 I/O power supply VDDQ VREFCA Reference voltage for CA input receiver VREFDQ Reference voltage for DQ input receiver VSS Ground ZQ Reference pin for output drive strength calibration NC *2 No connection NU *3 Not usable Notes: 1. VDD2 and VDDQ are merged on the package substrate. 2. Not internally connected. 3. Don’t connect. Internally connected. Data Sheet E1784E30 (Ver. 3.0) 5 EDBA232B1MA Pin Capacitance Parameter Symbol Pins min. max. Unit Note Input capacitance CI1 CK, /CK 5.0 8.0 pF 1, 2 CI2 All other DDR2 Mobile RAM input only pins 3.0 10.0 pF 1, 2 CI/O DQ, DM, DQS, /DQS 5.0 8.5 pF 1, 2, 3 CZQ ZQ0, ZQ1 3.5 5.5 pF 1, 2, 3 Data input/output capacitance Notes: 1. This parameter is not subject to production test. It is verified by design and characterization. 2. These parameters are measured on f = 100MHz, VOUT = VDDQ/2, TA = +25°C. 3. DOUT circuits are disabled. Data Sheet E1784E30 (Ver. 3.0) 6 EDBA232B1MA Package Drawing 134-ball FBGA Solder ball: Lead free Unit: mm 13.00 ± 0.10 0.20 S B 11.50 ± 0.10 INDEX MARK 0.20 S A 1.13 ± 0.07 0.20 S S 0.10 S 0.32 ± 0.05 134−φ0.40 ± 0.05 φ0.08 M S A B 0.65 B 10.40 A INDEX MARK 0.65 0.325 5.85 ECA-TS2-0444-01 Data Sheet E1784E30 (Ver. 3.0) 7 EDBA232B1MA Mode Register Specification The following table shows the specifications of mode register values (MR5, 6, 7, 8) for the manufacturer ID and the device descriptions such as DRAM type, density, I/O and die revision. MR# MA <7:0> 5 05h OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 Manufacturer ID : ELPIDA 0 6 0 0 0 0 06h Die Revision : Revision A 7 0 0 0 0 1 0 0 0 07h RFU : Default value 8 08h Note: 1. 1 I/O : ×16 1 Density of Die : 4Gbit Type : S4 The register values specify monolithic die information in a package. Therefore, please refer to the block diagram for understanding whole memory configuration of the product containing multiple dice in a package. Data Sheet E1784E30 (Ver. 3.0) 8 EDBA232B1MA 1. Electrical Conditions • All voltages are referenced to VSS (GND) • Execute power-up and Initialization sequence before proper device operation is achieved. • Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the DDR2 Mobile RAM Device must be powered down and then restarted through the specialized initialization sequence before normal operation can continue. 1.1 Absolute Maximum Ratings Table 1 Absolute Maximum Ratings Parameter Symbol min. max. Unit Note VDD1 supply voltage relative to VSS VDD1 -0.4 2.3 V 2 VDD2 supply voltage relative to VSS VDD2 -0.4 1.6 V 2 VDDQ supply voltage relative to VSSQ VDDQ -0.4 1.6 V 2, 3 Voltage on any ball relative to VSS VIN, VOUT -0.4 1.6 V Storage Temperature TSTG -55 125 °C Notes: 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. See Power-Ramp section “Power-up, initialization and Power-Off” in the individual DDR2 Mobile RAM data sheet for relationship between power supplies. 3. VREF ≤ 0.6 x VDDQ; however, VREF may be ≥ VDDQ provided that VREF ≤ 300mV. 4. Storage Temperature is the case surface temperature on the center/top side of the DDR2 Mobile RAM Device. For the measurement conditions, please refer to JESD51-2 standard. Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. 1.2 Recommended DC Operating Conditions Table 2 Recommended DC Operating Conditions(TC = -30°C to +85°C) Parameter Symbol min. typ. max. Unit Core Power1 VDD1 1.70 1.80 1.95 V Core Power2, Input Buffer Power VDD2 1.14 1.20 1.30 V I/O Buffer Power VDDQ 1.14 1.20 1.30 V Data Sheet E1784E30 (Ver. 3.0) 9 EDBA232B1MA 2. Electrical Specifications 2.1 DC Characteristics 1 (TC = -30°C to +85°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V) Table 3 IDD Specification Parameters and Operating Conditions Symbol Power Supply 1066 800 Unit Parameter/Condition max. max. IDD0_1 VDD1 22 22 mA 110 104 mA VDDQ 2.0 2.0 mA 2 pieces of devices in operating one bank active-precharge The other in deep power down Conditions for operating devices are: tCK = tCK(avg)min; tRC = tRCmin; CKE is HIGH; /CS is HIGH between valid commands; CA bus inputs are SWITCHING; Data bus inputs are STABLE IDD0_2 VDD2 IDD0_IN IDD2P_1 VDD1 1.6 1.6 mA IDD2P_2 VDD2 3.6 3.6 mA IDD2P_IN VDDQ 0.4 0.4 mA IDD2PS_1 VDD1 1.6 1.6 mA IDD2PS_2 VDD2 3.6 3.6 mA IDD2PS_IN VDDQ 0.4 0.4 mA IDD2N_1 VDD1 2.4 2.4 mA IDD2N_2 VDD2 60 48 mA IDD2N_IN VDDQ 4.0 4.0 mA IDD2NS_1 VDD1 2.4 2.4 mA IDD2NS_2 VDD2 28 28 mA IDD2NS_IN VDDQ 4.0 4.0 mA IDD3P_1 VDD1 2.8 2.8 mA IDD3P_2 VDD2 22 22 mA IDD3P_IN VDDQ 0.4 0.4 mA IDD3PS_1 VDD1 2.8 2.8 mA IDD3PS_2 VDD2 22 22 mA IDD3PS_IN VDDQ 0.4 0.4 mA IDD3N_1 VDD1 4.0 4.0 mA IDD3N_2 VDD2 88 76 mA IDD3N_IN VDDQ 4.0 4.0 mA IDD3NS_1 VDD1 4.0 4.0 mA IDD3NS_2 VDD2 60 60 mA IDD3NS_IN VDDQ 4.0 4.0 mA IDD4R_1 VDD1 4.0 4.0 mA IDD4R_2 VDD2 320 250 mA All devices in idle power-down standby current tCK = tCK(avg)min; CKE is LOW; /CS is HIGH; All banks idle; CA bus inputs are SWITCHING; Data bus inputs are STABLE All devices in idle power-down standby current with clock stop CK = LOW, /CK = HIGH; CKE is LOW; /CS is HIGH; All banks idle; CA bus inputs are STABLE; Data bus inputs are STABLE All devices in idle non power-down standby current tCK = tCK(avg)min; CKE is HIGH; /CS is HIGH; All banks idle; CA bus inputs are SWITCHING; Data bus inputs are STABLE All devices in idle non power-down standby current with clock stop CK = LOW, /CK = HIGH; CKE is HIGH; /CS is HIGH; All banks idle; CA bus inputs are STABLE; Data bus inputs are STABLE All devices in active power-down standby current tCK = tCK(avg)min; CKE is LOW; /CS is HIGH; One bank active; CA bus inputs are SWITCHING; Data bus inputs are STABLE All devices in active power-down standby current with clock stop CK = LOW, /CK = HIGH; CKE is LOW; /CS is HIGH; One bank active; CA bus inputs are STABLE; Data bus inputs are STABLE All devices in active non power-down standby current tCK = tCK(avg)min; CKE is HIGH; /CS is HIGH; One bank active; CA bus inputs are SWITCHING; Data bus inputs are STABLE All devices in active non power-down standby current with clock stop CK = LOW, /CK = HIGH; CKE is HIGH; /CS is HIGH; One bank active; CA bus inputs are STABLE; Data bus inputs are STABLE 2 pieces of devices in operating burst read The other in deep power down Conditions for operating devices are: tCK = tCK(avg)min; /CS is HIGH between valid commands; One bank active; BL = 4; RL = RLmin; CA bus inputs are SWITCHING; 50% data change each burst transfer; Data Sheet E1784E30 (Ver. 3.0) 10 EDBA232B1MA Table 3 IDD Specification Parameters and Operating Conditions (cont’d) Symbol Power Supply 1066 800 Unit Parameter/Condition max. max. IDD4W_1 VDD1 4.0 4.0 mA 380 310 mA VDDQ 2.0 2.0 mA 2 pieces of devices in operating burst write The other in deep power down Conditions for operating devices are: tCK = tCK(avg)min; /CS is HIGH between valid commands; One bank active; BL = 4; WL = WLmin; CA bus inputs are SWITCHING; 50% data change each burst transfer; IDD4W_2 VDD2 IDD4W_IN IDD5_1 VDD1 80 80 mA IDD5_2 VDD2 300 300 mA IDD5_IN VDDQ 2.0 2.0 mA IDD5AB_1 VDD1 4.0 4.0 mA IDD5AB_2 VDD2 32 30 mA IDD5AB_IN VDDQ 2.0 2.0 mA IDD5PB_1 VDD1 4.0 4.0 mA IDD5PB_2 VDD2 32 30 mA IDD5PB_IN VDDQ 2.0 2.0 mA IDD8_1 VDD1 64 64 µA IDD8_2 VDD2 24 24 µA IDD8_IN VDDQ 48 48 µA Notes: 1. 2. 2 pieces of devices in all bank auto-refresh The other in deep power down Conditions for operating devices are: tCK = tCK(avg)min; CKE is HIGH between valid commands; tRC = tRFCabmin; Burst refresh; CA bus inputs are SWITCHING; Data bus inputs are STABLE; 2 pieces of devices in all bank auto-refresh The other in deep power down Conditions for operating devices are: tCK = tCK(avg)min; CKE is HIGH between valid commands; tRC = tREFI; CA bus inputs are SWITCHING; Data bus inputs are STABLE; 2 pieces of devices in per bank auto-refresh The other in deep power down Conditions for operating devices are: tCK = tCK(avg)min; CKE is HIGH between valid commands; tRC = tREFI/8; CA bus inputs are SWITCHING; Data bus inputs are STABLE; All devices in deep power-down CK = LOW, /CK = HIGH; CKE is LOW; CA bus inputs are STABLE; Data bus inputs are STABLE; IDD values published are the maximum of the distribution of the arithmetic mean. IDD current specifications are tested after the device is properly initialized. Data Sheet E1784E30 (Ver. 3.0) 11 EDBA232B1MA Table 4 IDD6 Full and Partial Array Self-Refresh Current Parameter Symbol Self-Refresh Current +45°C Full Array 1/2 Array 1/4 Array 1/8 Array Self-Refresh Current +85°C Full Array 1/2 Array 1/4 Array 1/8 Array Note: 1. 2.2 Value Unit Condition IDD6_1 1200 µA IDD6_2 3400 µA All devices in self-refresh CK = LOW, /CK = HIGH; CKE is LOW; CA bus inputs are STABLE; Data bus inputs are STABLE; IDD6_IN 40 µA IDD6_1 800 µA IDD6_2 2000 µA IDD6_IN 40 µA IDD6_1 600 µA IDD6_2 1200 µA IDD6_IN 40 µA IDD6_1 480 µA IDD6_2 800 µA IDD6_IN 40 µA IDD6_1 3600 µA IDD6_2 12800 µA IDD6_IN 48 µA IDD6_1 2200 µA IDD6_2 9600 µA IDD6_IN 48 µA IDD6_1 1600 µA IDD6_2 8000 µA IDD6_IN 48 µA IDD6_1 1280 µA IDD6_2 7200 µA IDD6_IN 48 µA IDD6 85°C is the maximum and IDD6 45°C is typical of the distribution of the arithmetic mean. DC Characteristics 2 (TC = -30°C to +85°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V) Table 5 Electrical Characteristics and Operating Conditions Symbol min. max. Unit Parameter/Condition IL -8 +8 µA Input leakage current: For CA, CKE, /CS, CK, /CK Any input 0V ≤ VIN ≤ VDD2 (All other pins not under test = 0V) IVREF -4 +4 µA VREF supply leakage current: VREFDQ = VDDQ/2 or VREFCA = VDD2/2 (All other pins not under test = 0V) Notes: 1. 2. Note 2 1 The minimum limit requirement is for testing purposes. The leakage current on VREFCA and VREFDQ pins should be minimal. Although DM is for input only, the DM leakage shall match the DQ and DQS, /DQS output leakage specification. Data Sheet E1784E30 (Ver. 3.0) 12 EDBA232B1MA 2.3 AC Characteristics (TC = -30°C to +85°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V) Table 6 AC Characteristics Table*6 Parameter Symbol min. min. max. tCK*9 1066 800 — 533 400 MHz min. — 1.875 2.5 ns max. — 100 min. — 0.45 max. — 0.55 min. — 0.45 max. — 0.55 Max. Frequency*4 Unit Clock Timing Average Clock Period Average high pulse width Average low pulse width tCK(avg) ns tCH(avg) tCK(avg) tCL(avg) tCK(avg) Absolute Clock Period tCK(abs) min. — tCK(avg)(min.) + tJIT(per)(min.) tCH(abs), allowed min. — 0.43 Absolute clock HIGH pulse width (with allowed jitter) max. — 0.57 tCL(abs), allowed min. — 0.43 max. — 0.57 tJIT(per), allowed min. — -90 -100 max. — 90 100 max. — 180 200 min. — min((tCH(abs),min tCH(avg),min), (tCL(abs),min tCL(avg),min)) × tCK(avg) max. — max((tCH(abs),max tCH(avg),max), (tCL(abs),max tCL(avg),max)) × tCK(avg) tERR(2per), allowed min. — -132 -147 max. — 132 147 tERR(3per), allowed min. — -157 -175 max. — 157 175 tERR(4per), allowed min. — -175 -194 max. — 175 194 tERR(5per), allowed min. — -188 -209 max. — 188 209 tERR(6per), allowed min. — -200 -222 max. — 200 222 tERR(7per), allowed min. — -209 -232 max. — 209 232 Absolute clock LOW pulse width (with allowed jitter) Clock Period Jitter (with allowed jitter) Maximum Clock Jitter between two consecutive clock cycles (with allowed jitter) Duty cycle Jitter (with allowed jitter) Cumulative error across 2 cycles Cumulative error across 3 cycles Cumulative error across 4 cycles Cumulative error across 5 cycles Cumulative error across 6 cycles Cumulative error across 7 cycles ps tCK(avg) tCK(avg) ps tJIT(cc), allowed tJIT(duty), allowed Data Sheet E1784E30 (Ver. 3.0) 13 ps ps ps ps ps ps ps ps EDBA232B1MA Table 6 AC Characteristics Table*6 (cont’d) Parameter Cumulative error across 8 cycles Cumulative error across 9 cycles Cumulative error across 10 cycles Cumulative error across 11 cycles Cumulative error across 12 cycles Cumulative error across n = 13, 14 . . . 49, 50 cycles min. min. max. tCK*9 1066 800 tERR(8per), allowed min. — -217 -241 max. — 217 241 tERR(9per), allowed min. — -224 -249 max. — 224 249 tERR(10per), min. allowed max. — -231 -257 — 231 257 tERR(11per), min. allowed max. — -237 -263 — 237 263 tERR(12per), min. allowed max. — -242 -269 — 242 269 min. — tERR(nper),allowed,min. = (1 + 0.68ln(n)) × tJIT(per),allowed,min. max. — tERR(nper),allowed,max. = (1 + 0.68ln(n)) × tJIT(per),allowed,max. min. — 2500 max. — 5500 Symbol Unit ps ps ps ps ps tERR(nper), allowed ps Read Parameters DQS output access time from CK, /CK tDQSCK ps DQSCK Delta Short*15 tDQSCKDS max. — 330 450 ps DQSCK Delta Medium*16 tDQSCKDM max. — 680 900 ps DQSCK Delta Long*17 tDQSCKDL max. — 920 1200 ps DQS – DQ skew tDQSQ max. — 200 240 ps Data hold skew factor tQHS max. — 230 280 ps DQS Output High Pulse Width tQSH min. — tCH(abs) - 0.05 tCK(avg) DQS Output Low Pulse Width tQSL min. — tCL(abs) - 0.05 tCK(avg) Data Half Period tQHP min. — min(tQSH, tQSL) tCK(avg) DQ / DQS output hold time from DQS tQH min. — tQHP - tQHS tRPRE min. — 0.9 tCK(avg) Read postamble*12,*14 tRPST min. — tCL(abs) - 0.05 tCK(avg) DQS low-Z from clock*12 tLZ(DQS) min. — tDQSCK(min.) - 300 ps DQ low-Z from clock*12 tLZ(DQ) min. — tDQSCK(min.) (1.4 × tQHS(max.)) ps DQS high-Z from clock*12 tHZ(DQS) max. — tDQSCK(max.) - 100 ps DQ high-Z from clock*12 tHZ(DQ) max. — tDQSCK(max.) + (1.4 × tDQSQ(max.)) ps Read preamble*12,*13 Data Sheet E1784E30 (Ver. 3.0) 14 ps EDBA232B1MA Table 6 AC Characteristics Table*6 (cont’d) Parameter Symbol min. min. max. tCK*9 1066 800 Unit Write Parameters*11 DQ and DM input hold time (VREF based) tDH min. — 210 270 ps DQ and DM input setup time (VREF based) tDS min. — 210 270 ps DQ and DM input pulse width tDIPW min. — 0.35 min. — 0.75 Write command to 1st DQS latching transition tDQSS max. — 1.25 tCK(avg) tCK(avg) DQS input high-level width tDQSH min. — 0.4 tCK(avg) DQS input low-level width tDQSL min. — 0.4 tCK(avg) DQS falling edge to CK setup time tDSS min. — 0.2 tCK(avg) DQS falling edge hold time from CK tDSH min. — 0.2 tCK(avg) Write postamble tWPST min. — 0.4 tCK(avg) Write preamble tWPRE min. — 0.35 tCK(avg) CKE min. pulse width (high and low pulse width) tCKE min. 3 3 tCK(avg) CKE input setup time tISCKE*2 min. — 0.25 tCK(avg) CKE input hold time tIHCKE*3 min. — 0.25 tCK(avg) Address and control input setup time tIS*1 min. — 220 290 ps Address and control input hold time tIH*1 min. — 220 290 ps tIPW min. — 0.40 max. — 100 min. — 18 CKE Input Parameters Command Address Input Parameters*11 Address and control input pulse width Boot Parameters (10 MHz – 55 MHz) tCK(avg) *5,*7,*8 Clock Cycle Time tCKb ns CKE Input Setup Time tISCKEb min. — 2.5 ns CKE Input Hold Time tIHCKEb min. — 2.5 ns Address & Control Input Setup Time tISb min. — 1150 ps Address & Control Input Hold Time tIHb min. — 1150 ps min. — 2.0 DQS Output Data Access Time from CK, /CK tDQSCKb max. — 10.0 Data Strobe Edge to Ouput Data Edge tDQSQb - 1.2 tDQSQb max. — 1.2 ns Data Hold Skew Factor tQHSb max. — 1.2 ns Mode Register Write command period tMRW min. 5 5 tCK(avg) Mode Register Read command period tMRR min. 2 2 tCK(avg) ns Mode Register Parameters Data Sheet E1784E30 (Ver. 3.0) 15 EDBA232B1MA Table 6 AC Characteristics Table*6 (cont’d) Parameter Symbol min. min. max. tCK*9 1066 800 Unit DDR2 Mobile RAM Core Parameters*9 Read Latency RL min. 3 8 6 tCK(avg) Write Latency WL min. 1 4 3 tCK(avg) ACTIVE to ACTIVE command period tRC min. — tRAS + tRPab (with all-bank Precharge) tRAS + tRPpb (with per-bank Precharge) ns CKE min. pulse width during Self-Refresh (low pulse width during Self-Refresh) tCKESR min. 3 15 ns Self-refresh exit to next valid command delay tXSR min. 2 tRFCab + 10 ns Exit power down to next valid command delay tXP min. 2 7.5 ns CAS to CAS delay tCCD min. 2 2 Internal Read to Precharge command delay tRTP min. 2 7.5 ns RAS to CAS Delay tRCD min. 3 18 ns Row Precharge Time (single bank) tRPpb min. 3 18 ns Row Precharge Time (all banks) tRPab min. 3 21 ns min. 3 42 ns max. — 70 µs Row Active Time tRAS tCK(avg) Write Recovery Time tWR min. 3 15 ns Internal Write to Read Command Delay tWTR min. 2 7.5 ns Active bank A to Active bank B tRRD min. 2 10 ns Four Bank Activate Window tFAW min. 8 50 ns Minimum Deep Power Down Time tDPD min. — 500 µs Refresh Window tREFW max. — 32 ms Required number of REFRESH commands R min. — 8192 Average time between REFRESH commands (for reference only) tREFI max. — 3.9 µs tREFIpb max. — 0.4875 µs Refresh Cycle time tRFCab min. — 130 ns Per Bank Refresh Cycle time tRFCpb min. — 60 ns Burst Refresh Window = 4 × 8 × tRFCab tREFBW min. — 4.16 µs Initialization Calibration Time tZQINIT min. — 1 µs Long Calibration Time tZQCL min. 6 360 ns Short Calibration Time tZQCS min. 6 90 ns Calibration Reset Time tZQRESET min. 3 50 ns DDR2 Mobile RAM Refresh Requirement Parameters ZQ Calibration Parameters*9 Data Sheet E1784E30 (Ver. 3.0) 16 EDBA232B1MA Notes: 1. Input set-up/hold time for signal(CA0 – CA9, /CS). 2. CKE input setup time is measured from CKE reaching high/low voltage level to CK, /CK crossing. 3. CKE input hold time is measured from CK, /CK crossing to CKE reaching high/low voltage level. 4. Frequency values are for reference only. Clock cycle time (tCK) shall be used to determine device capabilities. 5. To guarantee device operation before the DDR2 Mobile RAM Device is configured a number of AC boot timing parameters are defined in the Table 6 on page 13. Boot parameter symbols have the letter b appended, e.g. tCK during boot is tCKb. 6. Frequency values are for reference only. Clock cycle time (tCK or tCKb) shall be used to determine device capabilities. 7. The DDR2 Mobile RAM will set some Mode register default values upon receiving a RESET (MRW) command as specified in “Mode Register Definition” in the individual DDR2 Mobile RAM data sheet. 8. The output skew parameters are measured with Ron default settings into the reference load. 9. These parameters should be satisfied with both specification, analog (ns) value and min. tCK. 10. All AC timings assume an input slew rate of 1V/ns. 11. Read, Write, and Input Setup and Hold values are referenced to VREF. 12. For low-to-high and high-to-low transitions the timing reference will be at the point when the signal crosses VTT. tHZ and tLZ transitions occur in the same access time (with respect to clock) as valid data transitions. These parameters are not referenced to a specific voltage level but to the time when the device output is no longer driving (for tRPST, tHZ(DQS) and tHZ(DQ) ), or begins driving (for tRPRE, tLZ(DQS), tLZ(DQ) ). Figure 1 shows a method to calculate the point when device is no longer driving tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS), tLZ(DQ) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. VOH X VOH - X mV 2x X VTT + 2x Y mV VTT + Y mV VOH - 2x X mV tLZ(DQS), tLZ(DQ) VTT VTT Y actual waveform 2x Y VTT - Y mV tHZ(DQS), tHZ(DQ) VOL + 2x X mV VTT - 2x Y mV VOL + X mV T1 T2 VOL T1 T2 stop driving point = 2 x T1 - T2 begin driving point = 2 x T1 - T2 Figure 1 — tLZ and tHZ Method for Calculating Transition and Endpoints The parameters tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as single-ended. The timing parameters tRPRE and tRPST are determined from the differential signal DQS-/DQS. 13. Measured from the start driving of DQS – /DQS to the start driving the first rising strobe edge. 14. Measured from the from start driving the last falling strobe edge to the stop driving DQS – /DQS. 15. tDQSCKDS is the absolute value of the difference between any two tDQSCK measurements (within a byte lane) within a contiguous sequence of bursts within a 160ns rolling window. tDQSCKDS is not tested and is guaranteed by design. Temperature drift in the system is < 10°C/s. Values do not include clock jitter. 16. tDQSCKDM is the absolute value of the difference between any two tDQSCK measurements (within a byte lane) within a 1.6µs rolling window. tDQSCKDM is not tested and is guaranteed by design. Temperature drift in the system is < 10°C/s. Values do not include clock jitter. 17. tDQSCKDL is the absolute value of the difference between any two tDQSCK measurements (within a byte lane) within a 32ms rolling window. tDQSCKDL is not tested and is guaranteed by design. Temperature drift in the system is < 10°C/s. Values do not include clock jitter. Data Sheet E1784E30 (Ver. 3.0) 17 EDBA232B1MA 2.3.1 HSUL_12 Driver Output Timing Reference Load These ‘Timing Reference Loads’ are not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. VREF 0.5 x VDDQ DDR2 Mobile RAM RTT = 50 Ω Output VTT = 0.5 x VDDQ Cload = 5pF Figure 2 — HSUL_12 Driver Output Reference Load for Timing and Slew Rate Note: 1. All output timing parameter values (like tDQSCK, tDQSQ, tQHS, tHZ, tRPRE etc) are reported with respect to this reference load. This reference load is also used to report slew rate. Data Sheet E1784E30 (Ver. 3.0) 18 EDBA232B1MA NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR MOS DEVICES Exposing the MOS devices to a strong electric field can cause destruction of the gate oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it, when once it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. MOS devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. MOS devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor MOS devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES No connection for CMOS devices input pins can be a cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. The unused pins must be handled in accordance with the related specifications. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Power-on does not necessarily define initial status of MOS devices. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the MOS devices with reset function have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. MOS devices are not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for MOS devices having reset function. CME0107 Data Sheet E1784E30 (Ver. 3.0) 19 EDBA232B1MA Mobile RAM is a trademark of Elpida Memory, Inc. The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Elpida Memory, Inc. Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights (including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or third parties by or arising from the use of the products or information listed in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Elpida Memory, Inc. or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of the customer's equipment shall be done under the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. [Product applications] Be aware that this product is for use in typical electronic equipment for general-purpose applications. Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability. However, this product is not intended for use in the product in aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other such application in which especially high quality and reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk of bodily injury. Customers are instructed to contact Elpida Memory's sales office before using this product for such applications. [Product usage] Design your application so that the product is used within the ranges and conditions guaranteed by Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage when the product is used beyond the guaranteed ranges and conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other consequential damage due to the operation of the Elpida Memory, Inc. product. [Usage environment] Usage in environments with special characteristics as listed below was not considered in the design. Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in environments with the special characteristics listed below. Example: 1) Usage in liquids, including water, oils, chemicals and organic solvents. 2) Usage in exposure to direct sunlight or the outdoors, or in dusty places. 3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL 2 , H 2 S, NH 3 , SO 2 , and NO x . 4) Usage in environments with static electricity, or strong electromagnetic waves or radiation. 5) Usage in places where dew forms. 6) Usage in environments with mechanical vibration, impact, or stress. 7) Usage near heating elements, igniters, or flammable items. If you export the products or technology described in this document that are controlled by the Foreign Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by U.S. export control regulations, or another country's export control laws or regulations, you must follow the necessary procedures in accordance with such laws or regulations. If these products/technology are sold, leased, or transferred to a third party, or a third party is granted license to use these products, that third party must be made aware that they are responsible for compliance with the relevant laws and regulations. M01E1007 Data Sheet E1784E30 (Ver. 3.0) 20